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Abstract: Pollutant emissions have been a topic of interest in the last decades. Not only environ-
mentalists but also governments are taking rapid action to reduce emissions. As one of the main
contributors, the transport sector is being subjected to strict scrutiny to ensure it complies with the
short and long-term regulations. The measures imposed by governments clearly involve all the stake-
holders in the logistics sector, from road authorities and logistic operators to truck manufacturers.
The improvement of traffic conditions is one of the perspectives in which the reduction of emissions
is being addressed. Optimization of traffic flow, avoidance of unnecessary stops, control of the cruise
speed, and coordination of trips in an energy-efficient way are necessary steps to remain compliant
with the upcoming regulations. In this study, we have estimated the CO2 and NOx emissions in
heavy-duty vehicles while traversing signalized intersections, and we examined the differences
between various behavioral scenarios. We found a consistent trend indicating that avoiding a stop
can potentially reduce CO2 and NOx emissions by up to 0.32 kg and 1.8 g, respectively. Furthermore,
an upper bound for the yearly CO2 savings is provided for the case of the Netherlands. A reduction
of 3.2% of the total CO2 emitted by heavy-duty vehicles is estimated. These results put traffic control
in the main scene as a yet unexplored dimension to control pollutant emissions, enabling authorities
to more accurately estimate cost–benefit plans for traffic control system investments.

Keywords: sustainable transport; emissions; fuel consumption; connected transport; intelligent
transport systems; energy efficiency

1. Introduction

Despite tremendous improvements in recent years, world air quality is still far from the
levels that do not represent a risk for human health and the environment. Nitrogen oxides
(NOx), together with particulate matter, ground level ozone (O3), and ammonia (NH3), are
among the most problematic air pollutants [1–6]. At the same time, the concentration of
greenhouse gases such as CO2 keep increasing in the atmosphere. Road transportation is
not only one of the main causes of NOx and CO2 emissions, but it is also the main factor
in the logistic costs. Furthermore, a high percentage of these emissions occurs in specific
corridors where most of the freight traffic takes place. Reducing the emissions and fuel
usage in these specific corridors can have a huge economic and environmental impact.

1.1. Fuel Consumption, CO2 and NOx Emissions

Depending on the degree of development of the country, domestic logistics costs
account for 5% to 20% of a country’s gross domestic product (GDP), of which about 60% are
transportation costs [7,8]. Although the global road to rail modal split ratio is estimated to
be 60:40, this varies significantly from one country to another. Specifically, in Latin America
and China, the percentage of rail transport is below 25%, and it is under 40% for the United
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States (US) [9]. The European Union (EU) is more heterogeneous; the estimations of the
road–rail modal split vary from 17% [10] to 34% [9]. Rail dominates in a few countries
that share certain characteristics, i.e., span large areas with very irregular population
distribution as Australia, Russia and Canada. Furthermore, in the last 10 years, the share of
road freight activity showed to be increasing with respect to rail freight worldwide [9].

At the same time, the transport industry is a significant source of NOx emission, as
well as greenhouse gases such as CO2. As of 2015, the transportation sector was responsible
for 7% of the total CO2 energy-related emissions [9]. In the EU, transportation overall is
responsible for 14% of CO2 emissions, as well as a main contributor to the overall NOx
emissions [11]. Road and rail transport emissions together account for 32% of the total
NOx of the US [12,13], and vehicle emissions altogether have been found to be the major
contributor to roadside NOx pollution [14]. Furthermore, freight transport, which is highly
dominated by trucks, constitutes 25% of the US’s total CO2 emissions [12,15]. Altogether,
these figures call for urgent action in road transportation in order to let the logistics expand,
allowing for economic growth with a smaller impact on air quality as described in the
emissions goals in particular in the EU.

The last two decades have already shown a shift in freight transport research towards
sustainability and safety affecting heavy-duty transport vehicles in a number of ways. Dif-
ferent options have been and are being explored at different levels, ranging from exploring
different energy sources to automation and coordination. The changes in the transport of
goods could be classified as follows; vehicle energy consumption and efficiency, control of
emissions, and, finally, automation and coordination, both between vehicles and with the
network infrastructure.

1.2. Transport Corridors

Special attention must be given to the main corridors, where a high percentage of
heavy-duty transport takes place. These corridors are also known for playing a critical role
in the expansion economy [16]. Roberts and coworkers found that although the economic
benefits are significant, large transport infrastructure projects can detrimentally impact the
environment. Clearly, focusing on these specific routes is key to have a high impact on
overall transport. It is in this context that in 2009, the EU started the development of the
Trans-European Transport Network (TEN-T), which aims to improve the European trans-
port network focused to allow sustainable growth of the economy with special attention on
the identified nine Core Network Corridors [17–20], of which 39% of the road corridors are
off highways [21]. Projects at national level also support these initiatives, as are the cases
of the top corridors program and the Connected Transport Corridors consortium [22] in The
Netherlands, which aim to scale up the currently available technology in four main Dutch
corridors in order to achieve a more efficient, sustainable, and safe transport of goods. In
particular, one of the objectives is the implementation and analysis of coordination systems
between the vehicles and the infrastructure.

1.3. Emissions and Traffic Control

Reducing the number of stops of vehicles can lead to a drop in travel time, fuel
consumption, and undesired emissions (CO2, NOx); at the same time, that increases the
safety on road (see [23] and the references therein, for example, ref. [24]). Although initially
aimed to reduce travel time rather than increase sustainability, methods to maintain a steady
flow in main roads have been around since the implementation of the green waves studied
since the late 1910s [25,26]. Further steps in this direction were green waves influenced
by induction loops where the fixed or manually adjustable schedule was replaced by a
dynamic algorithm with the traffic flow on specific points as input. The application of
induction loops for traffic control was introduced in the 1960s [27] and has been under
development since then. Some of the currently widely used traffic control systems based
on induction loops are SCOOT [28] and SCAT [29]. In the Netherlands, the VECOM
and VETAG systems have been in use since the 1970s [30–32]. Since then, diverse efforts
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have been put into developing communication systems between vehicles, infrastructure,
and traffic management centers. This technology is now widely referred to as intelligent
transport systems (ITS). PROMETHEUS, probably the first European research program on
ITS, dates back to the 1980s [33]. It was around the same time that the Interstate Surface
Transportation Efficiency Act (ISTEA) in the US issued the theme of ITS ([34] p. 625). In
the early 2000s, the ubiquitous availability of Global Positioning System (GPS) devices
and wireless communication boosted ITS technology developing Cooperative-ITS (C-ITS)
systems, among which intelligent traffic light control systems (iTLC) can be found. iTLCs
not only receive information about traffic in advance both from induction loops and from
cell-phone applications, allowing the coordination of traffic, reducing the number of stops,
but these systems also communicate bidirectionally, sending back information to the vehicle
or the driver and being able to concede priority and determine the optimal speed based on
real-time data. iTLC systems come with a great opportunity since they can contribute to
achieving the environmental goals by optimizing traffic so that emissions are minimized.

1.4. Previous Studies

Several projects in the last decade have addressed the impact of the interaction between
traffic control and behavior on pollutant emissions. Despite most of these studies aiming
to bridge the gap between laboratory tests (as those performed on a dynamometer) and
real-world emissions, very few of them involve real-world field measurements. Much
research is focused on theoretical optimization such as determining optimal speed in
terms of CO2 and NOx [35,36] or under the relation between emissions on different traffic
conditions based on the level of urbanization. In 2017, Wang and Rakha developed a
model to determine real-world optimal accelerations and cruise speed for heavy-duty
vehicles (HDV) [36]. Guardiola and co-workers studied the NOx emissions on passenger
cars when approaching a traffic light using three modeled speed profiles measured on
a chassis, finding savings in the range of 7.5–12% and 13–32% for fuel emissions and
NOx, respectively [37]. Real-world measurements were conducted by Meneguzzer et. al
comparing NOx and CO2 emissions on passenger cars on a route where traffic lights had
been replaced by a roundabout [38]. Several European projects measured fuel consumption
differences under traffic control measures. The Freilot project, which is probably the largest
project to date with measurements on 177 trucks over 12 months around Europe, reported
savings up to 13% in fuel consumption on HDVs by means of energy efficient intersection
control [39], followed by Compass4D, where 45 trucks with C-ITS capabilities (priority
and speed advice) were measured and fuel savings in the order of 20–60 g per km were
found [40,41].

Despite the vast evidence supporting the potential of traffic control systems to reduce
emissions, the heterogeneity of the methods and relatively limited published results make
the comparison and scale up of these results very involved. Moreover, although both are
deeply valuable to have a proper assesment of the vehicle emissions, it has been made
evident the need for in-vehicle methods in addition to the lab ones. The former ones allow
incorporating the diverse dependencies that are in play, tackling the problem as the real
multivariate problem that it is [42].

An accurate and clean figure obtained from real-world measurements is still missing,
and helping to fill that gap is the goal of this paper. By means of an in-vehicle measurement
unit, we estimated the emissions of HDV performing their normal operations during a
long period of time and on different roads. The data were processed to link it to the
road network in order to make possible to systematically extract all the segments of the
trajectories around signalized intersections. This is—to our knowledge—the first study
of this kind where real-world emissions, including the whole spectrum of dependencies
such as traffic conditions and driving behavior, were investigated over a dataset of several
months long. Furthermore, thanks to the size of the dataset, we provided an outcome
statistically sound that allows for scaling up to determine the impact on a larger scale.
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2. Materials and Methods

In the present work we studied the effect that the change in behavior caused by traffic
lights have in emissions of CO2 and NOx in HDV. For that purpose, we determined the total
mass of CO2 and NOx emitted by vehicles over a fixed distance around different intersection
crossings, and we further classified these passages based on their behavior in three groups:
no-stop, slow-down, and stop. The three different behaviors identified were used to define
the sampled groups. Under the assumption that all the crossings are independent from
each other, we performed a statistical test to determine whether the differences of the
level of emissions among the three groups are different on the population (please refer to
the end on Section 2.4 to see the tests used and to the Appendix A.2 for further details).
Furthermore, we conducted an in-depth qualitative analysis of the CO2 and NOx time
series for the different groups. As a global observable of the time series of each group,
we used the median to obtain a smoother and less outlier-sensitive measure. The time
series were analyzed together with the vehicle behavior. Finally, using the CO2 differences
between groups, we estimated the impact of these savings on the Dutch population. To do
so, we estimated the number of intersections that an HDV encounters per unit of distance,
and the probability of the passages to belong to each of the three behavioral groups are
described in this work using large amounts of collected data.

Data from a group of five vehicles conducting normal operations in The Netherlands
were used. From these vehicles, time series for GPS, speed, CO2, and NOx have been logged
for their entire routes. Since we are interested only in the segments around signalized
intersection passages, we first identified the location of the traffic lights in The Netherlands.
Next, the data around the crossing were selected from the entire trajectory to study the
different speed and emission profiles and, in particular, the differences in emissions of
different approaches. Furthermore, the data were subjected to a process of filtering, analysis,
and enrichment. The following subsections are dedicated to explaining: first, the physical
measurements and the properties of the vehicles employed; second, the pre-processing
and enrichment of the data acquired; and third, the analysis, which includes filtering and
reference to the statistical methods used.

2.1. Physical Measurements and Data Acquisition

The measurements were conducted on five Euro VI DAF trucks with engines with
power between 315 and 355 kW (see Table 1 for details). These data were acquired in the
context of the integrator project [43] and were made available for this study. The total weight
of the vehicles was also estimated by means of the truck features and their kinematics
over all the datasets. The mean and standard deviation of the total mass (tractor + load)
of the vehicles including all the trips were 25.75 t and 9.05 t , respectively. This was
estimated for each trip as described in the Appendix A. The data were acquired between
September 2019 and February 2020, while the trucks realized their normal operations in
The Netherlands region, traversing a total of 230,000 km. Although the routes included
segments outside The Netherlands, only the segments conducted on the Dutch Network
were used in this analysis.

Table 1. Details of all the vehicles included in the study. They were DAF trucks with similar
characteristics. The rated power was between 320 and 355 kW.

Engine Power [kW]

XF 440 FTG 320
XF 460 FTG 341
XF 440 FT 324

XF 480 FTG 353
XF 480 MX-13 355
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SEMS System

Onboard measurements were conducted by means of the Smart Emissions Measurement
System (SEMS) developed by TNO. This system provides a simple and easy-to-use, yet
robust and reliable emissions monitoring solution. It has been tested extensively since its
development in 2012 (see for example, refs. [44–46]), and there is an ongoing project to
develop its industrialization and large-scale deployment [47]. A series of measurement
systems needs to be installed on the vehicles, whereas some data have been obtained from
devices already installed by the original manufacturer.

The first group encompasses a GPS receiver as well as sensors to then estimate NOx,
O2, and NH3 concentrations and exhaust gas temperature. The sensors were mounted near
the end of the exhaust line, in threaded bushes welded through the wall of the tailpipe.
Regarding the second group, data from the CAN-bus were acquired, such as velocity,
throttle position, and rotational speed of the engine.

The NOx massflow and CO2 massflow were calculated by combining sensor signals
and CAN-bus signals. First, the exhaust massflow was calculated by summing air massflow
and fuel massflow. Air massflow and fuel volume flow were available on the CAN-bus of
each of the vehicles in this study. The fuel density is an assumption: 835 g L−1. The NOx
massflow was calculated by multiplying the exhaust massflow with the NOx concentration
(calibrated, corrected for NH3). The CO2 massflow was calculated by multiplying the fuel
massflow by a fuel specific CO2 emission factor, in this case, 3.15 CO2/diesel.

All data were sampled once per second and gathered in a data logger located in the
cabin, as depicted in Figure 1. This small computer was set up to start (stop) acquisition
when the ignition was turned on (off). A built-in data transmitter periodically uploaded
the data to a server. A computer running a scheduled preprocessing task picked up the
data from the server, performed checks, corrections, and calculations on the data (see
Section 2.2.1) and wrote it in a dedicated SEMS database.

Figure 1. Diagram of a tractor with the location of the different measuring systems installed on the
vehicle depicted in green. (1) CAN-bus sensor, (2) GPS antenna, (3) Air pressure sensor, (4) Tempera-
ture sensor, and (5) Exhaust sensors of NOx and O2. (0) Indicates the location of the onboard unit
system responsible for logging the data.

2.2. Data Processing
2.2.1. SEMS Preprocessing

Data as collected from sensors generally need preprocessing to remove illogical values
and spikes that cannot be explained by the conditions. Furthermore, some signals require
calibration-based corrections. The variation in the CAN-bus signal implementation among
manufacturers is another reason to perform checks and corrections. The preprocessing of
the SEMS data is performed automatically on a server, although some preemptive checks
have were already performed within the SEMS itself. The following tasks are performed
during preprocessing:

• Calibration: Sensor data are corrected using a function based on calibration of the
particular sensor in the lab;

• Speed signals from GPS and vehicles are compared and combined to produce a good
and continuous signal;
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• Raw cleaning: check for negative values, filter some signals for spikes, remove signals
when the engine is not running, and fill small gaps in the data if possible;

• Time alignment: align signals related to emissions to signals related to the engine;
• Ammonia correction: correction of NOx concentration signal for ammonia, based on

ammonia sensor values. This is necessary because the NOx sensor is cross sensitive
for NH3;

• Mass flow calculation: Emissions in grams are calculated by calculating the flow of
exhaust gas and multiplying it with the concentrations observed.

The result is a set of clean 1 Hz signals that can be used for further calculations, e.g., of
emissions per km.

2.2.2. Data Enrichment and Selection

In order to enrich the data with information from the infrastructure, the time series of
the GPS data needed to be connected to the road network. For each trip, then, the trajectory
was map-matched using the Open Source Routing Machine (OSRM) [48]. The result of this is a
new time series where each point is a node on Open Street Maps (OSM) [49] from where any
information present on it can be added to the original data.

Once the data were linked to the map, we could identify all the points in the data
in which a vehicle is crossing a signalized traffic light (based on traffic light locations
as in OSM) and the respective segment of the road of equal length before and after the
intersection. We identified the start and end points of segments of 2 km length centered on
the intersection crossing and also the vehicle action on the intersection. i.e., the maneuver.
Acknowledgedly arbitrarily, 1000 m has been chosen based on the typical deceleration of
a heavy-duty vehicle that can take up to 1 km [50,51]. From the original data, the time
series between the segment’s start and end were retrieved; this process is schematized in
Figure 2. The result is a series of N intersection passages pi defining a set P = {p1, . . . , pN}.
Each of these passages di consists of a group of time series of equal length representing
the position (xi(t)), the velocity (vi(t)), and the instantaneous CO2 and NOx mass flow
(ξi(t) and θi(t)), plus the maneuver taken by the vehicle (straight, right/left turn, u-turn)
represented by mi, i.e, pi = (xi(t), vi(t), ξi(t), θi(t), mi). The number of passages obtained
was N = 11,087, from which only those with straight maneuver were picked, resulting
in a smaller set P̃ = {pi ∈ P | mi = straight} with |P̃| = 4972. Provided the correlation
between turn radius and vehicle’s velocity, the analysis of the turns is significantly more
demanding and the interpretation of the results cumbersome; hence, it was not carried out
in this work and remains to be explored in future research.
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Figure 2. Example of the extraction of the data around the intersections. (a) Signalized intersections
were identified on the map. (b) The fragment of length 2 km symmetric around the intersection was
selected based on the position data. (c) All the time series relevant for this study were gathered;
from top to bottom, the velocity, acceleration, instantaneous CO2, and the instantaneous NOx. At
the bottom, the position of the vehicle relative to the stop line is plotted for reference. There is a
period between 60 to 100 s in which the vehicle is waiting at the traffic light. Around 100 s is when
the vehicle starts moving. Data spans only until the vehicle is 1000 m past the intersection.

2.3. Analysis
2.3.1. Clustering

Three different clusters were defined from the speed profiles with a set of simple rules.
These clusters represent different scenarios to be analyzed: a scenario in which the vehicle
does not stop at the intersection and does not change its speed significantly; a scenario in
which the vehicle has to stop completely at the intersection; and an intermediate scenario in
which the vehicle decreases its speed significantly before the intersection but does not stop.
Throughout the rest of the paper, we refer to these clusters as no-stop, stop, and slow-down,
and we associate them with the colors green, red, and amber, respectively. The clusters are
based on the mean velocity of the vehicle in two main subsegments, the immediate last
600 m before the intersection and the 400 m that are between 1000 m and 600 m from the
intersection. Defining for each passage i the mean velocity of the subsegment determined
by the interval ψ = (a, b) as:

v̄ψ
i =

∫
ψ

dtvi(t) =
∫ b

a
dtvi(t), (1)

we have defined the mean velocities over five subsegments of interest. First, the three
mean velocities v̄α

i , v̄β
i , and v̄γ

i for intervals α = [−600,−400)m, β = [−400,−200)m,
and γ = [−200, 50)m, respectively, are the three intervals used to classify the clusters.
Two additional mean speeds, v̄ρ

i , v̄ω
i for ρ = [−1000,−600)m, ω = [50, 1000)m, over

the remaining parts of the passage were used to homogenize the behavior farther from
the intersection. The same conditions are defined for the mean velocities v̄ρ

i , v̄ω
i for the
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three clusters. This reduces the general variability caused by external conditions such as
traffic or weather. The three clusters are then defined based on a set of rules over v̄ε

i with
ε ∈ {α, β, γ, ρ, ω} as follows:

Cno−stop = {i ∈ P |v̄ρ
i > 60 km/h∧ v̄ε

i > 60 km/h∀ε ∈ {α, β, γ}
∧ v̄ω

i > 30 km/h∧ @ t ∈ [−1000, 1000] | vi(t) < 3 km/h},
Cslow−down = {i ∈ P |v̄ρ

i > 60 km/h∧ v̄ε
i > 30 km/h∀ε ∈ {α, β, γ}

∧ ∃ε′ | ε′ ∈ {α, β, γ} ∧ v̄ε
i < v̄ρ

i ∧ v̄ω
i > 30 km/h

∧ @ t ∈ [−1000, 1000] | vi(t) < 3 km/h},
Cstop = {i ∈ P |v̄ρ

i > 60 km/h∧ v̄ω
i > 30 km/h

∧ ∃ t ∈ α ∪ β ∪ γ | vi(t) < 3 km/h∧ @ t ∈ ρ ∪ω | vi(t) < 3 km/h},

(2)

These rules define the disjoint sets Cno−stop, Cslow−down, and Cstop that do not necessar-
ily span the set of all the intersection passages, i.e., Cno−stop ∪ Cslow−down ∪ Cstop ⊆ C. The
results of the classification of the 4096 trajectories in |P̃| are shown in Table 2. A detailed
graphical representation of the rules that defined the cluster is shown in Figure 3.

Table 2. Number of passages classified in each of the three clusters after analyzing the
|P̃| = 4096 straight passages. It can be noted that the sum of the passages over the three clusters does
not add to 4096 because not all the passages belong to a cluster.

Cluster Number of Passages

no-stop 378
slow-down 349

stop 175

Figure 3. Details of the set of rules used in the study to determine the three clusters. The rules are
mainly based on the approach to the intersection, and they are significantly laxer on the conditions
of the velocity after the intersection. In all cases, the vehicle mean velocity over the immediate
400 m segment 600 m away from the intersection is greater than 60 km/h. The 600 m prior to the
intersection is where the clusters are distinguished; for the no-stop case, the mean velocity is greater
than 60 km/h over the whole 600 m segment. For the stop cluster, the vehicle stops completely (the
velocity vanishes) at least once in the segment. Finally, for the slow-down cluster, the mean velocity
is lower than the mean velocity on the previous segment but greater than 30 km/h, and furthermore,
the instantaneous velocity is greater than 30 km/h. The mean velocity over the 1000 m after the
intersection for the vehicles in all the clusters needs to be greater than 30 km/h.
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2.4. Outcome Measures

For all the intersection passages to be used in the analysis, the total CO2 and NOx over
each 2 km segment was computed by integrating the instantaneous quantities ξi(t) and
θi(t):

Ξi =
∫

si

dtξi(t) for i = 1 . . . N, (3)

and
Θi =

∫
si

dtθi(t) for i = 1 . . . N, (4)

where the lower case ξi(t) and θi(t) are time-dependent quantities of passage i and represent
the instantaneous CO2 and NOx concentrations at the tail-pipe, respectively; si is the total
time interval that it takes the vehicle i to transverse the entire 2 km passage; N is the
total number of passages included in the analysis; and the upper case Ξi and Θi state the
accumulated CO2 and NOx emitted over the entire intersection passage i, respectively.

Once Ξi and Θi for all passages i are computed, they are grouped by the clusters
defined using the speed profiles (Equation (2)) as follows:

Ξ̂j = {Ξi|i ∈ Cj}
Θ̂j = {Θi|i ∈ Cj},

(5)

for j ∈ {no-stop, slow-down, stop}. These are the six sets we analyzed (two outcome
measures for three groups). The mean emissions for each group are then defined as:

〈Ξ̂j〉 =
1
Nj

Nj

∑
i=1

Ξi with Nj = |Ξ̂j|

〈Θ̂j〉 =
1
Nj

Nj

∑
i=1

Θi with Nj = |Θ̂j|

(6)

To determine whether the observed differences in the sample hold for the population, we
performed a statistical significance analysis over Θ̂j and Ξ̂j, for j ∈ {no-stop, slow-down, stop}.
Provided that the data are not normally distributed, the statistical significance of the
results was assessed by means of a Kruskal–Wallis Rank test followed by a Pairwise Dunn
test to determine the significance between the groups. For the behavioral analysis and
visualization of the time series, the instantaneous median of the emissions for CO2 and
NOx and the speed were computed for each group as follows:

ξ ′j(t) = med{ξi|i ∈ Ci}

θ′j(t) = med{θi|i ∈ Ci}

v′j(t) = med{vi|i ∈ Ci},
(7)

where med{·} stands for the median. This is used as a proxy for the overall instantaneous
behavior of each group.

2.5. Impact

To analyze the impact of the intersection passages on energy efficiency it is necessary
to estimate the frequency of these events. In order to do this, we analyzed the behavior of
51 different HDV driving in the Netherlands. First, we determined the expectation value
for n: the number of intersections encountered per km of road for each trip:

E[n] = 1
NT

NT

∑
i

Ni
li

, (8)
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where li is the distance of the i-th trip (in km), Ni is the number of intersections found in
trip i, and NT is the total number of trips. Combining this value with s, the total yearly
distance driven as reported by the Dutch Central Bureau for Statistics (CBS) [52]; the
total number of intersection passages for the entire HDV fleet in The Netherlands can be
calculated as follows: s ·E[n]. Next, identifying how often each passage behavior falls into
one of the three clusters defined in Section 2.3.1, we determined the probability pi with
i ∈ {no-stop, slow-down, stop} with which the three behaviors (no-stop, slow-down, stop)
occur at an intersection. Finally, the upper bound for the savings, ∆—corresponding to
the case in which all the stops and slow-down cases can be avoided completely—can be
estimated via:

∆ = s ·E[n](pstop · ∆stop,no-stop + pslow-down · ∆slow-down,no-stop), (9)

where ∆i,j is the median difference in CO2 emitted between clusters i and j, or, more explicitly:

∆i,j = med{Ξ̂i, Ξ̂j} (10)

3. Results

In this section we present the results of the analysis done following the methodol-
ogy explained in Section 2. In the first subsection we analyze the speed profiles for the
different clusters before presenting the emission analysis. This is done by computing the
instantaneous median speed over each cluster (Equation (7)) and is shown in Figure 4. In
the following two subsections, we present the results of the emissions in the crossings for
CO2 and NOx, respectively. For CO2, the median instantaneous CO2 computed follwing
(7) and the total emissions for each passage calculated as in (10) for each cluster sepa-
rately are shown in Figure 5a,b. The distribution of the total CO2 emitted for all vehicles,
including those that do not belong in any of the clusters is shown in Figure 6. Analo-
gously for NOx, Figure 7a,b show the results obtained by means of Equations (7) and (10),
respectively. Figure 8a,b, show the cumulative levels for CO2 and NOx along the passages.
Finally, Figure 9 shows the results for the scaling up of the results to a whole year in
The Netherlands.

3.1. Clustering of the Speed Profiles

The results of the clustering are shown in Figure 4. The solid lines represent the
median speed of each cluster along the 2000 m segment, v′j(t) (see Equation (7)), whereas
the shaded areas signify the standard deviation. In green, the no-stop cluster seems to
keep a constant speed with relatively small deviation, while in amber, the slow-down
cluster decreases its speed when approaching the intersection but does not stop. Finally, on
the median of the stop cluster, it can be observed that the speed of the vehicles decreases
significantly at the intersection. The reason why the median does not vanish is because not
all the vehicles stop exactly at 0 m; instead, because of queues, many vehicles stop before
it. It is also worth noticing that the standard deviations for all the clusters are smaller on
the approach than after the intersection. This can be explained by the way the clusters are
defined, where the rules apply to the approach and not to the segment after the intersection.
The final speeds of the clusters then also differ, which we address in Section 4.
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Figure 4. Speed profiles for the three different groups. The median instantaneous speed (v′j(t), see
Equation (7)) of each of the three groups; no-stop, slow-down, and stop in green, amber, and red,
respectively. The shaded areas indicate the instantaneous standard deviation for each of the groups.

3.2. CO2 Emissions

Figure 5a shows the median instantaneous CO2 flow over the entire 2 km passage,
that is, ξ ′j(t), computed as indicated in Equation (7). As expected, the slopes of the stop
and slow-down clusters (in red and amber) right after the intersection are similar; in both
cases, the vehicles accelerate full-throttle after the intersection. Since the vehicles in the
slow-down cluster have a higher initial speed, the period of full throttle is shorter, and
the peak of this cluster is lower. Finally, the green curve represents the no-stop cluster. Its
median, although fairly more stable than those of the other two clusters, is not as flat as
one could have expected, which is further discussed in Section 4. In Figure 5b, we present
box plots for the distribution of the total CO2 for each of the clusters over the entire 2 km
passage, that is, the integral of the CO2 along the passage, which is computed as indicated
in Equation (10). The largest differences emerge in the stop cluster compared to any of the
other two clusters. The differences with the stop group are statistically significant. The
difference in CO2 emissions between the stop and no-stop is 0.32 kg, which translates into
0.12 L of diesel fuel. As can be seen in Figures 5 and 8a, when reaching the intersection, the
CO2 levels emitted by the no-stop subpopulation are near constant, hence its cumulative
levels are linear, which, at the intersection, are higher than the other two which were
coasting in this segment preceding the stop line. Furthermore, the stop cluster reaches the
intersection with the lowest values, and this enhances the impact of the stop and subsequent
throttle: 100 m after the intersection, the cumulative CO2 values from the stop cluster are
already higher than the other two. At the end of the segment, the slow down cluster is
smaller than the no-stop cluster, which seems to indicate that slowing down is more energy
efficient than not doing it. This can also be observed in Figure 8 where the value of the
slow-down cluster is smaller than the no-stop cluster. The difference between these two
clusters is slim, and several points need to be taken into account. The final velocities of the
clusters are not the same (see Figure 4); instead, the final median velocity of the no-stop
cluster is higher than the other two. This might indicate that the segment length chosen
is too short for HDVs, that they have not reached their target speeds after 1 km beyond
the intersection, and that the CO2 of the stop and slow-down is being underestimated. In
addition, this does not hold for the median, which might also indicate that the means are
affected by outliers. Furthermore, the definition of the clusters is very clear for the stop
and no-stop clusters, whereas the definition of the slow down behavior is more delicate
and may well require further fine tuning. Figure 6 shows the distribution of the total CO2
emitted per passage, i.e., Ξi for i ∈ N, the total number of passages used in the study (see
Equation (3)). The distribution is not symmetric, indicating that there are passages with
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higher emissions than the ones in the groups defined in this work. We will address the
consequences of this in Section 4.

Figure 5. (a) Median instantaneous CO2 flow for the three groups. Green, amber, and red represent
the no-stop, slow-down, and stop groups, respectively. Position is relative to the location of the
intersection as described on OSM. Vertical dashed lines denote the different regions used to group
the speed profiles (see Section 2). (b) Results for the CO2 flow for the three groups. Green, amber,
and red represent the no-stop, slow-down, and stop groups, respectively. Differences between all
groups are significant.

Figure 6. Distribution of the CO2 emitted on the 2 km passage. In green, amber, and red the median
values for the no-stop, slow-down, and stop clusters, respectively. The distribution is skewed, and
many values of emitted CO2 occur when interaction with other factors such as traffic is present. This
indicates that the gap between the no-stopping vehicle and a vehicle that stops can increase.

3.3. NOx Emissions

The median instantaneous NOx emissions, θ′j(t) for j ∈ {no-stop, slow-down, stop}
(Equation (7)) together with the medians of the total NOx emissions per passage, Θ̂j
(Equation (5)), are depicted in Figure 7. The three clusters have very differentiated levels
of NOx with a clear negative impact of the stop on the NOx levels (see Figure 7a). As
with the CO2, the NOx levels are related to the acceleration and throttle pattern after the
intersection, but contrary to that case, the NOx levels for the stop and slow-down are
clearly distinguishable. As can be seen from the total median NOx emissions (Figure 7),
the stop population emits more than five times the same NOx in the 2 km passage than the
slow-down cluster. It is of main interest to contrast these values to the current regulations,
in particular, those applying to the location of the measurements in the EU. As a reference,
the current NOx emission limit for vehicles in the category Euro VI is 0.46 g/kWh [53,54],
which, for a typical HDV, could be roughly translated into 0.5 g/km of NOx (assuming
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an average truck demand of 1.1 kW h/km). Figure 8b shows a different story for the NOx
compared to the CO2. All changes in velocity are associated with an increase in the NOx
levels. The cumulative NOx emitted by the no-stop cluster is never higher than that of the
other two. Looking at the segment before the intersection, in which the slow-down cluster
holds a lower speed, it can be interpreted that holding a lower constant speed is associated
with higher NOx levels. Moreover, after the intersection, the longer full throttle from the
stop cluster raises its cumulative value that overtakes the slow-down cluster 200 m after
the intersection.

Figure 7. (a) Median instantaneous NOx flow for the three groups. Green, amber, and red represent
the no-stop, slow-down, and stop groups, respectively. The position is relative to the location of
the intersection, as described on OSM. The vertical dashed lines denote the different regions used
to group the speed profiles (see Section 2 for further details). (b) Results for the NOx flow for the
three groups. Green, amber, and red represent the no-stop, slow-down, and stop groups, respectively.
Differences between all groups are significant.

Figure 8. Cumulative flows for the three groups. Green, amber, and red represent the no-stop,
slow-down, and stop groups, respectively. The position is relative to the location of the intersection
as described in OSM. The vertical dashed line denotes the location of the intersection. (a) Results for
the CO2 flow for the three groups; (b) Results for NOx for the three groups. Green, amber, and red
represent the no-stop, slow-down, and stop groups, respectively.

3.4. Impact

Furthermore, 47,612 Dutch trips’ speed profiles from 51 HDVs were analyzed from
which 115,939 straight maneuvers while in intersection passages have been identified. The
distribution of intersections per km is shown in Figure 9a. The mean of the distribution is
used as a proxy to the expectation value as indicated in Equation (8), hence E[n] = 0.89. The
probabilities pi with i ∈ {no− stop, slow− down, stop} with which the three behaviors
(no-stop, slow-down, stop) occur at an intersection are depicted in Figure 9b.

For this analysis, only the difference between stop and no-stop were used, which,
following Equation (9), results in:

∆ = s ·E[n](pstop · ∆stop,no−stop), (11)

The results for the upper bound of the yearly savings obtained by means of Equation (9)
are shown in Table 3. The relative CO2 savings were estimated using the total CO2 emitted
by HDV, also provided by CBS. The total potential CO2 savings from HDV by means of
traffic control methods is estimated at 3.2%.
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Table 3. Potential energy savings from HDV in The Netherlands by using C-ITS. The first row shows
the value of ∆ as defined in Equation (9), that is, the yearly potential CO2 savings, in this case for
2019. In the second row is the 2019 total CO2 emitted by HDVs as reported by the CBS. Finally, in the
third row, we show the percentage that ∆ represents from the total CO2.

∆ CO2 [g] 3.58886 1011

HDV yearly total CO2 [g] 1.0756 1013

Potential fraction saved [%] 3.2

Figure 9. Values used to scale up the results to all the trips in the Netherlands. (a) The number of
signalized intersections per km of road for each trip. The mean value, 0.89, represents the expectation
value for the number of intersections found per km of road. (b) Shows the probabilities pi with
i ∈ {no-stop, slow-down, stop} to find each of the three different behaviors when an HDV encounters
a traffic light.

4. Discussion

The results indicate that avoiding a single stop in an HDV reduces NOx emissions
by 1.8 g and CO2 emissions by 0.32 kg, saving 0.12 L of diesel fuel. As explained in
Section 3, this is true for the case of optimal traffic conditions, i.e., close to free flow
with minimum interaction among vehicles where the vehicles approach and leave the
intersection without being affected by traffic. The cases analyzed are on the lower side
of the distribution of emissions, which is not symmetrical, see Figure 6. This means that
these figures underestimate the savings for each individual passage. When traffic plays
a role, avoiding traffic congestion and the stop altogether would increase the savings
considerably. In times of emerging C-ITS, this comes as a flexible and low-cost option for
governments to improve the sustainability of freight transport reducing emissions and
costs. Programming the traffic lights adequately can make the difference between being
NOx-emission compliant or not.

Due to the lack of homogeneity in the measuring methods, the different setups used
and the arbitrary choice of the outcome measures, an accurate comparison of the results
with other studies is not straightforward. Rough estimates can nevertheless be performed
for the studies that measured trucks in naturalistic behavior. The Compass4D project
reported CO2 reductions in the range of 20 g km−1 to 60 g km−1 [40,41]. This is in line
with the results reported in the current work, and it corresponds to the cases in which a
vehicle avoids a stop every 16 km to 5.3 km. The Freilot project found aggregated levels of
savings between 8% and 13% in measurements carried out over 12 months in France and
the Netherlands, respectively. Based on the average distance traveled by a truck in 2012 as
stated in Eurostat [55], this translates into avoiding a stop every 5 km in the Netherlands
and every 8 km in France, a result that is also in line with our current findings. A previous
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indication of the increase in emissions in stops has been mentioned by [56], and more
recently, Özener and collaborators measured CO2 and NOx emissions of EURO V buses
around bus stops. They indicate that around 25% and 39% of the CO2 and NOx emissions,
respectively, are emitted in the stop areas whose length accounted for only about 9% of the
route. Furthermore, they indicate that the higher number of stops in peak hours increases
both CO2 and NOx 25% on average, which is in line with our findings.

Finally, this indicates that traffic control by means of technologies such as C-ITS could
generate energy savings in the order of 3.2% of the total CO2 generated by HDV. This
estimate was computed using a large dataset, and the savings for single passages have been
tested with statistical rigor. Nevertheless, the current work lacks of further detailed analysis
that should follow in upcoming research. Notably, the distinction per road type could have
an impact both in the emission savings and in the probabilities of finding an intersection.

Several things remain to be improved and further explored. In our analysis, the
clustering focused only on the approach to the intersection. This led to the deviation of
the speed profiles after the intersection to be relatively high, and furthermore, the final
median speed for the different clusters is not the same. This introduces a bias in our
results, making the difference between the clusters smaller. We nevertheless performed
an analysis of this last part of the segments, and we found that the difference could not
increase more than 0.02 km of CO2 or 0.01 L of fuel (i.e., the 0.32 km and 0.12 L difference of
CO2 and fuel would be 0.33 kg and 0.13 L), which does not affect the main message of our
work. Another important point to discuss is the increase and decrease in fuel consumption
before the intersection. We hypothesize that this increase in fuel consumption (preceded
by a small decrease) is of a behavioral nature. Drivers might release the throttle when
approaching until they are certain that they will reach the light in green, and then they
accelerate again. This is particularly relevant because it is a behavior that can be avoided
with C-ITS technology that can guarantee priority to the drivers, enabling them to keep
a constant speed. Finally, in the current analysis, only the speed profiles were taken into
account. A detailed analysis of the vehicle’s complex dynamics while approaching an
intersection, also taking into account the driver’s behavior, is still missing but needed for a
full understanding. We encourage fellow researchers to explore that path.

5. Conclusions

The impact of signalized intersections on NOx and CO2 emissions in HDV was studied
experimentally. It was concluded that avoiding a stop reduces the NOx emissions in a
2 km passage by 75%. This is a key result for governments, regulatory authorities, and
traffic designers to consider. Furthermore, the CO2 levels can be reduced by 0.32 kg per
intersection. This represents more than 20% of the CO2 emitted at an intersection when
stopping. Furthermore, we computed an upper bound for the total CO2 yearly saving in
the Netherlands, which resulted in 3.2% of the total CO2 emitted by heavy duty vehicles.
These figures correspond to the case in which the stop cases are replaced by no-stop cases
without changing the underlying traffic conditions. If traffic flow is further improved by
means of C-ITS technology, the margins would increase.

Author Contributions: Conceptualization, R.J., E.J.v.A. and N.D.; methodology, E.J.v.A. and N.D.;
data analysis, E.J.v.A. and N.D.; data curation and preprocessing, R.v.G.; writing—original draft
preparation, N.D. and R.v.G.; writing—review and editing, N.D. and R.v.G. All authors have read
and agreed to the published version of the manuscript.

Funding: This research has been funded by the Dutch Research Council (NWO, Nederlandse Or-
ganisatie voor Wetenschappelijk Onderzoek) and TKI Dinalog as part of the CATALYST Living Lab
(reference 439.18.458 A), a public private partnership that is coordinated by TNO, The Netherlands
Organization for applied scientific research. This study was partially sponsored by the Metropolitan
Region Rotterdam Den Haag (MRDH).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Energies 2022, 15, 1242 16 of 19

Acknowledgments: The authors want to thank the Ursa Major neo Connected Truck Trials project
for making the data available. N.D. wants to thank Jessica de Ruiter for help with the dataset, Paul
R. Mentink for fruitful discussions, and Norbert E. Ligterink for revising and objectively criticizing
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ITS Intelligent Transport Systems
C-ITS Cooperative Intelligent Transport Systems
iTLC Intelligent Traffic Light Controller
HDV Heavy-Duty Vehicles
GPS Global Positioning System
SEMS Smart Emissions Measurement System
RPM Revolutions per minute
EU European Union
CBS Central Bureau for Statistics

Appendix A

Appendix A.1. Vehicle Mass Estimation

The total mass of the vehicles (tractor and load) was estimated to have a better de-
scription of the vehicles over which the analysis was done. The calculation used Newton’s
second law on the power:

P = mva + αmv + βv2 (A1)

where P is the power expressed in kW, m the total mass in t, v and a are the longitudinal
velocity and acceleration in m/s and m/s2, respectively, and α and β were parameters
estimated on previous analysis to be α = 80 N t−1 and β = 800 N. These two last terms
represent the rolling resistance term (assumed to be linear to the speed) and the air friction
term (quadratic to the speed), respectively. The power P can be determined by means of the
torque τ and the angular displacement per unit of time, this being the angular displacement
∆φ. The power is then: P = τ

∆φ
∆t . In this case, ∆φ is measured in RPM, hence ∆φ = 2πω

and ∆t = 60 s, which results in:

P =
τ2πω

60 s
(A2)

The mass distribution is shown in Figure A1, and the mean mass was 31.3 t.

Figure A1. Distribution of the total mass of the vehicles (tractor and load). The mean value is
indicated in red.
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Appendix A.2. Statistical Analysis

In the need to verify whether our findings in the sample hold for the population we
formulated the following null hypothesis; H0: The samples from each of the groups Ξ̂j for j ∈
{no-stop, slow-down, stop} are drawn from the same distribution. The alternative hypothesis
then reads; HA: The samples from each of the groups Ξ̂j for j ∈ {no-stop, slow-down, stop} are
drawn from different distributions. In order to evaluate this hypothesis, several tests were
performed. First, it was evaluated whether the groups were normally distributed by means
of a Shapiro–Wilk test, which for both CO2 and NOx happened not to be the case. Hence,
non-parametric statistical tests were used, namely, the Kruskal–Wallis rank sum test [57]
and a Dunn pair test [58] as implemented in R [59]. The Kruskal–Wallis test indicates
whether H0 can be rejected for at least one pair of groups; if that turns true, we perform a
Dunn test to find for which pair(s) of groups H0 can be rejected or not.

Table A1 shows the results of the Kruskal–Wallis test for the CO2. The p-value indicates
that significant differences exist for a confidence level of 0.001. Furthermore, Table A2
shows the Dunn pairwise test for the CO2. Differences between the stop group and either
of the two other groups are significant for a confidence value of 0.001. This means that
H0 can be rejected in these cases, in place for the alternative hypothesis, HA. The same
procedure was performed for the NOx values Θ̂j. Tables A3 and A4 show the results for the
NOx values. In this case, for a confidence level of 0.001, we found that the null hypothesis
can be rejected between the no-stop and the other two groups.

Table A1. Results of the Kruskal–Wallis test on the CO2 showing that significant differences exist.

χ2 Degrees of Freedom p-Value

84.23 2 2.2 10−16

Table A2. Results of the Dunn pairwise test on the CO2.

Scenario Pair Mean Rank Difference p-Value

slow-down × no-stop 52.64967 0.0037
stop × no-stop 197.80831 2 10−16

slow-down × stop 145.15864 4.7 10−10

Table A3. Results of the Kruskal–Wallis test on the NOx showing that significant differences exist.

χ2 Degrees of Freedom p-Value

142.85 2 2.2 10−16

Table A4. Results of the Dunn pairwise test on the NOx.

Scenario Pair Mean Rank Difference p-Value

slow-down × no-stop 141.68511 2 10−16

stop × no-stop 203.46920 2 10−16

slow-down × stop 61.78409 0.0019
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