TNO report V98.1237

Guidance document on the estimation of dermal absorption according to a tiered approach: an update

TNO Nutrition and Food Research Institute

Utrechtseweg 48 P.O. Box 360 3700 AJ Zeist The Netherlands

Phone +31 30 694 41 44 Fax +31 30 695 72 24 Date

29 January 1999

Author(s)

C. de Heer

A. Wilschut

H. Stevenson

B.C. Hakkert

Project number:

480361

Approved by:

N.J. Snoeij

All rights reserved No part of this publication may be reproduced and/or published by print, photoprint, microfilm or any other means without the previous written consent of TNO.

In case this report was drafted on instructions, the rights and obligations of contracting parties are subject to either the Standard Conditions for Research Instructions given to TNO or the relevant agreement concluded between the contracting parties

Submitting the report for inspection to parties who have a direct interest is permitted

Number of specimen:

Number of copies:

70

Number of pages:

27

Number of appendices:

2

© TNO

Summary

This report provides guidance to the estimation of dermal absorption in man at specific working conditions. It is meant for those involved in the health risk assessment of chemicals, *i.e.* industries and governmental agencies. The report is based on current experience using TNO-report V94.129 'Protocol for the estimation of dermal absorption according to a tiered approach on behalf of the risk assessment of pesticides' (Stevenson et al., 1994) as a starting point.

A tiered approach for the assessment of dermal absorption is described. The order of the tiers is determined by the simplicity of the studies on the one hand, and the relevance of the results for the estimation of human dermal absorption on the other hand. In general, the lower the tier, the more limited the data available are. As a consequence, the higher the tier, the more accurate the estimation of the dermal absorption. By introducing 'reasonable worst case' estimations, the results from the lower tiers will not underestimate the dermal absorption.

Tier 1

In tier 1, a default value of 100% for dermal absorption is used to calculate a dermal health-based acceptable occupational exposure level (the OEL_{dermal}), when no data are available.

Tier 2

In case health risks are indicated in tier 1, an estimate of the percutaneous penetration should be made. Data to be considered to estimate dermal absorption are data on the physico-chemical properties of the substance and/or data on oral absorption. The use of mathematical skin permeation models based on physico-chemical properties is discussed.

Tier 3

Experimental data derived from both *in vivo* studies with experimental animals and/or human volunteers, and *in vitro* studies with human and animal skin are used in tier 3 to further refine and quantify dermal absorption in man. It is noted that the results of *in vivo* as well as *in vitro* dermal absorption studies are heavily influenced by experimental conditions.

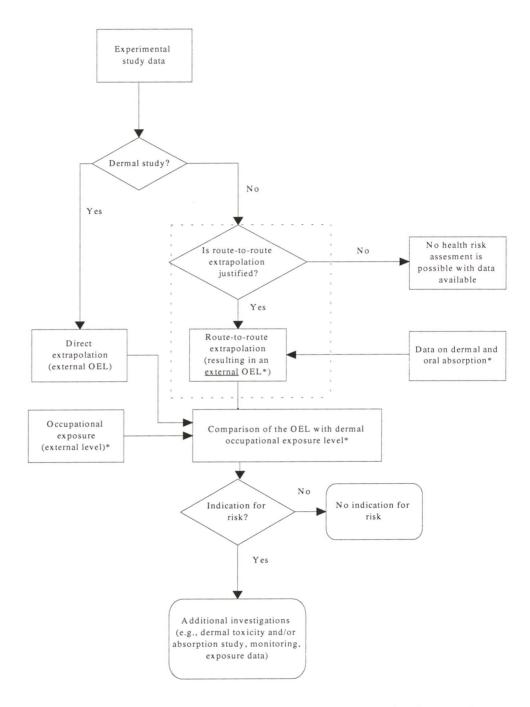
Contents

1.	Introdu	ction		
2.	Aim of the guidance on dermal absorption			
3.	Descri	Description of tiers		
	3.1	Introduction		
	3.2	General description of tiers		
	3.3	Use of percentage dermal absorption versus the skin		
		permeation coefficient Kp		
	3.4	Tier 1: default value		
	3.5	Tier 2: theoretical considerations		
	3.5.1	Mathematical skin permeation models		
	3.5.2	Default values for dermal absorption		
	3.6	Tier 3: experimental data		
	3.6.1	In vivo dermal absorption studies with experimental animals		
	3.6.2	In vitro dermal absorption studies with human and/or animal		
		skin		
	3.6.3	Human volunteer studies		
4.	Conclu	sions and recommendations		
	4.1	Conclusions		
	4.2	Recommendations		
5.	Referen	References		
6.	Signatu	Signature		
A		Factors determining dermal absorption		
В		Mathematical skin permeation models and their use in dermal risk assessment		

V98.1237 4 of 27

1. Introduction

The occupational health risk of a chemical is assessed by comparing occupational exposure levels and the hazardous properties of the chemical. Exposure levels are estimated with models or based on actual measurements. Results from toxicity studies are translated in health-based acceptable occupational exposure levels (OEL), *i.e.* the Health-Based Occupational Reference Value (HBORV) for new and existing chemicals, and the Acceptable Operator Exposure Level (AOEL) for pesticides. In general, the toxicological studies available are performed by oral administration of the substance. This is satisfactory for the establishment of, *e.g.*, the Acceptable Daily Intake (ADI), but in the occupational setting people are exposed especially through skin contact and by inhalation. Therefore, occupational risk assessment has to be focussed on these exposure routes.


In Figure 1.1, the steps involved in the health risk assessment following dermal exposure are presented. In the dashed frame, route-to-route extrapolation is indicated. When oral studies are used for the assessment of a dermal OEL, route-to-route extrapolation will be necessary to bridge the gap between available data and the occupational situation. So far, route-to-route extrapolation only accounts for the differences in absorption via the routes of interest (Wilschut et al., 1998).

This report

This report provides guidance to the estimation of dermal absorption in man in relation to the outcome of the occupational health risk assessment, and is meant for those involved in the health risk assessment of chemicals, *i.e.*, industries and governmental agencies. By using a tiered-approach, guidance is given to a refinement of the estimate of dermal absorption when health risks are indicated. It is based on current experience using TNO-report V94.129 'Protocol for the estimation of dermal absorption according to a tiered approach on behalf of the risk assessment of pesticides' (Stevenson et al., 1994) as a starting point. After publication, that report was sent for comments to colleagues from academia, industries and governmental and governmental-liaised bodies in Europe and North-America, in order to reach consensus on the establishment of dermal absorption values in risk assessment of pesticides. The comments received and suggestions for modifications made (Stevenson et al., 1996), are used in this report.

In Chapter 2, the aim of this report is further substantiated. A general description of the tiered approach and the individual tiers is presented in Chapter 3. It should be noted that background information on the tiers is provided in the appendices of this report. They further elaborate the choices made. Conclusions and recommendations for further research are presented in Chapter 4.

Figure 1.1 Schematic presentation of health risk assessment following dermal exposure

* In case route-to-route extrapolation is supposed to end up in an internal value, the external occupational exposure level has to be extrapolated to an internal level by means of data on dermal absorption.

V98.1237 6 of 27

2. Aim of the guidance on dermal absorption

For an assessment of the occupational health risk of a chemical, the hazard has to be compared with data regarding the possible contact with the substance (exposure). In order to estimate the hazard of the substance, occupational exposure levels (OEL) are calculated from No-Observed-Adverse-Effect-Levels (NOAEL) established in repeated-dose toxicity studies. Assessment factors are introduced, accounting for differences between experimental animal and man, intraspecies differences, differences between experimental and occupational exposure duration, the adverse character of the effect, the dose-response curve, and the confidence of the database (Hakkert et al., 1996). Because occupational exposure to chemicals concerns mainly contact with the skin, an external dermal OEL (OEL_{dermal}) or internal OEL (OEL_{internal}) should be established. The risk is evaluated by comparison of either the external OEL_{dermal} with the estimated or measured exposure levels, or the OEL_{internal} with the internal exposure levels. In both cases, data on dermal absorption are indispensable.

In general, toxicity studies, which function as basis for the establishment of the OELs are performed by oral administration. Oral-to-dermal extrapolation is necessary to be able to use the results. Several factors determine the validity of such route-to-route extrapolation, i.e., the possible differences in kinetics, in metabolic processes (i.e., first pass effects), and in bioavailability. Usually, quantification of most of these differences is not possible and correction is only made for differences in bioavailability, which is relatively simple. The OEL_{dermal} is calculated from the oral NOAEL using the percentages of oral and dermal absorption. In TNO report V97.520 'Evaluation of route-to-route extrapolation in health risk assessment for dermal and respiratory exposure to chemicals' (Wilschut et al., 1998), it was tried to validate the current route-to-route methodologies. It appeared that the difference in absorption is not the only factor clarifying the differences in toxic potential after exposure to different routes. However, it was not possible to establish reliably a factor to account for other uncertainties in route-to-route extrapolation. In the Appendix of TNO report V97.520, an overview of general aspects on route-to-route extrapolation is given. Therefore, knowing the uncertainties introduced by route-to-route extrapolation, TNO follows the current procedure as applied in many frameworks, unless there are clear indications that route-to-route extrapolation is not justifiable, in other words route-to-route extrapolation is performed accounting only for differences in absorption between the routes of interest.

The absolute bioavailability after dermal exposure will be largely influenced by dermal area dose (amount applied substance per unit area of skin), size of exposed skin area, exposure time, vehicle, occlusion, etc. (see Appendix A). It is stressed, that a generally applicable dermal absorption percentage and thus a generally applicable OEL_{dermal}, comparable with MAC-/TLV- or ADI-values cannot be derived, because it is assumed that dermal absorption is influenced to a larger

extent by occupational exposure conditions than oral and inhalation absorption. The use of the OEL_{dermal} in another risk assessment, where exposure conditions deviate from the conditions for which the dermal absorption is determined, can result in over- or underestimation of risks. So, the OEL_{dermal} applied is closely connected with the anticipated exposure scenario.

It is noted that dermal absorption may be influenced by local toxicity caused by (repeated) skin contact with the substance of interest (see Appendix A). However, at present it is not possible to take the influence of local toxicity after repeated dermal exposure on percutaneous absorption into account. Furthermore, it is noted that dermal absorption studies performed in accordance with the current OECD draft guidelines (OECD 1996a, 1996b) only apply to single exposures.

Data on bioavailability after dermal absorption are not always available for risk assessment. A 'worst-case' assumption of complete absorption through the skin can be made. However, often this assumption leads to an unacceptable risk ratio. One method to refine the risk estimation is to provide better data on dermal absorption by investigations.

This report focuses on the assessment of percutaneous absorption in relation to the occupational health risk assessment. A tiered approach for the assessment of dermal absorption is described. The order of the tiers is determined by the simplicity of the studies on the one hand, and by the relevance of the results for the estimation of human dermal absorption on the other hand.

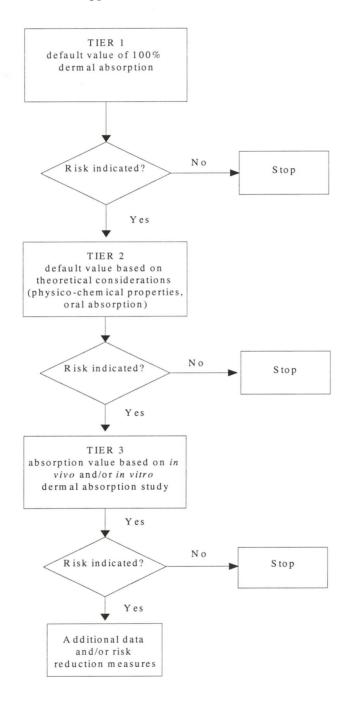
This approach is intended, both to give reasonable recommendations on requests for additional studies on dermal absorption when it is decided to refine the risk assessment in this way, and for the evaluation of dermal absorption studies submitted.

V98.1237 8 of 27

3. Description of tiers

3.1 Introduction

In this chapter, a general description of the establishment and/or refinement of the dermal absorption in health risk assessment is presented.


3.2 General description of tiers

A tiered approach for the estimation of dermal absorption is given (Figure 3.1). The sequence of the tiers is determined by 1.) the simplicity of the studies, and 2.) the relevance of the results.

In general, the lower the tier, the more limited the data available are. Alternatively, the higher the tier, the more accurate the estimation of the dermal absorption. By introducing 'reasonable worst case' estimations, the results from the lower tiers will not underestimate the dermal absorption.

It is not always necessary to have an accurate estimate of dermal absorption. Figure 1.1 presents how decisions for a request for the performance of (additional) dermal absorption studies should be made. The occupational health risk assessment may be based on 'worst-case' assumptions. When the risk estimation using these 'worst case' assumptions results in a risk ratio smaller than one or an acceptable 'margin of safety' (MOS), the occupational health risk is considered to be low. In this case, additional studies are not warranted. When the risk ratio exceeds one or the MOS is considered unacceptable, adverse health effects cannot be excluded. Additional investigations are necessary to verify assumptions. It has to be decided, which information is most critical regarding the validity of the risk assessment. The choice is determined by the assumptions made in hazard and exposure assessment, the simplicity of the additional investigations to verify the assumptions, and the results expected. The decision should be made on a case-bycase basis by expert judgement following the tiered approach and the subsequent need for additional data. The refinement of the estimate of dermal absorption is one of the choices that can be made. Alternatively, route-specific toxicity studies may be performed.

Figure 3.1 Guidance on the estimation of dermal absorption according to a tiered approach

V98.1237 10 of 27

3.3 Use of percentage dermal absorption versus the skin permeation coefficient Kp

As indicated before, the differences between oral and dermal absorption are taken into account when route-to-route extrapolation is performed. As a measure for dermal absorption, the percentage absorption is applied and used to convert internal to external dermal exposure levels. As long as this latter method is used in health risk assessment of chemicals, the percentage absorption is preferred to flux values or the skin permeation coefficient Kp. It is noted that flux or Kp values may be used, but that they first have to be translated to a percentage absorption value before they can be applied in the risk assessment process. Given the lack of insight in kinetics after dermal exposure has ceased, this should be done by means of a 'worst-case' approach assuming a 24-hour exposure and application of the calculated flux or the anticipated exposure level (expressed as dermal area dose) multiplied by the established Kp value (see also Appendix B).

3.4 Tier 1: default value

In tier 1, a default value of 100% dermal absorption is used to calculate the OEL_{dermal} or the internal exposure level. If this approach indicates the possible occurrence of unacceptable health risks, a substantiation of the dermal absorption may be one option to reduce the calculated risks (see Tier 2).

3.5 Tier 2: theoretical considerations

In case the use of a default value of 100% for dermal absorption (tier 1) results in an unacceptable risk, an estimate of the percutaneous penetration could be made by refining the applied value for dermal absorption by means of 1.) mathematical skin permeation models based on physico-chemical properties, and/or 2.) estimated default values for dermal absorption. Data to be considered to chose the default value for dermal absorption are data on the physico-chemical properties of the substance and/or oral absorption data. If after this substantiation an unacceptable risk is still indicated, a further refinement can be achieved by performing *in vivo* and/or *in vitro* dermal absorption studies (see Tier 3).

3.5.1 Mathematical skin permeation models

In the past years, many attempts have been made to relate physico-chemical properties to dermal absorption. Molecular weight (MW), octanol-water partition coefficient (log P), and water solubility (WS), are, amongst others, related with the capacity of a substance to permeate the skin. However, the use of models based on these parameters, either qualitatively or quantitatively in health risk assessment after dermal exposure, is questionable. In Appendix B this is further substantiated. It is concluded that given the variety in the experimental data on which the models

are based and the influence of this on the outcome of the experiment, and the lack of validation of these models, their general applicability is debatable.

3.5.2 Default values for dermal absorption

Physicochemical properties

Based on theoretical considerations on skin permeation, it might be expected that there should be an optimum in log P and a maximum in molecular weight for facilitating percutaneous absorption. Unfortunately, clear cut-off values for negligible, low and/or high dermal absorption of chemicals cannot be derived from the data presented in literature (see Appendix B). However, for the time being and based on the theoretics on dermal absorption and diffusion, the following criteria are chosen on a pragmatical basis to discriminate between chemicals with high and low dermal absorption:

- 10% dermal absorption is used in case MW > 500 g/mol and log P is smaller than -1 or higher than 4, otherwise
- 100% dermal absorption is used in case MW < 500 g/mol or log P between or equal to -1 and 4.

It is noted that the use of 100% dermal absorption is a 'worst-case' estimate. The lower limit value of 10% dermal absorption is chosen, because the data presented in literature indicate the occurrence of dermal absorption for tested compounds even beyond the extremes of log P and/or MW values. By expert judgement it is possible to deviate from 100 and 10% dermal absorption taken into account all data available, for example, data on ionogenic state, oral absorption and dermal area dose in occupational settings.

It is noted that the default values for dermal absorption are based on the same data on skin permeation as used for evaluation of the mathematical skin permeation models. However, the difference is that the default values only addresses to the upper and lower limits of skin permeation, where as the mathematical skin permeation models try to estimate the whole spectrum of dermal absorption by means of poorly validated methods.

Data on oral absorption

If a default value for dermal absorption of 100% is applicable based on the physico-chemical properties of a substance (see paragraph 3.5.2) and an appropriate oral absorption/ADME study is available, the results of the oral absorption study may be used to refine the default value for dermal absorption. It is required that the oral absorption is determined in bile-duct cannulated experimental animals, to get an accurate estimate of the oral absorption. Based on theoretical grounds and a comparison of oral and dermal absorption data available for 12 pesticides, it is assumed that dermal absorption will not exceed oral absorption established by means of bile duct cannulation (unpublished data). It is noted that the dose levels used in the oral absorption/ADME study should be relevant, *i.e.*, should approximate the NOAEL on which the risk assessment is based.

V98.1237 12 of 27

3.6 Tier 3: experimental data

Experimental data derived from both *in vivo* studies with experimental animals and human volunteers, and *in vitro* studies with human and animal skin, are used in tier 3 to quantify dermal absorption in man. It is noted that the results of *in vivo* as well as *in vitro* dermal absorption studies are heavily influenced by experimental conditions (reviewed in ECETOC, 1993). Two other examples of such conditions in view of risk assessment of dermal exposure are indicated in Appendix A. In the TNO reports V97.528 (Bosman-Hoefakker and Hakkert, 1997) and V98.356 (De Heer et al., 1999) the performance and evaluation of dermal absorption studies on pesticides have been discussed.

3.6.1 *In vivo* dermal absorption studies with experimental animals

In vivo dermal absorption studies performed in laboratory animals can be used to deduce percutaneous absorption in man at specific exposure conditions. It is important to note that the results of *in vivo* dermal absorption studies are heavily influenced by experimental circumstances, such as dermal area dose (in mg/cm²), exposure duration, occlusion, vehicle, species, application site, etc. (see Appendix A). Therefore, test results can only be used with confidence if the experiment was tuned in to the exposure scenario of interest with regard to these aspects. However, in spite of these factors, a general scheme can be made of how to deal with the results of *in vivo* dermal absorption studies, even if performed under less relevant conditions with regard to dose and recovery. The diagram depicted in Figure 3.2 is applicable for the results obtained from *in vivo* studies to establish a dermal absorption value to be used in health risk assessment.

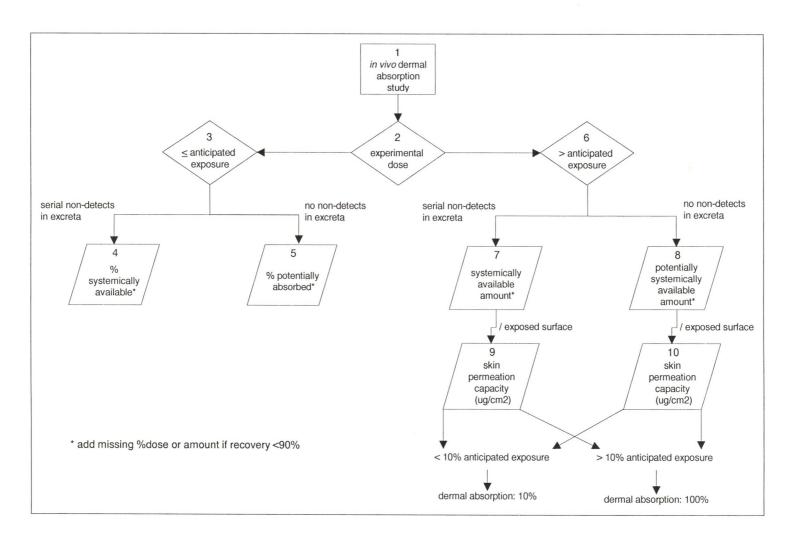
The first criterium for judging how to deal with the results of *in vivo* dermal absorption studies is the dose level (expressed as dermal area dose) applied in the experiment (Figure 3.2, Box 2). This aspect is of major importance since it is known that, at a constant exposure surface area, absorption, if expressed as a percentage of the applied dose (hereafter designated as %dose), decreases with increasing dose. If the dose levels applied in the *in vivo* study are at or below the dose levels anticipated to occur in the occupational situation, the left branch of the decision tree is applicable (Figure 3.2, Box 3). If higher than anticipated exposure levels have been tested in the *in vivo* experiment, the right branch of Figure 3.2 should be applied to prevent underestimation of dermal absorption (Figure 3.2, Box 6).

In both scenarios, the next aspect of importance is whether the sampling period following cessation of the exposure has been long enough to allow the animal to eliminate the (major part of the) absorbed test substance. This latter point is considered to be reached if at least 2 serial non-detects occur in excreta or if the excretion rate has clearly declined over several successive sampling times . If sampling has been performed until the excretion rate has (nearly) reached zero, the systemically available amount (either expressed as %dose (Figure 3.2, Box 4) or in absolute amounts (Figure 3.2, Box 7)) can be used to establish the dermal absorption. The amount systemically available is the cumulative amount detected

in excreta (including cage washes), blood, tissues, and carcass, but does not include the amount detected in the application site skin. In contrast, if excretion has not come to an end, it cannot be excluded that the amount retained in the application site skin may eventually become systemically available. Therefore, the potentially absorbed dose (the amount systemically available plus the amount in the application site skin) should be used as a value for dermal absorption in the latter case (Figure 3.2, Box 5 and 8), unless kinetics demonstrate that this is a clear overestimation.

Furthermore, if recovery is considered to be inadequate, this should be corrected for in case relevant dose levels have been tested. Ideally, recovery of the applied dose should be within 100±10% (OECD, 1996a). If this criterium for whatever reason cannot be met, but the study has otherwise been performed correctly, the missing %dose (or amount) should be added to the %absorption (or amount systemically available) determined in the *in vivo* study ('worst- case' approach).

In conclusion, 4 different scenarios of how to deal with *in vivo* dermal absorption data can be deduced from the diagram depicted in Figure 3.2:


- 1. The study includes dose levels relevant for the anticipated exposure scenario and the sampling period following the cessation of actual dermal exposure has been long enough to conclude that the skin residue dose does not become systemically available (*e.g.*, 2 serial non-detects in excreta). In this case, the % systemically available can be used as an estimate for dermal absorption, either or not corrected for incomplete recovery of the test substance. In Figure 3.2, the following route is applicable: 1-2-3-4.
- 2. The study includes relevant dose levels, but sampling was stopped before non-detection took place. In this case, the %dose detected in the application site skin should be regarded as being absorbed and the potentially absorbed dose, either or not corrected for incomplete recovery, should be used as a value for dermal absorption of the test substance. However, in case kinetics shows that the excretion rate diminishes, a value lower than the potentially absorbed dose may be established as a measure for dermal absorption by expert judgement. In Figure 3.2, the following route is applicable: 1-2-3-5.
- 3. The study does not include dose levels relevant for the exposure scenario under study (*i.e.*, higher dose levels), but sampling was continued until serial nondetection in excreta. In this case, the absolute amount that became systemically available, either or not corrected for incomplete recovery, should be (calculated and) used. This absolute amount should be divided by the exposed surface area and the resulting 'skin permeation capacity' should be compared with the anticipated exposure (dermal area dose) to conclude whether the skin permeation capacity may exceed the anticipated exposure. If the skin permeation capacity exceeds the level of 10% of anticipated exposure, an arbitrary dermal absorption value of 100% should be applied, and if not, an arbitrary dermal absorption value of 10% should be used In Figure 3.2, the following route is applicable: 1-2-6-7-9.
- 4. The study does not include relevant dose levels and the sampling period after cessation of exposure was too short to get insight in the fate of the amount of

V98.1237 14 of 27

the substance present in the skin. In this case, it cannot be excluded that the amount still present in the application site may eventually become systemically available, and is thus regarded as being absorbed. The absolute potentially systemically available amount, either or not corrected for incomplete recovery, divided by the exposed surface area is used to establish the 'skin permeation capacity' for the compound. This skin permeation capacity is subsequently compared to the anticipated exposure levels (dermal area dose) and a default dermal absorption value of 10 or 100% is chosen depending on the ratio between skin permeation capacity and anticipated exposure.

The following route is followed in Figure 3.2: 1-2-6-8-10.

Figure 3.2 Tier 3: Choice of percentage dermal absorption based on *in vivo* dermal absorption studies with experimental animals

V98.1237 16 of 27

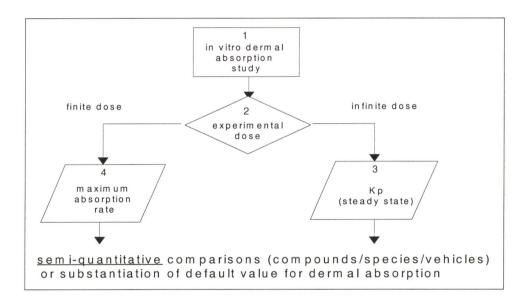
3.6.2 In vitro dermal absorption studies with human and/or animal skin

In vitro studies, if conducted according to experimental conditions fitting occupational exposure conditions and correctly interpreted, can give data which may adequately reflect those from in vivo experiments. Preferably in vitro studies should include reference compounds (e.g., caffeine, inulin, testosterone, hydrocortisone) to increase the applicability of the results. For now, the use of in vitro dermal absorption data for risk assessment purposes of chemicals in a quantitative way, however, awaits the results of proper validation of in vitro dermal absorption test methods (Howes et al., 1996). At present, in vitro results in itself can therefore not be used as an alternative to in vivo dermal absorption. If appropriate dermal penetration data are available for rats in vivo and for rat and human skin in vitro, the in vivo dermal absorption in rats may be adjusted in light of the relative absorption through rat and human skin in vitro. The latter adjustment may be done because the permeability of human skin is often lower than that of animal skin (e.g., Barber et al., 1992; Bartek et al., 1972; Garnett et al., 1994; Howes et al., 1996; McDougal et al., 1990; Sato et al., 1991; Scott et al., 1987). A generally applicable correction factor for extrapolation to man can however not be derived, because the extent of overestimation appears to be agent and animal specific (Bronaugh and Maibach, 1987; ECETOC, 1993).

Thus, until further notice *in vitro* studies can only be used for semi-quantitative comparison of absorption of chemicals between species, between compounds within one species, and between different vehicles within one species. In this regard, it is important to realize that *in vitro* studies give relative results, *i.e.* that they should in first instance be compared with results generated within the same test system. This holds true both for the diffusion cells used as well as the skin preparation applied (*i.e.*, full-thickness skin, dermatomed skin, or epidermal membranes). An important aspect of *in vitro* studies is whether the dose levels applied are infinite or finite. Dose levels are infinite in case the applied dose presents itself in a constant concentration and is not rate limiting for the flux. After a lag time, steady state conditions with regard to flux are reached. If the applied dose is in a finite concentration and is rate limiting for the flux, no steady state is reached. Only in case a infinite dose has been applied, a proper Kp can be derived.

The maximum flux (derived from the linear part of the absorption vs time curve) should be used to semi-quantitatively compare absorption based on finite dose experiments (Figure 3.3). In this case, attention should be paid to the differences in flux at relevant exposure levels. For example, if at $200 \,\mu\,\text{g/cm}^2$ the flux through rat skin is 10 times higher compared to human skin, but fluxes are comparable at the more relevant dose level of $20\,\mu\,\text{g/cm}^2$, there should be no correction for differences in skin permeability in health risk assessment. Semi-quantitative comparison of data between species, compounds, or vehicles, should be made on the basis of flux values at relevant concentration or Kp values (in cm/hr; calculated by dividing the steady state flux by the concentration of the applied chemical) in case of infinite dose experiments (Figure 3.3), since this value is established under steady state conditions. The use of flux values at relevant

TNO report


concentrations is preferred, because the infinite dose conditions on which the Kp

is based do less resemble the dermal exposure in the risk characterisation.

Alternatively, *in vitro* data may be used to substantiate default values for dermal absorption if appropriate reference compounds have been included in the study.

In conclusion, *in vitro* dermal absorption data at present can only be used to assess semi-quantitative differences in dermal penetration between species, compounds, and/or vehicles provided the data have been generated within one test system and at comparable and relevant test conditions.

Figure 3.3 Tier 3: The use of dermal absorption data based on *in vitro* dermal absorption studies with human and/or animal skin

3.6.3 Human volunteer studies

There is no regulatory requirement for performing human volunteer studies addressing the dermal absorption of chemicals. However, the most reliable data for determining absorption through human skin are obtained from *in vivo* human volunteer studies performed under occupationally relevant test conditions (ECETOC, 1993). These data are preferable to animal data because no animal to human extrapolations are required. For technical and ethical reasons, however, the use of human volunteer studies is limited and the conduct of these studies is closely regulated (*e.g.*, World Medical Assembly Declaration of Helsinki, and ICH guidelines for Good Clinical Practice). A study protocol with supporting toxicological data must be submitted to an ethical committee and approval obtained before any study commences. The use of radio labelled compounds for human studies is subject to yet further regulation (ECETOC, 1983). Importantly,

V98.1237 18 of 27

with designing an experimental setup, it should be kept in mind that significant regional variations in percutaneous absorption occur that may be related to local differences in skin thickness and diffusivity (Grandjean, 1990; Wester and Maibach, 1989). To estimate dermal absorption, the results from the dermal experiment (primarily urine analysis) have to be corrected for the proportion of chemical excreted in urine after oral or (preferably) parenteral administration, although for ethical reasons the latter is rarely possible.

Other disadvantages of human volunteer studies are that they only measure absorption indirectly, metabolism data are required, analytical problems occur (low absorption, restricted use of radiochemicals), and the dermal and oral pharmacokinetics may not be the same due to differences in disposition and metabolism (ECETOC, 1993).

More information about the study protocol for *in vivo* human volunteer studies can be found in ECETOC (1993) and De Heer et al. (1999).

4. Conclusions and recommendations

4.1 Conclusions

- As a measure for dermal absorption, the percentage absorption is currently applied and used to convert internal to external dermal exposure levels.
 Flux or Kp values may be used but have to be converted to a percentage absorption value (by means of a worst-case approach) before they can be applied in the risk assessment process.
- The following tiered approach for the assessment of dermal absorption is used:
 - *tier 1* a default value of 100% is applied to calculate a dermal health-based occupational exposure level when no data are available.
 - tier 2 in case health risks are indicated in tier 1, an estimate of dermal absorption is made on the basis of theoretical considerations. Data to be considered are data on the physico-chemical properties of the substance, and/or data on oral absorption.
 - tier 3 experimental data derived from both *in vivo* studies with experimental animals and/or human volunteers, and *in vitro* studies with human and animal skin are used in tier 3 to further refine and quantify dermal absorption in man.
- It is noted that the results of *in vivo* as well as *in vitro* dermal absorption studies are heavily influenced by experimental conditions. This is further elaborated in De Heer et al. (1999).
- The use of mathematical skin permeation models in the health risk assessment is not warranted because of the lack of validation of the underlying experimental data.

4.2 Recommendations

To further develop the tiered approach for dermal absorption in risk assessment of chemicals, validation of *in vitro* and *in vivo* dermal absorption studies is recommended. It is preferred that dermal absorption studies should include reference compounds (*e.g.*, caffeine, inulin, testosterone, hydrocortisone) to increase the applicability of the results, expecially in case of *in vitro* studies. Firstly, this highly contributes to a proper validation of the different types of studies, and secondly this increases the use of *in vitro* dermal absorption data at least in a semi-quantitative way (either for establishing of default values or for correction of *in vivo* dermal absorption data). In case validated dermal absorption studies are available, it is recommended to build a database on skin permeation for model building and validation, and/or justification of criteria for default values for

V98.1237 20 of 27

dermal absorption. By including data on physico-chemical properties in the database, the relation between skin permeation and physico-chemical properties can be studied and separate analyses for different chemical classes may eventually be performed.

5. References

Aungst BJ (1989). Structure/effect studies of fatty acid isomers as skin penetration enhancers and skin irritants. Pharm Res 6: 244-247.

Barber ED, Teetsel NM, Kolberg KF, Guest D (1992). A comparative study of the rates of *in vitro* percutaneous absorption of eight chemicals using rat and human skin. Fund Appl Toxicol 19: 493-497.

Bartek MJ, LaBudde JA, Maibach HI (1972). Skin permeability *in vivo*: comparison in rat, rabbit, pig and man. J Invest Dermatol 58: 114-123.

Bast GE (1997). Influence of solubility and permeant size on absorption and metabolism of xenobiotics in rabbit skin. Human & Experimental Toxicology 16: 435-440.

Bosman-Hoefakker S, Hakkert BC (1997). The applicability of *in vitro* test results for estimation of dermal absorption in man for occupational risk assessment in registrations. TNO Report V97.528, Zeist, The Netherlands.

Bronaugh RL, Maibach HI (1987). *In vitro* percutaneous absorption. In: Dermatotoxicology (Marzulli FN, Maibach HI, eds), 3rd ed. Hemisphere Publishing, Washington DC, USA, pp 121-134.

Bronaugh RL, Wester RC, Bucks D, Maibach HI, Sarason R (1990). *In vivo* percutaneous absorption of fragrance ingredients in rhesus monkeys and humans. Fd Chem Toxic 28(5): 369-373.

Bucks DAW, Maibach HI, Guy RH (1985a). Percutaneous absorption of steroids: Effect of repeated application. J Pharm Sci 74: 1337-1339.

Bucks DAW, Marty JPL, Maibach HI (1985b). Percutaneous absorption of malathion in the guinea pig: Effect of repeated application. Food Chem Toxicol 23: 919-922.

Cleek RL, Bunge AL (1993). A new method for estimating dermal absorption from chemical exposure. 1. General Approach. Pharm Res 10(4): 497-506.

Courtheoux S, Pechenot D, Bucks DA, Marty JP, Maibach HI, Wepierre J (1986). Effect of repeated skin administration on *in vivo* percutaneous absorption of drugs. Br J Dermatol 115: 49-52.

De Heer C, Bosman-Hoefakker S, Hakkert BC (1999). Principles for study protocols addressing the dermal absorption of pesticides. TNO Report V98.356, Zeist, The Netherlands.

Durkin PR, Rubin L, Withey J, Meylan W (1995). Methods of assessing dermal absorption with emphasis on uptake from contaminated vegetation. Toxicol Ind Health 11(1): 63-79.

ECETOC (1993). Percutaneous absorption. Monograph No 20, European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), Brussels, Belgium.

ECETOC (1997). Exposure assessment in the context of the EU Technical Guidance Documents on risk assessment of substances. Monograph No 35, European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), Brussels, Belgium.

Fiserova-Bergerova V, Pierce JT, Droz PO (1990). Dermal absorption potential of industrial chemicals: criteria for skin notation. Am J Ind Med 17: 617-635.

Fiserova-Bergerova V (1993). Relevance of occupational skin exposure, Ann Occup Hyg 37(6): 637-685.

Garnett A, Hotchkiss SAM, Caldwell J (1994). Percutaneous absorption of benzyl acetate through rat skin *in vitro*. 3. A comparison with human skin. Food Chem Toxicol 32: 1061-1065.

Grandjean P (1990). Percutaneous absorption. In: Skin penetration. Hazardous chemicals at work. Taylor & Francis Ltd, London, UK.

Guy RH, Potts RO (1993). Penetration of industrial chemicals across the skin, Am J Ind Med 23: 711-719.

Hagedorn-Leweke U, Lippold BC (1995). Absorption of sunscreens and other compounds through human skin *in vivo*: derivation of a method to predict maximum fluxes. Pharm Res 12(9): 1354-1360.

Hakkert BC, Stevenson H, Bos PMJ, Van Hemmen JJ (1996). Methods for the establishment of Health-Based Recommended Occupational Exposure Limits. TNO Report V96.463, Zeist, The Netherlands.

Hori M, Ito Y (1995). Prediction of drug concentration in blood after topical application. In: Exogenous Dermatology. Surber C, Elsner P, Bircher AJ (eds). Curr Prob Dermatol. Basel, Karger, 1995, vol 22, 146-151.

Howes D, Guy R, Hadgraft J, Heylings J, Hoeck U, Kemper F, Maibach H, Marty JP, Merk H, Parra J, Rekkas D, Rondelli I, Schaefer H, Täuber U, Verbiese N (1996). Methods for assessing percutaneous absorption. The report and recommendations of ECVAM workshop 13. ATLA 24: 81-106.

Hughes MF, Hall LL (1997). *In vivo* disposition of p-substituted phenols in the young rat after intraperitoneal and dermal administration. Food Chem Toxicol 35: 697-704.

Ingram AJ, King DJ, Grasso P, Sharrat M (1993). The early changes in mouse skin following topical application of a range of middle distillate oil products. J Appl Toxicol 13: 247-257.

Jackson JA, Diliberto JJ, Birnbaum LS (1993). Estimation of octanol-water partition coefficients and correlation with dermal absorption for several polyhalogenated aromatic hydrocarbons. Fund Appl Toxicol 21: 334-344.

Johnson ME, Blankschtein D, Langer R (1995). Permeation of steroids through human skin. J Pharm Sc 84(9): 1144-1146.

Lee CK, Uchida T, Kitagawa K, Yagi A, Kim N, Goto S (1994). Relationship between lipophilicity and skin permeability of various drugs from an ethanol/water/lauric acid system. Biol Pharm Bull 17(10): 1421-1424.

Leung H, Paustenbach DJ (1994). Techniques for estimating the percutaneous absorption of chemicals due to occupational and environmental exposure. Appl Occup Environ Hyg 9(3): 187-197.

Lien EJ, Gao H (1995). QSAR analysis of skin permeability of various drugs in mans as compared to *in vivo* and *in vitro* studies in rodents. Pharm Res 12 (4): 583 -587.

McDougal JN, Jepson GW, Clewell III HJ, Gargas ML, Andersen ME (1990). Dermal absorption of organic chemical vapors in rats and humans. Fund Appl Toxicol 14: 299-308.

Morimoto Y, Hatanaka T, Sugibayashi K, Omiya H (1992). Prediction of skin permeability of drugs: comparison of human and hairless rat skin, J Pharm Pharmacol 44: 634-639.

Nangia A, Camel E, Berner B, Maibach H (1993). Influence of skin irritants on percutaneous absorption. Pharm Res 10, 1756-1759.

OECD (1996a). Percutaneous absorption: *in vivo* method. Draft OECD guideline for the testing of chemicals, June 1996.

OECD (1996b). Dermal delivery and percutaneous absorption: *in vitro* method. Draft OECD guideline for testing of chemicals, June 1996.

V98.1237 24 of 27

Opdam JJG, Krüse J (1996). Toetsing van huidresorptiekinetiekmodellen ten behoeve van het schatten van de opname bij dermale blootstelling aan chemische stoffen. TNO Report V96.323, Zeist, The Netherlands.

Potts RO, Guy RH (1992). Predicting skin permeability. Pharm Res 9(5): 663-669.

Potts RO, Guy RH (1995). A predictive algorithm for skin permeability: the effects of molecular size and hydrogen bond activity. Pharm Res 12(11): 1628-1633.

Rennen MAJ, de Heer C, Houben GF (1998). Risk assessment of substances with possible local effects and of sensitizing substances. TNO Report - in preparation, TNO Nutrition and Food Research Institute, Zeist.

Ridout G, Houk J, Guy RH, Santus GC, Hadgraft J, Hall LL (1992). An evaluation of structure-penetration relationships in percutaneous absorption. Il Farmaco 47(6): 869-892.

Roberts MS, Horlock E (1978). Effect of repeated application on percutaneous absorption of salicylic acid. J Pharm Sci 67: 1685-1687.

Sartorelli P, Aprea C, Cenni A, Novelli MT, Orsi D, Palmi S, Matteucci G (1998). Prediction of percutaneous absorption from physicochemical data: a model based on data of *in vitro* experiments. Ann Occup Hyg 42(4): 267-276.

Sato K, Sugibayashi K, Morimoto Y (1991). Species differences in percutaneous absorption of nicorandil. J Pharm Sic 80: 104-107.

Scheuplein RJ, Blank IH, Brauner GJ, MacFarlane DJ (1969). Percutaneous absorption of steroids. J Invest Dermatol 52: 63-70.

Scheuplein RJ, Bronaugh RL (1983). Percutaneous absorption. In: Goldsmith LA (ed.). Biochemistry and physiology of the skin. Oxford University Press. New York, USA: 1255-1295.

Scott RC, Dugard PH, Ramsey JD, Rhodes C (1987). *In vitro* absorption of some o-phthalate diesters through human and rat skin. Environ Health Perspect 74: 223-227.

Singh P, Roberts MS (1994), Skin permeability and local tissue concentrations of nonsteroidal anti-inflammatory drugs after topical application. J Pharmacol Exp Therapeutics 268(1): 144-151.

Stevenson H, Opdam JJG, Van Ommen B, De Raat WK, De Kort WLAM (1994). Protocol for the estimation of dermal absorption according to a tiered approach on behalf of the risk assessment of pesticides. TNO report V94.129, Zeist, The Netherlands.

Stevenson H, Wilschut A, Van Hemmen JJ (1996). Dermal absorption for registration procedures: comments on a tiered approach. -internal report- TNO Report, in preparation, Zeist, The Netherlands.

Täuber U, Matthes H (1992). Percutaneous absorption of methylprednisolone aceponate after single and multiple dermal application as ointment in male volunteers. Arzneim Forsch 42: 1122-1124.

Tayar NE, Tsai R, Testa B, Carrupt P, Hansch C, Leo A (1991). Percutaneous penetration of drugs: a quantitative structure-permeability relationship study. J Pharm Sci 80(8): 744-749.

Van der Valk PGM, Maibach HI (1989). Post-application occlusion substantially increases the irritant response of the skin to repeated short-term sodium lauryl sulfate (SLS) exposure. Contact Dermatitis 21: 335-338.

Washitake M, Yajima T, Anmo T, Arita T, Hori R (1973). Studies on percutaneous absorption of drugs. III. Percutaneous absorption of drugs through damaged skin. Chem Pharm Bull 21: 2444-2451.

Wester RC, Maibach HI, Bucks DAW, Guy RH (1983). Malathion percutaneous absorption after repeated administration to man. Toxicol Appl Pharmacol 68: 116-119.

Wester RC, Melendres J, Sedik L, Maibach HI (1994). Percutaneous absorption of azone following single and multiple doses to human volunteers. J Pharm Sci 83: 124-125.

Wester RC, Maibach HI (1989). Regional variation in percutaneous absorption. In: Percutaneous absorption. Mechanisms-Methodology-Drug delivery. Second edition, revised and expanded. Eds Brounaugh RL, Maibach HI. Marcel Dekker Inc, New York and Basel, pp. 111-120.

Wilhelm KP, Surber C, Maibach HI (1991a). Effect of sodium lauryl sulfate-induced skin irritation on *in vitro* percutaneous absorption of four drugs. J Invest Dermatol 96: 963-967.

Wilhelm KP, Surber C, Maibach HI (1991b). Effect of sodium lauryl sulfate-induced skin irritation on *in vivo* percutaneous penetration of four drugs. J Invest Dermatol 97: 927-932.

Wilschut A, Ten Berge WF, Robinson PJ, McKone TE (1995). Estimating skin permeation. The validation of five mathematical skin permeation models. Chemosphere 30(7): 1275-1296.

Wilschut A, Houben GF, Hakkert BC (1998). Evaluation of route-to-route extrapolation in health risk assessment for dermal and respiratory exposure to chemicals. TNO Report V97.520, Zeist, The Netherlands.

Xu P, Chien YW (1991). Enhanced skin permeability for transdermal drug delivery: physiopathological and physicochemical considerations. Crit Rev Ther Drug Carrier Syst 8: 211-236.

6. Signature

Dr. N.J. Snoeij Head Toxicology Division

Appendix A

Appendix A Factors determining dermal absorption

The results of *in vivo* as well as *in vitro* dermal absorption studies are heavily influenced by experimental conditions. The relevant experimental conditions are adequately reviewed by ECETOC (1993) and De Heer et al. (1999) and will not be dealt with in this appendix. In view of the risk assessment of dermal exposure two aspects of dermal exposure are addressed here:

- <u>single vs repeated exposures</u>: dermal absorption tests nearly always address the absorption of a test substance following a single exposure, whereas the occurrence of multiple dermal exposures is plausible within all occupational and possibly also other exposure scenarios. Experimental evidence suggests that there is no clear-cut relationship between dermal absorption and frequency of application. Repeated exposures may increase dermal absorption (*e.g.*, Roberts and Horlock, 1978; Wester et al., 1994) or may not affect the absorption characteristics (*e.g.*, Bucks et al., 1985a; Täuber et al., 1992; Wester et al., 1983). The experiments addressing repeated applications indicate that the results may be influenced by experimental conditions such as skin washing (Bucks et al., 1985b; Courtheoux et al., 1986) and direct effects of the test compound on the skin (Roberts and Horlock, 1978; Van der Valk and Maibach, 1989).
- irritation: skin irritation resulting from chemical exposure may influence the barrier function of the skin both *in vivo* and *in vitro*, either or not resulting in increased dermal absorption (Aungst, 1989; Ingram et al., 1993; Nangia et al., 1993; Wilhelm et al., 1991a; Wilhelm et al., 1991b; Xu and Chien, 1991). It was noted that the penetration enhancing effect of skin irritation was higher with hydrophilic compounds than with lipophilic compounds.
 In *in vivo* experiments in guinea pigs, the percutaneous absorption through damaged (tape-stripped) skin lacking stratum corneum greatly increased (3 to 10-fold) as compared with those of the intact skin. In the damaged skin, lag times were no longer observed and absorption occurred by simple diffusion in a pH-dependent way (Washitake et al., 1973). The results of this study suggest that the ability to build up a cutaneous reservoir was lost by removal of the stratum corneum, indicating that the stratum corneum is an important part in the cutaneous reservoir of chemicals (Washitake et al., 1973).

It is noted that generally it is assumed that substances showing no irritation in acute toxicity or irritation tests at high concentrations levels, are also not irritating at lower concentration levels after repeated exposure. However, it was shown in a study by Rennen et al. (1998) that the absence of an indication of local effects in any type of acute toxicity or irritation study does not exclude the occurrence of local effects upon repeated dermal or respiratory exposure.

B 1 of 14 V98.1237

Appendix B

Appendix B Mathematical skin permeation models and their use in dermal risk assessment

B.1 Introduction

In order to further develop tier 2, a literature search was started aimed at an evaluation of the estimation of dermal absorption based on physico-chemical properties. The following questions were relevant:

- Is sufficient scientific experience available to introduce mathematical skin permeation models based on physico-chemical properties in the health risk assessment for dermal exposure, and
- Is it possible to indicate physico-chemical properties that can be used for the selection of default values for dermal absorption, and
- If yes, is it possible to indicate clear ranges of these properties to justify the selection of default values for dermal absorption based on these characteristics?

B.2 Method

TOXLINE and MEDLINE were searched for literature published in the period 1990-mid 1998 with the following entries: dermal, skin, absorption, penetration, permeation, physico-chemical properties, molecular weight (MW), octanol-water partition coefficient (log P), model. This period was chosen because this report is based on Stevenson et al. (1994) and incorporates only recent developments.

The literature found was evaluated with regard to the following issues:

- definition of absorption;
- description of the applied model and outcome (percentage absorption, permeation coefficient (Kp));
- database on which the applied model is based; and
- validation.

These issues were considered relevant with regard to a proper evaluation of mathematical skin permeation models in health risk assessment for dermal exposure.

B.3 Results and discussion

B.3.1 General

Dermal absorption is determined by factors related to the substance, the skin, and the experimental conditions. Several skin layers have to be passed by a substance to become systemically available. For skin penetration, a substance has to diffuse into and through the (lipophilic) stratum corneum and the (hydrophilic)

V98.1237 B.2 of 14

Appendix B

(epi)dermis, into the dermal vasculature. The solubility in water is assumed to be rate limiting (Wilschut et al. 1995; ECETOC, 1997). Two diffusion routes are considered in the stratum corneum, *i.e.* the lipid (non-polar) and protein (polar) route. It is generally agreed that the preference for a route depends on the size and physico-chemical properties of the substance. Therefore, several authors have tried to relate physico-chemical properties with an estimation of dermal absorption retrieved from literature in so-called mathematical skin permeation models.

B.3.2 Mathematical skin permeation models

Reliable mathematical skin permeation models may be very helpful in risk assessment for dermal exposure, when relevant experimental data are not available. The application of these models is simple and straightforward. However, due to the complexity of the dermal absorption process, it may be doubted if these models are valid and generally applicable.

A large number of mathematical skin permeation models describing a relationship between dermal absorption and physico-chemical properties were found in literature (period 1990 up to mid 1998). An overview of the models based on physico-chemical properties, normally available in health risk assessment, is presented in table B.1. In this report, the use of these models is evaluated. The description of the models, the database on which they are based and their validation are discussed.

All models are more or less based on theoretical considerations on skin permeation, in combination with the 'best fit' of experimental skin permeation data in a mathematical relationship ('semi-empirical'). The models differ in the way they take into account all (*e.g.*, Wilschut et al., 1995), or some (*e.g.*, Guy and Potts,1993), of the routes described for skin permeation, the data they use, and the dependence of the skin permeation on physico-chemical properties.

Skin permeation coefficient

Nearly all mathematical skin permeation models presented in open literature in the period 1990-mid 1998 calculate the permeation coefficient (Kp, in cm/h). Theoretically, the Kp can be used in the estimation of dermal absorption in several ways, namely, as indication for high or low absorption, or to calculate the amount of substance absorbed (A_{abs}) according to the following equation:

$$A_{abs}$$
 (mg) = Kp (cm/h) x Exposure Time (h) x Exposed Skin Surface (cm²) x Concentration of Substance in Vehicle (mg/cm³)

 A_{abs} (mg) can be used to estimate the percentage dermal absorption (%) in case the total amount applied on the skin is known. It is noted that the concentration of the substance in the vehicle may not exceed the maximum solubility of the substance in water, because it is assumed that with permeation through viable tissues of the skin, the water solubility is the rate-limiting factor. In other words, the solubility in

Appendix B

water is considered to be comparable with the solubility in the (epi)dermis (Wilschut et al., 1995; ECETOC, 1997).

Howes et al. (1996) presented a strategy for assessing percutaneous absorption based on Kp values. High penetration is considered likely in case the Kp exceeds 10^{-2} cm/h, and low penetration is expected in case the Kp is lower than 10^{-5} cm/h. However, details on these criteria are not presented.

It is noted that the models are based on steady state dermal absorption. During short exposure times, *i.e.*, in which steady state is not achieved, the mass of substance absorbed by the stratum corneum will be underestimated (Cleek and Bunge, 1993).

Underlying database

The models are generally based on *in vitro* dermal absorption data. Only Hagedorn-Leweke and Lippold (1995) based their model on experiments with human volunteers. At present, it is generally agreed upon that *in vitro* dermal absorption data can only be used semi-quantitatively to compare substances in their potential to permeate the skin provided they are tested under equal and relevant experimental conditions, because the outcome of an *in vitro* dermal absorption experiment is strongly influenced by the experimental design and does not reflect the *in vivo* dermal absorption. Hence, insight in the underlying database, and the definition and determination of dermal absorption is important in the evaluation of mathematical skin permeation models.

From the descriptions of the models (table B.1), it is not always clear on which data the model is based and how absorption is defined. Furthermore, the number of data on which the mathematical skin permeation models are based, is often limited and related to one specific experimental design, and/or for a certain group of substances. Tayar et al. (1991) established separate (and different) mathematical relationships for alcohols and steroid hormones, hydrocortisone 21-esters, and for phenolic compounds, based on in vitro data. Potts and Guy (1992), and Wilschut et al. (1995) used a more extensive dataset. The data were derived from different in vitro skin permeation experiments. However, they did not provide insight in the quality of the underlying database. It is noted that, for example, the data generated by Scheuplein et al. (1969) are generally used in fitting mathematical skin permeation models (MW 272-362 g/mol). Johnson et al. (1995) compared the skin permeation data available for six steroids and found that the measurements by Scheuplein significantly deviated from measurements by other groups. It was not clear what the reason is behind the factor 5 to 77 lower skin permeation coefficients determined by Scheuplein. Several possible sources of experimental error were evaluated. However, they did not appear to account for the observed discrepancies.

V98.1237 B.4 of 14

Appendix B

Validation

By studying the mathematical skin permeation models described in literature, it became clear that the models have often not been validated yet. In a study by Wilschut et al. (1995), five mathematical skin permeation models based on theoretical considerations about skin permeation and empirical skin permeation data, were validated. An extensive database was built (123 *in vitro* skin permeation coefficients in human skin, for 99 different substances in an aqueous solution; MW 18.0-764.9 g/mol; log P (-3.58)-5.58). It was concluded that three models provide reliable estimations of the skin permeation coefficient Kp, including the model Guy and Potts (1992) and Wilschut et al. (1995). The model of Fiserova-Bergerova et al. (1990) appeared to be less reliable (overestimation of Kp). It was recognised by the authors that differences in experimental settings influence the outcome. However, these differences were not taken into account in the model validation, because subselections on experimental design would result in too small groups for a reliable fit of the skin permeation models.

Opdam and Krüse (1996) compared the skin permeation coefficient Kp estimated with the model of Wilschut et al. (1995) with Kp experimentally determined in human volunteers for 7 substances (MW 86.2-209.2 g/mol; log P 1.6-3.9). Kp was overestimated by Wilschut et al. with a factor 2-4 for 4 compounds. For 3 substances, the estimated Kp was comparable with the experimentally determined Kp. However, the dermal exposure times in the human studies were too short to reach steady state. The human Kp values were estimated based on the mean residence time in the skin, the diffusion path length and the stratum corneum-water partition coefficient, and are not comparable with the Kp values as derived from the models.

B.3.3 Other data

Besides the mathematical skin permeation models described, additional literature on the relation between skin permeation and physico-chemical properties was found. In table B.1 only models based on log P and MW are presented. However, in literature other physico-chemical properties are also related with dermal absorption.

Potts and Guy (1995) showed a relationship between *in vitro* skin permeability and molecular volume, hydrogen bond donor and acceptor activity for 37 nonelectrolytes (molecular volume 10.6-114 cm³/mol, log P (-1.4)-4.24). Hughes and Hall (1997) suggested that the ionization potential of the p-substituted functional group may have a pronounced effect on the dermal absorption of the compound. It was concluded that dermal absorption decreases when the substance is ionized. The lipophilicity of the similarly absorbed phenols did not influence the dermal absorption. Tayar et al. (1991) introduced the partition coefficient octanolheptane as measure for H-bond donor acidity. However, the relation found by Tayar et al. was not supported in an *in vitro* skin permeation experiment reported by Bast (1997).

B.5 of 14 V98.1237

Appendix B

B.3.4 Selection of default values for dermal absorption based on physico-chemical properties

In Stevenson et al. (1994) default values for dermal absorption are selected based on log P and MW. At that moment, no scientific justification for these criteria was derived. The literature found, was studied for additional information on this subject.

Log P

In literature, optimum log P values are associated with relatively high dermal absorption.

Singh and Roberts (1994) studied the skin permeation of the nonsteroidal antiinflammatory drugs in an in vitro dermal penetration study, using split-thickness human abdominal skin. A parabolic relationship was found between log P (range 0.05-4.42) and the log Kp. The optimal log P associated with maximum permeation was found to be around 3. Bast (1997) used the isolated perfused rabbit ear model to study dermal penetration through the intact skin. Substances (n=11; log P 0-5) dissolved in isopropyl myristate were applied to the skin during 4 to 6 hours, depending on the time required to reach steady-state conditions. It was found that relatively small molecules with log P between 0.1 and 2.3 penetrate the skin easily, while with increasing log P, skin penetration decreases. From log P 3.3, a distinct decrease was observed. However, substances with amphiphilic properties (n=4; log P 0.1-2.6), i.e. ionized at physiological pH, showed fast percutaneous penetration almost independent of the log P, when applied unionized in a lipophilic vehicle. Lee et al. (1994) studied the relationship between lipophilicity (log P (-0.95)-4.40) and skin permeation of 16 drugs in an in vitro skin permeation experiment. Skin from hairless female mice was used. It was shown that the relationship between skin permeation and log P depended on the vehicle used. A parabolic shape of the skin permeation versus log P was determined. It was found in this study that the peak (optimum log P) was at a more hydrophilic range (log P 0.19) compared with other references (log P 2-3). Lien and Gao (1995) determined an optimum log P of 2.5 for 17 non-steroidal antiinflammatory drugs associated with maximum permeation (MW 138-358 g/mol; log P 0.77-4.88). It was not possible to determine an optimum log P by using 22 human skin permeation coefficients (MW 18-362 g/mol; log P (-1.38)-3.87). Morimoto et al. (1992) found a linear relation between Kp and log P for lipophilic drugs (log P: 0-3.94). However, Kp was almost constant for hydrophilic drugs and independent of log P (log P (-4.70)-0). It is not clear from the description by Lien and Goa (1995), how the skin permeation coefficients were determined. Jackson et al. (1993) studied the hypothesis that dermal absorption should decrease with increasing Pow, considering the rate-limiting step as diffusion out of the stratum corneum through the viable epidermis. Male Fischer 344 rats were in vivo dermally exposed. The absorbed dose was defined as the total radioactivity found in excreta and tissues, including skin. Log P ranged from 2.13 to 7.97 (n=23). Except for two compounds, dermal absorption over 3 days after a single dose

V98.1237 B.6 of 14

Appendix B

decreased with increasing log P. The two outliners were explained by their different metabolism and elimination compared with the other compounds.

In contrast with the above studies describing a relationship between log P and skin permeation, Bronaugh et al. (1990) did not found a correlation between skin penetration and log P. They studied the *in vivo* dermal absorption of six fragrance ingredients in rhesus monkeys (MW 108-212 g/mol; log P 0.64-3.97). It was suggested that log P, i.e., solubility in octanol relative to solubility in water, fails to reflect the absolute water and lipid solubility determining the skin permeation, i.e., the actual lipid solubility of chemicals with high log P values may not differ substantially from that of chemicals with the lower log P values.

Molecular weight (MW)

The relation between skin permeation and MW is disputable. Within the ranges of molecular weight tested, no clear relation is established. A range from 137 up to 360 g/mol reported by Lien and Gao (1995; n=17) is considered too small to be related to skin permeation. Skin permeation was observed and associated with log P. This was also found by Sartorelli et al. (1998; n=11; MW: 128-323 g/mol) and Tayar et al. (1991).

Durkin et al. (1995) tried to find a method for estimating the absorbed dose from dermal contact with contaminated vegetation. For analysis, data (n=47; MW 60-452; log P (-2.82)-6.91) on dermal absorption in human volunteers determined by Feldmann and Maibach were used. It was found that no significant correlations between commonly available physico-chemical properties (Pow, molecular weight, water solubility, melting point and pK_a, or combination) and dermal absorption exist. Only for substances with a log P >1.85, the average dermal daily absorption over a five-day postexposure period could be estimated from the molecular weight (see table B.1).

Because of the difficulties in experimental testing, it is not possible to establish limits to dermal absorption for reasonably sized substances (Potts and Guy, 1992). Potts and Guy included substances up to MW 750 g/mol in their database. Skin permeation was observed up to this molecular weight in *in vitro* skin permeation experiments.

B.4 Conclusions

Mathematical skin permeation models

Based on the results of a literature search (1990 - mid 1998) on mathematical skin permeation models, it is concluded that insufficient scientific validation is available to introduce mathematical skin permeation models based on physicosubstance properties in the health risk assessment for dermal exposure.

B.7 of 14 V98.1237

Appendix B

Despite the simplicity of the application of these models, it is not possible to use them quantitatively in health risk assessment. The main disadvantage is that these models are based on in vitro dermal absorption studies, while there is insufficient knowledge on the relationship between in vitro and in vivo dermal absorption. Furthermore, the present methodologies to measure skin permeation are not harmonized and it is known that differences in the experimental conditions will be reflected in the outcome of the test, i.e., the skin permeation coefficient Kp. Insight in the quality of the database on which the models were based, was often unclear. A definition or description of the determination of dermal absorption, as well as the underlying database was generally poorly described. The number of skin permeation data on which a model was based, was often small and included only a specific group of substances. In case of the use of larger datasets, the influence of the different experimental settings on dermal absorption were not taken into account. The mathematical skin permeation models were often not validated. Only one validation study is described by Wilschut et al. (1995). However, the limitations of the data used to build the models (training set) are also applicable for the validation set used by them.

It is agreed with Howes et al. (1996), Sartorelli et al. (1998), and Leung and Paustenbach (1994), that mathematical skin permeation models based on physicochemical properties can only be a tool in quantitative health risk assessment for dermal exposure, provided that the data they are based on data of sufficient quality. The use of the models, at this moment, is therefore restricted to only a semi-quantitative comparison of the skin permeation potential. It is agreed with Ridout et al. (1992) that for structurally related groups the models may be used to rank these substances on skin permeability potential taking into account the experimental conditions of the database on which the model is based. However, it is unclear how the results for one series of compounds can be applied to another.

Criteria for the selection of default values for dermal absorption

Based on theoretical considerations on skin permeation, it might be expected that there should be an optimum in log P and a maximum in molecular weight for facilitating percutaneous absorption. Unfortunately, clear cut-off values for negligible, low and/or high dermal absorption of chemicals cannot be derived from the data presented in literature (see Appendix B). However, for the time being and based on the theoretics on dermal absorption and diffusion, the following criteria are chosen on a pragmatical basis to discriminate between chemicals with high and low dermal absorption:

- 10% dermal absorption is used in case MW > 500 g/mol <u>and</u> log P is smaller than -1 or higher than 4, otherwise
- 100% dermal absorption is used in case MW < 500 g/mol or log P between or equal to -1 and 4.

It is noted that the use of 100% dermal absorption is a 'worst-case' estimate. The lower limit value of 10% dermal absorption is chosen, because the data presented in literature indicate the occurrence of dermal absorption for tested compounds even beyond the extremes of log P and/or MW values. By expert judgement it is

V98.1237 B.8 of 14

Appendix B

possible to deviate from 100 and 10% dermal absorption taken into account all data available, for example, data on ionogenic state, oral absorption and dermal area dose in occupational settings.

It is noted that the default values for dermal absorption are based on the same data on skin permeation as used for evaluation of the mathematical skin permeation models. However, the difference is that the default values only addresses to the upper and lower limits of skin permeation, where as the mathematical skin permeation models try to estimate the whole spectrum of dermal absorption by means of poorly validated methods.

Table B.1 Overview of mathematical skin permeation models reported in open literature (1990 - mid 1998)

Publication	Model description	Remarks
Tayar et al. (1991)	alcohols and steroid hormones:	Remarks of the reviewer
	$\log \text{Kp (cm/sec)} = -7.15 + 0.16 \log P$	Absorption: no data, model was based on historical data
	r = 0.164	Validation: no data
	n = 22	
	log P: (-0.77) - 3.7	Remarks of the authors
		Ad. 1
	data: Scheuplein 1964, Scheuplein et al., 1969	Log P cannot act as an unifying variable; MW did not correlate with
		permeability coefficients, and did not improve the correlation when taken
	2. hydrocortisone 21-esters:	together with log P.
	log Kp (cm/sec) = -8.88 + 0.80 log P	
	$r^2 = 0.88$	Ad. 2
	n = 11	log Kp did not correlate with log Koct-hept
	data on MW or log P: not provided	
		Ad. 3
	data: Anderson et al. (1988)	a parabolic relationship
		Log Kp did not correlate very well with log Koct-hept. Correlation
	3. phenolic compounds:	increased when compounds with log P > 2 were removed.
	$\log \text{Kp (cm/sec)} = -0.37 (\log P)^2 + 2.39 \log P - 8.71$	
	$r^2 = 0.87$	Remark of the reviewer
	n = 18	Kp was determined in human epidermis or stratum corneum using a three-
	data on MW or log P: not provided	compartment model (aqueous donor compartment, epidermis or stratum
		corneum, aqueous acceptor compartment).
	data: Roberts et al. (1977)	

Table B.1 Overview of mathematical skin permeation models reported in open literature (1990 - mid 1998)

Publication	Model description	Remarks
Fiserova-Bergerova (1993)	$Kp (cm/h) = (0.038 + 0.153 \text{ Pow}) e^{-0.016 \text{ MW}}$	Remarks of the reviewer
		Absorption: no data
	data: unknown, based on Berner and Cooper (1987); from	Validation: by Wilschut et al. (1995) and discussed by Bunge (1998) The
	saturated aqueous solutions for non-polar compounds	model overestimates dermal absorption.
		Remark of the author
		Aim of model development was not to predict dermal absorption, but to
		develop critiria for the skin notation (Fiserova-Bergerova, 1993).
		develop erama for the sam nominon (1 sectoral Bergerova, 1995).
Durkin et al. (1995)	log AR (% of applied dose/day) = 1.5 - 0.04 MW	Remarks of the reviewer
	AR = average daily absorption over a five-day postexposure	Absorption: determined by urinary excretion, corrected for incomplete
	period, for compounds with log P > 1.85	recovery.
	$r^2 = 0.67$	Validation: no data
	n = 47 (14 steroids, 21 organic substances, 12 pesticides)	Remarks of the authors
	MW: 60.6 - 452.5; log P: (-2.82) - 6.91	Regression analysis revealed no significant correlation between log P
		values, MW, or both, and absorption fraction or log absorption fraction for
	data: Feldmann and Maibach (1969, 1970, 1974) (human	the total database. Additional variables as water solubility, melting point,
	volunteers; vehicle: acetone, 4 µg/cm ² , 2.8-20 cm ² , exposure	pKa did not yield statistically significant correlations.
	duration: 24 hours, urine collection during 5 days)	

Table B.1 Overview of mathematical skin permeation models reported in open literature (1990 - mid 1998)

Publication	Model description	Remarks
Hagedorn-Leweke and	$\log \text{Kp (cm/h)} = -2.46 + 0.38 \log P_{\text{octanol-vehicle}}$	Remarks of the reviewer
Lippold (1995)	$\log P_{\text{octanol-vehicle}} = -0.56 + 0.91 \log P; r^2 = 0.99$	Absorption: based on concentration decrease in vehicle
	$r^2 = 0.90$	Validation: no data
	n = 10 (miscellaneous compounds)	Remarks of the authors
	log P: 3.07 - 6.51	The permeability was sufficient predicted by P _{octanol-vehicle} ; <i>i.e.</i> , it seemed to
		be almost independent of the molar volume.
	data: human volunteers (in vivo experiments; vehicle: mixture of	
	propylene and water; 14-16 cm ² exposed, 2-6 ml with various	
	concentrations)	
Hori and Ito (1995)	$\log \text{Kp (cm/sec)} = -6.26 + 0.67 \log P - 0.0060 \text{ MW}$	Remarks of the reviewer
	$r^2 = 0.66$	Absorption: not defined, model based on historical data
		Validation: no data
	n = 76 (miscellaneous compounds)	
	MW: 32 - 765; log P (-1.19) - (5.49)	Based on formula of Potts and Guy (1992)
	data: Taya et al. (1991); Itoh et al. (1990); Michaels et al.	
	(1975); Hirvonen et al. (1991); Flynn (1985)	

Table B.1 Overview of mathematical skin permeation models reported in open literature (1990 - mid 1998)

Publication	Model description	Remarks
Lien and Gao (1995)	non-steroidal anti-inflammatory drugs	Remarks of the reviewer
	$log R = -1.930 + 1.824 log P - 0.370 (log P)^2$	Absorption: not defined, model based on historical data
	R = (% absorbed)/(% unabsorbed)	<u>Validation:</u> no data
	$r^2 = 0.74$	
		Remarks of the authors
	n = 17	Due to the narrow MW range, addition of MW is not justified statistically.
	MW: 137.13 - 357.81; log P: 0.77 - 4.88	Ideal lipophilicity for maximum permeability: $log P = 2.5$
	data: Yano et al. (1986); human skin permeation data (not	
	further described)	
Wilschut et al. (1995)	Kp (cm/h) = 1/ ((1/(Kpsc + Kpol)) + (1/Kaq))	Remarks of the reviewer
	$\log \text{ Kpsc} = -1.326 + 0.6097 \log P - 0.1786 \text{ MW}^{0.5}$	Absorption: not defined, model based on historical data
	Kpol = 0.0001519/√MW	<u>Validation:</u>
	Kaq = 2.5/√MW	Model is validated with human in vitro data. The database was divided in a
		so-called training and validation set. These sets were used to estimate the
	n = 123 (miscellaneous compounds)	regressions coefficient of the model. The residual variance was determined
	MW: 18-764.9; log P: (-3.58) - 5.58	and compared.
		Opdam and Krüse (1996) compared the Kp estimated with Kp
	data: human in vitro experiments (historical data, aqueous	experimentally determined in human volunteers for 7 substances (MW:
	solutions)	86,2-209.2; log P: 1.6-3.9). Kp was overestimated by Wilschut et al. with a
		factor 2-4 for 4 compounds. For 3 substances, the estimated Kp was
		comparable with the experimentally determined Kp.
		The models is based on Robinson (1993).

Table B.1 Overview of mathematical skin permeation models reported in open literature (1990 - mid 1998)

Publication	Model description	Remarks
Sartorelli et al. (1998)	Kp (cm/h) = 0.037 - 0.003 ln Pow	Remarks of the reviewer
	$r^2 = 0.82$	Absorption: amount of substance in samples obtained from the cells.
		Kp= absorption flux at steady state/concentration applied
	n = 11 (8 PHCs and 3 organophsophorus compounds)	<u>Validation:</u> no data
	MW: 128.2 - 322.5; log P: 0.7 - 5.9	
		A more general model which also included MW and vapour pressure was
	data: in vitro experiments with monkey abdomen skin (static	evaluated as well, but made no substantial difference.
	diffusion cells, without occlusion, full thickness skin, various	
	concentrations, 1.77 cm ² , vehicle: acetone)	Sartorelli et al. stressed the need for internationally accepted guidelines for
		in vitro experiments before using models based on physico-chemical
		properties for regulatory toxicology.

Table B.1 Overview of mathematical skin permeation models reported in open literature (1990 - mid 1998)

Publication	Model description	Remarks
Guy and Potts (1993); Potts	$\log \text{Kp (cm/h)} = -2.74 + 0.71 \log P - 0.0061 \text{ MW}$	Remarks of the reviewer
and Guy (1992)	$r^2 = 0.67$	Absorption: no data, model based on historical data
		Validation: described by Wilschut et al. (1995); It was concluded that the
	n = 89	model provides reliable estimations of skin permeation for substances with
	MW: 18 - 750; log P: (-3) - 6	a log P between -1 and 5.
	data: Flynn (1990) (human in vitro epidermal permeability data)	It was not possible to establish limits to dermal absorption for a reasonably
		sized nonelectrolyte, because the database did not contain any substances
		whose properties fit the criteria necessary to define the regime. This is not
		surprising since such compounds would be expected to be extremely water-
		insoluble and difficult to work with under the experimental conditions
		required to establish steady-state penetration kinetics across skin from an
		aqueous donor phase into an aqueous receptor phase (Potts and Guy,
		1992).
Morimoto et al. (1992)	$Kp (cm/sec) = 2.73 \cdot 10^{-8} + 1.17 \cdot 10^{-7} Pow^{0.751}$	Remarks of the reviewer
		Absorption: no data
	n = 16 (hydrophilic and lipophilic drugs)	Validation: no data
	MW 130 - 357; log P: (-4.7) - 3.94	
		Remark of the author
	data: in vitro skin permeation experiments (donor and receiver:	The relation between Kp en log P was linear for lipophilic drugs (log P
	distilled water, stirring, split-thickness skin); duration of	≥0), while for hydrophilic drugs the Kp was almost constant, ca. 2 10 ⁻⁸
	experiment: 10 h; human chest skin	cm/sec, and independent of log P.

TNO-VOEDING

Formulier: HVO	
Rapportnr.	: V98.1237 Vertrouwelijk / Openbaar*
Auteur(s)	: Hees Wilschut, Stevenson, Halliest Afdeling: ATRA
Titel	: Guidance document on the estimation of
	desmal absorption according to a trived
Danie at automore	appreach: an update: 480361
Opdrachtgever (of financiering	:
TNO hoofdonder	werp en product code :
() 4.1 = eige () 4.3 = star Trefwoorden (ma	e: dit is een rapport m.b.t. onderzoek volgens en richtlijnen () 4.2 = richtlijnen opdrachtgever ndaardprotocollen (X) 4.4 = literatuurstudies, adviezen e.d. ax. 5): desmel absorption, sick assessment
Beoordeling do	or Joop van Hemmen (datum in: 29-1-99)
Opmerkingen	
Paraaf	:(datum uit:
D	
	or(datum in:)
Opmerkingen	
Paraaf	:(datum uit:)
Beoordeling do	or(datum in:)
Opmerkingen	:
Paraaf	:(datum uit:)
Beoordeling do	cr (datum in:)
Opmerkingen	:
Paraaf	:(datum uit:)
Distributie:	naar auteur : <u>65</u> exemplaren naar opdrachtgever : <u>5</u> exemplaren
	exemplaren
	exemplaren
Totaal te verv	13 04
Origineel rapp	ort ontvangen door sectie Bedrijfsarchivering d.d.:

^{*)} Aangeven wat van toepassing is; openbare rapporten worden opgenomen in de "List of Publications" en de publiekscatalogus van afdeling BiDoc