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Abstract: Temporal network analysis and time evolution of network characteristics are powerful
tools in describing the changing topology of dynamic networks. This paper uses such approaches to
better visualize and provide analytical measures for the changes in performance that we observed
in Voronoi-type spatial coverage, particularly for the example of time-evolving networks with a
changing number of wireless sensors being deployed. Specifically, our analysis focuses on the role
different combinations of impenetrable obstacles and environmental noise play in connectivity and
overall network structure. It is shown how the use of (i) temporal network graphs, and (ii) network
centrality and regularity measures illustrate the differences between various options developed for
the balancing act of energy and time efficiency in network coverage. Last, we compare the outcome
of these measures with the less abstract classification variables, such as percent area covered and
cumulative distance traveled.

Keywords: centrality measures; connectivity; network topology; regularity; temporal network graphs

1. Introduction, Motivation, and Research Questions

Networks that evolve in time, such as infectious disease contact networks, wireless
sensor networks, and many others, have received considerable interest in the past two
decades [1–3]. Focus has been placed on understanding their topology, interruptions (desir-
able and undesirable) within their structure, their optimization, and adaptive operation.
Understanding networks often relies on complex multiparametric and/or multivariate
settings. We relied on harnessing the formalized mechanics of emergent behavior based
on an our own adaptation (cf. [4] for details) of the Voronoi tessellation [5] which some
consider a bio-inspired optimization technique [6].

In addition to a Voronoi-only approach [7,8], we used our own hybrid approach, with
Genetic Algorithm (GA) hybridized with Voronoi tessellation as the resulting emergent
self-organization behavior has been shown [5] to be promising for solving coverage prob-
lems in realistic model situations. Our technique, termed Bio-Inspired Self-Organizing
Networks (BISON), leverages the converged movement towards Voronoi cells’ centers with
an intelligent node provisioning algorithm to deliver a fully automated WSN that rapidly
self-deploys itself within any finite indoor environment without prior knowledge of the
size and structure of the target space [4,5].

The BISON algorithm was merged with a localized Genetic Algorithm (GA) to push the
trade-off between the pace of space exploration and energy expense further towards faster
deployments, especially when faced with complex obstruction structures. The mechanics of
the approaches are omitted for reasons of brevity but are summarized in SOM (Supporting
Online Materials)—A and are available (Open Access) in [4].
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After considering the inherently dynamic nature of BISON and its GA hybrid variant
(GA + BISON), we relied on temporal network analysis as a natural enhancement to the
discovery and analysis of changes within the networks generated by these algorithms [9].
Voronoi-type algorithms have been utilized for similar purposes, with groups such as Wang
et al. developing different methods for node reallocation based on Voronoi edges [10], and
Zou et al. introducing a spreading algorithm (NSVA) to deploy a fixed number of nodes
within an obstacle free region [11].

Analyzing the behavior of animals in their environmental networks reveals that
they do not randomly interact with each other but rely on temporal properties of their
networks [12,13]. Furthermore, interactions among different animal species are inherently
dynamic and change with time and the context of the medium, such as reflections of the
outside circumstances [14–17].

Thus, performing temporal network analysis on dynamic networks provides informa-
tion about individual members, the relationship between network nodes, and allows to
scale from a few individual’s behavior to a larger scale population level [9]. Moreover, link-
ing the dynamic patterns of connections in time with the changing status of the members
provides insight on the role of the network structure for the specified application [18].

Centrality and correlations in temporal networks have previously been studied, no-
tably in [19,20], where it is shown that correlations indicate the level of connectivity in
temporal networks. Naturally, there is a number of reasons motivating the studies of
temporal networks, ranging from the need to build surrogate networks [21], examining
the potential for the emergence of small world networks [22–24], to studying networks as
model system representing phase transitions, such as [25,26].

In this paper, we demonstrate some of the advantages and trade-offs of BISON
(Voronoi-only) and GA-BISON (GA + Voronoi) in a sampling of different environmental
conditions, using a temporal network analysis framework employing centrality measures
and graph nodes statistics.

Specifically, we show that network theoretic characteristics and temporal graphs offer
a more thorough insight into time evolution of networks than cumulative, application
driven measures, such as cumulative distance traveled (CDT), or percent area coverage
(PAC) [4,5] as well as the effect of simulated noise on the network topology.

We are targeting the following research questions:

1. How is the deployment process affecting the connection in the region of interest?
2. What is the temporal difference between the proposed algorithms in terms of the con-

nections achieved between the nodes, over the course of the overall simulation time?
3. How can we quantify the influence of the simulated noise in the on the distribution

and the connectivity of the nodes in the network?
4. What do we learn from the time traces of network characteristics, such as regularity

and centrality?
5. How do temporal characteristics compare with application-driven measures, such as

ADT and PAC?

The paper is organized as follows. Section 2 reviews prior work. Section 3 briefly
discusses our Voronoi-only and GA + Voronoi approaches, section 4 provides an overview
of recent work related to temporal and static network analysis applied to WSN. Section 5
deliberates the temporal network framework applied to Voronoi-only and GA + BISON.
Sections 6 and 7 focus on the regularity and centrality measures, respectively. Section 8
concludes the results.

2. Review of Prior Work Using Voronoi Tessellations for WSN Deployment

As mentioned above, the BISON algorithm was merged with a localized Genetic
Algorithm (GA) to facilitate faster deployment of the WSN nodes. While GA ended up
being our preferred choice, this is by no means a foregone conclusion, as other approaches
have also been successfully used to achieve similar goals. While we refer the reader
to [4,5] for the in depth discussion of the various benefits and disadvantages as well as the
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motivation for our choices, we will briefly review the most prominent approaches found in
the literature.

In the literature, approaches to WSN deployment and optimization are often based
on heuristics. For example, Ant Colony Optimization (ACO) [27,28] has been shown to
increase a network’s lifetime by reducing the individual nodes’ energy consumption, a
feat they achieve by optimizing the routing paths between the individual nodes in an
established WSN. Particle Swarm Optimization (PSO) [29–31] and Genetic Algorithm
(GA) [32,33] can reduce the energy consumption during node deployment by suggesting
superior node positions. This can reduce the number of steps required for the deployment
as well as reduce the energy consumption of the WSN. Voronoi-based approaches [34–36]
are commonly used to maximize the nodes’ coverage by detecting existing coverage holes.

We summarized a comparison between these three approaches in Table 1, but first we
would like to briefly elaborate how each of them can be used to complement or augment
Voronoi tessellations:

• Ant Colony Optimization (ACO): often used in combination with Voronoi tessella-
tions, it is used to optimize the routing of communication between nodes within the
network. Characteristically, ACO continuously explores and optimizes the connection
paths in a WSN [37,38].

• Particle Swarm Optimization (PSO): merging PSO with Voronoi tessellations is a
common approach to maximize the coverage and prolong the lifetime of the WSN [39–43].
For example, the authors of [41,42] use PSO to determine the next position of a sensor
nodes, while Voronoi tessellations are generated to detect the coverage holes and
evaluate the fitness function. Such results normally rely on either a centralized node to
perform the majority of the computational work (such as the gathering of information
about all nodes’ locations, performing calculations, and suggesting new locations/new
sensing ranges for each sensor node) or assume that each node has prior knowledge
about its location and that of all other nodes. The application goal then determines
whether the objective function focuses on either minimizing the energy consumption
or instead on minimizing the gaps in coverage.

• Genetic Algorithms (GA): GAs have also been widely used in combination with
Voronoi tessellations, often in the context of WSN deployment and to address the
problem of node re-allocation. Results indicate WSN coverage and network lifetime
can be enhanced this way [11,44–48]. Note that these approaches rely heavily on
the GA using a developed objective function; the Voronoi tessellations exclusively
detect coverage holes. The latter requires prior knowledge about the nodes’ locations;
GA candidate solutions are restricted to inside their respective Voronoi regions. The
reduction of coverage gaps can be achieved by moving WSN nodes away from/toward
their neighbors [11,45] with new nodes being added to locations as specified by the
GA [44].

Both GA and PSO can be used to reduce the energy consumption in a WSN and have
been shown to extend the network’s lifetime by improved routing and informed node
movements. As GA only generate new candidate solutions inside a node’s coverage and on
the basis of locally available information [49] this seems an advantageous choice, given that
our use case is a network of physically independent drone borne nodes. PSO seems to reply
on nodes sharing their best known solution with the network, which requires guaranteed
connectivity and incurs a communication overhead. In addition, PSO requires a dedicated
central node.
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Table 1. A brief overview over the prior work combining Voronoi tessellations with other approaches.
We identified three popular nature-inspired heuristics that are favored in the literature: Ant Colony
Optimization (ACO), Genetic Algorithms (GA) or Particle Swarm Optimization (PSO). In the above table,
we distinguish between how the two approaches are applied (the Method), what this does/how this works
(the Process) and the effect(s) this has (the Impact).

Voronoi + ACO [27,36,37,46] Voronoi + GA [11,28,31,32,38,43,45,50–57] Voronoi + PSO [29,30,39,40,42,44,58,59]

METHOD Voronoi tessellations deter-
mine every possible paths
in the entire network while
ACO can then be used to
identify the shortest path.

Voronoi tessellations detect coverage
holes and GA generates favorable node
locations to reduce energy consumption
and maximize network lifetime.

Voronoi tessellations are used to detect
coverage holes, PSO generates virtual
points (Voronoi vertices).

PROCESS Assign weight values to the
Voronoi edges to guide the
search.

Change the node distribution and add
extra mobile nodes.

Change either a node’s location and ve-
locity and/or the node’s sensing range.

IMPACT Impacts node distribution,
weights and the evaluation
function.

Influences the objective function as well
as coverage holes (and GA parameters).

Affects virtual points, node-location and
-velocity and best known local/global
solution.

3. Overview of the BISON and GA-BISON Approaches

We previously reported our work using a Voronoi-based algorithm for the autonomous
self-deployment of a WSN into two-dimensional bounded target spaces of unknown
geometry and topology in [4,5]. The proposed method assumed entering the target space
from predefined inlet and triggering the sequential controlled and optimized release of
vehicle or drone carried WSN nodes, which autonomously spread and connect throughout
the space to rapidly form a blanket coverage network ready for delivering a variety of
sensing, monitoring or communication services.

The sensor nodes autonomously move toward their range-dependent, partially ob-
servable Voronoi cells’ centers, as shown in Figure 1, maintaining a stable collision-free
flow designed to rapidly explore and cover the whole target space at the minimum possible
time, using as few nodes as possible and draining as little energy as possible, all without
any prior knowledge about the geometry of the space and the obstacles in it [60].

Extensive sets of simulated deployment experiments demonstrate convergence to the
stable near-full coverage network, achieved at a fraction of a deployment cost and time,
compared to competitive models reported in the literature, which allow to consider BISON
as a strong new approach to AI-flavored, blanket-coverage WSN deployment achieved
virtually without any human intervention.

In an attempt to further improve, simplify and generalize Voronoi-only deployment,
the core BISON algorithm is merged with the localized Genetic Algorithm (GA) applied to
push the trade-off between the pace of space exploration and the energy expense further
towards faster deployments, especially when faced with complex obstruction structures.
The GA with Voronoi approach has an influence on the discovery process of the next best
possible local position of nodes in the network [61]. The opportunity of evaluating several
candidate solutions instead of Voronoi centroid allowed sensor nodes to discover better
locations, hence enhancing the network performance at faster rates [51,53,62]. GA allowed
us to control the randomization of the candidate solutions to best fit our optimization
problem, by tuning the location and the rate of the generated solutions in every iteration.
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Figure 1. Illustration of the evolution of nodes using Voronoi-only and Ga + Voronoi algorithms. The
red lines indicate a suitable network connection for information routing. Nodes are colored based on
their eigenvector centrality (cf. Section 7). Additional materials offered in SOM-B.

The proposed GA-BISON (Conditional) approach allowed each sensor node to decide
whether to apply GA or to stay reliant on BISON to determine its next position by checking
its number of neighbors. If the sensor has between one and three neighbors, as shown in
Figure 2 (lower) for node n1, then there is still a chance to move further and discover more
regions by implementing a GA approach.

If the sensor node has more than four neighbors—as in Figure 2 for node 9 (upper
right panel)—there is limited region to discover, unlike node 9 in the lower right panel.
Therefore, it is better for the sensor to optimize its current location by moving towards the
Voronoi centroid using BISON.

This GA + Voronoi approach improved the execution time and discovery rate of the
network, by discovering further locations instead of Voronoi centroids implemented in
BISON, but with the price of moderate energy expenditure compared to the Voronoi-only
approach. We also validated that GA-BISON (Conditional)’s coverage performance is
robust against the effects of noise. Its performance is enhanced by noise but incurs an
increased energy cost. From these analyses, the efficiency that we can guarantee from the
developed approaches can cover several applications depending on their requirements and
abilities of WSN deployment.
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Figure 2. Snapshots of a WSN generated by (upper) the Voronoi-only algorithm and (lower) the
GA-BISON algorithm in an obstacle-free environment, at different time steps. ND signifies noise
level (chosen from 0.01, 0.05, 0.1). See Equation (2).

4. Review of Related Work

Temporal networks, also called time-ordered networks or dynamic networks, are gen-
eral network structures containing timing information about the actions of and interactions
between network members [63]. This added information can make analysis significantly
more difficult, however the added complexity makes temporal networks natural choices
for studying dynamic systems [1,2].

Temporal network analysis has been used to study a wide variety of topics, including
anomalies in urban transportation, disease transmission, and video super-resolution [64–66].
Temporal Network Graphs (TNGs) can be constructed in several different ways. For our
purposes here, it is convenient to think of them as a sequence of unweighted, static graphs,
each with an accompanying adjacency matrix, defined in a standard manner for static
networks, where each element can be written:

aij(t) =

{
1, if node i is connected to j at time t
0, otherwise

(1)

The TNG representation is powerful, as it allows us to utilize familiar static net-
work theoretic techniques on graphs within the sequence, specifically for each step of
the sequence in time evolution of the network. Understanding the interplay between the
underlying dynamics and the temporal sampling rate is critical to most temporal network
analysis [1–3]. Both the Voronoi-only approach and the GA + Voronoi operate at discrete
time steps, giving us a natural starting point for sampling times. We then construct TNGs
for all trials as the sequence of static graphs occurring at each time step.
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Temporal network theory has been explored as a means of identifying shortest time-
respecting paths between nodes, making it useful in the development of routing protocols
for WSNs [67–69]. It also provides statistical analysis on the average number of hops and
members required from source to destination. Temporal network analysis can also reveal
members that are involved in shortest paths, thus playing an important role in mediating
the data flow in the network [9]. Moreover, temporal and centrality measures are combined
in static WSN to decide their best placement based on their response to changes in the
surrounding environment [15,70].

Regarding TNG measures and statistics, we consider two broad categories: (a) static
measures recorded for individual graphs within the time-ordered sequence, referred to
here as time traces, and (b) temporal measures, constructed by looking at a TNG as a single
object. Given the added complexity of TNGs, as well as the relative newness of the field, it
has been difficult to establish a consensus around the use and definition of measures of type
(b) [1,3]. We chose to focus a bit more on measures of type (a), largely for the reasons stated
above, but we also recognize that future work utilizing measures of type (b) has significant
merit. This being said, we did extract the distribution function of the length connections
from the TNGs in the case of our simulated physical situations. Overall, this type of work
may also include utilizing aggregate graphs [71,72], supra-centrality measures [73,74], and
phase transition analysis [75].

Static centrality measures are commonly used network measures for categorizing and
ranking nodes within a static network, and there exists a large variety of possible measures
that can be employed [76].

In WSNs, various centralities have been introduced to measure connectivity, cluster-
ing/localization, data flow and energy expenditure [67–69,77–79]. Still other centrality
measures are used to show the robustness of the network against errors, particularly in the
face of node failure [80]. Choosing an applicable centrality measure largely depends on the
specific network being studied, its goals, and the environment it exists in.

Among the most frequent centrality measures discussed in literature is the between-
ness centrality, a simple measure that identifies nodes working as important corridors for
information flow within in the network [67–69,77,79–81]. This identification allows for in-
creased control over this information flow, as well as increased reinforcement of important
nodes. The limitations of this measure lie in its high computational cost, disregard for the
global structure of the network, and its inapplicability to choose the shortest path for data
transmission due to limited energy resources [10].

Another commonly employed centrality measure is the closeness centrality, which
measures the mean distance between a node and other nodes (also referred to as the shortest
geodesic distance from a node to all other nodes in the network). Closeness centrality
is useful in clustering and assigning energy-saving sleep/wake schedules [67–69,77–80].
However, it does not account for unreachable nodes and performs poorly in large networks,
where it cannot point to the main leaders [10].

We considered degree centrality [13,68,78–80,82] and eigenvector centrality [68,79,80,83]
to be used for WSNs when implemented in toxic leak detection as described by Voronoi-
type approaches [68]. These centralities cover the two types of classifications: (i) local
centrality which is demonstrated through degree centrality by focusing on how nodes
are connected to their neighbors, and (ii) the global centrality demonstrated through the
eigenvector centrality that reflects how often can a node be effective in transferring the data
packets among the network [68]. Moreover, in [80] the analysis of four different centrality
measures (Degree, Betweenness, Closeness, and Eigenvector) shows them identical in
their analysis of robustness against errors in the measurements (addition or removal of
nodes) and so choosing either one is adequate for network analysis. Additional research
has shown that eigenvector centrality performs better than other centralities at measuring
causal inference [84]. Complementing all of this is its relative ease of computation.
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5. BISON as a Temporal Network

Given the changing nature of BISON and its proposed target environments, we believe
temporal analysis is necessary to uncover the deeper structural changes within the network
in different environmental conditions [1,9].

For our study, we consider four different environments (cf. Table 2). Here, “moderate”
noise is a “noise deviation” level of 0.05 within a simple Gaussian noise model:

P(x) =
(

1
σ
√

2π

)
e
(x−µ)2

2σ2 (2)

where x is taken to be a random variable, µ is the mean, and σ is the standard deviation.
Increasing σ2 (given by σ2 = No

2 , with No the noise power) thus detrimentally impacts signal
accuracy. “Scattering” obstacles refers to small obstacles placed throughout the environment
(see Figure 2 for the layout). We also limit each algorithm to 40 nodes, both for sake of
comparison and to avoid large computation times. It is straightforward to extend this study
to 100s of nodes and to further complexify the environmental conditions, such as number
of obstacles, wall penetrability, and the level of noise.

Table 2. We analyze each combination of the following parameters, giving us 8 different cases
to study.

Algorithm Noise-Level Obstacle Arrangement

BISON No Noise No obstacles
GA-BISON ND = 0.05 10 scatterers

There are several ways of visually representing the information contained within a
TNG. A common representation is the edge-centric representation, which lists the possible
edge pairs belonging to the network along the vertical axis, and the temporal dimension
across the horizontal axis [63]. When an edge is active, a horizontal line is drawn from the
first moment it is active to the last. We generated such temporal network graphs in Figure 3,
for varied conditions of numerical experiments, in order to visualize the connectivity
actions influenced by various obstacles and noise variations.

In both the scatterer and the scatterer-free case, Voronoi-only reaches the node cut-off
much quicker when there is noise present. It is also immediately apparent that the noise-
free cases contain persistent, longer connections, while the noisy cases are more sporadic.
This graph representation is quite sparse in the vertical dimension, as can be seen from
the existence of relatively wide “empty bands” of nodes whose connections never form.
This sparseness can be attributed to the unlikelihood of nodes encountering nodes from a
different time step of the simulation. Node 1 is unlikely to encounter node 40, owing to the
large amount of distance traversed by node 1 before node 40 is inserted.

Note that this brings up a representation problem in Figure 3: the graphs are signifi-
cantly sparser at the bottom, not necessarily because of lower clustering, but rather because
there are more edges that start with low numbers (no edge is double counted).
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Figure 3. Edge-centric representation of Voronoi-only (BISON) and GA + Voronoi (GA-BISON) in
both the obstacle-free environment and obstacle-rich environments. A given simulation has reached
the cut-off condition at its rightmost edge. Notice that GA + Voronoi reaches cutoff after a fraction
of the time required for Voronoi-only, and how Voronoi-only performs much more quickly in the
presence of noise. Furthermore, note the sporadic nature of connections within GA + Voronoi,
compared to the stability of Voronoi-only connections. (a,b) Two of the significant empty bands,
where connections never form. Table 3 on the next page lists the connections in panels (a,b), we refer
to SOM-C for a complete list of all missing pairs, for all panels of this figure.
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Table 3. Edge pairs located within gaps (a,b) in Figure 3. These gaps indicate edges that never form.
SOM-C contains all the missing pairs, for all four panels of this figure.

a b

(1,4) (2,5), (2,6), (2,7)
(1,6), (1,7), (1,8) (2,9)
(1,10), (1,11), (1,12) (2,11), (2,12), . . ., (2,40)
(1,14), (1,15), . . ., (1,19)
(1,21), (1,22), . . ., (1,40)

The networks resulting from GA + Voronoi are much more sporadic than any of
those seen in the Voronoi-only cases, a behavior consistent across various environmental
conditions. We see a similar vertical sparseness. Furthermore, note that the required
number of steps for node cutoff is significantly less than any of the Voronoi-only runs; this
is the case regardless of noise. When using Voronoi-only we found that noise affects both,
the simulation time required to achieve full coverage as ell as the connectivity between the
nodes. Noise drove node dispersal but also sometimes created temporary disconnections
between the nodes, affecting the flow of data packets between the nodes.

Among (almost) any network practical considerations are parameters like (i) energy
needed to operate and maintain network connections, (ii) the number of the connections
and their distribution in time. Such parameters are easily accessible using the representation
in Figure 4.

Figure 4. Distribution of various lengths of connection for each of the cases in Figure 3. We see a
drastic qualitative difference between Voronoi-only in noise-free and noisy environments, and smaller
quantitative difference between GA + Voronoi cases.
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The behavior of GA + Voronoi showed that the connectivity is fluctuating more
often in obstacle-free than in obstacle-rich environments. This is because in obstacle-free
environments, sensor nodes are more freely to move and disperse, losing by that their
connectivity more easily than in obstacle-rich environments. The temporal network figures
showed significant differences in the behavior between Voronoi-only and GA + Voronoi.

The first difference to discuss is the time steps. We can notice that in GA + Voronoi,
the number of time steps is not affected by noise, however in Voronoi-only, the number of
time steps decreases in the presence of noise. This indicates that merging GA with Voronoi
introduced a robustness functionality to Voronoi-only against communication noise, at
least in terms of the execution time.

The second difference is regarding the number of connections established in the net-
work. We observed that the presence of noise in the environment allowed more connections
to be present between the sensor nodes compared to noise-free environment. This be-
havior is observed in both approaches (Voronoi and GA + Voronoi) with a slightly more
connections available in Voronoi-only compared to GA + Voronoi approach.

The third noticed difference is the connectivity duration among the agents in the
network. For GA + Voronoi, the system suffered from un-stabled connections throughout
the simulation, but with less effect in the presence of noise than in noise-free situations.
In Voronoi-only, we observed the opposite behavior, where in noise-free condition, the
connections are established at earlier stages of the simulation and are more stabled; while
in noise-rich condition, un-stabled connections are performed throughout the simulation
which stabilize as the number of nodes increase in the network over time.

6. Regularity Measure

Further observations of Voronoi-only and GA + Voronoi network-time evolution
motivates an elementary inquiry into the regularity of networks deployed.

A network is considered regular if [76]:

n

∑
i=1

λ2
i = nλmax (3)

where λi are the eigenvalues of the adjacency matrix, λmax is the largest eigenvalue, and n
is the number of nodes in the network, all of which are recorded at a particular time step.

We define the regularity difference at a given time as

∆reg =

∣∣∣∣∣ n

∑
i=1

λ2
i − nλmax

∣∣∣∣∣ (4)

Figure 5 represents the results of the network regularity at different moments in time
and for several situations (obstructed environments and noise levels).

We can notice that for both approaches at earlier steps of the network evolution, the
network is closer to regularity than at further time steps.

Moreover, by looking at the moments of injecting new nodes, the regularity differ-
ence (∆) increases in the network in most environments. Regularity difference levels are
dramatically different between the GA + Voronoi and Voronoi-only cases. Furthermore,
noise seemingly increases the regularity difference (∆) in Vornoi-only networks, while the
GA + Voronoi networks maintain similar regularity difference levels in the face of noise.

Below, we will discuss how the sharply different network irregularities correlate with
the practical performance measures, as well as energy expenditure.
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Figure 5. Temporal evolution of the deviation from regularity for Voronoi-only and GA + Voronoi
approaches under different environmental conditions. We note the need to use log scale for the
time axis indicating an order of magnitude difference between the characteristic time scale for two
methods. The measure ∆reg is defined in Equation (4), above. (a) Comparison of BISON only and
GA+BISON performance with varied noise but without scaterrers. (b) Comparison of BISON only
and GA+BISON performance with varied noise, and in the presence of scaterrers.

7. Centrality Measure

The motivation of this work is driven by the need to understand and improve the
network coverage in the context of the spatial, temporal and energy constraints. Specifically,
implementations are often driven by

1. cumulative distance traveled (CDT) by the nodes,
2. percent area coverage (PAC) that nodes manage to cover by the signal,
3. minimal time to achieve target coverage, and
4. optimized energy allowed for the network of drones.

The analysis so far illustrates how uneven the roles of most nodes are during the de-
ployment process. We also noted that as the deployment progresses, the nodes that have few
links can quickly gather many links, indicating that much temporal switching occurs within
the networks. With the goal of initial quantification of the role of individual nodes and the
time-dependent role they play, we determined eigenvector centrality (EC) [76], one of the
leading measures that help understands the evolving nature of temporal network graphs.

We select eigenvector centrality as it is sufficiently general (typically defined as a
generalization of Katz index [76]), applicable to smaller size networks (N ≈ 30–100 in
most our cases), and is readily obtainable from the adjacency matrices. It measures the
importance of a node based on the importance of its (connected) neighbors.

Comparing our values with [67] we notice that local centrality measures (our degree
centrality measures and their betweenness centrality measures) provide high spike values
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for nodes that are more connected to their neighbors than others, while global centralities
(our eigenvector centrality measures and their closeness centrality measures) have a smooth
distribution of values among the nodes. We also observed that the differences in the
eigenvector centralities of the nodes in the network at different time steps revealed the
uneven role of most of the nodes in the network during their deployment process, which is
considered an important finding to be used later to keep track of the important nodes that
can be relied on to transfer data packets among the network members.

We present eigenvector centrality measurements for the various BISON cases in
Figure 6 for the selected environmental cases. Nodes with early injection time immediately
spike in importance, but drop off as deployment continues. By contrast, nodes deployed
later spike early as well, and then maintain some non-zero importance throughout their
lifetime. This initial surge is to be expected, as nodes are injected from the same corner,
resulting in an area with a high node density.

As spreading continues, early nodes migrate to distant regions, and thus have little
opportunity to be deeply connected, while later nodes remain relatively close to this highly
dense region. These EC findings also clearly support our previous insight that adding
noise does, in fact, have a beneficial impact on the performance of Voronoi-only generated
networks with regard to deployment speed. When comparing plots from simulations
differing only in noise level, we consistently see that the presence of noise smooths the
EC time trace curve, suggesting a more homogeneous distribution of the nodes. We see
somewhat similar spiking behavior in the GA + Voronoi trials featured in Figure 7, although
early deployment nodes are more likely to feature significant spikes in EC later in their
lifetimes. This is partly expected, due to the somewhat randomized nature of the GA part
of the algorithm.

Figure 6. Eigenvector Centralities of the Voronoi-only approach in various environments at different
time steps; Vertical bar sign “0.6”, stacked vertically, is common to all curves.
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Figure 7. Eigenvector Centralities of GA + Voronoi in various environments at different time steps;
Vertical bar sign “0.6” is common to all curves, which are stacked vertically for clarity.

In neuroscience, EC has been found to correlate with a neuron’s firing rate and in cellu-
lar biophysics with [85]. We conjecture an analogous phenomenon could be exploited here;
there may be an advantage in designing our WSN nodes such that their message passing
rate is highest immediately after their injection, when a node can be expected to have high
EC. After some time, this transfer rate can drop to some consistent, energy-efficient base
value. The potential benefit that can be gained by this should be measurably higher for
environments where there is noise, since in such environments there are consistently fewer-
and lower- “flare-ups” of EC values as time progresses.

We have analyzed correlations between the eigenvector centrality time traces from
Figure 7, using the well-known formula for Pearson’s correlation coefficient, where we
have taken the expectation values of our data to be the arithmetic mean of our data sets.
For two data sets A and B, the coefficient is

CA,B =
〈AB〉 − 〈A〉〈B〉√

〈A〉2 − 〈A2〉
√
〈B〉2 − 〈B2〉

(5)

The outcome of that analysis is shown in Figure 8.
Having seen the overall shape and detailed behavior for a number of eigenvector

centralities, we decided to examine the time-lag correlations of the time traces of eigen-
vector centralities for selected nodes. We see this as an alternative method of presenting
and analyzing node ranking. If one imagines this work as implemented on board a num-
ber of (micro-)drones to make their navigation and time-to-task efficient, having several
approaches to assessing time-evolving network functionality.

Keeping in mind that one way to think about eigenvector centrality is that it serves
as method for ranking nodes, it is understandable that (once enough nodes are present in
the network) increase in the ranking of node k, there is a decrease in the ranking for one or
more nodes k− p, k + p. Positive correlation seems to arise when the nodes are close to
becoming connected, are connected, or have been connected, where negative correlation
seems to suggest the opposite.
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Figure 8. Time -lag correlation heat maps for time-dependent eigenvector centralities from Figures 6 and 7.
(selected node pairs shown only—more data in SOM). (upper) Voronoi; (lower) GA + Voronoi; (both)
ND = 0.05 and 10 obstacles.

As the correlation itself depends on time, one can learn quite a bit by reading out the
map. It is clear there are “correlation bands” (of steadily positive or negative correlation),
often preceded by rapid switching between positive and negative correlation. In Figure 8,
we have omitted quite a few node-to-node EC correlations, for the sake of clarity. Support-
ing Online Materials contain more examples, omitted from the main text in the interest
of space. Figure 8 contains “conditions rich” examples, with both, noise and obstacles, for
reaslism.

8. Conclusions

We demonstrated how to apply quantitative methods of temporal network analysis to
our Voronoi-like algorithms in order to compare and analyze the dynamics of WSN coverage
and robustness in the face of environmental noise and obstructions. GA + Voronoi in particular
demonstrated robustness in the face of thee various environmental conditions. To summarize,
we can provide the following answers to our research questions in Section 1:
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1. With Voronoi-only, nodes move outwards during their deployment in a regular
fashion, and their importance to connectivity and information relaying drops off with
this outward movement. GA + Voronoi demonstrates similar behavior; however,
nodes are more likely to reestablish their importance later.

2. We see that Voronoi-only in a noise-free environment maintains a small number of
long-lasting connections. Adding noise substantially redistributes those connection
lengths. By contrast, GA + Voronoi maintains qualitatively similar connection length
distributions through a variety of environments, featuring a rapidly changing topology
with short, frequent connections between nodes. In all cases, nodes are highly likely
to associate only with nodes sharing a similar deployment time

3. We see that noise increases the deviation from regularity, smooths out the EC time
trace, and impacts the connection length distribution in the Voronoi-only cases. By
contrast, noise has a much smaller impact on the same measures applied to the
GA + Voronoi cases. This supports previous work that had indicated Voronoi-only
changes substantially in the face of noise, while GA + Voronoi is robust to such
environmental changes.

4. Utilizing temporal network characteristics allows us to measure and observe the
behavior of the network as a whole and if individual nodes.

5. All this was possible without the explicit use of physical measurements of the nodes’
coverage or their environment. These measures also suggest some kind of deeper func-
tional equivalence between Voronoi-only in noisy environments and GA + Voronoi.

Such quantification measurements may prove useful in further refining our algorithms,
by allowing us to fine-tune communication routing protocols, broadcasting strength, and
other implementation details based on the expected behavior [86,87].

While mapping these theoretical network measures onto applied performance metrics
can perhaps be challenging, we do believe there are some clear points to take note of. When
discussing regularity, we noted that regularity difference rose in the noisy Voronoi-only
cases and GA + Voronoi cases. This irregularity seems to have some correspondence to
speed of coverage, and we posit that such highly irregular structures may be crucial in
this rapid deployment. By contrast, the lower regularity difference of Voronoi-only likely
corresponds to its slower but more consistent nature. This parallels the behavior we see in
measuring percent area covered (PAC), with GA + Voronoi rapidly reaching high levels of
PAC, while Voronoi-only slowly converges towards an acceptable value.

We also discussed EC among nodes in the various cases. By looking at EC, we see that
nodes consistently move towards positions of lower importance, especially in the Voronoi-
only cases. Fluctuations following this are indicative of a node relocating/reorganizing
itself in the network and are much more common in the application of GA + Voronoi. This
fluctuating corresponds to the cumulative distance traveled (CDT) measures. Assuming
a fluctuating EC value corresponds to a particularly mobile node, we would expect the
distance travel to be much higher for cases with fluctuating EC. Indeed, our previous
research indicated GA + Voronoi nodes travel significantly longer distances, seemingly
matching this explanation.

In addition to time evolution of irregularity (Section 6) and time evolution of eigen-
vector centrality (Section 7), we analyzed the nodes degree distribution, where analogous
observations could be made. In the interest of brevity, this output is presented in SOM D, E.
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