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Groundwater level time series are of great value for a variety of groundwater studies, particularly for those
dealing with the impacts of anthropogenic and climate change. Quality control of groundwater level observations
is an essential step prior to any further application, e.g., trend analysis. Often the quality control of data is limited
to the removal of outliers or elimination of entire time series from a dataset, while such approaches drastically

gﬁxs;ﬁ;mr level reduce the spatial coverage of initially huge datasets. Frequently studies tend to present already quality-
Time series controlled data, but neglect to demonstrate how the data were selected, judged, and modified. We present a
Visual inspection data rescue approach developed for correcting the Latvian national groundwater level database, containing 1.68
Monitoring million groundwater level observations since 1959, including 0.69 million manual measurements. A web-based

R-Shiny interface was developed and used for visual identification and manual correction of erroneous mea-
surements in groundwater level time series. All data manipulations were performed programmatically. Repro-
ducibility and traceability were ensured by deploying separate data tables for raw observations, data repair
actions and the final dataset. As a result of applied actions, 34.3% of all automatic measurements were either
deleted or corrected, while only 6.5% of manual measurements were edited. Commonly found errors in
groundwater level time series were grouped into: errors in measurement and data recording; technical problems
at the observation site; local anthropogenic impact and other unclassified problems. The improvement from the
rescue approach was assessed by comparing the Akaike information criterion derived from fitted ARMA and
ARIMA models to both original and repaired time series. The results showed that models fitted using repaired
time series were better than those fitted on the original time series for the same time series sections. The pre-
sented rescue approach and results can be of great value for all studies using groundwater level time series as an
input.

ARIMA models

1. Introduction

Groundwater globally ensures water supply, ecosystem functioning
and human well-being, and the overall importance is expected to grow
as groundwater is more buffered from seasonal and multi-year climate
variability than surface water (UNESCO 2015, 2020). Increasing
groundwater demand to supply drinking water, agriculture and industry
in combination with climate change has highlighted the importance of
groundwater protection (EEA, 2018; Naranjo-Fernandez et al., 2020;
Obergfell et al., 2019; Witte et al., 2019). Timely detection of negative
groundwater level trends is crucial to make appropriate decisions and
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ensure sustainable groundwater management (Bakker and Schaars,
2019; Lehr and Lischeid, 2020), while reliable information on ground-
water levels is a prerequisite prior any groundwater resources assess-
ment (Ritzema et al., 2018).

Time series analysis can be of a great value for groundwater studies
(Bikse and Retike, 2018; Jarsjo et al., 2020; Marandi et al., 2012;
Noorduijn et al., 2019). However, such analysis requires availability of
measured heads, sometimes also measured or estimated forcings (e.g.,
rainfall, evaporation, water pumping) for sufficiently long observation
periods. Around the world, groundwater levels are measured in obser-
vation wells for a variety of reasons, for instance monitoring of long-
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term changes, assessment of seasonal variations, or evaluation of
response to a particular stress (IGRAC, 2020). Thus, the spatial coverage
and density of monitoring networks is uneven (Bakker and Schaars,
2019). In addition, observation periods and frequencies vary, and time
series may contain essential gaps (Asgharinia and Petroselli, 2020).

Various data pre-selection criteria have been applied in previous
studies depending on the research aim and scale. Zaadnoordijk et al.
(2019) proposed to use an 8-year long observation period with a mini-
mum of 84 measurements for adequate time series models reflecting the
dynamics of the current groundwater system. Similar results were ob-
tained by Heudorfer et al. (2019) who tested sensitivity of various in-
dexes to changes of observed period location and time series length. In
general, a higher sensitivity was observed in indices calculated on
weekly rather than daily time series, while a coinciding drop in sensi-
tivity for both daily and weekly indices could be observed when the
length of time series reached 8 years. While Haaf and Barthel (2018)
applied 10-year observation length criteria with a minimum weekly
measurement frequency to capture multi-annual and decadal periodic-
ities in groundwater signal. For the assessment of the impact of
groundwater use on groundwater droughts, Wendt et al. (2020) used a
dataset of 30-year time series from which they removed all series with
more than 6 consecutive months of missing observations. Stoll et al.
(2011) used a criterion of at least a 30-year long time series with a
monthly temporal resolution to detect groundwater response to climatic
variations. And Chen et al. (2004) used a 15 to nearly 40 years long time
series to study the historic relationship between groundwater levels and
climatic variables such as temperature and precipitation.

Often groundwater levels have been monitored for decades resulting
in an extensive number of time series (Berendrecht and Van Geer, 2016).
Quality control of the data is an essential first step prior to any further
application, e.g., in time series analysis. The presence of various errors,
such as outliers, shift and drift require evaluation of each time series
(Zaadnoordijk et al., 2019). Post and Von Asmuth (2013) point out that
the most common sources of error due to the actual measurement pro-
cesses are related to the measurement instruments, the conversion from
pressure to heads, time lag effects and defects of observation wells. Also,
data processing errors (e.g., typing errors, duplicates) generally account
for a large proportion of errors in databases (Kandel et al., 2011; Liu
et al., 2018; Post and Von Asmuth, 2013). Consequently, groundwater
level time series usually contain missing values, including those which
are a result of error and outlier removal. There are several methods used
to deal with missing data in groundwater level time series (Asgharinia
and Petroselli, 2020; Von Asmuth et al., 2002; Wendt et al., 2020;
Zaadnoordijk et al., 2019). However, analysis of series with a constant
time step between subsequent measurements is easier and computa-
tionally less demanding (e.g., Post and Von Asmuth, 2013). For this
reason, it may be beneficial to fill in missing values, although filling
large gaps remains a challenge (Oikonomou et al., 2018) and using a
mixture of measured and modeled values gives additional challenges in
the assignment of an accuracy to the values. Therefore, time series with
gaps are often removed from further analysis leading to significant
reduction of the dataset (Wendt et al., 2020).

Data preprocessing is the most time-consuming and at the same time,
the least documented phase in the data analysis pipeline which may
strongly affect the quality of study results (Bernard et al., 2019; Kandel
et al.,, 2011; Van den Broeck et al., 2005). Temporal aggregation can
level out some random errors, while new errors might be introduced if
such data are used in further calculations (Ritzema et al., 2018). The
application of fully automatic data quality control procedures is often
limited by the uncertainty of errors and the need for an expert judge-
ment to verify the results (Ali et al., 2019; Liu et al., 2018). As concluded
by Haaf and Barthel (2018) a visual inspection of groundwater level
time series remains a valuable and necessary task in order to understand
the data despite some shortcomings that should be taken into account.
Visual inspection and manual correction based on the expert judgment
might be time consuming, subjective, and hard to replicate (Naranjo-
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Fernandez et al., 2020, Zaadnoordijk et al., 2019), yet it is simple to
apply and widely used (Asgharinia and Petroselli, 2020; Avotniece et al.,
2017; Haaf and Barthel, 2018) as human eye is very sensitive to spot
differences in visual looks (Barthel et al., 2021)

Differentiation between actual quality issues and unusual (however
valid) data values requires human interaction (Gschwandtner and
Erhart, 2018). For instance, Haaf and Barthel (2018) categorize sudden
or continuous changes in groundwater level time series that are hard to
explain by natural factors as “irregular” using visual inspection. Suspi-
cious cases can be checked using various accompanying data such as
meteorological conditions or known local anthropogenic influences, but
the prerequisite for a good assessment is a sufficient understanding of
the study area and evaluation results may vary among experts (Ritzema
et al., 2018). Lehr and Lischeid (2020) propose a method to identify
potential measurement errors and anthropogenic influence using “sta-
ble” principal components (PCs) of all groundwater head series to
calculate “reference hydrograph” that incorporates general patterns
from PCs, but any deviation from actual observations indicates potential
errors. However, the method requires observations measured at the
same time intervals, thus limiting applicability to often irregularly ob-
tained measurements. In addition, the authors also suggest that visual
inspection should be included in the workflow of groundwater level time
series assessment. Several interactive data quality control procedures
integrating humans into the data treatment process are found to be
useful to improve data quality. However, such approaches are task-
specific and difficult to apply for other types of data (Liu et al., 2018).

As pointed out by Bernard et al. (2019), there is no single definition
of “clean” data and it depends on the application which risks are asso-
ciated with including wrong or excluding right measurements. Likewise,
the assessment is not straightforward whether and how much the
correction has improved the data. Models like Autoregressive Moving
Average (ARMA) and its integrated variant ARIMA can be used as an
approximation to describe the complex fluctuation patterns of ground-
water levels using only one variable - the groundwater level itself
(Adamowski and Chan, 2011). ARIMA models are frequently used to
forecast time series in various disciplines, including hydrogeology (Ahn,
2000; Shirmohammadi et al., 2013; Patle et al., 2015; Mirzavand and
Ghazavi, 2015; Gibrilla et al., 2018). The performance of time series
models can be evaluated by Akaike’s information criteria (AIC) (Akaike,
1974), which is a relative metric typically used to select the best model
created from the same dataset. For the assessment of data quality, there
are not models with different structures using the same data, but models
with the same structure using the same data (the original and repaired
time series). So now, the AIC can be seen as a metric for the data quality
and can be used to assess the improvement of the data due to the
corrections.

An important purpose of the data cleaning is to improve (or make
possible) analysis of long-term structural changes in groundwater level
time series. Given the data quality issues, anthropogenic changes are
more difficult or even impossible to detect (Barthel et al., 2021). Both
anthropogenic changes and data errors deteriorate the performance of
the AR(I)MA time series models. The increased performance of the AR(I)
MA models indicates that the dataset is adequate, for example, to cali-
brate a physically based distributed groundwater model for the entire
country or a large region with the aim to forecast climate change im-
pacts on groundwater (TACTIC, 2021). In such models it is neither
feasible nor relevant to include historic short term groundwater ab-
stractions and other anthropogenic influences on groundwater. Time
series modelling can be used to select appropriate long term ground-
water level series for such a calibration (Zaadnoordijk and Bakker,
2013).

In this paper we present a data rescue approach and repair results for
systematic groundwater level observations collected in the Latvian na-
tional database from 1959 till 2019. A visual assessment procedure
exploiting a web-based interface was developed for identification and
manual correction of erroneous measurements in groundwater level
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Fig. 1. Groundwater monitoring stations in the Latvian national database, 1959-2019.

time series. All data manipulations were performed programmatically
ensuring reproducibility and traceability of the work. We have identified
a number of errors commonly present in groundwater level time series
and proposed type-specific data rescue actions. Finally, the improve-
ment of time series after applied corrections was quantified by deriva-
tion of the Akaike information criterion from fitted ARMA and ARIMA
models to both, the original and repaired groundwater level time series.
Presented approach and results can be of great value for studies using
groundwater level time series as an input.

2. Materials and methods
2.1. Study area

Latvia is located in North Eastern Europe and lies in the central part
of the Baltic Artesian Basin. The present topography is shaped mostly by
multiple advances and retreats of Pleistocene Ice sheets and the action of
Baltic Sea. The elevation varies from few meters below the sea level up
to 312 m above the sea level (Kalm and Gorlach, 2014). The thickness of
the sedimentary cover varies from 500 m in the northern part increasing
up to 2 km in the southwestern part (Luksevics et al., 2012). Layering of
the bedrock sequence is subhorizontal slightly inclining towards
southwest direction (Brangulis and Kanevs, 2002). Therefore, Middle
Devonian sandstones, siltstones, dolomites and clays are exposed in the
bedrock surface in the northern part of the territory, while in the
southern part the bedrock surface exposes carbonate and terrigenous
sequences of Upper Devonian and mostly terrigenous Mesozoic deposits
(Luksevics et al., 2012). Overlying Quaternary deposits are composed of
interlayers of glacial, glacifluvial and glaciolimnic sediments with the
thickness of a few meters in lowland areas increasing up to 200 m in
uplands, particularly in central and eastern part of Latvia (Zelcs et al.,
2011).

Within Latvia, three hydrodynamically and hydrochemically distinct
zones separated by regional aquitards or aquicludes are delineated:
stagnation zone (Ediacaran-Cambrian aquifer complex with brines),
passive water exchange zone (Lower and Middle Devonian aquifer
complex with brackish groundwater) and active water exchange zone
(freshwater aquifers) (Jodkazis, 1989; Levins et al., 1998). Luksevics
et al. (2012) have explicitly described geological setting of the study

area, while more details on hydrogeological conditions can be found in
Babre et al. (2016) and Retike et al. (2016) studies. This study puts an
emphasis on the active water exchange zone of aquifers corresponding
to the Middle and Upper Devonian as well as Quaternary which are
mainly used for water supply in Latvia. Only 6 of the 612 groundwater
level time series belong to the passive water exchange zone and none to
the stagnation zone.

Climate in Latvia is characterized by its location in the transition
zone between continental and maritime conditions — the country lies in
the north-western part of the Eurasian continent, but at the same time is
strongly affected by maritime climate impacts associated with the
proximity to the Atlantic Ocean. Prevailing westerlies and strong
cyclonic activity determine a highly variable weather pattern with
precipitation dominating over evaporation. Distinct seasonality is
characteristic. Air temperature below zero °C and snow accumulation
are common in the cold season. Seasonality is also evident in ground-
water level patterns in shallow aquifers. Two groundwater level maxima
occur, one in spring which is associated with snowmelt water infiltra-
tion, and one in autumn - early winter (September-December) induced
by increased precipitation and low evapotranspiration (Tolstovs et al.,
1986). Usually, groundwater level minima can be observed in late
summer and winter (Kalvans et al., 2020), but a minimum can be absent
in mild winters (Lauva et al., 2012).

2.2. Evolution of groundwater level monitoring network in Latvia

The main objective of groundwater monitoring in Latvia is to ensure
good quality and sufficient quantity of groundwater resources, which
has not changed over the past hundred years. However, specific objec-
tives of the groundwater monitoring have changed over time mainly due
to the available funding, existing regulations, and political framework.

The first systematic groundwater observations can be dated back to
the end of the 19th century, but observation sites were few and the
monitoring initiatives were short-term. The establishment of a system-
atic national groundwater monitoring network started in 1953 with the
first regular observations performed since 1959 (Fig. 1. The initial
network in 1959 consisted of 15 observation wells organized into 4
monitoring stations. Wells were mostly installed in unconfined aquifers.
The number rapidly expanded to include new well fields around the
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Fig. 2. Total number of active observation wells (blue line with dots, left Y axis) and number of active stations (green line, right Y axis) in corresponding year, and
number of newly installed wells (columns, left Y axis) within each year. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

largest cities and to carry out monitoring in vicinities around newly built
hydroelectric power plants. In the early 1970s, around 130 new wells
were installed to examine waterlogged soil conditions in agricultural
lands. In the end of 1975, the groundwater monitoring network had 227
wells grouped into 30 monitoring stations (Jankins et al., 1993; Levina
and Levins, 1994).

Since 1976 the national groundwater monitoring network has had
two principal branches - regional and local monitoring. Regional net-
works consisted of transects of monitoring stations each with multiple
wells following groundwater flow lines from recharge to discharge
areas. Local monitoring networks addressed specific issues at large
groundwater abstraction sites; hydroelectric power plants; open pit
mains; or heavily contaminated sites. Observation frequency ranged
from a few times a year up to 10 times per month. Most groundwater
level measurements were made manually (Jankins et al., 1993).

Between 1992 and 1993, after the collapse of the Soviet Union and
subsequent decrease in funding, many wells were removed from the
groundwater monitoring programs (Jankins et al. 1993). Some moni-
toring wells were excluded from the monitoring network due to obser-
vation well defects (i.e., clogging of the well screen or leaks due to faulty
joints). Also, a lack of proper legislation resulted in landowners denying
access or even demolishing monitoring wells installed on private lands.
Meanwhile, the first digital groundwater database was established and
was continuously expanded in the following years by adding observa-
tions by the State Geological Survey and its successor - Latvian Envi-
ronment, Geology and Meteorology Centre (LEGMC).

Since 1999, the monitoring programme has been adapted in line with
the EU Water Framework Directive (EU 2000). Most recent and largest
establishment of new wells and installation of automatic loggers
recording water level twice a day happened from 2010 until 2012. Until
now the automatic level measurements are accompanied by 2 to 4
manual observations per year for verification purposes. In 2019,
groundwater monitoring was carried out in 301 wells grouped into 60
monitoring stations (see Fig. 2. The database contains observations from
altogether 612 wells from 74 stations. It is important to note that ob-
servations periods for wells and stations differ, therefore not all wells
and stations have been exploited simultaneously.

2.3. The dataset and its repair procedure

A groundwater observation dataset was obtained upon a request
from the Latvian Environment, Geology and Meteorology Centre,
LEGMC (https://videscentrs.lvgme.lv/). It included raw groundwater
level time series of 612 wells grouped into 74 monitoring stations from
1959 to 2019 as well as coordinates, well depths, screen intervals and
represented aquifers. The groundwater level was recorded in meters
below soil surface. In case of automatic measurements, barometric

pressure and temperature was available.

In total 1.68 million groundwater head records were gathered in the
database from which 0.69 million (41%) were manual observations and
0.99 million (59%) were automatic measurements. The frequency of
manual observations ranged from several readings per week to few times
a year, whereas automatic recordings were performed twice a day.
Automatic measurements were accompanied by occasional manual
groundwater head observations for verification purposes. As pointed out
by Post and Von Asmuth (2013), it is a standard practice to determine
possible deviations and provide means to correct errors. According to
Kandel et al. (2011) datasets usually contain some proportion of errors
and Zaadnoordijk et al. (2019) highlight that assessment of each time
series is crucial before being used in further analysis.

The observations in the LEGMC database were recorded without any
quality or consistency screening. Thus, a workflow was set up for pre-
processing of groundwater level time series (see Fig. 3. Main steps of
data processing and repair were defined. First, the data were imported
and merged into an SQL database. Then, visual error screening was
performed, and any necessary data manipulations were coded into the
SQL data table. Lastly, a final repaired dataset was generated automat-
ically using the repair instructions. Corrected groundwater level time
series together with the information about applied corrections were
returned to the data maintainer LEGMC for further usage in ground-
water management.

Potential errors in groundwater level time series were identified by
conventional methods, i.e., visually. The four eyes principle (Nihei et al.,
2002) was used, thus each time series was reviewed by two experts
having distinct roles: Corrector and Controller. The task of the Corrector
was visual inspection of the groundwater level time series via a custom-
made R-Shiny application in order to identify problems and determine
necessary corrections (Fig. 3 — I and II). In case of doubts, the Corrector
initiated team discussion in a dedicated online chat to reach an agree-
ment by all members of a group how the case should be treated (Fig. 3 —
III). If corrections were necessary, the Corrector introduced repair in-
structions in the designated SQL table suggesting either to delete an
observation or modify it by changing its value using basic mathematical
operators. Next, the Controller examined the decisions made by the
Corrector (Fig. 3 — IV) and double checked for errors. In a designated
shared spreadsheet, the Corrector received comments whether the
Controller has approved or declined corrections, or any further action
was suggested. Final decision whether to implement or reject the
Controller suggestions was made by the Corrector.

As suggested by Rau et al. (2019), the original data (raw ground-
water level measurements) were left intact and stored alongside the
repaired data, and all applied manipulations were coded in an SQL table
and carefully documented in a separate Spreadsheet. It was done to
ensure the traceability and repeatability of the work. A chat platform set
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necessary corrections or III - team discussion to reach a consensus if and what corrections should be applied; IV - approval of corrections (if any) by the senior

team member.

up for team members to share and discuss problematic cases gradually
built up and harmonized the collective expertise. Moreover, the accu-
mulated archive was especially useful to train new team members.

2.4. Iterative development of a web-based R-shiny application for visual
data assessment

An interactive web-based interface was implemented in R (the R
statistical programming language version 3.6.3; R Core Team, 2020) to
assist the visual analysis of groundwater level time series. An iterative
programming approach was adapted, and new features were added as
soon as they were necessary. Open-source Shiny Server version 1.5.12
(Chang et al., 2020) was used to publish the application on a local
server. The application incorporated several tools to ease error identi-
fication and data repair (Table 1.). Plotly package version 4.9.2 (Sievert,
2020) was used to create interactive figures (Wickham et al., 2019),

allowing the user to zoom in for more detailed analysis or to precisely
identify an observation of interest using well number and observation
timestamp. The code of the developed application has been published on
Zenodo (Bikse et al. 2021).

The main window of a web-based application contains inputs to
select specific well or change plot parameters and outputs that show
general information for the selected well (Fig. 4, a). All tools are
described in Table 1 and plotting options can be changed in the upper
part of the application (Fig. 4, a). The interactive application is sup-
plemented also by a data table showing original data as a table from
database, as well as simple statistics about the number of observations.

The Station wells plot tool will typically be used when the Abrupt
change plot tool indicates a sudden change. A sudden rise of the
groundwater level can be due to extreme precipitation events (Vidon,
2012) or anthropogenic recharge events, while short extraction events
will lower the level (especially of confined groundwater). Such events
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Table 1

Descriptions of the tools used in the application for visual data assessment.
Tool Description
Map An interactive map created with Leaflet package (Chang

et al., 2020) showing all wells and the selected well on the
OpenStreetMap. Additional information is shown: well ID,
head elevation, depth, screen interval and aquifer (Fig. 4,
a).

Simultaneous visualization of both the original and
repaired time series in an interactive Plotly plot (see

Fig. 4, b). All applied corrections can be represented in the
plot as vertical dashed lines.

An interactive plot that shows the time series of all wells
within the selected monitoring station. This plot allows to
identify if distinct time series patterns in one well can be
observed also in other nearby wells.

A scatterplot of manual versus automatic observations if
both data types are present. Mean bias between manual
and automatic measurements is shown next to the plot,
which is useful to detect a wrong logger reference level.
A plot showing the rate of change between consecutive
measurements. Abrupt changes require special attention
to determine whether they can be attributed to
measurement or data recording errors, or unusual
circumstances.

Repair plot

Station wells plot

Manual vs Automatic

scatterplot

Abrupt change plot

will also affect nearby well in a similar manner (Berendrecht and Van
Geer, 2016). The sudden change usually is not found in other wells, in
case of a data error. In such a case, there often is a sudden change of the
opposite sign later in the time series (e.g., Fig. 4, b).

2.5. The assessment through AR(I)MA models

ARMA and ARIMA models (Box and Jenkins, 1976) were made for
the original and repaired time series in order to assess the improvement
of applied data rescue actions. The performance of each model was
evaluated by Akaike’s information criteria (AIC) (Akaike, 1974). The
structure of the ARIMA model for each original series and the corre-
sponding repaired time series were the same, so the AIC difference is a
proxy for the improvement of the repaired time series.

The Autoregressive (AR) part of the ARIMA explains current value as
a linear function of past observation(s) according to order p, while the
moving average (MA) part uses white noise (random error) in the past
observations (order q) to linearly predict a current value. The integrated
(I) part in the order of d removes trends and seasonality to make time
series stationary (differencing) (Box and Jenkins, 1976). The integrated
part in ARIMA is necessary to deal with non-stationary time series,
whereas stationary time series with constant mean level and no trend
can be modelled by ARMA models (combined AR and MA parts). A
model can be represented as ARIMA(p,d,q) where p,d,q are orders of the
AR, T and MA processes.

ARMA(1,1) and ARIMA(1,1,1) models were fitted to both original
and repaired time series and AIC values were retrieved from each
model/time series combination for evaluation purposes. The Stats
package (version 3.6.3) from R (R Core Team, 2020) was used to fit the
models and to calculate the AIC calculation. A time step of one day was
used and larger time step were filled in with linear interpolation be-
tween observations. However, original time series were split in sections
when observation gaps longer than 6 months were detected similar to
the approach of the Wendt et al. (2020). And at least 8 years long sec-
tions as proposed by Zaadnoordijk et al. (2019) were retained for the
assessment. Finally, the AIC values retrieved from original and repaired
time series models were compared.

The model with the lowest AIC value implies a better model fit to the
data. In this study, we compared AIC values derived from the same
model type but performed on original and repaired time series. Thus, for
a given model type and time series section, two derived AIC values
indicated whether a repaired time series resulted in a better fitting
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model or not. We used a difference between AIC derived from the
original and repaired time series and used this AAIC value for compar-
ison needs.

As a result, positive AAIC values indicate a better model that has
been fitted to the repaired time series section and vice versa. We used
three categories of AAIC values: No change (absolute smaller than the
threshold), Improvement (AAIC larger than the threshold), and Decrease
(AAIC smaller than the negative value of the threshold). The 25th
percentile of all absolute AAIC values was used as the threshold.

3. Results and discussion
3.1. Data treatment according to the cause of errors

The main problems identified in the groundwater level time series
were grouped according to their potential cause: errors in measurement
and data recording (Table 2; technical problems at the observation site
(Table 3; local anthropogenic impact and other unclassified problems
(Table 4. The errors are supplemented by illustrative examples from
visual analysis (Figs. 5-7. The proposed data treatment for the identified
problem categories was based on an extensive summary of the applied
repair actions by Correctors. Additionally, confidence levels were added
to indicate reliability of expert judgement and applied decisions.

Distinct errors caused by data entry and actual measurements (group
1) were relatively easy to identify (with high confidence) by visual in-
spection of the time series (Kandel et al., 2011). In case of few errors, the
false data points were removed (Fig. 5, a). However, if there were longer
time periods with automatic measurements that deviated from previous
and following data (and manual measurements if available) by a con-
stant, then these were shifted to fit into the whole time series (Fig. 5, b
and d). These deviated time periods were likely bound to the misplaced
level loggers after well sampling. Rau et al. (2019) emphasize that
frequent removal of loggers (e.g., for data download or water sampling)
may cause the wire length to change due to kinks. Also, the logger may
not always be returned to the same position. Accompanying manual
measurements were mostly assumed to be the correct ones, thus serving
as a reference point to shift the mismatching observations (Fig. 5, b and
d).

The typical pattern of the automatic measurements was considered
when longer periods of manual and automatic measurements did not
coincide (Fig. 5, ¢). Then the automatic measurements were assumed as
the correct ones and erroneous manual measurements were deleted. In
case of a constant offset between the manual and automatic measure-
ments (Fig. 5, e), the level of the manual measurements was preferred,
and the automatic measurements were shifted. When a time series of
only manual measurements consisted of seemingly two separate sets of
measurements, either one set was selected based on expert judgement or
data were left intact for cases when deviations were small (Fig. 5, f).
However, uncertainty prevails over the two previously described
correction actions. Availability of both automatic and manual mea-
surements in parallel usually accounted for high confidence of the
applied corrections as it was clear which records and had to be moved
according to Post and von Asmuth (2013). While Rau et al. (2019)
suggest performing regular checkups of the performance and adjustment
of automatic level loggers at least once in 3 months, the frequency of
verification in the Latvian groundwater level database was not regular
and ranged from 2 to 4 times a year. The confidence level of decisions
decreased when there was no reference indicating which of the obser-
vation group is the correct one (Fig. 5, e and f). The site visit with control
measurement could resolve such issues if the time series are continued
until present.

The second group of errors consists of technical problems with
automatic data loggers and piezometers. As stated by Rau et al. (2019),
sensor drift is one of the most common errors in automatic level mea-
surements. A pattern of continuous drift of automatic logger data was
identified (Fig. 6, a) in a few unrelated wells. We concluded that this
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(vertical dashed lines indicate sections where corrections were made).

pattern illustrated malfunction of the automatic level loggers, therefore
these drifting measurements were removed.

Errors due to the inadequately installed wells and misplaced mea-
surement equipment also belong to this group. For example, seasonally
elevated groundwater levels exceeding the top of the well heads or
freezing of the water in the well head could prohibit taking correct
measurement by the tape and resulted in a plateau-like pattern of peak
groundwater table (Fig. 6, b). Groundwater level can rise above the top
of the well head also due to the long-term groundwater recovery from
intensive aquifer exploitation, which was the case presented in Fig. 6, c.
The well is located near the coastal city Liepaja - an area that historically
has been affected by extensive groundwater pumping but currently the
levels have recovered (Bikse and Retike, 2018), thus stressing the
importance of regular field site maintenance. In such cases automatic
level loggers recorded plateau-like measurements that did not indicate
true water level (Rau et al, 2019). Similar negative plateau-like

groundwater level patterns (Fig. 6, e) can be a result of a shallow well
screen. During the dry season, the groundwater level drops below the
screen interval, while the water leftovers below the screen is recorded.
Usually, the lowest recorded water level coincides with screen bottom.
When the water table dropped below the depth of the sensor installed in
the well (Fig. 6, d), a plateau-like pattern was identified. Such obser-
vation periods were excluded from groundwater level time series. Ha
et al. (2021) have observed a similar plateau-like pattern caused by
water abstraction induced groundwater level drawdown.

The zoom in functionality of the developed application allowed to
spot even minor impacts of freezing and thawing of barometric loggers
which later created bias in groundwater level measurements (Fig. 6, f).
According to Ritzema et al (2018) the difference between day and night
temperatures can account for the level deviations of several centimeters.
While Liu and Higgins (2015) emphasized that sensors should be pro-
tected from temperatures below freezing point to avoid errors and
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Table 2
Identified problems caused by data recordings and measurements and proposed
treatment.
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Table 3
Identified data issues caused by malfunction of loggers or observation well de-
fects and proposed treatment.

Problem

Description of
problem and
possible cause
(representative
visual example)

Proposed repair
action

Confidence Problem
level of
identification/

repair process

Description of
problem and
possible cause
(representative
visual example)

Proposed repair
action

Confidence level
of
identification/
repair process

Distinct errors

Shift in water
level

Mismatch
between
manual and
automatic
measurements
(when both are
present)

Mismatch
between all
manual and all
automatic
measurements

Jagged/toothed
level pattern

One or several data
points significantly
outside the data
range (Fig. 5, a).
Sudden, sharp
level changes for a
certain time period
due to automatic
level logger
displacement (

Fig. 5, b).

Manual
observation that
does not fit into the
overall time series
(Fig. 5, ¢).

Sharp shift of
automatic
measurements that
does not
correspond to the
manual
observations due
to the misplaced
level logger (Fig. 5,
d).

Different reference
levels for manual/
control and
automatic logger
data (Fig. 5, e).

Levels
continuously
change from high
to low. Possible
reason might be
two different
observers who are

Delete the error.

Mathematically
adjust (shift) the
outstanding data
portion to
correspond to the
adjacent datasets.

Delete a single data
error.

Identify the shift
and align the
automatic
measurements to
the manual
observations.

Mathematically
adjust (shift) the
false automatic
measurements to
match the manual
observations.
Delete higher or
lower records or
ignore the problem
in case none of the
“tooths” could be
assumed as the
correct one.

High - medium/ Malfunction of
high automatic
level logger

high/high
Well
completion
problems
high/high
Malfunction of
barometric
high/medium pressure
to high loggers at
freezing
temperature
high/low

Continuous drift of
logger data,
deviating from
control/manual
measurements and
from previous data (
Fig. 6, a).

Well head is too
short, leading to
seasonally
overflowing wells or
freezing of water
within the well head
(Fig. 6, b).
Long-term water
level recovery
leading to
overflowing well (
Fig. 6, c).

Well is too shallow,
leading to seasonal
drying up or data
logger in the air (
Fig. 6, d and e).
Freezing and
thawing of
barometric loggers
in the cold season
that creates false
atmospheric
pressure readings
and subsequently
causes noise in
groundwater level
records (Fig. 6, f).

Identify the start of
a drift and delete
the subsequent
data.

Delete the high- or
low-level plateau.

Delete one of the
measurements or
ignore as the daily
average might
compensate for the
bias.

high/high

high/medium to
high

low/low to
medium

particular pattern such as peaks on Mondays or Sundays, or during

inconsistent in the
measurement
reference or one
having an
erroneous
measuring device (
Fig. 5, f).

logger breakdown. Ensure the pressure transducer is protected from
temperatures below the freezing point. In general identification of
technical problems remained straightforward because of their specific
patterns.

The third group consists of measurements which are not represen-
tative of the groundwater head for the purpose of monitoring natural
groundwater head fluctuations. Influence of direct pumping from the
monitoring well (e.g., sampling for water quality) was easy to spot
(Fig. 7, a) and to eliminate as the starting timestamp of such an event
matched the time of manual control observation. Usually manual con-
trol measurements, download of level logger readings and water sam-
pling were made at the same time due to the cost efficiency. Similar
groundwater level fluctuations due to well pumping are presented in Ha
et al. (2021).

A group of other anthropogenic pressures responsible for misleading
records were identified with the help of the developed application and
its functionality to show nearby objects on a map. Pumping (Fig. 7, b) or
recharge (Fig. 7, c) effects in the nearby wells or vicinity often had a

certain seasons. Chen et al. (2004) observed alike patterns caused by
seasonal groundwater pumping in the study area. Similarly, Ha et al.
(2021) reported notable groundwater level drops in summer months
because of intensive groundwater abstraction for irrigation. While Rau
et al. (2019) identified similar sharp groundwater level responses in the
observation well caused by nearby pumping activities which are
frequent but irregular and stressed that the typical twice a day mea-
surement interval fails to capture such short-term variations.

Visual data assessment tools (Table 1, Fig. 4 eased the identification
of anthropogenic influences and facilitated the decision-making by fast
and simple evaluation process of supplementary data and level changes
in nearby wells. Likewise, Wendt et al. (2020) removed unrealistic ob-
servations which after verification with metadata were not explained.
Our aim for the data quality control and correction was to rescue
groundwater level time series for further modeling of groundwater
drought events. However, the decision whether to eliminate such data or
apply corrections strongly depends on the future usage - study of near-
natural conditions or human induced changes.

The fourth group contains other errors, such as sudden changes in
groundwater patterns (Fig. 7, d, e and f) which most likely were asso-
ciated with data processing errors such as mixed ID numbers between
wells or false measurements. However, extreme changes in groundwater
level patterns have been also reported by Barthel et al. (2021) as a result
of dam construction where the influence lessened in the observation
wells further from reservoir. To distinguish between errors or untypical
still true groundwater patterns two tools in the developed application for



L. Retike et al.

Table 4

Identified problems caused by anthropogenic or other unclassified impact and

proposed treatment.

Problem

Description of
problem and possible
cause (representative
visual example)

Proposed repair
action

Confidence level
of identification/
repair process

Effects of well
pumping/
sampling

Influence of
nearby
pumping/
recharge

Change in
groundwater
level pattern

Sharp change in
water level in
all monitoring
station wells

Diurnal
groundwater
level
fluctuations

Sharp water level
dropping due to well
pumping, followed
by level recovery (
Fig. 7, a).

Regular drop of
water level, followed
by fast recovery (
Fig. 7, b) or regular
recharge events of
anthropogenic origin
followed by quick
dropdown (Fig. 7, c).
Sudden change in the
groundwater level
pattern, usually
accompanied with
the shift in water
level (Fig. 7, d).
Could be due to
mixing well IDs
during registration of
data.

The same sharp
changes observed in
nearby wells likely
due to personnel
turnover or
equipment change (
Fig. 7, e).
Groundwater head
fluctuations in
shallow wells due to
thermal effects
associated with
recorded barometric
pressure or diurnal
transpiration cycle (
Fig. 7, f).

Delete the data
associated with
the well pumping
or ignore.

Delete the data
associated with
pumping/
recharge events
or ignore.

Delete the data
records with
differing patterns
or shift to the
main time series
level.

Shift one part of
data records to
correspond to the
other.

Ignore as the
range of head
fluctuations is
few centimeters
and may
represent daily
fluctuations.

high/high

high/high

medium to high/
low

high/low

low/low to
medium

visual data assessment were particularly useful. First, the map tool that
allowed to see the location of well and nearby objects (such as dams) and
second, the station well plots that allowed to see if similar changes can
be observed in nearby wells. Identification of such patterns was less
straightforward and applied corrections involved more expert judgment.

a) Aistere, 333

b) Skaistkalne, 3
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The decision whether to delete suspicious records or apply repair action
depended on the number of suspicious records and the importance of the
time series (spatial representativity of monitoring point and length of
dataset).

In total the whole data correction process took approximately 325
man-hours including 280 man-hours for the Correctors (data correction)
and 45 man-hours for the Controllers (Fig. 3.

3.2. Repair outcomes

In total, 612 groundwater level time series in the Latvian national
database were assessed according to the proposed procedure (Fig. 3 and
to 536 or 88% of the series corrections or deletions in line with the
proposed repair actions (Table 2- 4 were applied. In 196 or 32% of all
time series more than ten percent of the initial groundwater level ob-
servations were modified. To compare, using conventional approach
(exclusion of all time series with at least one identified error), only 76
from initial 612 time series could be retained. Moreover, the retained 76
time series would cover a time period of 9832 months, while our
approach retained 605 time series covering 150124 months. For the
automatic measurements repair actions modified the groundwater levels
from —0.10 to 0.42 m (first and third quartile), while for the manual
observations from —0.66 to 0.17 m (first and third quartile). In extreme
cases, introduced repair actions modified groundwater level for more
than a few meters. In total 5.3% of 0.99 million automatic measure-
ments were deleted while 29% were corrected. And 3.9% of the 0.69
million manual measurements were deleted whereas 2.6% were cor-
rected (Fig. 8.

A larger proportion of the applied corrections and deletions was
associated with the most recent observations and especially, with
automatic measurements. The frequency of manual observations was
much lower, thus distinct outliers or data processing errors accounted
for most errors. Automatic level measurements usually did not have
isolated errors (outliers). If a problem occurred (e.g., misplaced, or
broken logger) the logger continued to record false observations until
the next visit by the operator (usually 2-4 times a year). In case of a
broken logger, the problem was identified only after data screening at
the office, usually once a year.

It is assumed that errors in automatic level measurements observed
soon after their installation are the result of misplaced loggers, while in
recent years the influence of equipment aging, particularly, malfunc-
tioning of the automatic groundwater level loggers can be observed as a
continuous increase of the applied corrections. Von Asmuth (2010)
points out that in several groundwater monitoring networks up to half of
the sensors should be replaced because of malfunctioning over time, and
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similarly this study highlights the need for replacement of most
currently operational automatic level loggers in the Latvian ground-
water monitoring network. In addition, the repair procedure itself
contributes to the increase because the historical or earlier measure-
ments were frequently considered to be the correct ones. Thus, the
recent observations were adjusted to the historical measurements and
resulted in more repairs in the recent observations.

The groundwater monitoring in Latvia was strongly influenced from

10

2009 until 2013 by reduced funding and negative effects of the global
economic crisis. It is suspected that turn-over of employees of the in-
stitutions responsible for groundwater monitoring, insufficient funding
for observation site maintenance, poor training of new employees, and
lack of detailed monitoring guidelines, have resulted in deterioration of
data quality, especially for the manual observations.
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3.3. Quantification of data quality improvement

Out of the 612 groundwater level time series in the original dataset,
605 time series had at least a single observation left after data was
repaired and were used to fit AR()MA models. Time series were sepa-
rated in sections if gaps larger than 6 months were detected. This
resulted in 1377 time series sections that were modelled individually.
Only 590 individual time series sections from 494 unique wells were
longer than 8 years, while the rest of section were discarded from further
modelling. For these sections, ARMA(1,1) and ARIMA(1,1,1) models
were fitted to both the original and repaired time series. ARIMA(1,1,1)
and ARMA(1,1) models could be fitted to 523 and 483 sections respec-
tively. For the rest of the 590 sections the model failed to fit to either the
original or the repaired series (or both). Generally, the models fitted
using repaired time series were better models than those fitted on the
original time series for the same time series sections (Fig. 9.

A majority of assessed time series shows significantly better AIC if
repaired time series are used to fit models instead of original ones while
22.8% and 22.4% time series shows insignificant changes in AIC for the
ARIMA and ARMA models, respectively (Fig. 10. The AIC was worse
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after the repair for 2.29% (ARIMA) and 2.69% (ARMA) of the time
series.

4. Conclusions

Long and continuous groundwater level time series are of great
value, but they usually contain errors, which should be corrected prior
to any further application. We propose a data rescue approach which
was applied to the Latvian national groundwater level database con-
taining 612 wells comprising 1.68 million groundwater level observa-
tions since 1959. We developed web-based interactive tools for visual
assessment of time series and manual correction of errors. Imple-
mentation of the four-eye principle and documentation of all applied
manipulations separately from the raw data ensured traceability and
repeatability of the work. Errors were attributed to possible causes and
the confidence level of the error repair actions was assigned: high, me-
dium, or low. The identified errors were grouped into: errors caused by
data recordings and measurements; technical problems at the observa-
tion site; local anthropogenic impact, and other unclassified problems.
The Akaike information criterion derived from fitted ARMA and ARIMA
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models to both original and repaired time series demonstrated sub-
stantial improvement of consistency of most time series after applying
proposed data rescue approach. The presented approach and results can
be of great value for all studies using groundwater level time series as an
input.
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