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• A modelling framework (OBOmod) to es-
timate pesticide concentrations is pro-
posed.

• In general, estimates remained within one
order of magnitude frommeasured levels.

• OBOmod can be used to estimate residen-
tial outdoor and indoor air concentra-
tions.

• Exposure to emissions from volatilization
can be higher than exposure to spray drift.

• OBOmod can support policy making and
be used in health and epidemiological
studies.
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Background: Pesticides can be transported from the site of application to homes via different routes and lead to expo-
sure of residents, raising concerns regarding health effects. We built a deterministic model framework (OBOmod) to
assess exposure of residents living near fields where pesticides are applied.
Methods:OBOmod connectsfive independentmodels operating on anhourly timescale andhigh spatial resolution (me-
ters). Models include descriptions of spray drift, volatilization, atmospheric transport and dispersion, exchange be-
tween outdoor and indoor air and exchange between indoor air and dust. Fourteen bulb field applications under
different weather conditions and comprising 12 pesticides were simulated. Each simulation included the first seven
days after the application. The concentrations computed with OBOmod were compared with those measured in out-
door and indoor air and the amounts measured in indoor dust samples.
Results:Model evaluation indicated suitability of the developed framework to estimate outdoor and indoor air concen-
trations. For most pesticides, model accuracy was good. The framework explained about 30% to 95% of the temporal
and spatial variability of air concentrations. For 20% of the simulations, the framework explained more than 35% of
spatial variability of concentrations in dust. In general, OBOmod estimates remained within one order of magnitude
from measured levels. Calculations showed that in addition to spray drift during application, volatilization from the
field after spraying and pesticides in house dust are important routes for residents' exposure to pesticides.
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Conclusions: Our framework covers many processes needed to calculate exposure of residents to pesticides. The evalu-
ation phase shows that, with the exception of the dust model, the framework can be used in support of health and ep-
idemiological studies, and can serve as a tool to support development of regulations and policy making regarding
pesticide use.
1. Introduction

1.1. Exposure of residents to pesticides

Farmers, operators, workers, residents, and bystanders may be exposed
to pesticides. In the past, assessment of the exposure was focussed on oper-
ators, workers, and bystanders (Waheed et al., 2017). In the last 10 years
however, residents' exposure has been an increasingly researched topic
(Pubmed, 2021). This is likely due to growing concern among the popula-
tion regarding pesticide usage (Calliera et al., 2019; Schaub et al., 2020;
Zeitlin et al., 2021). But also due to efforts of policy makers to study resi-
dents' exposure (e.g. Health Council of the Netherlands, 2014). A recent lit-
erature review by Dereumeux et al. stresses two important things: “There is
evidence that residents living close to agricultural fields are more exposed
to pesticides than the general population”; “Some epidemiological studies
suggest an association between proximity to agricultural lands and a wide
range of associated adverse health outcomes” (Cited from Dereumeaux
et al., 2020). Adding to this, it is known that i) part of the exposure of res-
idents to pesticides is attributable to exposure via environmental routes
(Cornelis et al., 2009), and ii) contrarily to dietary exposure, much of the
environmental exposure is beyond the control of the average individual
(Oates and Cohen, 2011). These highlight the importance to understand
and quantify the environmental exposure routes and feed this knowledge
to regulatory entities.
1.2. Environmental routes contributing to exposure of residents

There are several environmental routes contributing to exposure of res-
idents (Falette et al., 2018). One of themain routes to exposure of residents,
living nearby agricultural fields where pesticides are applied, is the spray
drift of pesticides through air (Holterman and van de Zande, 2010). During
pesticide application, droplets can evaporate, drift and can remain air-
borne. Besides depositing on the target area, droplets can drift away and de-
posit in an off-target area (Steward et al., 2019). The percentage of the
active ingredients that drift or evaporate before they reach the plants is
highly dependent on physiochemical properties of the pesticides, weather
conditions and the spraying conditions (Soheilifard et al., 2020).

A fraction of the deposited ingredient can then volatilize (Van den Berg
et al., 1999; Langenbach et al., 2021), depending on its vapor pressure and
several other parameters (e.g., absorption capacity to soil, penetration into
leaves, degradation rates of the active material). The volatilized substance
then moves with the wind (Zivan et al., 2016, Taylor et al., 2020).

The pesticide can then be transported via air in the direction of resi-
dences (Veludo et al., 2022) and there infiltrate into the house via openings
such as open doors, windows, cracks, chimneys. Concentrations outside
and inside the residence tends towards an equilibrium and, in theory, the
concentration inside the house may reach the air concentration level out-
side if volatilization and meteorological conditions remain the same
(Sangiorgi et al., 2013). However, this might often not be the case at all be-
cause of rapid changes of wind direction, source strength, atmospheric
mixing, among others. To estimate short term indoor exposure (sometimes
with the highest concentrations) it is also needed to have knowledge of the
development of these processes in time, explicitly.

Finally, since in the indoor environment pesticides may be present in
the gas-phase they can also be adsorbed to indoor dust particles (Butte,
2004). Dust particles can aggregate, and, in this state, pesticides can accu-
mulate in the indoor environment. This can lead to exposure via contact
with contaminated surfaces and/or incidental dust ingestion (Tames
et al., 2020).
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1.3. The need for modelling exposure through the different routes

To combine all of the aforementioned different routes of exposure, for a
given spatial scale, models can play an important role: models allow to an-
alyse and quantify exposure to a given pesticide (Butler Ellis et al., 2017), as
well as generalize the results of observations and extrapolate results to
other places with similar or different settings. Measurements, such as bio-
monitoring, have proven efficient to understand to what extent residents
can be exposed. However, they may suffer from detection problems and
limitations to the number of pesticides that can be assessed. In addition,
they tend to be very time consuming and costly (Atabila et al., 2017) espe-
cially if the aim is to understand exposure of large populations, for many
pesticides at the regional or even national scales. Models can be used to
make exposure estimates on these scales.

1.4. Aim of the study

The aim of our study was to develop a modelling framework to estimate
resident's exposure to pesticides from spraying applications. We focused on
pesticide application using a boom sprayer since this is the most used tech-
nique in the Netherlands, in Europe and worldwide at large-scale farms
(Fujimoto et al., 2016). In our framework, here forth named OBOmod, in-
dependent models are used to describe the processes in the causal chain
of spraying, droplet drift during application, volatilization of deposited pes-
ticides from vegetation and soil during and after spraying, gas and aerosol
dispersion, exchange of pesticides between outdoor and indoor air and
sorption of pesticides to house dust. We describe each model individually
and how they are connected in the framework. The OBOmod is applied to
several case studies on different locations, for different pesticide mixtures
and meteorological conditions. This allows us to test the versatility of the
framework by simulating distinct real-life scenarios. Case study data with
pesticide concentration measurements in outdoor and indoor air, and in-
door dust were used to verify model results at different steps along the
model chain. The novelty here is the integration of various pathways and
evaluation of a framework fit for residential exposure assessment. We
show how the OBOmod can be used and provide information so it can be
applied in other studies.

2. Methods

2.1. The modelling framework

Five models were selected to build the OBOmod, to quantify contribu-
tions from the aforementioned pathways to residents' exposure
(Figueiredo et al., 2018). The models are:

- Airborne spray drift: IDEFICS Model. Tests have been reported in sev-
eral publications, such as Holterman et al. (1997), Holterman et al.
(1998), Stallinga et al. (2008).

- Volatilization: PEARL Model. Tests have been reported in several publi-
cations, such as Leistra andWolters (2004), Leistra et al. (2005), Leistra
and van den Berg (2007), Van den Berg et al. (2016a).

- Atmospheric short term/short range transport: OPS_Ste Model. Tests
have been reported in several publications, such as Van Jaarsveld
(2004), Sauter et al. (2018). The potential use of OPS for pesticide trans-
port has been highlighted in van den Berg et al. (2016b) and Butler Ellis
et al. (2017).

- Atmospheric transport from outdoors to indoors: gCOMIS Model. Tests
have been reported in several publications, such as Phaff (1996),
Borchiellini and Furbringer (1999).
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- Sorption of pesticides to indoor dust: DUSTPRED Model. Tests have
been reported by Weschler and Nazaroff (2010).
These models are well described in literature and a short explanation of

each model can be found in Supplementary material A.
As shown in Fig. 1, the OBOmod follows the causal chain. It starts with

the application where the IDEFICS model (Holterman et al., 1997), de-
scribes spray drift and calculates the deposition and concentration of
spray droplets in air, up to five meters downwind of the sprayed area.
Input to the model is parameters that were collected prior to the spraying
event and based uponmeasurements (e.g. composition of the pesticidemix-
ture in the tank, spray boom height, nozzle type and size and spray drop
characteristics). The minimum set of data needed is i) day of spraying; ii)
tank mixture; iii) sprayer and nozzle type. It is possible to run the model
with “expert decision” input as long as one it's clear about the quality of
the input data. A detailed description of the droplet size distribution for
each type of nozzles used in OBOmod can be found in Holterman and van
de Zande, 2019.

The PEARLmodel (van den Berg et al., 2016b), quantifies volatilization
from plants after the application. Inputs are physico-chemical properties of
the pesticides and an estimate of the amount of deposited material (i.e. ap-
plied quantity minus primary drift). Furthermore, the model is driven by
meteorological conditions. The computed volatilization is regarded as an
emission source strength. Next, the OPS-St (Short term version of the
Operational Priority Substances model) advanced Gaussian plume model
(Sauter et al., 2015) is used to compute atmospheric transport, dispersion
and resulting concentrations at receptor points around the fields. Aerosols
already present in the background air were not taken into account. During
application, the source strength input to OPS is taken to be the emission of
pesticide mass in droplets as computed by IDEFICS at 5 m from the down-
wind edge of the applied field. IDEFICS can deal with any downwind dis-
tance, but larger distances take more computing time. The distance of 5
m was chosen to make sure that larger drops sedimented to the ground
and that only the smaller drops remained airborne. After application, the
volatilization strength computed by PEARL is used as a source strength
from the applied field. Concentrations calculated with the OPS-St model
then serve as input to the ventilation model gComis (Feustel and Raynor-
Hooson, 1990). This model estimates concentrations in indoor air based
on outdoor concentrations, using exchange rates between indoor and out-
door air. These rates are based on building characteristics obtained for
each individual home and were assumed to be similar for gas-phase and
particle-phase pesticides, given that larger particles will settle before
reaching the home. Finally, an equation (Eq. (2) Weschler and Nazaroff,
2010), here called Dustpred, is used to calculate the concentration of pesti-
cides that will be present in indoor dust based on indoor air concentrations.
All model inputs are described in more detail in (OBO, 2019).

Wind erosion of particles from agricultural fields (Silva et al., 2019) was
not considered in the modelling chain, since in the Netherlands this process
is very unlikely to occur, given the high soil moisture content (Wösten et al.,
2001) and the average height of the plant canopy, which serves as a barrier
for erosion. For countries with low precipitation and low soil moisture con-
tent the wind erosion route might be of relevance, so it would need to be
added to the OBOmod. The transport of pesticides via shoes, clothes and
Fig. 1. Integrated modelling framework (a
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pets into the indoor environment was not included in the OBOmod either.
Although hypothesized as important (Bradman et al., 2009), no model
has been reported in the literature for this exposure route (take-home) of
pesticides.

Themodels in the OBOmod are run independently, that is, they are con-
nected solely via input-output information. Output is generated on an
hourly basis, allowing us to look at both short (hours) and long-term
(weeks) exposures. Spatial resolution is in meters and the model computes
values for a-priori defined grids or receptor points.

2.2. General conditions and measured data

Fourteen spraying events under different meteorological conditions and
settings and for various pesticide mixtures were simulated (Supplementary
material B). All events were real spraying applications planned by the
farmer and carried out during the OBO project (OBO, 2019). These events
occurred on selected fields described in Figueiredo et al. (2021a).

All planned spraying applications were carried out in the North-western
part of the Netherlands, an area with intensive flower bulb growing.
Spraying was performed in 2016 and 2017 during all months except
September, October, November, and December. Temperatures ranged from
1 °C in January to 32 °C in July but were generally moderate with an average
of 14 °C and a median of 16 °C. Relative humidity ranged from 65 to 85%.
Wind direction was predominantly from SW. Between hour variability was
less than 10 degrees for 75% of all simulated hours. Day-to-day variability
was high (usually more than 45 degrees). Wind speed during spraying was
low in general and usually below 5 m/s at 10 m height (compliant with
Dutch regulations for pesticide spraying). These observations were taken
from nearby stations from the Dutch meteorological service KNMI. The ob-
served wind speed, during the periods of application, is quite low for this
area. But low wind speeds are, understandably, conditions that are favorable
for farmers due to lower losses by drift to neighboring crops and surface
water. In total, some 20 different active ingredients were sprayed, 45%
being fungicides, 25% herbicides and 30% insecticides. These were applied
on nine different flower species including tulips and lilies. Usually, sprayed
mixtures contained two or three active ingredients. The choice of active in-
gredients and doses were made by the farmer.

In this study, 24-hour averaged samples of outdoor air were collected
for a period of seven days for every home (total number of homes = 96),
during and after the spraying event. Air was sampled through a standard
PM10 inlet. We used a combination of a filter and XAD absorbent to collect
volatile and particle bound pesticides, these were then pooled for chemical
analysis. Also, one air sample was collected inside the homes on the day of
spraying (i.e. day 1) (Figueiredo et al., 2021b). In addition, one week after
the spraying event, one dust sample was collected in every home using a
vacuum cleaner equipped with a special filter (Figueiredo et al., 2021c).
It was used on a 4 to 6 m2 surface depending on the available area
(Figueiredo et al., 2019). This, vacuumed floor dust (VFD), is a good repre-
sentation of pesticides in indoor dust (Curwin et al., 2005) and was used to
evaluate the Dustpred model.

All samples were analysed for 46 active ingredients within a few weeks
after sampling by using state of the art LC-MS methods (Figueiredo et al.,
dapted from Figueiredo et al., 2021a).
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2021a). All experimental data and the results of our simulations can be
found in the OBO technical report (OBO, 2019). None of the pesticides
were reported as being used indoors in the participating homes (see Supple-
mentary material E from Figueiredo et al., 2021b). All measured pesticides
and relevant physico-chemical properties are presented in Table 1.

2.3. Testing model components of the framework

As a first step, we used measured outdoor air concentrations to test the
IDEFICS-PEARL-OPS chain. In this step, we included only applications of
which we had all required information (i.e. there was no input data miss-
ing). It should be noted that the input data for the PEARL model was ob-
tained from data published in the literature and not by independent
measurements. In addition, volatilization was assumed to be the only loss
process, so the potential contribution of other processes on the plant sur-
face, such as photo-transformation, penetration into the plant tissue and
Table 1
List of measured pesticides (active ingredients) and relevant physico-chemical characte

Type Pesticides CAS RN

Herbicides Asulam 3337-71-1
Chloridazon 1698-60-8
Chlorpropham 101-21-3
Dimethenamid-P 163515-14-8
Linuron 330-55-2
Metamitron 41394-05-2
Pendimethalin 40487-42-1
S-metolachlor 51218-45-2
Sulcotrione 99105-77-8
Terbuthylazine 5915-41-3

Insecticides Acetamiprid 135410-20-7
Cyhalothrin-lambda 91465-08-6
Deltamethrin 52918-63-5
Flonicamid 158062-67-0
Fosthiazate 98886-44-3
Imidacloprid 138261-41-3
Oxamyl 23135-22-0
Pirimicarb 23103-98-2
Pymetrozine 123312-89-0
Spirotetramat 203313-25-1
Thiacloprid 111988-49-9

Fungicides Azoxystrobin 131860-33-8
Boscalid 188425-85-6
Carbendazimd 10605-21-7
Cyprodinil 121552-61-2
Difenoconazole 119446-68-3
Dimethomorph 110488-70-5
Fludioxonil 131341-86-1
Fluopicolide 239110-15-7
Fluopyram 658066-35-4
Flutolanil 66332-96-5
Kresoxim-methyl 143390-89-0
Mepanipyrim 110235-47-7
Prochloraz 67747-09-5
Propamocarb 24579-73-5
Prothioconazole 178928-70-6
Pyraclostrobin 175013-18-0
Tebuconazole 107534-96-3
Thiophanate-methyl 23564-05-8
Toclofos-methyl 57018-04-9
Trifloxystrobin 141517-21-7

Degradation products

Fluopyram-benzamide 360-64-5
Metamitron-desamino 36993-94-9
Prothioconazole-desthio 120983-64-4
Spirotetramat-enol 203312-38-3
Trifloxystrobin-acid 252913-85-2

ND (Not determined).
⁎ Estimated using EPI Suite™ (https://www.epa.gov/tsca-screening-tools/epi-suitetm
⁎⁎ IUPAC Ref: CGA 321113.
a Half-life (degradation) in soil (days). Range of values from field and lab studies gath
b Water solubility (at 20 °C [mg l−1], integers presented) gathered from Lewis et al.,
c Vapor pressure in milipascal (measured at 20 °C or 25 °C, depending on study) – co
d Besides being a fungicide, carbendazim is also an environmental degradation produ
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wash-off were not considered. Especially important here is that, apart
from the selected field, no other agricultural field within an area of 250
m from homes applied the same pesticide in the same day. We considered
contributions from distances above 250 m to be negligible (Gibbs et al.,
2017; Figueiredo et al., 2021b) and we only considered volatilization
from treated fields, not from off-target areas where pesticides could have
been previously deposited after atmospheric dispersion.

Given that these are evaluation steps we used concentrations measured
outside close to the homes as input to the gComismodel. TheGcomismodel
was therefore evaluated by comparing indoor concentrations calculated by
gComis to concentrations measured indoors to verify the gComis calcula-
tions.

As a last step, we used measured indoor air concentrations to predict
daily averaged concentrations of different pesticides in indoor dust and
compared the average weekly concentration with the VFD. It should be
noted that, VFD may also contain pesticides that accumulated before the
ristics.

DT50 soila Water solubilityb Vapor pressurec

[2.1, 39] 962,000 1.9E−01
[3.0, 173.9] 422 6.0E−02
[2.8, 42.8] 110 2.4E+01
[5.0, 31.0] 1499 2.5E+00
[10.1, 168.4] 63.8 1.9E−01
[2.2, 44.5] 1770 8.6E−04
[39.8, 270.0] 0.33 1.3E+00
[3.6, 221] 530 4.2E+00
[1.2, 89.7] 165 5.0E−03
[6.43, 167.0] 6.6 9.0E−02
[0.8, 5.4] 2950 5.9E+00
[10.1, 1000.0] < 1 4.5E−04
[12.5, 231.0] < 1 1.2E−05
[0.7, 1.8] 5200 9.4E−04
[9.0, 17.0] 9000 5.6E−01
[77.0, 425.0] 610 2.1E−01
[0.6, 19.4] 148,100 3.1E+01
[5.5, 274.0] 3100 9.7E−01
[2.05, 183.0] 270 1.8E−03⁎
[0.05, 1.0] 30 6.0E−06⁎
[0.33, 16.8] 184 8.0E−07
[35.2, 261.9] 7 1.1E−07
[27.0, 1214.4] 5 7.2E−04
[11.0, 120.0] 8 1.0E−04
[11.0, 98.0] 13 4.9E−01
[20.0, 456.0] 15 3.3E−05
[17.8, 599.1] 29 9.9E−01
[8.0, 365.0] 2 3.9E−04
[77.0, 333.0] 3 8.0E−04
[93.2, 717.0] 16 4.2E−03
[60.4, 1000.0] 8 1.8E+00
[0.37, 1.85] 2 2.3E−03
[34.0, 253.9] 2 2.3E−02
[22.1, 936.1] 27 1.5E−01
14 900,000 7.3E+03
[0.04, 1.4] 23 4.5E−09⁎
[4.2, 181.0] 2 2.6E−05
[25.8, 610.0] 36 1.7E−03
[0.29, 3.3] 19 9.5E−03
[2.1, 16.4] <1 5.7E+01
[0.13, 2.83] <1 3.4E−03
[6.7, 11.5] ND ND
[17.0, 39.7] 400 4.5E−04⁎
[4.56, 32.2] 51 1.1E−03⁎
[0.02, 10.9] 2700 ND
[21.1, 406.8] 21,000 5.5E−03⁎⁎

-estimation-program-interface).

ered from Lewis et al., 2016.
2016.
llected from Pubchem (https://pubchem.ncbi.nlm.nih.gov).
ct from thiophanate-methyl.

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
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sampling period. This aspect may lead to significant differences between
calculated and observed concentrations in house dust.

2.3.1. The three evaluation steps
In summary, three model evaluation steps were considered:

1) IDEFICS, PEARL and OPS-ST, to calculate, respectively, droplet drift
during spraying, volatilization from crop and dispersion of gaseous pes-
ticides on day 1 to 7. The concentrations computedwith thismodel suite
are compared with the measured 24-hr (daily) air concentrations out-
side homes.

2) Gcomis, to calculate concentration inside homes on day 1 based upon
concentrations measured outside. The concentrations computed with
this model are compared with measured 24-hr average air concentra-
tions inside homes.

3) Dustpred, to calculate daily content (mass) in house dust frommeasured
concentrations in indoor air. The average concentrations computedwith
this model are comparedwith the thosemeasured in VFD inside homes.
From the fourteen simulations, only five had specific pesticide mixtures

being applied solely in the selected field (see Simulations 1–5, Supplemen-
tarymaterial B). Therefore, evaluation for step 1was solely done using data
from these five applications.

In this way, we used concentrations measured outside the homes, con-
centrations measured inside homes and concentrations measured in indoor
dust to test each submodel in the OBOmod. This approach allows us to re-
duce uncertainty throughout the model evaluation process, by avoiding er-
rors propagated from other model steps.

2.3.2. Metrics used to assess the quality of model estimates
The statistical measure of the quality of model estimates was deter-

mined by the coefficient of determination (R2, or explained variance) be-
tween measured and modelled concentrations. Two additional metrics
were used to assess the difference between modelled and measured values.
We calculated the RMSE (Root Mean Squared Error) and the MAE (Mean
absolute error). RMSE is analogous to the standard deviation (SD), since
it accounts for the magnitude of the residuals, while MAE takes the average
magnitude of the residuals. As proposed by Shmueli et al. (2016), we will
use SD of the observations as a benchmark to compare with MAE and
RMSE, given that SD is the amount of error that naturally occurs in themea-
sured values.Metrics were computed fromnon-transformeddata. Given the
small number of paired samples above LOD for acetamiprid, efficiencymet-
rics could not be calculated for this pesticide.

As additional data analysis, we i) investigated if there were systematic
discrepancies between the modelled and the measured values (i.e. propor-
tional bias) via modified Bland-Altman plots and ii) calculated Spearman
correlation coefficients for gComis and Dustpred evaluation steps. This
was done as a sensitivity analysis of model performance. Both indoor air
and indoor dust are known to be influenced by sources and sinks present in-
side the home (e.g. resuspension, long-term accumulation, dragging in),
which may cause the relation between measured and modelled data to be
non-monotonic. The results from this sensitivity analysis can be consulted
in Supplementary material C.

2.3.3. Temporal and spatial variability in concentrations
The quality of a model to estimate concentrations in outdoor air can be

judged by looking at temporal (between days) and spatial (between homes)
variability. For temporal variability, R2,MAE andRMSEwere calculated for
each pesticide and per home, using daily averages (see Table D.1, Supple-
mentary material D). Scatter plots (N=29) are presented for all measured
vs modelled comparisons (see Fig. D.1 in Supplementary material D) and a
selection of representative cases (N = 18) is discussed here.

For spatial variability, R2, MAE and RMSEwere calculated per pesticide
and per day, again using daily averages of concentration (see Table D.2,
Supplementarymaterial D). Scatter plots (N=48)were created for all mea-
sured vs modelled comparisons and are here discussed.
5

For indoor air and dust, where we had only one observation per home,
metrics were calculated per pesticide but grouping the results from all
homes into one single assessment. Here, R2 refers to the proportion of spa-
tial variability that we can explain with the model. Scatter plots of mea-
sured vs modelled data for both indoor air and dust, including all
pesticides, can be found in Supplementary material E.

3. Results

3.1. Pesticides - summary of properties and measured concentrations

In the period that the pesticides were used on the selected fields they
could be detected in nearly all 24 h outdoor air samples. Pesticide concen-
trations observed in outdoor air ranged from 0.003 (the detection limit for
most pesticides) to 2750 ng/m3. Concentrations observed in indoor air
were lower than those in outdoor air ranging from concentrations below
the detection limit (<0.003 ng/m3) to 25 ng/m3 on the day of application
(Figueiredo et al., 2021b). Concentrations in vacuum cleaner floor dust
ranged from 1 ng/g dust to 27000 ng/g dust (Figueiredo et al., 2021c).
Based on EFSA guidance documents (EFSA (European Food Safety Author-
ity), 2014), solely chlorpropham and propamocarb are considered highly
volatile compounds (see Table 1, vapor pressure > 10 mPa). The remaining
pesticides are considered to have low volatility, although pendimethalin
can be considered moderately volatile (Lewis et al., 2016). The half-life of
the pesticides in soil (DT50 in Table 1) could also be a parameter that
plays a role in the outcome of model simulations. It appears however that
the reported half-life in soil is quite variable for most compounds, so we
did not take this parameter into account when interpreting results. Finally,
13 of the measured pesticides have high water solubility (i.e. amount of
chemical substance that can dissolve in water). These group (see Table 1,
water solubility >500) have higher volatilization potential if the plant
leaves are wet, since volatilization occurs at the water – air interface.

3.2. Example output of simulations

As an example, we show in detail how the OBOmod is setup for one sim-
ulation run (Fig. 2) for the pesticide trifloxystrobin, a low volatility fungi-
cide used to control diseases such as mildew and blight in flower bulb
growing. In the left panel, a field where application takes place is shown
and the eight neighboring study homes. In the right panel, the wind rose,
is displayed for each of the seven days after application. These show the fre-
quency of the occurrence of a certainwind direction (degrees) andwind ve-
locity (m/s). Immediately after spraying, volatilization from the field starts
and ismodelled during the next seven days. Spray drift takes place only dur-
ing spraying, at Day 1.

3.2.1. Outdoor and indoor air
We can see from the modelled concentration in outdoor and indoor air

(Fig. 3) that homes downwind of application (homes 1 to 4) are exposed to
higher concentrations than other homes during the first hour (when
spraying occurs), with homes closer to the field, homes 3 and 4, showing
the highest values in outdoor air, 38 and 29 ng/m3, respectively.

On Day 2, the wind direction shifted and blew mainly from the South-
West (Right Panel – Fig. 2), resulting in an increase of concentration for
home 8 (average 0.2 ng/m3, Day 2) and almost no exposure near the
other homes. Air concentrations vary within the one-week period, by a fac-
tor of six between the lowest and highest modelled concentrations. We can
see also that modelled concentrations in outdoor and indoor air are very
similar.

3.2.2. Spray drift and volatilization
From the modelled trifloxystrobin data we can infer what would be the

most relevant exposure route: spray drift or evaporation of active ingredient
deposited (afterwards). If we focus on the homes that are predominantly
downwind (Left Panel – Fig. 2, Homes 1 to 4) from the treated area and
take the full week into account, it can be seen that total exposure (defined



Fig. 2. Simulation 4 setup. In the left: The field in grey and the homes as dots. In the upper right: The wind direction (% of the day that was blowing from) and speed (WS –
Wind speed) each day during the 7 simulated days. In the bottom right: the applied mixture of pesticides.
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here as concentration×hours exposed) via volatilization is higher than the
exposure via spray drift (during application). This is illustrated with an ex-
ample, based on real spraying applications [Supplementary material B,
Simulation 4]. In this case, taking cumulative exposure due to volatilization
as the multiplication of exposed time (all 7 days) by the arithmetic mean of
air concentrations, we end up with concentrations (in ng/m3) of 20.9,
20.61, 97.2 and 75.1 for homes 1, 2, 3 and 4, respectively. Exposure due
to drift, that only happens in the first hour, amounts (in ng/m3) to 0.26,
0.27, 37.7 and 29.7 for homes 1, 2, 3 and 4, respectively. Thus, for all
homes, the exposure caused by drift in thefirst hour is lower than the cumu-
lative exposure due to volatilization. The result in this example also holds
true if we take 7 daysmedian (instead of mean) concentration as hourly ex-
posure.

3.2.3. Indoor dust
In contrast with concentrations in air, indoor dust concentrations are

calculated from daily averaged indoor air concentrations instead of hourly
values. Themodelled concentrations in dust are quite variable. Large differ-
ences occur between the concentrations on different days, with values typ-
ically varying between about 10 and 100 ng/g of dust. This variability in
modelled values is solely caused by the daily variability of indoor air
Fig. 3.Modelled Trifloxystrobin, hourly averaged, concentration in outdoor air and indo
in Fig. 2. In the x axis, the hour since application (hour = 1). In the y axis the homes. T
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concentrations (Fig. 3), given that the remaining parameters from the
Dustpred model are fixed. Modelled trifloxystrobin concentrations in in-
door dust can be consulted in Supplementary material F. In short, homes
3 and 4 are consistently more exposed (higher concentrations in dust)
than the other homes.

3.3. Testing individual model components of the framework

3.3.1. Step 1: outdoor air

3.3.1.1. Temporal variability. For several homes (28%) the explained tempo-
ral variability (R2) in concentrations by the model was higher than 0.7. For
24% the R2 ranged between 0.35 and 0.7 and for the remaining homes the
R2was below0.35 (for each individual R2 see Table D.1 Supplementaryma-
terial D). A selection of representative cases for model and measured data
comparison, per pesticide and per home, is presented in Fig. 4. We can
see that for some pesticides, such as fluopyram (panel B in Fig. 4) and
mepanipyrim (panel E Fig. 4), most of the data points are close to the 1:1
line, indicating good agreement between measured and modelled data.
However, for lower concentrations of fluopyram, themodel underestimates
concentrations (model < measured). For acetamiprid (panel A in Fig. 4)
or air for each home. These are the results of simulation 4, which the setup is shown
he colour represents the modelled concentration in ng/m3.



Fig. 4.Measured versus modelled outdoor air concentrations per pesticide and per home – selection of 3 examples per pesticide and only cases for which no other applications in
the vicinity were done at the same time as the application on the selected field (simulation 1 to 5). Each panel corresponds to a different pesticide (see legend). Each plot is a
different home. For each plot, in the x axis, the measured concentration in ng/m3 and in the y axis, the modelled concentration in ng/m3. Both x and y axis are in the
logarithmic scale (base 10). The blue triangle is day 1, the day of spraying. The dashed black line is the 1:1 line (i.e. identity line). N = refers to the number of pairs where
both the measured and modelled values are below the detection limit of the targeted pesticide (i.e. concentrations < 0.003 ng/m3). Legend: A = Acetamiprid, B =
Fluopyram, C = Tebuconazole, D = Trifloxystrobin, E = Mepanipyrim, F = Chlorpropham. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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there is also good agreement, but most of the modelled and measured con-
centrations are below the detection limit (LOD). The exception here is an
overestimation of acetamiprid concentrations in the day of spraying (day
1).

For chlorpropham (panel F in Fig. 4), the model overestimates concen-
trations in day 1 and underestimates concentrations for all homes inmost of
the consequent days. Finally, for both tebuconazole (panel C in Fig. 4) and
trifloxystrobin (panel D in Fig. 4) we have a similar outcome. For some
Fig. 5. Modelled vs measured concentration in outdoor air, per pesticide and per day.
column includes all days (day 1 to day 7). For each plot, in the x axis the measured co
the logarithmic scale (base 10). Each point within a plot is a different home. The dash
where both the measured and modelled values are below the detection limit of the ta
Fluopyram, C = Tebuconazole, D = Trifloxystrobin, E = Mepanipyrim, F = Chlorprop
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homes, most of the dots are close to the 1:1 line, whereas for other homes
there is a systematic underestimation of concentrations (values below 1:1
line in panel D). All scatter plots and a detailed summary of model quality
metrics calculated per pesticide and per home can be consulted in Supple-
mentary material D.

3.3.1.2. Spatial variability. Modelled and measured data comparisons, per
pesticide and per day, are presented in Fig. 5. There is a lot of variability
Each row is a different pesticide (see legend). Each column is a different day. Last
ncentration and in the y axis the modelled concentration. Both x and y axis are in
ed black line is the 1:1 line (i.e. identity line). N = refers to the number of pairs
rgeted pesticide (concentrations < 0.003 ng/m3). Legend: A = Acetamiprid, B =
ham.
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on model agreement between the different days, with the R2 values
ranging from 0.05 to 0.995 (see Table D.2 Supplementary material D,
for all calculated R2). There is also quite some variation in model perfor-
mance between the different pesticides (A to F in Fig. 5). For
acetamiprid (A in Fig. 5), we cannot draw any conclusions on model per-
formance. Although most of the times both modelled and measured
values are below the LOD, we do not know how the model performs
for very low concentrations (< LOD).

For fluopyram (B in Fig. 5), the model explains between 60% to 70%
of the spatial variability in concentrations for the first 5 days, but only
15% on the last two days of measurements. The model often
underpredicts fluopyram concentrations when measured values are
below 10−1 ng/m3 (B – All days, Fig. 5). For tebuconazole and
trifloxystrobin (C and D in Fig. 5, respectively) we see that the explained
variance is high for some days, such as days 3 and 6. Whereas for other
days the R2 is quite low, such as days 1 and 4. For mepanipyrim (E in
Fig. 5), when comparing Day 1 with all days, the model seems to per-
form reasonably well with the exception on day 1. Finally, for
chlorpropham the model seems to explain on average 40% of the spatial
variability in concentrations.

Regarding accuracy (i.e. how close the modelled value is to the mea-
sured value), the model performs well for fluopyram and trifloxystrobin.
Most values are within one SD from the true mean (i.e. MAE < SD). How-
ever, for both of those pesticides (B and D in Fig. 5), the RMSE indicates
that the deviation between modelled and measured values is not similar
on all days (RMSE > MAE). For tebuconazole (C in Fig. 5), most of the
predicted values are in the same order of magnitude as the measured
values and are on average around one SD from the mean, except for
days 4 and 6. The RMSE indicates that there is not much difference in
the magnitude of the residuals (RMSE ≈ MAE). For both mepanipyrim
and chlorpropham (E and F in Fig. 5) most of the predicted values are
within the same order of magnitude as the measured values, but the av-
erage of residuals is for most cases quite high (MAE ≈ between 2 and 4
Table 2
Estimating indoor air concentrations - model efficiency per pesticide. Pesticides are
ordered by vapor pressure (higher to lower).

Pesticide Paired-N Measured Model efficiency

Mean SD R2 MAE RMSE

Propamocarb 4 0.513 0.734 0.968 0.259 0.453
Chlorpropham 16 5.251 6.425 0.018 21.45 37.781
S-Metolachlor 16 0.531 1.045 0.032 0.944 1.396
Fluopyram-benzamide 13 0.056 0.059 0.69 0.103 0.158
Pendimethalin 16 1.49 1.865 0.006 7.496 10.059
Dimethenamid-P 14 0.092 0.075 0.294 0.127 0.208
Tolclofos-methyl 15 1.067 2.758 0.152 0.305 0.523
Prochloraz 12 0.06 0.1 0.348 0.011 0.02
Carbendazim 13 0.372 0.67 0.223 0.176 0.359
Linuron 14 0.027 0.027 0.483 0.047 0.09
Mepanipyrim 6 0.062 0.077 <0.01 0.047 0.088
Trifloxystrobin 6 0.009 0.006 0.155 0.01 0.011
Trifloxystrobin-acid 4 0.073 0.106 0.814 0.173 0.213
Kresoxim-methyl 9 0.062 0.059 0.433 0.042 0.06
Tebuconazole 9 0.132 0.171 0.088 0.1 0.171
Fluopyram 11 0.155 0.26 0.476 0.409 0.803
Flonicamid 10 0.077 0.058 0.251 0.149 0.268
Metamitron 8 0.17 0.216 0.051 0.137 0.233
Boscalid 9 0.031 0.019 0.009 0.015 0.023
Prothioconazole-desthio 14 0.066 0.084 0.261 0.078 0.095
Lambda-cyhalotrin 3 0.079 0.048 0.356 0.035 0.05
Difenoconazole 5 0.075 0.068 0.047 0.086 0.104
Pyraclostrobin 13 0.112 0.217 0.14 0.021 0.03
Deltamethrin 6 0.015 0.009 0.168 0.007 0.009
Azoxystrobin 7 0.069 0.108 <0.01 0.029 0.061

Paired-N – Number of modelled and measured paired values, for the homes with
quantifiable samples for the given pesticides (first column). SD – Standard deviation
(ng/m3); R2 – coefficient of determination (−); MAE – Mean absolute error (ng/
m3); RMSE – Root mean square error (ng/m3).
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times the SD). The RMSE indicates that there is not much difference in
the magnitude of the residuals (RMSE ≈ MAE).

3.3.2. Step 2: indoor air
Model performance metrics for the gComis evaluation step are pre-

sented in Table 2. Here, we can see that for 32% of pesticides the R2 was
above 0.35, while for the remaining 68%was below this value. The average
R2 was 0.3. For most cases (N = 15 pesticides) model accuracy is good,
given that MAE < SD.

For the remaining 10 pesticides, MAE is 2 × SD as a maximum, ex-
cept for chlorpropham and pendimethalin, where MAE is much higher
than SD. For almost all cases (80%) where MAE < SD, RMSE is either
lower or quasi-equal to SD. Finally, for almost all pesticides, the RMSE
was slightly higher than MAE, indicating that for some homes the pre-
dicted values are further away from the measured value compared to
other homes (RMSE > MAE). Here, the difference between RMSE and
MAE was often lower for less volatile pesticides, such as deltamethrin,
pyraclostrobin and difenoconazole.

3.3.3. Step 3: indoor dust
Results of the Dustpred evaluation step are presented in Table 3. Over-

all, the capacity to explain spatial variability of pesticide concentrations in
indoor dust was low (average R2 of 0.2). The model explained more than
35% of spatial variability for 4 pesticides out of the 18. Here, R2 > 0.75
for difenoconazole and kresoxim-methyl. For some pesticides (N =
8) model accuracy is good, given that MAE < SD. However, for other pesti-
cides, specially more volatile ones such as pendimethalin, s-metolachlor
and chlorpropham, MAE can be more than 1 order of magnitude higher
than SD. Like the indoor air evaluation step, the difference between
RMSE and MAE was often lower for less volatile pesticides, such as
azoxystrobin, fludioxonil and flonicamid.

4. Discussion

In this study, we developed and tested a new modelling framework to
estimate residents' exposure to pesticides resulting from boom sprayer ap-
plications. Results show the suitability of the framework to estimate con-
centrations in outdoor and indoor air for different pesticide mixtures and
meteorological conditions. Estimating concentrations in indoor dust re-
mains challenging.
Table 3
Estimating indoor dust concentrations - model efficiency per pesticide. Pesticides
are ordered by vapor pressure (higher to lower).

Pesticide Paired-N Measured Model efficiency

Mean SD R2 MAE RMSE

Chlorpropham 9 104 84 0.015 580 1272
S-Metolachlor 5 12 8 0.572 1305 2187
Pendimethalin 27 33 52 0.039 852 1453
Tolclofos-methyl 9 20 14 0.011 18 22
Prochloraz 27 23 29 0.009 24 38
Carbendazim 27 157 140 0.002 134 190
Linuron 6 8 3 0.325 6 9
Kresoxim-methyl 8 29 44 0.769 7 9
Tebuconazole 27 20 30 0.05 13 21
Fluopyram 27 4 9 0.178 15 21
Flonicamid 27 4 7 0.077 7 12
Metamitron 6 75 99 0.149 140 282
Boscalid 27 26 35 0.158 17 27
Prothioconazole-desthio 27 6 12 0.001 23 27
Fludioxonil 4 10 10 0.439 28 32
Difenoconazole 5 13 12 0.911 25 32
Pyraclostrobin 27 44 50 0.04 45 63
Azoxystrobin 12 6 10 0.04 14 22

Paired-N – Number of modelled and measured paired values, for the homes with
quantifiable samples for the given pesticides (first column). SD – Standard deviation
(ng/m3); R2 – coefficient of determination (−); MAE – Mean absolute error (ng/
m3); RMSE – Root mean square error (ng/m3).
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4.1. Atmospheric transport and dispersion of pesticides

In the first step of the framework evaluation we explained a large por-
tion of the variance in outside air concentrations due to vapor drift during
application and vaporization after application. The model seems to tackle
well both spatial and temporal variability (day to day variations) for some
pesticides, such as fluopyram and mepanipyrim. For other pesticides, like
chlorpropham, the explained spatial variance was lower (~40%). Unex-
plained variance might be related to factors that were not included in the
modelling chain, such as: processes on the plant surface, such as photo-
transformation, penetration into the plant tissue and wash-off; the effect
of the formulation of the pesticide on the vapor pressure of the pesticide,
pesticide volatilization from fields planted and sprayed in the periods be-
fore or during our study; the influence of obstacles (e.g. built environment);
particle-bound pesticides that travel long distances (Sanusi et al., 1999);
emissions related to pesticide use in bulb disinfection in the area
(Brouwer et al., 1994) or residential use (Deziel et al., 2017).

However, we hypothesize that from these, effects on volatilization from
fields and bulb disinfection are the most likely factors influencing air con-
centration differences between homes at local scale (<250m) in our setting.
Bulb disinfection contribution is also postulated by Figueiredo et al.
(2021c) who focused on pesticide concentrations in indoor dust. The
other factors are more likely contributors to the overall background of pes-
ticide concentrations (Degrendele et al., 2016) and will hardly affect vari-
ance in this study. Hence, most of these compounds will show small
concentration gradients outside source areas and consequently will not
show large differences in concentration between homes located relatively
close to each other (few hundred meters).

Regarding accuracy, the model seems to overall perform reasonably
well. Interestingly, within the pesticides sprayed, model accuracy was
lower for the more volatile ones, such as chlorpropham. But as mentioned
above, this could be related to bulb disinfection in the area. Larger residuals
for this group might be explained by many of the aforementioned factors
that have direct influence on the volatilization processes and therefore
have greater effect on the calculations for more volatile pesticides.

4.2. Exchange of pesticides between outside and inside air

In the second evaluation step, going from concentrations in outdoor to
indoor air, we explained more than 40% of the variance for 8 different pes-
ticides concentrations in the homes. Figueiredo et al. (2021b) showed that,
in the studied locations, measured outdoor and indoor concentrations cor-
relatedmoderately. Therefore, it does not come as a surprise that for several
other pesticides we cannot explain more than 30% of the variability in in-
door air concentrations between homes. Additionally, some unexplained
variability is to be expected, given that not all indoor sources and sinks of
pesticides were accounted for. As a source, resuspension of particle-
attached pesticides should be included in gComis model and as a sink (i.e.
indoor loss processes) deposition and absorption to surfaces, such as walls
(Wei et al., 2019) should also be included.

Independently of the above missing sources and sinks, model accuracy
was good for nearly all pesticides, with predicted concentrations often
lower than one SD from the true mean. A few large deviations were found
between modelled and measured concentrations, that could not be ex-
plained. However, one hypothesis here is that our model is not predicting
the total measured fraction. Our measured samples include pesticides in
the gas-phase and absorbed to particles smaller than 10 μm. It is possible
that the difference between measured and modelled could be explained
by the contribution of particle-attached pesticides thatwere already present
indoors. Apart from those, almost all modelled concentrations were in the
same order of magnitude as the ones measured.

In a recent study, Pelletier et al. (2017) showed that exposure to semi-
volatile organic compounds was mainly driven by indoor concentrations.
Therefore, an increase in the precision of estimates of concentration inside
homes will reduce the uncertainty in exposure estimates of persons. Here,
we show that modelling this step is relevant because concentrations were
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not equal between indoor and outdoor. The differences varied per pesti-
cide. This step becomes especially important for exposure routes that are
largely influenced by indoor air concentrations, such as inhalation and der-
mal skin uptake (Shi et al., 2014). Modelling indoor air concentrations
might be less relevant for areas with no local sources, where concentrations
are more or less constant and both outdoor and indoor concentrations are
equal to background levels.

To the best of our knowledge this is the first time a ventilation model is
integrated in an approach to estimate concentrations of pesticides in indoor
air. We see that the use of this model is important when estimating quanti-
tative levels, and it is more relevant when looking at a small time-windows
of exposure (i.e. finer time resolution), when balance between both envi-
ronments is not yet reached. This phenomenon is shown in other studies
(e.g. Table 3 - Raeppel et al., 2016). Nevertheless, for epidemiological pur-
poses where relative ranking is the norm, using outdoor air concentrations
as a proxy for indoor concentrations could still be valid. This may be con-
cluded from comparisons done between indoor and outdoor concentrations
(Figueiredo et al., 2021b) as well as the model simulations done in our
study.

4.3. Estimating concentrations in indoor dust

In the last evaluation step, when comparing themodelled andmeasured
data, themodel could explain only a very small part of the spatial variability
in the measured concentrations in VFD. Contrarily from the previous
two steps, explained variability was only high for two pesticides,
difenoconazole and kresoxim-methyl. Model accuracy was also not as
good as the previous two evaluation steps, especially for more volatile pes-
ticides. We found that the main advantage of the model is its simplicity and
limited number of input parameters when compared to othermore complex
models for semi-volatile compounds such as the ones presented by Liang
et al. (2019) or Wei et al. (2019).

Concentrations in indoor dust are largely drivenby the dust-air partition
coefficient (used in the Dustpred model). There are however other factors
that influence the pesticide presence in VFD. These were not considered
due to lack of available data. These include the half-life of the pesticide in
the indoor environment (Li et al., 2019), which is known to be quite vari-
able and the influence of the take-home pathway (i.e. pesticides in clothing,
shoes and brought by pets) (Teysseire et al., 2020). The relevance of the lat-
ter process is still an unknown. However, by choosing VFD over dust from
doormats as evaluation, weminimized the influence of the take home path-
way, assuming that most particles get trapped in the doormat.

The main limitation however is not related to these factors, but to the
complexity of the dust matrix. Pesticide levels in indoor dust are not just
a reflection of current nearby applications but also i) applications done in
the past and ii) pesticide use in other areas and transported through air
across longer distances (Fuhrimann et al., 2020). These will eventually de-
posit (settle) indoors (Quirós-Alcalá et al., 2011) and accumulate in indoor
dust (Rull and Ritz, 2003; Rothlein et al., 2006).

The influence of past applications and degradation on pesticides present
in the indoor environment remains one of themost challenging problems. It
is key to better understand lifetime exposure of residents via the dermal
pathway and inhalation of small contaminated particles.

4.4. Estimating residents' exposure to pesticides

Several studies have shown that during spraying, pesticides will drift
outside the application area (e.g. Coronado et al., 2011, van de Zande
et al., 2012). However, the observation that volatilization leads to detect-
able concentrations, even seven days after application, also observed by
van den Berg et al. (1995), emphasizes the need to include this route in ex-
posure studies. At the same time, it illustrates the necessity to study differ-
ences in exposure resulting from primary drift following application and
the exposure resulting from volatilization lasting for days (and perhaps
much longer for some pesticides). The latter may as such be a larger con-
tributor to residential exposure than droplet drift during application. This
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will depend on the pesticide persistence in the environment (Socorro et al.,
2016) and physicochemical properties, notably the potential to volatilize.
As we have seen in the example provided here, there is a possibility that
long-term cumulative exposure to volatilization is higher than cumulative
short-term exposures to drift. In a future study we will investigate differ-
ences in exposure resulting from primary and secondary drift more syste-
matically by including more pesticides, simulate for more days, multiple
applications and different climate scenarios.

The above is an indication that both routes may at least be equally im-
portant in evaluation frameworks. Regulation however is focused on reduc-
ing spray drift as a means to reduce exposure of surface water and ground
level close to fields. Volatilization is not directly affected by these regula-
tions. Therefore, to limit the contribution of volatilization, we would need
to reduce the amount sprayed/used or/and use pesticide that degrade faster
in the environment, always taking into account possible transformation
products. Themodelling framework can support the development of guide-
lines considering not just spray drift but also volatilization (e.g. Boesten
et al., 2021).

In general, the modelling framework seems capable of simulating spray
drift, vaporization and atmospheric transport and dispersion of different
pesticide mixtures for different meteorological conditions reasonably
well. The framework explained about 30% to 95% of the temporal and spa-
tial variability of air concentrations, respectively. Environmental concen-
tration estimates given here are likely a better exposure proxy and closer
to reality than earlier exposure proxies used for health studies, such as
buffers of agricultural fields surrounding homes (e.g. Ward et al., 2006),
proximity to fields (e.g. Bukalasa et al., 2017), remote sensing (e.g. Wan,
2015) and many others. These exposure proxies do not include the impact
of meteorological conditions and physico-chemical properties.

The results of the first two evaluation steps (i.e. estimating outdoor and
indoor air concentrations) show moderate to good accuracy of the model
for most pesticides, except chlorpropham. This part of the framework cur-
rently can be used for estimating exposure of residents to pesticides. This
may be done for individual pesticides or mixtures and can include single
or multiple fields, depending on existing spraying applications and avail-
ability of input data. However, estimating concentrations of pesticides in in-
door dust proved to be difficult. This could be related to the adequacy of the
Dustpredmodel for the situations we tried to simulate here. It could be that
accumulation of pesticides in dust from previous applications or applica-
tions further away plays a large role. So, at this stage, evaluation showed
weaknesses in the model for this step and the Dustpred model should
only be used for pesticides that degrade rapidly in the environment, thus
not being affected by “historical” use, residential use (Meftaul et al.,
2020) and long-range transport.
4.5. Modelling framework - strengths and limitations

Our modelling framework has several strengths. Firstly, it was devel-
oped by collecting already built and verifiedmodels and each stepwas eval-
uated independently, therefore avoiding possible errors propagated
between models. Secondly, the fact that the models are connected solely
by input and output gives a great flexibility for improvement and adjust-
ments in future research, as well as for running only parts of the framework
if needed. Finally, simplifications can be done in all models to reduce the
number of input parameters, adjust resolution (i.e. m to km) and use the
model to estimate pesticide exposures for both local and national scales.

Regarding the use of the framework, the model with the largest limita-
tion is the Dustpred model. It is likely related to the inherent complexity of
the dust matrix and all factors influencing concentrations in this medium.
Nevertheless, as dust can be an important exposure source, additional
steps need to be taken to improve indoor dust models through either deter-
ministic or empirical modelling. We know that improvement may be
achieved by adding information regarding historical pesticide use, residen-
tial use (Glorennec et al., 2017) and the direct influence of indoor sources
and sinks, as mentioned by Sukiene et al. (2017), when it becomes
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available. One of the main problems to also tackle is the take-home
pathway (such as drag) (Figueiredo et al., 2021c).

Other limitations of the framework are related to the volatilization
model. In the current version of this model, the effect of the formulation
on the behavior of the pesticide on the plant surface is not taken into ac-
count. To remedy this, model concepts for the description of this effect
would have to be developed and tested.

In many cases, the required model input is incomplete. Missing
values need to be estimated (e.g. Leistra, 2011) or obtained from mea-
surements published in the scientific literature or reported in EFSA
peer reviews of the active substances of the plant protection product.
However, there can be uncertainty in the value for a substance property,
such as the vapor pressure, as sometimes different values are reported in
the literature. In addition, the lack of information of the effect of the for-
mulation on the actual vapor pressure adds to this uncertainty. It is im-
portant to establish what are possible ranges for the input parameters,
so as to know how much uncertainty there is in the model chain. The
temporal and or spatial resolution of input data, such as meteorological
data, needs also further attention as the impact of some variables may
not be possible to assess when using data at lower resolution. A sensitiv-
ity analysis considering all relevant input variables at different spatial
or temporal resolution would help to identify the scale at which these
variables should be measured preferably and to define the parts of the
model that need further improvement. These steps will be included in
future OBOmod iterations.

The use of the model framework depends also on the availability of rel-
evant data. Inclusion of data on these properties, e.g. on other relevant pro-
cesses on the plant surface, such as penetration of the substance into the
plant tissue, photo-transformation and wash-off in the dossiers submitted
for registration in the EU would be needed to further improve the assess-
ment of the exposure of residents as a result of agricultural use of pesticides.
In a next step, dedicated field experiments on the emission and atmospheric
transport of agricultural pesticides are needed to evaluate the improvement
of the OBO model framework using the improved set of input values. Also,
uncertainty (individual and propagation) as well as sensitivity analysis on
certain input parameters will be studied. This hopefully leads to further im-
provements of the OBOmod.
5. Concluding remarks

An integrated framework based on different existing deterministic
models is used to estimate residents' exposure to pesticides.

We estimated the exposure to pesticides in homes near agricultural sites
using models describing air-borne drift, volatilization, atmospheric trans-
port and dispersion, exchange between outdoor and indoor air in residen-
tial areas close to treated fields.

From the comparison between modelled and measured concentrations
in air we conclude that, in general, the predicted 24-h exposure concentra-
tions of residents to pesticides in air were in the same order of magnitude as
those measured. Some studies showed that house dust seems to be an im-
portant exposure route. However, predictions of concentrations in this me-
dium remain difficult. Another important finding is that especially for the
volatile compounds considered in this study, the cumulative exposure due
to volatilization after application may be larger than exposure to droplet
drift during application.

The framework can be used in local settings at a range of a few
kilometres away from the source to quantitatively estimate exposure via
air. The framework can be used for different purposes. It can be used to
link to different health outcomes and improve epidemiological studies. It
can be used to help public health policy makers by simulating worst case
scenarios or integrate with toxicology data to allow for a more complete
assessment of human health risk from pesticides. Finally, it can also be
used to quantify relative contributions from exposure pathways, and so sup-
port development of regulations (e.g. quantity applied) regarding pesticide
application.
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