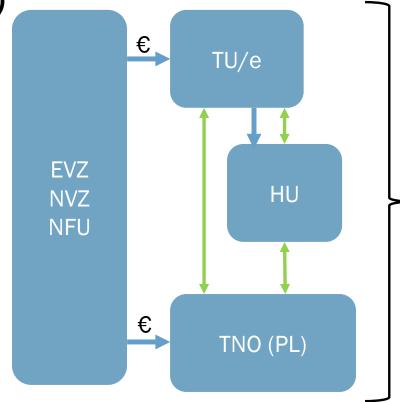


HUMIDIFICATION IN HEALTHCARE

Dr. Karin Kompatscher, Dr. Roberto Traversari

karin.kompatscher@tno.nl

Webinar 17-02-2022



COLLABORATION

RESEARCH INITIATED FROM EXPERTISECENTRUM
VERDUURZAMING ZORG (EXPERTISE CENTRUM FOR HEALTHCARE

SUSTAINABILITY)

-) Collaboration between:
 - University of Technology Eindhoven
 - University of Applied Sciences Utrecht
 - TNO (Projectlead)
-) Funding
 -) EVZ
 -) NVZ
 -) NFU

Soundbord group:

Pulmonary doctors, Installation architect, Energy consultant, Infection prevention specialists MD, Microbiologists MD, Researcher, Facility managers

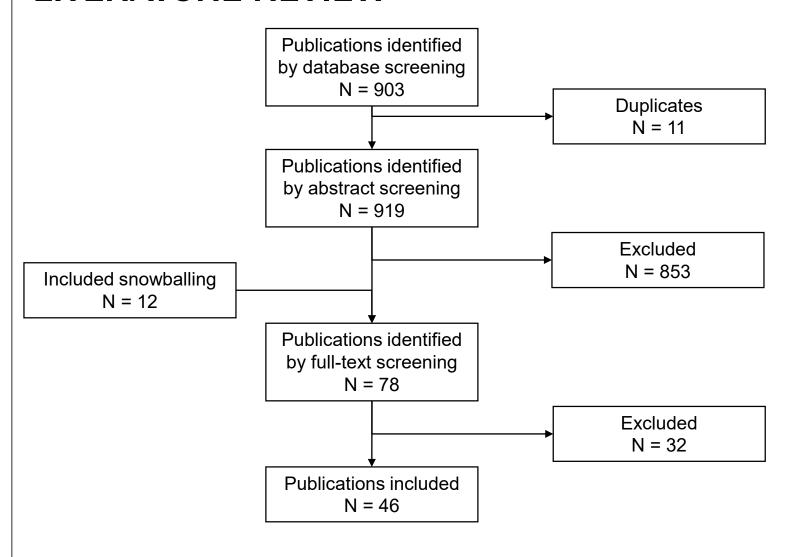
MOTIVE

HUMIDIFICATION IS ENERGY INTENSIVE

-) In general: based on the reduction of natural gas consumption and CO₂-emission,
-) Humidification is an energy intensive process and natural gas is mainly used for this,
- Limited energy efficient alternatives present,
- **)** Parties involved seem to keep strict boundary conditions for humidification.

RESEARCH QUESTIONS AND METHOD

- A. What is the need for humidification in healthcare from the point of view of safety and comfort of patients and employees and is there a distinction in building functions?
 - 1. Humidification in relation to micro-organisms and viruses
 - 2. Effect of humidification on functioning of medical equipment
 - 3. Effect of humidification on human physiology
 - 4. Effect of relative humidity on well-being and comfort
- B. Which alternative, energy-friendly method could realise humidification?
 - 1. Practice with regard to humidification: requirements and use of humidification installations (surveys and interviews)
 - 2. Alternatives for steam humidification


Literature review (knowledge base)

Hospital inventory (practice base)

KNOWLEDGE BASE

LITERATURE REVIEW

1. HUMIDIFICATION IN RELATION TO MICRO-ORGANISMS AND VIRUSES

Studies included	Hospital environment
22	11

-) Distinction between
 - Molds, bacteria, viruses, mites and allergens

-) Temperature and relative humidity (RH) influence microbial growth,
-) Survival rate under specific indoor climate conditions differs per organism, not possible to extract general values,
-) In general, low and high RH need to be avoided to limit growth of micro-organisms,
-) The extent of RH on the development of an infection is not clear.

2. EFFECT OF HUMIDIFICATION ON FUNCTIONING OF MEDICAL EQUIPMENT

Studies included	Hospital environment
4	-

- The effect of RH on the performance of medical devices is dependent on the specific device and manufacturer's usage specifications,
-) The RH has an effect on the operation of medical equipment due to the potential of electrostatic discharge (ESD) occuring,
- A minimum requirement of 30% RH is usually given. Imaging techniques (MRI) in particular seem to be sensitive to RH. Higher RH levels may be desirable if specifications require this.
-) To avoid ESD (shock when touching surfaces and other persons), use appropriate materials, e.g. footwear (conductive) and bedding (cotton). RH can reduce but not completely prevent this form of ESD.

3. EFFECT OF HUMIDIFICATION ON HUMAN PHYSIOLOGY

Studies included	Hospital environment
4	-

-) Distinction between:
 -) General complaints, nose complaints, eye complaints, skin complaints, respiratory symptoms, sneezing and headache
-) At RH value < 30%, a significant deterioration of nasal mucosa protection occurs in the elderly population,
-) The duration of exposure to specific conditions is not explicitly given or limited, this is a limitation of the found studies,
- In Long-term exposure (several days, e.g. related to habituation) has not yet been studied,
-) Studies based on specific functions within a care building that deal with RH are limited.

4. EFFECT OF RELATIVE HUMIDITY ON WELL-BEING AND COMFORT

Studies included	Hospital environment
17	5

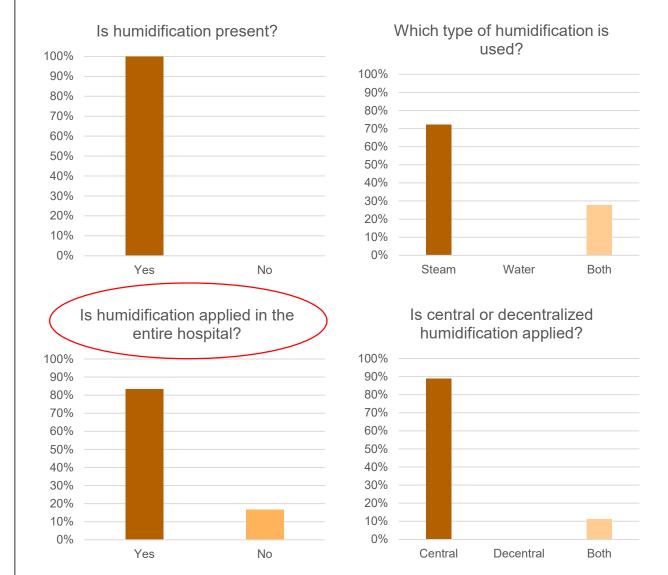
-) Distinction between:
 -) (Perceived) fatigue, concentration and nausea, stress, performance/productivity, dry air and comfort.

-) Effects of relative humidity on perception of dry air appear to be limited,
-) Individual sensitivity can affect this perception.

CONCLUSIONS KNOWLEDGE BASE

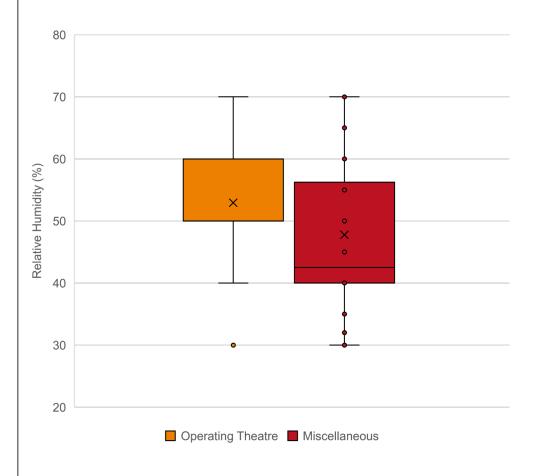
-) Limited research is available related to healthcare,
-) Insufficient quantitative substantiation for values to be used for RH levels,
- An indicative lower limit of 30% RH seems desirable (medical equipment, physiological aspects and well-being and comfort),
-) No general relationship has been found between RH and micro-organisms and viruses,
-) An upper limit for RH cannot be recommended as there is no unambiguous optimum for all four themes,
-) For each room or function, a trade-off must be made between the presence of (medical) equipment, the presence of patients and the perception of comfort with regard to humidity and energy consumption.

RH values	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Micro-organisms											
Medical equipment											
Physiological aspects											
Perception and well-being											


GUIDELINES

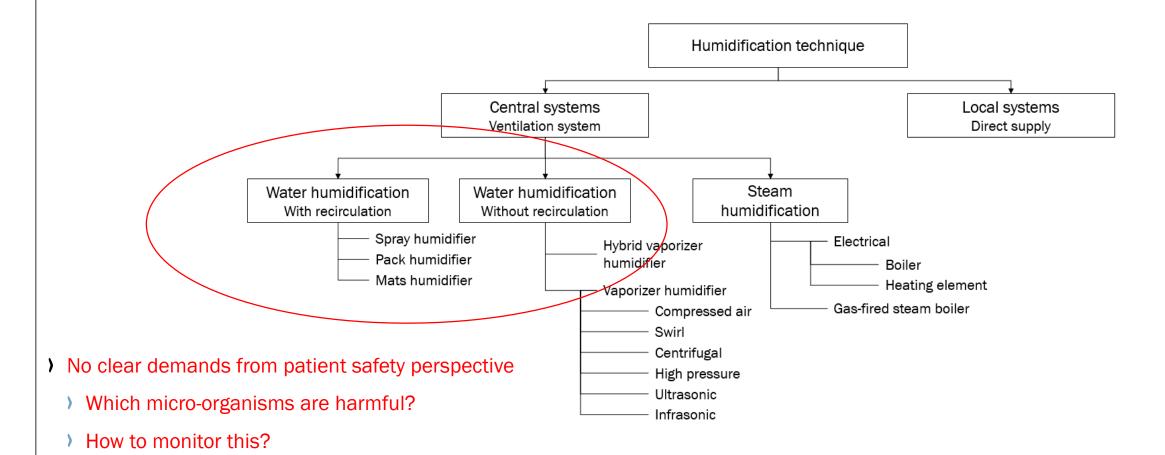
	RH levels (%)
ASHRAE 170-2017	20-60
DIN1946-4	30-60
ÖNORM H 6020:2007	40-60
UNI 11425	30-60
College Bouw Ziekenhuisvoorzieningen	50-75
WIP richtlijn 'Luchtbehandeling in operatiekamer en opdekruimte in operatieafdeling klasse: 2014'	40-65
ARBO portaal	30-70

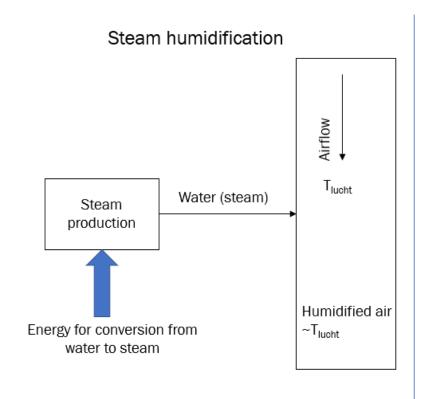
-) Unclear which scientific base these guidelines have,
-) Large variation between minimum and maximum RH.

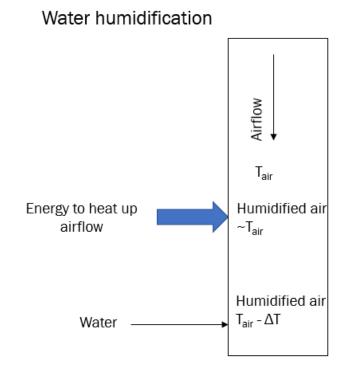

DUTCH CURRENT PRACTICESURVEY DUTCH HOSPITALS (N = 20)

Distinction between different functions or uses of hospital areas is often not made.

HUMIDIFICATION SETPOINT RANGE


DUTCH HOSPITALS (N = 20) AND MEDICAL DEVICES


	RH	(%)
	min	max
MRI	20	80
IV pumps	30	90
Echo	35	85
EMG	20	80
Laser	30	80
PET/CT	20	75
Surveillance monitor	15	95
Feeding pump	30	75
Diathermia	15	80
Transcutaneous pO ₂ /PCO ₂ meter	20	80
Blood pressure monitor	15	90
AED	10	95
CTG		95
EKG	10	90


Do you have to apply humidification in an entire hospital?

CLASSIFICATION OF HUMIDIFICATION TECHNIQUES

STEAM VS WATER HUMIDIFICATION

Special attention necessary for prevention of micro-organisms

CONCLUSIONS CURRENT PRACTICE

-) The requirements used in hospitals are strict when it comes to operating wards. This is often extended to other function groups or even the entire hospital,
-) From a medical treatment point of view, no relationship has been found with a specific minimum or maximum humidity,
-) For the application of specific medical equipment a lower limit can be given from the point of view of liability. This does not mean that problems arise below this limit,
-) Steam humidification is currently the most widely used:
 - Producing steam is an energy-intensive process,
 - Hospitals consider alternatives (such as adiabatic humidification),
-) Attention is paid to the question of whether air humidification is necessary in the entire hospital.

CONCLUSIONS CURRENT PRACTICE (2)

- Various forms of humidification techniques are available,
-) Steam humidification is recommended by various norms, standards and guidelines,
 -) Seems based on theoretical approach that steam is sterile
-) An alternative to steam humidification is to use water humidification,
-) It is not possible to indicate unambiguously which principle is energetically the most efficient,
-) If adiabatic humidification is used, the microbiological safety must be demonstrated.

