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Abstract
The development of new medicines suffers from attrition, espe-
cially in the development pipeline. Eight out of nine drug candi-
dates entering the clinical testing phase fail, mostly due to poor
safety and efficacy. The low predictive value of animal models,
used in earlier phases of drug development, for effects in humans
poses a major problem. In particular, drug disposition can mark-
edly differentiate in experimental animals versus humans. Mean-
while, classic in vitromethods can be used but these models lack
the complexity to mimic holistic physiological processes occurring
in the human body, especially organ–organ interactions. There-
fore, better predictive methods to investigate drug disposition in
the preclinical phase are needed, for which recent developments
in multiorgan-on-chip methods are very promising. To be able to
capture human physiology as good as possible, multiorgan-on-
chips should feature 1) human cells endogenously expressing
main transporters and metabolizing enzymes; 2) organ models
relevant for exposure route; 3) individual organs-on-chip connec-
ted in a physiologically relevant manner; 4) a tight cellular barrier
between the compartments; 5) organmodels properly polarized in
3D; 6) allow for sampling in allmajor compartments; 7) constructed
from materials that do not absorb or adsorb the compound of in-
terest; 8) cells should grow in absence of fetal calf serum and
Matrigel; 9) validated with a panel of compounds with known
characteristics in humans; 10) an integrated computer model
translating concentrations to the human situation. Here, an over-
view of available systems is presented and the difficult route to-
wards a fully validated system is discussed.
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Efficacy, safety, and drug disposition in
humans: lost in translation
For many severe, fatal, and debilitating diseases, treat-
ment options are scarce, insufficient, or do not exist at
all. Unfortunately, the drug development process is slow
and extremely expensive. Regulatory authorities such as
the United States Food and Drug Administration and
the European Medicines Agency require the use of
experimental animals to test absorption, distribution,
metabolism, and excretion (ADME), efficacy and safety.
It takes around 12 years to bring a drug to the market

with costs estimated to amount to at least hundreds of
millions of dollars up to $ 2.6 billion per drug that
reaches the market [1]. The main reason for costs in
terms of time and funds is the high attrition rate [2].
Currently, only one out of nine drug candidates (11%)
that enters the clinical study phase is successfully
introduced into the market. The main factor causing
attrition is the lack of efficacy and safety in humans,
even though available results from animal tests predict
otherwise. The result of this is that effective medication
for many severe and debilitating human diseases is

currently not available.

It is commonly known that effects in experimental an-
imals exposed to a compound of interest can be very
different from effects observed in humans. This has
been shown for pharmaceuticals [2e5] and for chem-
icals, especially for their carcinogenicity [6e9]. One of
the main causative factors for the low predictivity
observed for safety and efficacy when comparing
experimental animals and humans is that drug disposi-
tion reflected by ADME processes is very different in
experimental animals and humans. In other words,

ADME of drugs determines their safety and efficacy
profile, therefore predicting these processes (and drug
metabolism and pharmacokinetics (DMPK), a related,
www.sciencedirect.com
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highly similar concept used for pharmaceuticals) in the
preclinical phase is of the utmost importance. In a
review by Shanks et al., the concentration of a specific
compound that reaches the blood upon oral exposure is
compared between several commonly used experi-
mental animal species and humans. The plots show a
shotgun pattern when human data were plotted against
animal data [10]; the correlation between animal and

human data was very low. A recent systematic review
comparing human and animal renal clearance measured
for 20 renally excreted drugs showed that rats signifi-
cantly overestimate human renal clearance [11]. Clearly,
results in animals do not always translate well to
humans.

Despite this loss in translation, animal tests are obliga-
tory for both pharmaceuticals and chemicals marketing.
For instance, pharmacokinetic (PK) studies are
routinely performed in animals in the drug discovery

phase. Typically, these studies involve intravenous and
oral administration of a clinically relevant formulation in
rats followed by a thorough study of the disposition of a
potentially new drug within the organism [12].

Another factor, that is quickly becoming more relevant,
is the societal pressure to develop alternatives to animal
tests because of ethical considerations. The most recent
manifestation is that the US EPA has published a
directive in September 2019 in which is stated that
funding for animal testing will be reduced by 30% in

2025 and will be abolished completely by 2035.

Classic cell culture usually involves the culture of a
commercially available cell line as a monolayer on a 2D
surface (culture dish, flask, or wells plate). Medium is
applied statically on top of the cells so that they receive
nutrients, and periodic replacement is needed to pro-
vide fresh nutrients when the medium has been
exhausted. Cells and immortalized cell lines are often
derived from animal sources (e.g. MDCKII, LLC-PK1
cells) or human tumors (e.g. Caco-2, HT-29 cells). A
notable shortcoming of such cell lines for investigation

of ADME-DMPK is that they often lack metabolic
competence; this means that toxicity can be both
overestimated and underestimated because potentially
toxic metabolites might not be formed, while a toxic
parent compound may not be metabolized into nontoxic
metabolites (e.g., Ref. [13]). Such simple systems do
provide relevant information about basic features of the
PK profile (e.g. intestinal absorption, hepatic metabolic
rate, or transporter interactions) or in vitro toxicity pro-
file of parent compounds, but not much more than that.
Clearly, if we want to investigate more complex pro-

cesses in humans, we need a higher level of complexity.

At the moment, fully validated alternative in vitro
models to test ADME-DMPK are not yet available or at
least not yet ready for implementation. But there have
www.sciencedirect.com
been exciting developments in the in vitro field in the
last decade. Landmark studies on organoid- and organ-
on-chip technology have shown the great potential of
these technologies to replace the animal as the preferred
model to predict the effects on humans. Examples
include 1) the improved prediction of treatment efficacy
for cystic fibrosis patients is made possible by culturing
intestinal organoids [14], 2) the development of organ-

on-chip systems in which cells are grown on tubular
structures, which improves maturation and differentia-
tion into multiple cell types, allowing for the investi-
gation of the transport of substances across epithelial
cell layers from a microfluidic flow mimicking vascular
flow [15e17] and 3) the development of hepatic
spheroids that express bile acid transporters [18].
Moreover, connecting multiple individual organ-on-chip
systems can generate a system with which ADME-
DMPK of pharmaceuticals, chemicals, or nutrients can
be assessed.

Using multiorgan-on-chip technology to
assess ADME-DMPK in vitro
Organ-on-chip revolves around the culture of one or
more cell systems in a small chamber or bioreactor with a
laminar flow, providing nutrients and appropriate levels
of shear stress. An organ-on-chip system constitutes the
following elements: 1) microfluidic chip, a credit card
size device containing microchannels for medium flow

and microchambers for cell culturing; 2) compartment
to culture cells (commercial cell line, primary cells, stem
cellederived cells or organoid) or tissue segments/slices;
3) microfluidic flow through one or multiple micro-
channels/tubing providing culture medium and a test
compound of interest and may additionally constitute:
4) optionally: scaffold or 3D gel on which cells are grown
to simulate physiological structures or create barrier
models; 5) Optionally: biosensors to measure endpoints
such as shear stress, metabolism, barrier integrity and/or
viability, or bio-actuators that stimulate relevant phys-

ical stimuli.

Using organ-on-chip, cells can be kept in culture for
much longer before they dedifferentiate, undergo
apoptosis or become senescent, opening the door to
in vitro investigation of long-term exposures, in contrast
to the acute exposures that are investigated with classic
in vitro methods. Also because microfluidic flows are
laminar, they only mix by diffusion, which means that
biochemical gradients can be achieved and controlled
more accurately permitting better control of the tissue

microenvironment. Another advantage of shear stress
induced by microfluidic flow on the cells is the fact that
increased cellular maturation as well as differentiation
into multiple cell types (especially for adult stem cells
and induced pluripotent cell types) present in the organ
of origin can be achieved, for example, for kidney [19]
and intestine [16,20]. For ADME-DMPK specifically, a
very relevant characteristic of organ-on-chip technology
Current Opinion in Toxicology 2021, 27:8–17
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is that multiple organ models in one or more chips can
be interconnected. When each of those chips features a
barrier system, the uptake, transport, and metabolism of
a compound through the system can be monitored. Such
a system can be based on a 2D membrane or, depending
on the physiological structure of organs, on a hollow fiber
membrane mimicking functional parts of organs such as
the kidney (tubules [21]), gut (intestinal tube [16]), or

liver (bile duct [15]). Different components would be
present on either side of the membrane/hollow fiber,
and transepithelial transport of compounds can be
investigated by this approach.

Of course, the selection of the appropriate individual
organ modules in multiorgan-on-chip models highly
depends on the mimicked exposure route. Examples of
individual organ-on-chip systems that could be inte-
grated in a multiorgan-on-a-chip system for ADME-
DMPK assessment are summarized in Table 1.

Figure 1 shows how such individual organ-on-chip
modules could be connected to physiologically mimic
the oral, intravenous, dermal, and inhalatory exposure
routes. Here, it should be noted that different setups
are possible and can have their value for specific pur-
poses. To be able to completely replace the animal test
for ADME-DMPK assessment of a novel compound, it
will be necessary to integrate organ-on-chip modules for
most relevant organs (or even multiple modules per
organ for different organ parts, for example, the proximal
Table 1 Examples of single organ-on-chip models needed to
create an ADME-DMPK-OoC model for each of the exposure
routes.

Exposure
route

OoC systems needed Examples

Dermal Skin-OoC [34,35];
Heart-OoC [36,37];
Liver-OoC [38,39];
Kidney-OoC [40,41];
Bile duct-OoC [42];
Intestine-OoC [16,43];

Intravenous Heart-OoC See dermal exposure route
Liver-OoC See dermal exposure route
Kidney-OoC See dermal exposure route
Bile duct-OoC See dermal exposure route
Intestine-OoC See dermal exposure route

Oral Stomach-OoC [44];
Intestine-OoC See dermal exposure route
Liver-OoC See dermal exposure route
Kidney-OoC See dermal exposure route
Bile duct-OoC See dermal exposure route

Inhalatory Lung-OoC [45–47];
Heart-OoC See dermal exposure route
Liver-OoC See dermal exposure route
Kidney-OoC See dermal exposure route
Bile duct-OoC See dermal exposure route
Intestine-OoC See dermal exposure route
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tubule and the glomerulus for the kidney or the alveolar
and bronchial regions for the lung). Sometimes very
specific questions related to ADME-DMPK need to be
answered, for which a more limited number of organ-on-
chip modules would be appropriate. It can be important
to investigate the interaction between two organ sys-
tems, for instance. Importantly, an ADME-OoC system
should only be as complex as necessary because, inevi-

table, there are drawbacks to a more complex system (it
certainly is more technologically challenging, but also
problematic for validation of such a system, for achieving
sufficient cellular function and viability in all integrated
cell systems and so forth).

From a technical point of view, research groups that
work on multiorgan chips have adopted three strategies
to connect individual organ models in one system, as
shown in Table 2. The first is to design one chip with
different organs that are connected to each other by a

simple gravity-driven flow. This is to decrease the
complexity of the operation and, therefore, allow
increasing the throughput of the experiments. Because
of the simpler layout, these systems often benefit
from more inert materials to pharmaceutical com-
pounds, avoiding drug absorption and adsorption. The
drawback of such systems is that the simplicity of the
design reduces the complexity of the microenviron-
ment in the integrated organs. Prof. Michael Shuler and
Prof. James Hickman (co-founders Hesperos) are
among the pioneers of pumpless multiorgan chips [22].

The second strategy keeps the different organ models
in one chip but adds on-chip, e.g. TissUse [23] and CN
BIO [24], or off-chip, e.g. Prof. Lecler’s lab [25],
peristaltic pumps to the system. This method enables
researchers to use more physiologically relevant
models, especially barrier models, in their multiorgan
chips. This, consequently, comes with a price of more
difficult operation and lower throughput than the first
strategy. These two first strategies give us the oppor-
tunity to use standard static organ models, such as
Transwell inserts, in a dynamic microenvironment of a
microfluidic system. Although limited, sensors can also

be integrated in these systems. The third strategy goes
one step further in technical aspects and adds more
physiological relevance and sensor technologies. The
idea here is to model each organ in separate chips and
connect them with tubing to each other to create a
modular and independent multiorgan model [26]. This
physiological complexity creates technical complexities
which makes the operation of such systems more
difficult and thus their throughput lower. Up to now,
the physiological complexity of the multiorgan chips
seems to be proportional to their technical complexity

and inversely proportional to the throughput of these
systems. More automation, standardization, and high-
throughput readout technologies can help improve the
relationship between complexity and throughput
[27,28].
www.sciencedirect.com
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Figure 1

Main exposure routes (black text) for pharmaceuticals and chemicals and their disposition in relevant organ systems (red text) to be evaluated by a
potential multiorgan-on-chip system; created with BioRender.com.
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The road ahead for drug disposition on a chip
Multiorgan-on-chip technology is still in its infancy, and
many challenges need to be overcome before a mature,
fully validated ADME-chip system is ready to be imple-
mented for regulatory testing. A number of technical
challenges that need to be overcome include the following:

� Connection of the different individual chip modules
is a challenge; this should be done in a physiologically

relevant manner and the individual systems should
receive the appropriate amount of shear stress in
order for the cells to properly differentiate and
mature.

� It can be difficult to keep such a complex system
bubble-free and sterile to prevent infection with
pathogens when handling it; for some organ-on-chip
systems, this known to occur when changing
medium or treating cells. Automation/robotization of
the system can be a great asset in this regard as well as
the integration of microsensors.

� Development of a universal medium that does not
only keep all different cells alive, but also keeps them
functional can be challenging. Due to the laminar flow
in a microfluidic system, it might be possible to let
various medium types flow through the system;
otherwise, separated and isolated medium flows
should be integrated into the system. When using
www.sciencedirect.com
organoid-based models, general organoid medium can
work quite well (e.g., Refs. [29,30]).

� Also, to be a truly animal-free test method, it will be
necessary to avoid the use of FCS and Matrigel.

� The choice of material for 3D printing of the chips
and support structures is important: while PDMS is
convenient and practical to work with, it is also known
to be able to bind compounds and can release them in

an unpredictable manner, which greatly limits the
control one has over the intended compound con-
centration at a cellular site.

Clearly, the more complex an in vitro system is, the more
difficult and time-consuming it will be to validate it
[31,32]. Standardization of all the different components
(cell system, 3D-printed chip, scaffold, medium,

microfluidic flows, endpoints measured via biosensors
etc.) is needed; each individual cell system should be
tested for viability, functionality, and barrier function.
Moreover, each individual system should still function
properly after connecting them to form a predictive drug
disposition system allowing study of ADME processes.
Standardization of such a system, which is needed to
ensure that reproducible results can be achieved, re-
quires integration of microsensors to monitor relevant
model parameters and could benefit greatly from
extensive automatization/robotization.
Current Opinion in Toxicology 2021, 27:8–17
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Table 2 Multi-OoC systems in the scientific literature applicable for ADME-DMPK assessment.

Group Organs Standardization Technical
complexity

Thr ghput/
aut mation

Material Complexity of
microenvironment

Sensors

ultiorgan system in a single
chip with gravity-driven
flow

Shuler and Hickman lab
(Hesperos)

- Liver and intestine [48,49]
- Liver and bone marrow [22,50]
- Liver, tumor and marrow [50]
- Liver and heart [51]
- Liver, heart, muscle and neurons [52]
- Liver, fat, kidney, bone marrow
and intestine [53]

++ + ++ ++ + ++

Sung lab (Hongik University) - Liver, intestine [54–57]
- Liver, tumor [58]

+ ++ + + + +

Insphero (Akura™ Flow) - Liver and tumor [59–61] ++ ++ ++ +++ + +
Multiorgan system in a single

chip with peristaltic flow
TissUse (Humimic) - Liver and neurospheres [62]

- Liver and skin [63–65]
- Liver and intestine [63]
- Liver and lung [66]
- Liver and testis [67]
- Liver and kidney [68]
- Tumor and skin [65]

++ ++ + ++ ++ +

Griffith lab (MIT & CN BIO) - Liver and intestine [24,69,70]
- Liver, intestine, lung, heart
muscle, brain, pancreas,
skin and kidney [71]

++ ++ + +++ ++ +

Leclerc lab (CNRS Paris) - Liver, intestine [25,72]
- Liver and pancreas [73]
- Liver and kidney [74]

++ ++ + + + ++

Multiorgan system with
multiple chips

Ingber lab (Wyss Institute) - Gut, liver, kidney, heart, lung,
skin, brain, vasculature [26]

+ + + +++ +

Shrike (Harvard) &
Khademhosseini (UCLA) lab

- Liver and heart [75]
- Liver, lung and heart [76]

+ + + ++ +++
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A novel in vitromodel is validated using a fit-for-purpose
approach (i.e. the model works for a specific purpose
intended). When an ADME-chip is to be used to assess
pharmaceuticals in a contract research environment, it
should usually comply with the good laboratory practice
(GLP) standard which has significant implications;
validated and highly standardized protocols are required
for cell culture and all used equipment. Implementation

in the R&D lab of a specific pharmaceutical company
depends on the needs and preferences of that specific
company, in terms of regulations little is imposed by the
authorities. For regulatory testing of chemicals and food
components however, strict regulations exist: an in vitro
assay should be submitted to the European Union
Reference Laboratory for alternatives to animal testing
(EURL-ECVAM) so it can be validated by a test labo-
ratory accredited by the European Union Network of
Laboratories for the Validation of Alternative Methods
(EU-NETVAL). Extensive guidance on how to develop

a novel in vitro assay is given in the guidance document
on Good In vitro Method Practices (GIVIMP), which
has been drafted by the OECD [33]. Validation by
EURL-ECVAM can be a lengthy procedure and it is
important that a system is finalized at some point,
because the introduction of small changes may implicate
that the system needs to be re-validated. This is highly
challenging in a field that is evolving so rapidly; the
decision when to start a laborious and lengthy validation
of a multiorgan-on-chip system is a tough call to make.

To test predictivity of drug disposition in a multi-
organ-on-chip system, its performance should be
validated against both human (gold standard, but
Box 1. Recommendations/requirements for an in vitro system designed t

1) Cells should be of human origin and should express functional transporte
2) Selected chip modules mimicking specific organ functionalities models sh

interest;
3) These models should be connected in a physiologically relevant way;
4) Cells should form a tight barrier between the different compartments relev

feces, bile etc.
5) Organ systems should be properly 3D-polarized (i.e. transport should occu
6) Preferably, the system should allow for longer term cell culture, so ADME
7) The system should allow for sampling in all the major compartments that a

the route of exposure), allowing for monitoring of transport through the sy
8) The system should be constructed from materials that do not absorb/ads
9) Cells should grow in absence of FCS and Matrigel for the system to be tr
10) The system should be validated for a carefully selected panel of compou

negative controls;
11) Integrated physiologically based pharmacokinetic (PBPK) computer mod

the volumes in the individual organ-on-chip model compartments (blood, u
so that concentrations in humans can be predicted;

12) The system should incorporate a number of microsensors so that model p
robotized as much as possible to facilitate standardization, which is diffic

www.sciencedirect.com
availability can be limited) and animal (when human
data are not available or not useful) ADME-PK data.
Measurement of the concentration of parent com-
pound and their metabolites in each organ compart-
ment (e.g. blood and urine for the kidney, blood and
bile duct for the liver, blood and gut lumen for the
gut) using quantitative methods such as liquid
chromatography-tandem mass spectrometry would be

recommended. An integrated physiologically based PK
model should be developed to translate the concen-
trations and volumes in the different compartments of
the multiorgan-on-chip (e.g. bile, blood, urine, feces)
to their human equivalent. Preferably, compounds
should be included in the test battery that are well
predicted by current methods (in vitro and in vivo) as
well as compounds for which current systems fail to
predict the human ADME properties. Examples of
such compounds are well-known drugs such as anti-
pyrine and verapamil (high permeability), theophyl-

line and atenolol (low permeability), high organ
extraction compounds such as propanol and
morphine), and substances with more complex ADME
characteristics include substrates for drug transporter
proteins and/or metabolizing enzymes (diclofenac,
digoxin, atorvastatin).

This will facilitate thorough assessment of the perfor-
mance of the model in relation to animal experimen-
tation. Important to note is that human data are the
gold standard here, not animal data; a model that would

excellently reproduce data obtained in experimental
animals would still be of limited value when attempting
to predict effects in humans.
o mimic drug disposition/ADME.

r systems and metabolizing enzymes at physiological levels;
ould be incorporated for the organs relevant for the exposure route of

ant for ADME/PK that are mimicked by the system, such as blood, urine,

r from apex to base or the other way around, just like in the actual organ);
might be investigated upon a repeated dose regimen;
re mimicked (e.g. blood, urine, bile, airway lumen or feces depending on
stem and metabolism of the compound of interest;
orb the compound of interest;
uly animal-free and thus a real alternative to the animal test;
nds with known ADME-DMPK in humans, using appropriate positive and

el translating in vitro findings to the human situation, that is, by upscaling
rine, bile feces etc.) to the volumes of respective compartments in people

arameters can be closely monitored; preferably, it should be automated/
ult for such a complex system.

Current Opinion in Toxicology 2021, 27:8–17
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Conclusions and future perspective
Groundbreaking work has been performed in which

steps have been taken towards the creation of multi-
organ-on-chip models. In Box 1, the main characteristics
for a multiorgan-on-chip system to provide a true
alternative to an animal ADME-DMPK study are sum-
marized. At present, none of the created models fulfill
all of the criteria mentioned. When striving to create a
model capable of improving on (and replacing) animal
tests, close collaboration is needed between a great
number of disciplines, that is, experts in cell biology,
microfluidics, 3D printing, microelectronics, physiolog-
ically based PK modeling, artificial intelligence/machine

learning and robotization should or could be linked up.
Moreover, connections to R&D labs from the pharma-
ceutical, chemical and food industry as well as regulating
agencies will be crucial to ensure that a system can be
readily implemented and complies with regulatory,
quality-related and practical requirements.

The complexity of such collaboration between stake-
holders from diverse backgrounds requires setting up
connective structures (i.e. hubs) from where stakeholder
communication and project management is coordinated

and where a database is present with information on
experts in relevant fields. Independence of such struc-
tures/hubs would positively affect collaboration.

It is clear that the road ahead is long and is filled with
plenty of obstacles, but the rewards upon achieving the
goal (a fully developed and validated multiorgan-on-chip
model) are great: faster and more cost-effective drug
development resulting in better availability of treatment
for all kinds of diseases, better testing of chemicals and
food components and replacement of ethically sensitive

animal tests by in vitro methods.
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