
����������
�������

Citation: Rohlfs, J.; Bossers, K.W.;

Meulendijks, N.; Valega Mackenzie,

F.; Xu, M.; Verheijen, M.A.; Buskens,

P.; Sastre, F. Continuous-Flow

Sunlight-Powered CO2 Methanation

Catalyzed by γ-Al2O3-Supported

Plasmonic Ru Nanorods. Catalysts

2022, 12, 126. https://doi.org/

10.3390/catal12020126

Academic Editors: Son Ich Ngo and

Enrique García-Bordejé

Received: 22 December 2021

Accepted: 17 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Article

Continuous-Flow Sunlight-Powered CO2 Methanation
Catalyzed by γ-Al2O3-Supported Plasmonic Ru Nanorods
Jelle Rohlfs 1, Koen W. Bossers 1, Nicole Meulendijks 1 , Fidel Valega Mackenzie 1, Man Xu 1,2 ,
Marcel A. Verheijen 3,4 , Pascal Buskens 1,5,* and Francesc Sastre 1,*

1 The Netherlands Organisation for Applied Scientific Research (TNO), High Tech Campus 25,
5656AE Eindhoven, The Netherlands; jelle.rohlfs@tno.nl (J.R.); koen.bossers@tno.nl (K.W.B.);
nicole.meulendijks@tno.nl (N.M.); fidel.valegamackenzie@tno.nl (F.V.M.); man.xu@tno.nl (M.X.)

2 Optics Research Group, Delft University of Technology, Lorentzweg 1 (Building 22),
2628CJ Delft, The Netherlands

3 Eurofins Materials Science, High Tech Campus 11, 5656AE Eindhoven, The Netherlands;
MarcelVerheijen@eurofinsEAG.com

4 Department of Applied Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
5 Institute for Materials Research Design and Synthesis of Inorganic Materials (DESINe), Hasselt University,

Agoralaan Building D, B-3590 Diepenbeek, Belgium
* Correspondence: pascal.buskens@tno.nl (P.B.); francesc.sastrecalabuig@tno.nl (F.S.)

Abstract: Plasmonic CO2 methanation using γ-Al2O3-supported Ru nanorods was carried out under
continuous-flow conditions without conventional heating, using mildly concentrated sunlight as the
sole and sustainable energy source (AM 1.5, irradiance 5.5–14.4 kW·m−2 = 5.5–14.4 suns). Under
12.5 suns, a CO2 conversion exceeding 97% was achieved with complete selectivity towards CH4

and a stable production rate (261.9 mmol·g−1
Ru ·h

−1) for at least 12 h. The CH4 production rate
showed an exponential increase with increasing light intensity, suggesting that the process was
mainly promoted by photothermal heating. This was confirmed by the apparent activation energy
of 64.3 kJ·mol−1, which is very similar to the activation energy obtained for reference experiments
in dark (67.3 kJ·mol−1). The flow rate influence was studied under 14.4 suns, achieving a CH4

production plateau of 264 µmol min−1 (792 mmol·g−1
Ru ·h

−1) with a constant catalyst bed temperature
of approximately 204 ◦C.

Keywords: carbon dioxide; Sabatier reaction; solar light; surface plasmon resonance; photochemistry

1. Introduction

In the last decade, the urge to reduce greenhouse gas emissions and to close the carbon
loop has led to the promotion of synthetic fuels production, using CO2 and renewable en-
ergy as feedstock [1–3]. One of the main issues is the activation of the CO2 molecule, which
displays a high thermodynamic stability. For this purpose, several catalytic pathways have
been investigated to lower the activation energy such as electrochemical, thermochemical,
and photochemical/photothermal catalysis [4–6]. Direct use of sunlight to convert CO2 into
fuels and chemicals can lead to efficient systems because of the lower operating tempera-
tures and the application of only one single energy conversion step [6–10]. Synthetic natural
gas (CH4) is an attractive product to target, as the infrastructure required for its distribution
and storage is already established [11]. Additionally, it can be used as a higher energy
density storage fuel compared to H2 obtained through electrolysis. CH4 can be produced
via hydrogenation of CO2 through the Sabatier reaction under solar light irradiation shown
in Equation (1).

CO2 + 4H2 → CH4 + 2H2O ∆H = −165 kJmol−1 (1)
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Photocatalysis aims to harvest (part of) the energy of sunlight and use it to drive
chemical reactions through a coupled process where either semiconductor or plasmonic
nanoparticles (NPs), or a combination of both, are used for both the interaction with the
incoming photons and, subsequently, utilizing the energy of such photons to promote the
catalytic conversion. Plasmonic NPs alone or supported on other materials, such as metal
oxides, offer a promising approach for the CO2 photoreduction to fuels and chemicals
using sunlight due to the fact of their excellent light absorption and their unique catalytic
properties [12–18]. Plasmonic NPs can harvest a particular part of the solar spectrum
depending or the type of metal, shape, size, or interparticle distance [19,20]. For CO2
photomethanation, the most common metals explored are Ni and Ru [21–33]. A literature
overview on photomethanation processes is listed in Table S1. Grätzel and coworkers
reported one of the first attempts of CO2 photomethanation under mild conditions [23].
They synthetized Ru NPs supported on TiO2 P25, which successfully produced CH4 under
simulated solar light at 1 bar, reporting an initial rate for the methane formation of 10
µmol·h−1 at 90 ◦C. Sastre et al. demonstrated CO2 methanation with high conversion rates
under solar irradiation using Ni supported on SiO2–Al2O3 in a batch reactor, reporting
CO2 conversions of 94.9% with a selectivity higher than 97% for CH4 [24]. Meng et al.
reported the performance of several group VIII metals using highly concentrated light [34].
They studied the photothermal reduction of CO2 with H2, achieving temperatures be-
tween 350 and 400 ◦C. More recently, Zhang et al. reported the plasmonic behavior of Rh
nanoparticles, demonstrating that light can influence not just the activity of the catalyst
but also the product selectivity. They reported the selective formation of CH4 from CO2 for
mildly illuminated reactions [35]. Under illumination, the Rh NPs show an enhanced CH4
production rate with a high selectivity, while the CO accompanying production remains
constant in comparison to dark experiments. Garcia and coworkers investigated Cu2O
nanoparticles supported on graphene, for which they reported a maximum specific CH4
production rate of 14.93 mmol·gCu2O

−1·h−1 and an apparent quantum yield of 7.84% at
250 ◦C [36]. Recently, our group has demonstrated that Ru nanospheres can enhance the
activity towards production of CH4 under solar light irradiation based on a collective pho-
tothermal effect [37]. Our group also demonstrated that a catalyst based on Ru nanorods
(NRs) displays a remarkably broad absorption band, and that it can efficiently promote
solar-powered CO2 methanation reactions [25]. Most studies on the sunlight-powered
Sabatier reaction to date, including our previous study using Ru NRs [25], were performed
using batch reactors. Only a few studies report the Sabatier reaction based on plasmonic
photocatalysts in a continuous-flow operation [38,39]. Garcia et al. studied the continuous-
flow photo-assisted CO2 methanation of a Ni-supported catalyst on Al2O3/SiO2 for a time
period of 4 h. They reported an increase of 3.7 times of the CH4 production rate compared
to the process in dark with a 3.5% CO2 conversion under illumination at 240 mW·cm−2 and
225 ◦C [38]. The performance of Ru nanoparticles supported on layered double hydroxides
(LDHs) has been reported for the CO2 methanation in flow conditions by the group of
Ye [39]. They achieved CO2 conversion higher than 96% at a catalyst temperature of 350 ◦C
under 300 W Xe lamp irradiation in 2 h experiments.

In order to scale-up and industrialize the solar-powered methanation process, more
comprehensive studies aimed at understanding the effect of light intensity and flow rate
on the reaction rate are required, e.g., to distinguish between photothermal and non-
thermal contributions. Herein, we present a catalyst consisting of Ru NRs supported
on G-Al2O3, which successfully promoted full conversion for the CO2 methanation with
complete selectivity for CH4 without conventional heating of the reactor and under a mild
solar irradiation of up to 14.4 suns (14.4 kW·m−2). We selected this catalyst based on
its broadband light absorption, which makes it capable of harvesting a large part of the
solar energy, its high catalytic activity, and its ability to selectively convert CO2 and H2 to
CH4 [25]. Furthermore, we excluded semiconductive support materials, such as TiO2 and
CeO2-x, since they can generate electron–hole pairs using the UV part of sunlight and may
directly catalyze the solar methanation reaction. The impact of the solar irradiance and
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flow rate on the CH4 production rate were studied and comparative studies in dark were
performed. The results indicate that the reaction process is dominated by photothermal
heating of the Ru NRs. Under light conditions, the catalyst showed negligible deactivation
for at least 12 h of reaction.

2. Results and Discussion
2.1. Catalyst Synthesis and Characterization

The details of the Ru-NRs/G-Al2O3 synthesis are described in Section 3. In brief, Ru
NRs were formed by thermal decomposition of Ru3(CO)12 deposited on G-Al2O3 in air,
followed by reduction of the formed RuO2 nanocrystals with H2. Thermal decomposition
was performed in air at 300 ◦C. The resulting material, comprising RuO2 nanocrystals, was
characterized by XRD analysis (Figure S1a). The material was reduced under 5% H2 in
Ar at 250 ◦C (Scheme 1, see Section 3) obtaining Ru-NRs/G-Al2O3 containing a variety of
Ru nanorods and Ru nanospheres. The XRD pattern of the Ru-NRs/G-Al2O3 (Figure 1a)
showed characteristic peaks corresponding to metallic Ru and G-Al2O3 (Figure 1a). The
main diffraction peaks corresponding to metallic Ru can be observed at 38.4◦, 42.1◦, 44.0◦,
69.4◦, 78.4◦, 82.2◦, 84.7◦, and 85.9◦ (ICDD 00-006-0663), while the diffraction peaks corre-
sponding to G-Al2O3 are shown at 31.9◦, 37.6◦, 39.5◦, 45.7◦, and 66.7◦ (ICDD 00-029-0063).
In contrast, the XRD pattern of the G-Al2O3 only showed peaks corresponding to G-Al2O3
(ICDD 00-029-0063). Figure S1b shows the diffuse reflectance UV–Vis spectrum of the
Ru/G-Al2O3 catalyst, showing a broadband absorption between 350 and 850 nm in contrast
to the G-Al2O3 that displays a much higher reflectance. Thermogravimetric analysis (TGA)
demonstrates that the catalyst was stable between 30 and 500 ◦C under N2, and the Ru
nanoparticles started oxidizing in air at 260 ◦C (Figure S2). The material was characterized
via transmission electron microscopy (HRTEM), showing that Ru NR-like structures and
nanospheres were randomly distributed on G-Al2O3 as displayed in the high-angle annular
dark field (HAADF) image in Figure 1b. The average size of the rod-like particles was
60 nm in length (Figure S1b) and 10 nm (Figure S1c) in width and 9 nm for the nanospheres
(Figure S1d), determined after measuring a statistically relevant number of particles. The
EDX elemental maps of Al and Ru, displayed in Figure 1g–e, confirmed the presence of Ru
in the bright particles in the HAADF images. Atomic resolution TEM imaging (Figure 1h
and Figure S1k) and corresponding fast Fourier transform (FFT) analysis of these images
(Figure 1i and Figure S1l) confirmed the hexagonal Ru crystal structure and, thus, the
metallic nature of the Ru particles. The Ru loading was analyzed through inductively
coupled plasma optical emission spectroscopy (ICP-OES) analysis of the catalyst, which
determined a Ru weight content of 10%. The Ru loading was not optimized to maximize
the catalytic performance. Optimization of Ru loading and reaction parameters, such as
temperature and pressure, will be part of future work.
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Figure 1. Structural characterization of the Ru/G-Al2O3 catalyst: (a) XRD pattern of the Ru/G-Al2O3

catalyst (purple line) and G-Al2O3 support (black line) containing the characteristic peak positions for
Ru (blue triangles, ICDD 00-006-0663) and G-Al2O3 (black squares, ICDD 00-029-0063); (b) represen-
tative HAADF-STEM image of the Ru NRs and Ru nanospheres supported on G-Al2O3; (c) BFTEM
image of a part of a cluster showing Ru nanorods on G-Al2O3; (d) HAADF-STEM of a part of the
cluster shown in (c); (e–g) corresponding EDX elemental maps of Al (green) and Ru (red); (h) HRTEM
image of a Ru nanorod; (i) FFT pattern of the area selected in (h), corresponding to a < 1-21-3 > zone
axis pattern of the hexagonal Ru crystal structure.

2.2. CO2 Photomethanation without Conventional Heating

The CO2 photomethanation experiments were performed in a custom designed pho-
toreactor system in a continuous-flow mode (Figure S3). The reactor had an opening on
top with a quartz window through which artificial sunlight was irradiated on the catalyst
powder bed. Prior to the experiment, 200 mg of the catalyst were loaded into the lower part
of the photoreactor. Then, a mixture of H2:CO2:N2 with a ratio of 4.5:1:1 was continuously
led through the reactor corresponding to a flow of 9:2:2 mL·min−1. N2 was used as internal
standard (see Section 3). The light source was a solar simulator (Newport Sol3A) equipped
with an AM 1.5 filter and a light intensity/irradiance up to 14.4 suns (1 sun is equal to
0.1 W·cm−2). The reactor temperature was monitored by a thermocouple located in the
chamber (TReactor). The catalyst bed temperature was measured through a thermocouple
placed in contact with the lower side of the catalyst bed holder (TCat bed). For the dark
experiments, the reactor was heated from the bottom and laterals using electric heaters.
Time zero was considered when the light was switched on, and for the dark experiments,
when the desired reaction temperature was reached. Control experiments without Ru did
not show any detectable product under light and dark conditions.

The performance of the Ru/G-Al2O3 catalyst for the photomethanation of CO2 was tested
under an illumination of 12.5 suns. When the light was switched on, the CH4 production rate
increased rapidly (Figure 2a, blue line), reaching 87 µmol·min−1 (261.9 mmol·g−1

Ru ·h
−1, 97%
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of conversion, after 5 min). This production rate remained constant for the 12 h time period
for which we ran the reaction. The H2 and CO2 (Figure 2a, black and red line, respectively)
decreased accordingly and remained constant until the light was switched off, resulting in
a decrease of the CH4 production rate to zero and an increase in the concentration of the
reactants to their original values. The catalyst bed temperature increased rapidly after the
light was switched on, reaching a spike of 222 ◦C and, subsequently, stabilizing at 207 ◦C
(Figure 2b). This spike may be caused by the combination of the Ru NR acting as an efficient
nanoheater under light irradiation in combination with the exothermicity of the Sabatier
reaction until the reaction achieves its steady state. However, the catalyst bed temperature
was stable after 30 min, and the temperature spike therefore did not have a relevant impact
on the CH4 production rate in the steady state. A detailed study on the origin of this
temperature spike at the start of the process will be part of future investigations. The
catalyst bed temperature was measured in the bottom part of the catalyst bed and did
not correspond to the top surface temperature, as there was likely a substantial thermal
gradient between the top and the bottom part of the catalyst [40–43]. This gradient was
reported to exceed 100 ◦C for Rh/TiO2 [44]. In contrast, the reactor temperature remained
constant at 30 ◦C.
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Figure 2. (a) CH4 production rate as function of time for the CO2 photomethanation without conven-
tional reactor heating under 12.5 suns light intensity; (b) catalyst bed and reactor temperatures as
function of time for the CO2 photomethanation without conventional reactor heating under 12.5 suns
light intensity. Reaction conditions: mixture of H2:CO2:N2 (4.5:1:1) with a flow of 9:2:2 mL·min−1 at
1.5 bar pressure (10 wt% Ru/G-Al2O3, 200 mg, AM 1.5 irradiance, 1 sun = 1 kW·m−2).

Hot carriers, generated by the illumination of plasmonic catalyst nanoparticles, can
influence the reaction in multiple ways, e.g., by injection of hot electrons into an unoccupied
orbital of a nearby adsorbate (i.e., non-thermal contribution) and by increasing the catalyst’s
temperature (i.e., photothermal effect) [44–48]. To obtain insight into potential photothermal
and non-thermal contributions, the Ru/G-Al2O3 catalyst’s performance for solar CO2
reduction was studied under different light intensities ranging from 5.5 to 12.5 suns without
conventional heating. The CH4 production rate increased exponentially with increasing
light intensity, which demonstrated the presence of a photothermal contributor (Figure 3).
The CO2 conversion increased from 1.3% under illumination of 5.5 suns to 97% under
12.5 suns illumination (Figure S4).
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Figure 3. CH4 production rate as function of light intensity for the CO2 photomethanation with-
out external heating. Reaction conditions: mixture of H2:CO2:N2 (4.5:1:1) with a flow of 9:2:2
mL·min−1 at 1.5 bar pressure (10 wt% Ru/G-Al2O3, 200 mg total catalyst mass, AM 1.5 irradiance
(1 sun = 1 kW·m−2)).

In case of sole non-thermal contributions, a linear dependence of the CH4 production
rate on the applied light intensity would be expected, since the rate of molecular trans-
formations is proportional to the rate of incident photons [40,47]. If the CH4 production
rate follows an exponential increase in the applied light intensity, a photothermal effect
contributes to the reaction as reported previously by Baffou et al. [40]. In our case, the CH4
production increased exponentially with the applied light intensity. Since the temperature
of the catalyst is proportional to the light absorption and the rate constants of chemical
reactions typically follow an Arrhenius type of temperature dependence, photothermal
reactions display an exponential relationship between the reaction rate and the irradiance.
Therefore, we propose that a large part of the observed activity was caused by collective
photothermal heating of the Ru catalyst. This confirms the results obtained from our batch
reaction study using the same Ru NR catalyst [25]. With the temperature obtained via
the thermocouple in direct contact with the bottom of the catalyst bed (Tcat), an apparent
activation energy of 64.3 kJ·mol−1 was calculated from the CH4 production rates at different
light intensities (See Equation in the Supplementary Materials). This was similar to the
activation energy obtained for the same catalyst in dark (vide infra).

The influence of the flow rate on CH4 production was studied by increasing the total
flow from 89 µmol·min−1 of CO2 ultimately up to 580 µmol·min−1 with a constant reaction
mixture of H2:CO2:N2 (4.5:1:1) under 14.4 suns light intensity. As displayed in Figure 4a,
the CH4 production rate exhibited a linear increase with the CO2 flow for low flow rates.
An increase in the CO2 flow rate from 89 to 178 µmol min−1 led to an increase of CH4
production from 85 to 175 µmol min−1 and a CO2 conversion of 97%. At higher flow
rates, the CH4 production rate proceeded towards a plateau value of 264 µmol min−1

(792 mmol·g−1
Ru ·h

−1), while the CO2 conversion decreased to 45.1% due to the short CO2–
catalyst contact times. The catalyst bed temperature remained constant at approximately
204 ◦C with an increasing flow rate (Figure 4b), confirming that the gas flow did not
significantly cool down the catalyst, which is in line with a previous report by the group
of Sivan [42].
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Figure 4. (a) CH4 production rate as function of the reactant flow rate for the CO2 photomethanation
without conventional reactor heating under 14.4 suns light intensity without external heating; (b) mea-
sured temperature underneath the catalyst bed. Reaction conditions: mixture of H2:CO2:N2 (4.5:1:1)
at 1.5 bar pressure and 14.4 suns light intensity (10 wt% Ru/G-Al2O3, 200 mg, AM 1.5 irradiance,
1 sun = 1 kW·m−2).

2.3. Thermocatalytic CO2 Methanation in Dark

To compare the performance under illumination to the conventional thermocatalytic
process in dark, experiments in dark were performed at temperatures ranging from ambient
temperature to 218 ◦C (Figure 5). For the experiments below 62 ◦C, the CH4 formation was
below the detection limit of the gas chromatograph. Based on these results, the activation
energy was calculated using an Arrhenius equation, obtaining a value of 67.3 kJ·mol−1.
This value was similar to the apparent activation energy calculated for the light-powered
reaction (64.3 kJ·mol−1, vide supra), confirming that photothermal heating was the main
contributor to the sunlight-powered process. Almost full CO2 conversion was achieved at
218 ◦C, with a complete selectivity to CH4.
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Figure 5. CH4 production rate vs. temperature for the CO2 methanation performed in dark. Reaction
conditions: mixture of H2:CO2:N2 (4.5:1:1) with a total flow of 13 mL·min−1 at 1.5 bar pressure
(10 wt% Ru/G-Al2O3, 200 mg total catalyst mass).

3. Materials and Methods
3.1. Synthesis of Ru Nanorods Supported on Al2O3

The preparation of Ru nanorods supported on G-Al2O3 was carried out following the
procedure reported previously [25]. In short, 3.2 mM Ru precursor solution was obtained
by dissolving 0.32 g (0.49 mmol, 4.9 mol%) Ru3(CO)12 (Aldrich, St. Louis, MO, USA, 99%)
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in 100 mL of THF (Biosolve, Valkenswaard, The Netherlands). The solution was stirred
for approximately 2 h, until all solid was dissolved. The γ-Al2O3 (Alfa Aesar, 99%, S.A.
200 m2 g−1, Haverhill, MA, USA) was calcined in air at 500 ◦C for 6 h. Then, after cooling
1 g of calcined G-Al2O3 was added to the precursor solution resulting in a yellow slurry.
The slurry was stirred for 4 h at room temperature. Subsequently, the THF was removed in
a rotary evaporator under reduced pressure at 45 ◦C. Calcination of the resulting composite
powder was conducted in a flow of 300 mL·min−1 air with a heating ramp of 5 ◦C min−1

until 300 ◦C and at 300 ◦C for 2 h. The resulting material after calcination was reduced
under a hydrogen flow (5% H2 in Ar, 300 mL min−1) with a heating ramp of 5 ◦C min−1

until 250 and at 250 ◦C for 2 h.

3.2. Characterization

XRD data sets were collected using a powder diffractometer (Panalytical, Almelo, The
Netherlands) using a Prefix Bragg Brentano mirror and a HD Cu radiation source with a
fixed slit of 1

4 inch. A PIXcel1d detector was used. An anti-scatter slit of 1 inch was used.
The incident beam path was 4.41◦, radius 240 mm. The used wavelength was K-Alpha1
(1.5405980 Å). Powder samples were spread on a thin layer of grease on a glass plate.

A UV–Visible diffuse reflectance spectrum was obtained using a Shimadzu UV-3600
spectrophotometer (Shimadzu, Kioto, Japan). The powder samples were pressed on a
support, and their reflectance was measured in the range between 300 and 850 nm through
an integrating sphere. The baseline for the measurements was determined using BaSO4.

The Ru content in the catalyst was analyzed via inductively coupled plasma optical
emission spectroscopy (ICP-OES) in the axial detection mode. Hereto, the sample was
digested using a 10 mL mixture of mineral acids (HCl:HNO3:HF in a 3:1:1 ratio) in a
Milestone microwave setup, where upon dilution in a 50 mL polypropylene flask was
carried out. The digestion procedure was executed in duplo and average values are
reported. An external calibration was used for quantification starting from a 1000 ppm
Perkin Elmer Ru standard in 10% HCl, and 5 ppm QC measurements were regularly
checked to assure the instruments’ constant performance.

Transmission electron microscopy (TEM) studies were performed using a JEOL ARM
200F transmission electron microscope (JEOL, Tokyo, Japan), probe corrected, equipped
with a 100 mm2 Centurio SDD EDX detector (JEOL, Tokyo, Japan), operated at 200 kV.
Imaging was performed in the HAADF scanning TEM mode. The HAADF detector uses
electrons scattered over large angles for imaging. The HAADF detector is therefore mass
sensitive, which means that higher brightness in the image corresponds to the presence of (a
larger concentration of) heavier atoms. This allows for a fast and accurate inventory of the
Ru particle size on the G-Al2O3 support. Samples were prepared by preparing a suspension
of the material in ethanol and by depositing a drop of this suspension onto a carbon-coated
copper TEM grid and drying at room temperature. In order to determine the average size
of the Ru NPs and the particle size distribution, we measured the dimensions of 200 NPs
from the corresponding TEM micrograph, using the image analysis software ImageJ.

The thermogravimetric analysis of the catalyst was carried out using the Discovery
TGA 5500 from TA Instruments (Waters, Wakefield, MA, USA). The sample was put onto a
platinum HT pan. The sample was placed in crucible under N2 or air flow at a flow rate of
25 mL/min. The temperature was raised at a rate of 25 ◦C/min to 900 ◦C.

3.3. Gas-Phase Photocatalytic Experiments

The photocatalytic experiments were conducted in a homemade photoreactor with a
quartz window on top in which a 200 mg catalyst sample was spread on a Quartz filter with
an area of 3 cm2. The catalyst bed temperature was measured by a thermocouple in contact
with the bottom part of the catalyst bed (quartz filter). In a typical experiment, the reactor
gas used was H2 (Linde 6.0), CO2 (Linde 4.5), and N2 (Linde 5.0) with a ratio of H2:CO2:N2
(4.5:1:1) of 9:2:2 mL·min−1. For the dark experiments, the temperature was stabilized to the
desired reactor temperature in the range from 25 to 220 ◦C using electrical heating.
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During the experiment, the catalyst was irradiated from the top through the quartz
window. The irradiation source was a solar light simulator (Newport Sol3A) (Newport
Corporation, Irvine, CA, USA) provided with a filter of air mass coefficient 1.5 (AM 1.5),
conventionally taken to 1 kW m−2. Concentrated sunlight was obtained with a high flux
beam concentrator (Newport 81030) (Newport Corporation, Irvine, CA, USA) up to an
intensity of 14.4 suns. The moment the lamp was switched on, it was considered to be
the starting time of the CO2 photomethanation reaction. The gas products were analyzed
by an on-line gas chromatograph (Compact GC Interscience) (Interscience, Breda, The
Netherldands) every 3 min. The GC was equipped with three channels, 2 micro TCD
detectors, and one FID detector. The first channel, used to measure H2, O2, N2, and CO,
was equipped with a MolSieve 5 Å column and RT-Q bond precolumn and TCD detector.
The second channel measured CO2, and it was equipped with a combination of a TR-U
bond column and an RT-Q bond column and TCD detector. The third channel, used to
measure methane, ethane, ethylene, and propane, was fitted with a Rtx-1, 2u column, and
an FID detector.

Blank experiments in the presence of the catalyst at 220 ◦C or under illumination and
in the absence of CO2 showed no reaction products, confirming that the CH4 originated
from CO2. In addition, no activity was observed in the absence of H2 or catalyst.

4. Conclusions

The present study demonstrated that Ru-catalyzed sunlight-powered CO2 methanation can
be successfully performed in a continuous-flow mode with high yield and selectivity, without
conventional heating, with a production rate of 87 µmol·min−1 (261.9 mmol·g−1

Ru ·h
−1, 97% of

conversion, after 5 min) at 12.5 suns irradiance and a resulting catalyst bed temperature of
207 ◦C. This production rate remained constant for the 12 h time period, demonstrating the
stability of the catalyst in use. Based on the exponential increase in the CH4 production rate
with increasing light intensity, and the similar activation energy obtained for the reaction
under illumination and in dark, we conclude that photothermal heating was the main
contributor to the sunlight-powered Sabatier reaction catalyzed by γ-Al2O3-supported
Ru nanorods. This confirms the results obtained from our batch reaction study using the
same Ru NR catalyst [25]. Furthermore, we demonstrated that for low CO2 flow rates, the
reaction rate of the illuminated process increased linearly with the CO2 flow. At higher
flow rates, the reaction rate proceeds towards a CH4 production rate of 264 µmol min−1

(792 mmol·g−1
Ru ·h

−1), reaching a plateau value. At higher flow rates, the CO2 conversion
decreased from 97% to 45.1% due to the short CO2–catalyst contact times.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/catal12020126/s1, Figure S1: Optical and structural characterization
of the Ru/G-Al2O3 catalyst; Figure S2. Thermogravimetric analysis for Ru/G-Al2O3 under N2 or air
atmosphere; Figure S3. Schematic representation of the photoreactor; Figure S4. CH4 production rate
and CO2 conversion as function of light intensity for the CO2 photomethanation without external
heating; Table S1. Photocatalytic CH4 production and reaction conditions.
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