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A B S T R A C T   

The degradation of photovoltaic (PV) systems is one of the key factors to address in order to reduce the cost of the 
electricity produced by increasing the operational lifetime of PV systems. To reduce the degradation, it is 
imperative to know the degradation and failure phenomena. This review article has been prepared to present an 
overview of the state-of-the-art knowledge on the reliability of PV modules. Whilst the most common technology 
today is mono- and multi-crystalline silicon, this article aims to give a generic summary which is relevant for a 
wider range of photovoltaic technologies including cadmium telluride, copper indium gallium selenide and 
emerging low-cost high-efficiency technologies. The review consists of three parts: firstly, a brief contextual 
summary about reliability metrics and how reliability is measured. Secondly, a summary of the main stress 
factors and how they influence module degradation. Finally, a detailed review of degradation and failure modes, 
which has been partitioned by the individual component within a PV module. This section connects the 
degradation phenomena and failure modes to the module component, and its effects on the PV system. Building 
on this knowledge, strategies to improve the operational lifetime of PV systems and thus, to reduce the electricity 
cost can be devised. Through extensive testing and failure analysis, researchers now have a much better overview 
of stressors and their impact on long term stability.   

1. Introduction 

The economic and societal impact of photovoltaics (PV) is enormous 
and will continue to grow rapidly. To achieve the 1.5 ◦C by 2050 sce-
nario, the International Renewable Energy Agency predicts that PV has 
to increase 15-fold and account for half of all electricity generation (15 
TW), increasing from just under 1 TW in 2021 [1]. The quality and 
commercial attractiveness of a PV system is primarily determined by its 
performance in the field, cost, and lifetime, to each of which the PV 
module significantly contributes. During the operational lifetime of a 

module, it will be exposed to simultaneous environmental stresses like 
sunlight, heat and cold, moisture, and mechanical loads. These factors 
often lead to a gradual decrease of the performance, and in some cases to 
sudden breakdown and power loss. It is desirable to limit these effects. A 
recent European Technology and Innovation Platform report [2] high-
lighted the importance of long-term reliability. Engineers should mini-
mize the degradation as much as possible, and quantitatively predict 
degradation phenomena that cannot be eliminated. This will enable a 
more accurate estimation of the expected service lifetime of a module 
and its electricity yield. Such estimates are required for large-scale in-
vestments, since investors, banks, and insurance companies desire to 
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minimize their risks and uncertainties. To optimise reliability and pre-
dictability, and to enhance the module lifetime, it is crucial that 
degradation and failure mechanisms are known and can be easily 
recognized and contained. 

This article aims to give an overview of state-of-the-art knowledge on 
reliability of PV systems and treats degradation mechanisms that 
generally affect PV technologies. We intend this article to be a concise 
and up-to-date introduction to this topic for the general reader and 
specifically for newcomers into the PV reliability engineering domain. 
For this review paper, existing literature published during the past 30 
years has been explored by a team of experts from various organizations 
who are members of the working group on “Reliability and Durability of 
PV” in EU COST Action PEARL PV [3]. In the remainder of this section 
we will introduce the different photovoltaic technologies that are the 
dominant focus of industry and academia. Next, Section 2 will define the 
most important concepts and notions for reliability and degradation, 
describe the testing standards, and introduce the economic aspects of PV 
reliability. Section 3 describes the stress factors causing degradation in 
PV modules; Section 4 subsequently reviews the known degradation 
effects that arise from these stresses. Finally, the perspective of future 
research challgenges are highlighted in Section 5. A renewable energy 
technology such as PV will play a key role in the energy transistion to a 

net-zero emission energy system, however, it is vital for the different PV 
technologies to continue evolving to allow for further cost reductions, 
but also to lower environmetnal impacts and for ease of re-use and 
recycling. It is clear that new device architectures and materials have to 
take into consideration scaling effects, ability to exhibit long lifetimes 
and low enviromental impacts. This review paper summaries the reli-
ability challenges which must be adhered to in order to achieve longer 
lifetime and ensure these further cost reductions are achieved. 

2. Framework for reliability research and metrics n PV modules 

2.1. Contemporary photovoltaic technologies 

The most common configurations for c-Si and thin-film based PV 
modules are shown in Fig. 1. Solar cells are one of many components 
that make up the laminate structure. Other components include the 
module packaging (glass front cover, encapsulant, backsheet), internal 
circuit (electrodes, interconnects), bypass diodes, junction boxes, frame, 
cables, and connectors; all of which may influence or even limit the 
module’s reliability. 

Nomenclature 

ALT Accelerated Life Testing 
c-Si Crystalline Silicon 
CdTe Cadmium Telluride 
CIGS Copper Indium Gallium Selenide 
DSC Dye-sensitized Solar Cells 
EPBT Energy Pay Back Time 
EVA Ethylene-Vinyl Acetate 
IEC International Electrotechnical Commission 
LCOE Levelized Cost Of Electricity 
LETID Light and Elevated Temperature Induced Degradation 
LID Light-Induced Degradation 
NREL US National Renewable Energy Laboratory 
OPV Organic Photovoltaic(s) 
PET Poly-Ethylene Terephthalate 
PID Potential-Induced Degradation 
PV Photovoltaic(s) 
SEMI Semiconductor Equipment and Materials Institute 
TCO Transparent Conducting Oxide 
UV Ultraviolet  

Fig. 1. The most common configurations of PV modules for crystalline silicon (left) and CdTe thin film (right) [15]. Rigid CIGS modules have a similar structure as 
CdTe modules but with the solar cells under the encapsulant. Besides these two basic configurations, a wide variety of alternative structures exists, e.g. using a 
polymer frontsheet or containing only flexible components [16]. 

Table 1 
Comparison of PV technologies in terms of performance, maturity and market 
share. The market shares were estimated from data supplied by the Fraunhofer 
ISE [4]. Power conversion efficiencies were obtained from the Green et al. tables 
[5] and from the National Renewable Energy Laboratories (NREL) Website [6]. 
Energy payback time values are those reported by and Ludin et al. [7] unless 
specified otherwise. The review of Ludin et al. covers many studies published 
since the year 2000; the lower EPBT values in the Table relate to more recent 
products.  

Technology Year 
surpassing 
10% eff. 

2020 
Market 
share 
(%) 

Record 
cell 
efficiency 
(%) 

EPBT 
(y) 

Best 
literature 
report of 
outdoor 
lifetime 
(y) 

Monocrystalline 
Si 

1957 [8] 66.6 26.7 1.4–7.3 >20 

Polycrystalline 
Si 

1984 28.4 24.4 0.8–4.2 >20 

CdTe 1981 4.1 22.1 0.8–2.7 >20 
CIGS 1981 0.8 23.4 1.3–2.8 >20 
Amorphous Si:H 1992 0.1 14.0 1.1–3.2 >20 
Dye-sensitized 

Solar Cells 
1997 – 12.3 0.6–1.8 <2 [9] 

Organic 
Photovoltaics 

2012 – 17.5 0.1–1 
[41] 

~2 [12, 
13] 

Perovskite Solar 
Cells 

2012 – 25.5 0.2–5.4 <0.5 [14]  
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Table 1 provides a summary of the major PV technologies consid-
ered. The table quantifies a trend that one would expect: earlier devel-
oped technologies had more time to mature and as a result, they show 
good efficiency and a good outdoor lifetime. With these properties, in 
combination with the economy of scale, contemporary photovoltaic 
systems can generate electricity at a very competitive cost level. The 
Energy Payback Time (EPBT), further treated in the next section, is of 
the order of one year for all technologies. Any PV system with a lifetime 
exceeding the EPBT can be viewed as renewable. The listed PV tech-
nologies easily meet this requirement except for the newest emerging 
ones, where lifetime problems still need to be resolved. 

Although it is included in the table for completeness, hydrogenated 
amorphous silicon has not been reviewed in the remainder of this article 
as the rather low record efficiency has not improved much since the turn 
of the Century, indicating a limited potential to contribute to the energy 
transition. Dye-sensitized solar cells have persistent reliability issues but 
did lead to the development of the new class of perovskite solar cells. In 
view of their novelty and promising efficiencies, organic photovoltaics 
and perovskite solar cells may become serious contenders in the PV 
market when an affordable solution is found for their stability issues. We 
may conclude that besides power efficiency, the reliability is decisive for 
both the economic value and the environmental impact of PV 
technologies. 

2.2. Reliability definitions and quality standards for photovoltaics 

In the engineering domain, reliability is quantitatively defined as: the 
probability that an item will perform a required function without failure 
under stated conditions for a stated period of time [17]. In the context of PV, 
reliability emerges during the operational lifetime in the field, and thus 
affects financiers and owners. Quality control on the other hand takes 
place during fabrication of the modules as a responsibility of the 
manufacturer. However, reliability and quality are strongly interrelated. 
Low-quality manufacturing of PV modules will result in a low reliability 
of PV modules in the field. Conversely, we can assume that high quality 
materials, module design, and production will yield reliable PV systems. 
The quality control in present PV manufacturing lines results in an ex-
pected life span of PV modules, usually guaranteed to be 25 years, 
though there are noteworthy systems that have been in operation for 
over 30 years [18–20]. 

From a quality engineering point of view, PV modules are assessed 
against a specification, and ordinarily, a producer will sell a module 
after it passed design, type approval, and safety qualification standards 
[21]. PV standards were initiated in 1978 which was supported by the 
United States Department of Energy and managed by the Jet Propulsion 
Laboratory. As documented by Verlinden et al. [22], the task of devel-
oping standards was taken over by the Institute of Electrical and Elec-
tronic Engineers in the 1980s, then by the International Electrotechnical 
Commission (IEC), the Underwriters Laboratories and, as of 2015, by the 
Semiconductor Equipment and Materials Institute (SEMI). The original 
qualification standard for PV modules was called the “Block V Specifi-
cation” and included a series of qualification tests. There are now a wide 
range (~170) of PV standards and technical specifications. However, the 
most well-known and widely used regarding durability are IEC 61215 
and IEC 61730. Several countries have their own national PV-related 
standards, but they are for the most part based on the standards devel-
oped by the IEC. The Underwriters Laboratories standards are in general 
related to the safety of PV components or systems, while the SEMI 
standards are related to the manufacturing aspects. 

However, meeting these standards and specifications provides no 
measure of the quality, performance, and failure over time, particularly 
beyond the warranty period. This marks the distinction between quality 
control and reliability engineering. In reliability engineering, we pre-
sume that failures will occur at statistically fluctuating time intervals, 
often depending on the weather and other stress conditions. So, whilst 
the PV community has developed standardized tests that assess the time- 

zero quality of a PV module, it remains difficult to predict the long-term 
performance of PV modules installed in PV systems. Such predictions 
rely on reliability models that may be generic in engineering or specific 
for a given technology. 

An important generic model is the bathtub curve, which describes 
most product life cycles; see Fig. 2. The bathtub accounts for both 
degradation mechanisms (which result in gradual reduction of perfor-
mance over time) and failure (meaning the inability of components or 
modules to fulfil their designed function). In the bathtub curve, one 
distinguishes three stages:  

• Early life failures are often related to poor design or manufacturing 
errors that can be reduced by effective process controls or screening. 
Typically, for PV modules these occur within 1–2 years of use;  

• Failures during the steady-state life period are often either random or 
the result of technology limitations; 

• Wear-out failures, caused by mechanisms that degrade the perfor-
mance gradually until the device does not function anymore, are 
related to mechanical, physical or chemical phenomena such as fa-
tigue, electromigration and corrosion. Ideally, wear-out failure only 
occurs after the warranty period expires. 

Work has been conducted to relate failure modes of PV modules to 
regions in the bathtub curve. Koentges et al. [25] categorized failure 
modes of crystalline-silicon modules on the basis of data provided by an 
unnamed commercial distributor. They found that the most common 
causes of early failure are junction box failure, glass breakage, defective 
cell interconnect, loose frame, and delamination. A study by DeGraaff 
[26] on PV modules that had been in the field for at least 8 years esti-
mated that around 2% of PV modules failed after 11–12 years. In this 
period, there was a much stronger prevalence of defective in-
terconnections in the module, and failures due to PV module glass 
breakage, burn marks on cells (10%), and encapsulant failure (9%) 
while failures due to junction-boxes and cables remained high. Whilst 
these studies are very insightful, it is worth noting that the investigated 
modules were manufactured some 15–20 years ago. Advances in tech-
nology probably reduce known ageing issues, but meanwhile, new 
degradation phenomena might surface. 

2.3. Economic considerations of reliability 

A capital investor’s decision to invest in photovoltaics is usually 
based on a financial prognosis and a ranking against other opportunities. 
Risks include, but are not limited to, module degradation and failure. 
Clearly, the financial performance indicators cannot be derived from a 

Fig. 2. Bathtub curve [23] showing the typical probability of failures (the 
failure rate) over the technical lifetime of a product such as a photovoltaic 
module, where β refers to the ‘shape parameter’ of a probability distribution 
function (discussed further in Ref. [24]). 
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solar module’s technical performance alone. There are several metrics 
used for modelling return on investments over time. Quantification of 
the capital outlay and operating & maintenance expenditure of the PV 
system and its estimated energy yield are necessary inputs for the 
stakeholders in an investment. 

The levelized cost of electricity is perhaps the most referenced metric 
of PV system economics. In simple terms, the LCOE gives a levelized 
(average) cost of electricity generation over the life of the asset. The 
LCOE could be used to compare the cost of energy generated by a PV 
power plant with that of a fossil fuel generating unit or another 
renewable technology [27]. The calculation for the LCOE is the net 
present value of total life cycle costs of the PV project divided by the 
quantity of energy produced over the system life. 

LCOE=
Total  Lifecycle  Cost

Total  Lifetime  Energy  Production
(1) 

The above LCOE equation can be disaggregated for solar generation 
as follows:  

[28]where N is the system lifetime (in years) and Dr is the discount rate; 
which is the interest rate used to determine the present value of future 
cash flows. Clearly LCOE is heavily dependent on the degradation rate 
and the lifetime as these have a direct impact upon both the produced 
electric energy and the sum of the running costs (depreciation and 

annual costs). Fig. 3 shows the world averaged LCOE of PV as it devel-
oped over time [29], and predictions of its future development [30]. It 
dropped by an order of magnitude between 2008 and 2020. In most 
countries, the cost of electricity produced by PV is below that of the 
grid’s spot price, meaning it is economically competitive with conven-
tional electricity sources [31]. 

A further decrease of the LCOE is expected as manufacturing volumes 
grow while both performance and reliability increase. Because of factors 
such as irradiance, subsidy programs and land price, the levelized cost of 
electricity depends heavily on the location of the plant. The discount 
rate, tax rate and degradation rate also strongly influence the LCOE. The 
steep decline of the overall capital system cost caused by the lowering 
cell cost is slowing down (on this semilogarithmic scale) as different 
contributors to the overall expenses now become more prominent. 
Consequently, this will mean degradation and reliability will have a 
greater influence over LCOE in the coming years [32]. For example: as 
estimated in 2017, the LCOE will rise by 6–7% [33], if annual degra-
dation increases by 0.5% abs. assuming a 1 €/Wp investment cost for a 

system sited in a high insolation area. 
A second important metric for renewable energy systems is their 

Energy Pay Back Time (EPBT) (see Eq. (3) and Fig. 3), which is defined 
as the period required for a system to generate the same amount of 
energy (in terms of equivalent primary energy) that was used to produce 
(and manage at end-of-life) the system itself. 

EPBT [years] =CED
/ ( [

EAgen
/

ηG

]
− EO&M

)
(3)  

where CED is the cumulative energy demand [MJ], which includes 
material and system production energy, transportation and installation 
energy, and end-of-life management energy. EAgen [MJel/yr] is the 
annual electricity generation, EO&M [MJPE-eq] is the annual primary 
energy demand for operation and maintenance, ηG is the grid efficiency, 
i.e. the average life-cycle primary energy to electricity conversion effi-
ciency at the demand side [34]. Contrary to LCOE, EPBT is only 
moderately sensitive to degradation in mature PV technologies. 
Depending on the technology and location of the PV system, the EPBT 
today ranges from 0.4 to 1.5 years and has decreased by around 80% in 
the past decade due to wafer thinning and more efficient manufacturing 
(see Fig. 2) [35,36]. 

2.4. Outdoor reliability testing 

The previous sections made clear that the power degradation and the 
lifetime of a PV technology need to be quantified. In laboratory settings, 
it is commonplace to undertake stress tests to examine for degradation 
modes in a systematic approach. However, as modules have improved in 
reliability, standard accelerated testing has become ineffective. There-
fore, a degradation assessment needs to be complemented by outdoor 
data analysis. Often a combination of indoor accelerated and outdoor 
tests is used to conduct a failure modes and effects analysis, to assess the 
relative impact of different failures, in order to proactively improve PV 
design. In the United States the National Renewable Energy Laboratory 
(NREL) documented power degradation rates for different PV technol-
ogies and discussed the accuracies of different assessment approaches 

Fig. 3. The historic calculations (grey markers) and future estimates (line) of 
the levelized cost of electricity (LCOE) for utility scale silicon photovoltaic 
systems based upon the International Technology Roadmap for Photovoltaic 
(ITRPV) roadmap from 2020. The historic data estimates are from Ref. [29], 
prognosis from Ref. [30] assuming an annual irradiation of 1500 kWh(AC)/kW 
(DC). Note the logarithmic scale of the primary y-axis. Shown on the secondary 
y-axis is how the calculated Energy payback Time (EPBT) has changed since 
2007 based upon work from Ref. [11], with recent reports from Refs. [37–39] 
using data [30] assuming an annual irradiation of 1600–1800 kWh(AC)/kW 
(DC). Both metrics have reduced as a result of the falling cost, increase in ef-
ficiency and increase in useful life of PV modules. 

LCOE=

(Initial Investment) −
[
∑N

n=1

(
Depreciationn

(1+Dr )
n

)

x (Tax  rate)
]

+

[
∑N

n=1

(
Annual  costsn

(1+Dr )
n

)

x (1 − Tax rate)
]

−

(
Residual value

(1+Dr )
n

)

∑N
n=1

⎛

⎜
⎜
⎝

Initial kWh
kWp x (1− System  degradation  rate)n

(1+Dr )
n

⎞

⎟
⎟
⎠

(2)   
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[40,41]. In particular, NREL evaluated over 2000 modules tested in the 
field around the world and showed that degradation rates varied from 
0.5% to 2% per year depending on the type and vintage. Their report 
concludes that for modules manufactured after the year 2000, the most 
stable material systems are polycrystalline Si and CdTe. 

Outdoor performance is most commonly monitored by electrical 
curve tracing or maximum power point tracking, to produce a data set of 
delivered power (or efficiency) over time. Conventionally such data are 
then synthesized using a regression model, but data filtering and the 
selected model can dramatically influence results [42]. Advanced time 
series modelling can be used to reduce noise and inaccuracy [43–45]. An 
alternative is the year-on-year approach in which a degradation distri-
bution is determined rather than a single (average) annual degradation 
rate [46]. Another report [47] has shown that degradation rates can be 
estimated from yield measurements, although the report adds the caveat 
that at least 3–4 years of data from at least 10 different PV systems are 
needed to obtain better than 1%/year accuracy. 

The uncertainty on the estimation of the module power affects 
degradation rate calculations substantially. Temperature and irradiance 
are normally corrected, but experimental error, drift of sensors and 
plane of array irradiance still result in some uncertainty. Module 
shading and module coverage by soiling or snow can be notable yield- 
reducing factors as well. Also, the location on the system where the 
measurement has been taken can affect the analysis, for example, if 
output power is measured from the AC output, the degradation rate 
includes the inverter degradation as well [48,49]. Another important 
parameter in yield assessment is PV system availability and clearly the 
higher the data availability, the more accurate one can be with degra-
dation rate calculation. 

2.5. Accelerated testing and relationship to standards 

Accelerated life testing (ALT) is an important part of the quality 
engineering process and uses stress levels higher than normal use con-
ditions to speed up the formation and manifestation of defects. This 
allows reliability engineers to quickly identify failure modes, assess their 
relative severity and apply corrective actions. Historically, ALT pro-
tocols for reliability assessment of PV modules were developed to 
address known failures discovered in the field. As discussed in Section 
2.1, most manufacturers utilize the international standard IEC 61215. 
However, failure mechanisms that are undiscovered in ALT are still 
being found in modules deployed in the field, often resulting in signif-
icant financial and energy production losses. Recent examples include 
backsheet cracking [50], potential-induced degradation (PID) [51], grid 
finger corrosion [52], light and elevated temperature induced degra-
dation (LETID) [53] and snail trails [7], which are explained and dis-
cussed in more detail in Section 4. 

Many of these result from a combination of stress factors which were 
not combined in conventional tests or may require much longer duration 
testing to be uncovered. Some, such as snail trails, follow from material 
interactions which were not discovered in component-level tests. As a 

result, there has been an increasing interest in extended, sequential, or 
combined stress factor testing [54,55]. Extended stress testing is 
described in IEC TS 63209. It takes approximately three times the 
duration of the module qualification tests laid out in IEC 61215. IEC TR 
63279 describes the latest work on sequential and combined stress 
testing. 

Alternatively, DuPont developed the module accelerated sequential 
testing [56], NREL the combined accelerated sequential testing [37] and 
Solliance the in-situ degradation method [58]. All three combine mul-
tiple stress factors such as light, humidity, temperature, rain, mechani-
cal load and voltage stress. It is worth reminding that stress factors and 
stress levels in the outdoors are uncontrolled and time-varying, while 
conventional ALT approaches have a more monotonous character. 

Finally, there has been significant effort to develop material and 
component tests for PV modules, such as the IEC 62788 series of stan-
dards. Whilst ALT is key to ongoing reliability programs where it can be 
used to identify material/supply issues in an early stage, quality engi-
neering is becoming much more important as PV lifetimes extend 
beyond 30 years. As explained by Kurtz [59], quality assurance is key for 
identifying manufacturing defects from PV modules that later propagate 
into failures under operational conditions in the field. 

3. Causes of module degradation 

During real-world operation, PV modules are exposed to various 
external and internal stress factors that influence their performance and 
long-term reliability (see Fig. 4). While external stress factors are related 
to environmental conditions, internal stress factors are caused by the bill 
of materials of PV modules and processing related effects. External and 
internal stress factors are further described in Sections 3.1 and 3.2, 
respectively. 

3.1. Environmental stress factors 

3.1.1. Irradiance 
The key characteristics of the incident solar irradiance on PV mod-

ules are its power, the spectral distribution and the angle of incidence. 
The global standard (AM 1.5G) solar spectral irradiance [60] covers the 
wavelength range of 280–4000 nm and corresponds to an integrated 
solar power of 1000 W/m2. Although the UV region (280–400 nm) 
corresponds to only ~4.6% of this power, its photons are the most 
detrimental for polymeric materials upon prolonged exposure as the 
energy of these photons is high enough to cause scission of C–C and C–O 
bonds, which are typically found in the polymer main chain. These 
scission reactions lead to embrittlement and discoloration of the poly-
mer [61]. 

The spectral distribution and intensity level of the incident irradia-
tion depends on a number of factors such as variations in stratospheric 
ozone with latitude and season, time of the day, season, azimuth 
(compass angle), tilt angle from the horizontal, cloud cover, surface 
reflection, altitude, and air pollution [62]. UVB (280–315 nm) is the 

Fig. 4. Some common PV module stressors for a silicon wafer-based PV module, including light (hν), strain (ε), voltage bias (V), chemical diffusion, ingress and 
egress (CH3COOH, H2O, O2, Na+), electric field (E), and thermomechanical strain (ΔT). Dimensions are not to scale. 
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most damaging part of the UV light, in particular for polymeric materials 
in PV modules although its power fraction (~1.5%) is small compared to 
that of UVA (315–400 nm; ~98.5%) according to the reference spec-
trum. This fraction however fluctuates for the incident UV light [63]: it 
is higher at lower latitudes, during summer, and mid-afternoons, when 
the sun’s rays are strongest, and faster degradation can be expected 
under such external conditions. 

3.1.2. Temperature 
Temperature is a key environmental stress factor as it may affect the 

electric performance of a PV module directly, accelerate permeation and 
reaction rates in materials, and induce mechanical stress due to differ-
ences in thermal expansion coefficients of module parts. The tempera-
ture within the cell or module may differ from the ambient temperature, 
particularly because of incident irradiance. The flow of heat out of the 
cells depends on the geometry and thermal conductivity of the sur-
rounding materials, wind speed and the installation configuration of the 
PV module. 

Temperature has an accelerating effect on many module degradation 
mechanisms particularly those related to chemical reactions and diffu-
sion. The temperature dependence of such effects is often modelled 
using the Arrhenius equation with a mechanism-dependent activation 
energy [24,64]. The degradation of the encapsulant and backsheet films, 
and corrosion of the metallization elements follow Arrhenius behaviour. 

Due to thermal expansion coefficient mismatches, module materials 
expand and contract at varying rates as temperature changes. This 
mismatch can induce thermo-mechanical stresses within the module 
construction. The mechanical stability of the active electrical elements, 
such as cells, solder joints, and interconnect ribbons, is particularly 
affected by such stresses. Deformation, delamination at the module in-
terfaces and even cell cracking can result [65]. Variations in diurnal and 
seasonal temperatures produce cyclic thermo-mechanical stresses and 
this can lead to fatigue induced failures in the various module 
components. 

3.1.3. Moisture 
Moisture is also an important stress factor for PV modules as mois-

ture ingress can deteriorate adhesive bonds at the interfaces between 
module components, resulting in delamination, causing loss of passiv-
ation and degrading anti-reflection coatings; and it leads to corrosion of 
metallization elements. In outdoor conditions, moisture appears in 
many forms such as water vapor (or humidity), condensation (or dew), 
rain, snow, and ice. 

Since water vapor is in the gas form, it can permeate through poly-
meric packaging materials, accumulate within the module construction, 
and induce degradation of module components. Liquid water, mostly 
condensed humidity, dew, or rain, can be absorbed or desorbed as well 
[13]. Water ingress in larger quantities can induce mechanical stresses 
because of the hydro-dynamic volume expansion and contraction. It can 
also erode low molecular weight species and additives away from the 
polymeric materials. It can further dissolve ions, deteriorate the elec-
trical insulation of dielectrics, and cause leakage current [66]. In the 
solid form as ice, it can experience volume change during freeze-thaw 
cycles and produce mechanical stresses on the outer side of the PV 
module that lead to delamination of the front glass or frame damage. 

When the module is saturated with moisture, a drop in temperature 
can cause the moisture level to exceed its saturation limit leading to 
condensation in the form of water droplets especially at the interfaces, 
on cell surfaces, and at metallization elements. While weakened in-
terfaces can delaminate and produce further paths for moisture ingress, 
shorting and corrosion of metallization can cause significant perfor-
mance loss due to increased resistance. Modules hardly contain water 
after production, but internal moisture concentrations will rise over time 
in the field. The time to achieve the equilibrium moisture concentration 
level is one of the key parameters for the service lifetime of PV modules. 
It was estimated to be few days to a week in a breathable construction 

(glass/backsheet module), but up to a few years in an unbreathable 
construction (glass/glass module) [67]. 

3.1.4. Mechanical load 
Various mechanical stresses can arise in PV modules due to 

manufacturing processes, transportation, handling during installation, 
wind, hail, snow, and thermo-mechanical loads. Since solar cells and 
metallization elements are thin and brittle, they are susceptible to such 
stress conditions and must be protected against cracking or fracture. 
Embrittled backsheets are also susceptible to mechanical loads. The 
front glass and the frame can also be damaged by mechanical loads 
which can lead to failure of the PV module. For polymeric packaging 
materials, mechanical stresses can create or extend cracks, in particular 
when the mechanical strength of a polymer is already weakened by 
other environmental stress factors such as UV light or humidity. 

Depending on the orientation, modules often experience mechanical 
stresses on the front side during operation. Snow load is a static stress 
factor and long-term accumulation on the front side can exert significant 
force on the module which can cause cell cracks. If the module is tilted, 
snow accumulation and formation of ice on the module edge can induce 
bending forces and damage the rigidity of the frame. Even detachment of 
the frame from the module can occur [25]. In this case, modules lose 
their environmental and electrical protection. Wind, on the other hand, 
is a dynamic stress factor and can apply force on the front and the back 
depending on its direction. Mechanical loads due to wind can be sig-
nificant as its direction and speed can change suddenly in gusty weather 
conditions. Prolonged exposure to cyclic gusty winds can cause cell 
micro-cracks to grow, and may induce fatigue failures of metallization 
elements [68]. Modules in the mounting structure should therefore be 
allowed some degree of twisting to withstand wind-induced vibrations. 

3.1.5. Soiling 
Soiling can arise from dust accumulation, air pollution, microbial 

algae growth, or bird droppings on the module surface. Uniform dust or 
biological soiling does not affect the long-term reliability of PV modules 
as opposed to other failure mechanisms such as corrosion, delamination, 
and cell cracks, but it can influence the power performance and this 
needs to be considered when measuring degradation outdoors. The de-
gree of soiling can depend on the module surface properties, the location 
of the installation, and the mounting configuration of the modules such 
as tilt angle and height from ground. Dew formation or drying-out cycles 
can cause cementation of dust particles making them hard to remove by 
natural cleaning [49]. Dust soiling can be significant especially in desert 
climates [69]. On the other hand, in tropical climates with high hu-
midity and frequent dew formation, biological soiling can also hinder 
the light transmission into the solar cell. 

Bird dropping can be considered as a form of biological soiling, but 
its effect is different from dust and biological soiling. Because of their 
larger size and non-uniform formation on the front surface, they can 
block the light transmittance locally and thus can significantly affect the 
module performance and reliability [70]. This way they can act like 
partial shading of the module and lead to cell mismatch phenomena 
which would eventually result in hotspot formation unless cleaned. 
Hotspots are localized areas of elevated temperature, sometimes 
exceeding several hundreds of degrees. These are potentially one of the 
most severe types of module degradation because they can be dangerous 
and cause significant damage the solar cell and module packaging [71]. 
Hotspots form in areas where large currents pass through a small, 
resistive area, and can be caused by shading, soiling, and damaged cells 
or connections (metallization, interconnects) [72–75]. Whilst soiling 
can cause hotspots, there are a variety of other potential causes, and 
these are discussed further in section 4. 

3.1.6. Chemicals (natural and industrial pollutants) 
Some naturally occurring, or industrially produced, chemical species 

can cause corrosion of PV modules. The most common are salt mist in 
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offshore areas (especially harmful in tropical climates), ammonia in 
agricultural rural areas, and sulfuric and nitric acid in industrial areas. 
These stress factors can degrade various components of the PV modules 
such as backsheets, adhesive edge sealants, junction boxes, wiring, and 
connectors. Besides performance degradation, they may cause safety 
issues due to impaired insulation of the modules. 

3.2. Internal stress factors: processing and material incompatibility 

In addition to environmental stress factors described before, internal 
factors like module design, bill of materials and processing related ef-
fects can also cause or influence module degradation. The lamination 
process has a big impact not only on quality, but also on reliability and 
long-term behaviour of PV modules [49,76,77]. Even though there are 
no substantial publications quantifying the relationship between quality 
and reliability of PV modules, qualitative descriptions on the effect of 
encapsulation quality on module reliability are available. 

3.2.1. Processing 
Poor processing, either in component or module manufacturing, is 

often identified as the root cause of PV module failures in the field. Some 
examples: thermal stressing during stringing and lamination can cause 
microcracks in solar cells [25,77]. Excessive thermal expansion of 
ethylene vinyl acetate (EVA) [78] during lamination may dislocate solar 
cells, increase the cell gaps and induce additional stress into the PV 
ribbon and the solder bonds [77]. Residual stress can be induced when 
the laminate is cooled down from the curing temperature of the 
encapsulant polymer to room temperature, and this can lead to warpage 
of the laminate [79]. One major reported issue is poor crosslinking of 
EVA, typically due to too low temperatures or too short crosslinking 
times [80–83]. Once installed, modules with a poor degree of cross-
linking will eventually fully cure under operating conditions [83]. 
However, the availability of non-consumed peroxides has adverse effects 
on module reliability. Several studies reported higher susceptibility of 
modules with poorly crosslinked EVA towards PID and corrosion [61,80, 
81,83]. Poorly crosslinked EVA was also found to be more prone to 
delamination, as it leads to insufficient adhesion strength between EVA 
and its adjacent module components (glass, cells and backsheet) 
[84–86]. 

3.2.2. Module architecture and bill of materials 
Also, the module architecture and the bill of materials (BOM) affect 

degradation pathways and kinetics [49,87,88]. Availability of oxygen 
and water vapor, which play an important role in many degradation 
modes, strongly depends on the transport properties of the module 
packaging materials [89–92]. Physical properties of the packaging ma-
terials like water vapor transmission rates, oxygen transmission rates, 
acetic acid transmission rates, water solubilities, and film thicknesses 
are the key parameters for phenomena such as moisture ingress, acetic 
acid evaporation and oxidation [92]. In a breathable module construc-
tion with a backsheet film with a high water vapor transmission rate, 
moisture can move in and out of the module because of concentration 
gradients depending on the ambient relative humidity level and tem-
perature during diurnal (and seasonal) cycles. Moisture in this case 
penetrates during the night when the temperature is low (and the rela-
tive humidity is high) and is released during the day when the tem-
perature is high (and the relative humidity is low). A backsheet layer 
with a low (or zero) water vapor transmission rate, in an unbreathable 
construction as in glass/glass modules, can help prevent moisture 
ingress to some degree (since moisture can still penetrate from the 
sides), but it also keeps water vapor and other gaseous degradation 
by-products trapped inside the module which may cause further 
problems. 

3.2.3. BOM incompatability 
Design matching of relevant PV components, especially of the 

encapsulant and backsheet with the rest of the module components, is 
therefore important for the durability and reliability of the module. 
Degradation modes influenced by the encapsulant and backsheet 
include discoloration, delamination, PID, snail trails and corrosion of 
metallization [49]. Also, the thermo-mechanical properties of the 
encapsulant (like the coefficient of thermal expansion, softening and 
damping behaviour) play an important role and must be balanced for a 
proper module design [49,61,93]. 

The first very prominent case of material incompatibility was yel-
lowing of EVA, observed for PV modules which were installed in Cali-
fornia in the early 1980s [93,94]. The discoloration has been found to be 
due to interactions between cross-linking peroxide and some stabilizing 
additives. A reformulation of the encapsulant with compatible additives 
has dramatically reduced this type of discoloration [94]. 

However, in recent years more cases of material incompatibilities 
have appeared, mostly due to the introduction of new materials into PV 
modules. Until 2010 most PV modules combined an EVA encapsulant 
and a fluoropolymer based backsheet with polyvinyl fluoride as outer 
layers, where the individual components were modified to enable proper 
adhesion. New encapsulant – backsheet combinations therefore require 
special attention. Many backsheets are optimized towards good adhe-
sion to EVA. With new encapsulation films, e.g., based on polyolefins 
[95], common surface modifications may not have the intended effect. 
Also, certain combinations like polyethylene based encapsulants and 
polypropylene based backsheets may have adhesion issues [96,97]. 
Another example is the use of UV transparent encapsulants, which re-
quires backsheets with UV stabilized inner layers in order to avoid 
backsheet degradation [98]. In relation to this, the influence of new 
encapsulant formulations on the corrosion of PV ribbons or the silver 
grid is poorly investigated so far, as well as the long-term behaviour of 
new solder materials on ribbons. 

A special case with high impact has been the use of co-extruded 
backsheets based on polyamide. In recent years PV module failures 
with cracked polyamide backsheets occur more and more. The cracks 
appeared after several years of field aging but have never been observed 
after accelerated testing in the laboratory [99–102]. Two main types of 
polyamide backsheet-cracking were observed: tile-shaped, square cracks 
(along the intercellular spacings) and longitudinal cracks (beneath the 
busbars of the cells) [99]. The longitudinal cracks could be explained by 
deterioration of mechanical properties due to chemical and physical 
aging effects in combinations with thermo-mechanical stresses as the 
main driver for crack propagation [99,101]. For the squared cracks, 
however, a material incompatibility has been identified as the main root 
cause. The cracks are exclusively forming in conjunction with certain 

Table 2 
Common degradation and failure modes of PV module components and their 
effects. The delineation between degradation and failure is not always well 
defined.  

Component Degradation 
modes 

Failure Modes Effects 

Frame Corrosion Warpage Increased risk of 
module damage 

Glass Glass corrosion Breakage, soiling, 
abrasion 

Reduced current, 
hotspot formation 

Encapsulant Photo- 
oxidation 

Discoloration, 
delamination 

Reduced current, 
increased 
corrosion 

Internal circuit 
(interconnects, 
TCO) 

Corrosion Fatigue, cracks Reduced current, 
cell isolation, 
hotspot formation 

Solar cells PID, LID, LETID Cracks, cell 
isolation (cracks) 

Reduced power, 
hotspot formation 

Backsheet Photo- 
oxidation, 
hydrolysis 

Discoloration, 
delamination, 
cracks 

Increased 
corrosion, 
isolation failure 

Junction box – Arcs, 
delamination 

Electrical fault, 
detachment  
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EVA types which are prone to show degradation accompanied by sig-
nificant acetic acid formation. A high concentration of acetic acid as well 
as the presence of a phosphate additive in the EVA correlated to stress 
cracking [99]. 

4. Degradation and failure modes 

From the existing literature on PV reliability, degradation and failure 
modes can be identified that generally occur in photovoltaic technolo-
gies. In spite of the diversity of solar cell technologies, many of the 
module materials and components are identical or very similar. These 
elements include the module packaging, internal electrical circuit, 
bypass diodes, junction boxes, wiring and connectors, and frames. 
Table 2 connects the degradation phenomena and failure modes to the 
module component on one hand, and their effects on the PV system on 
the other. The upcoming subsections will treat each part of a PV module 
and its main degradation and failure problems. 

4.1. Module packaging 

Solar cells form just a small part of a PV module, as illustrated in 
Fig. 1; most of a module consists of packaging materials, including front 
and rear covers (glass, frontsheet, backsheet) and encapsulants. These 
fulfil several functions in a module, most importantly mechanical sup-
port, an optical couple, electrical insulation, and environmental pro-
tection. The role of packaging in photovoltaic energy generation is 
generally underestimated, as it does not play an active role in the power 
generation itself. However, the durability of module packaging is 
essential for long-term operation, and the choice of materials has a 
distinct impact on PV module attributes such as:  

• Efficiency, as the optical properties of the module package determine 
the amount of light arriving at the solar cells;  

• Quality, as the main early failures are caused by poor design and 
processing parameters, which are partly determined by the proper-
ties of the packaging components and material incompatibilities [25, 
49,61,78,83,103];  

• Reliability, as many PV module degradation modes are directly 
linked to packaging degradation and material interactions with it 
[49,61,104]. 

Module packaging degradation does not always lead to immediate 
performance losses, though many are suspected to have an impact on 
long-term performance, and therefore module lifetime. Besides perfor-
mance losses, packaging failures may give rise to safety hazards, espe-
cially if the electrically insulating layers are compromised [105]. 

4.1.1. Glass 
Low-iron soda-lime float glass is the most common superstrate or 

substrate material in PV modules because of its high transparency, good 
mechanical robustness, and low cost. Moreover, it is an excellent elec-
trical insulator and impermeable to moisture and gases. It is most 
commonly used as a module front cover, and is also found increasingly 
for use as a back cover, especially in bifacial modules. The standard 
thickness is 3.2 mm, though other thicknesses may be used in particular 
applications such as bifacial and building-integrated PV. 

4.1.1.1. Breakage. PV glass is commonly tempered or annealed to in-
crease its strength, but nonetheless, the most common failure mode is 
breakage [25,49,106,107]. It has been found to account for up to a third 
of module field failures [26], though other reports mention a much 
lower occurrence [20,104,108]. Glass breakage can already happen 
during transportation or installation. It can also occur during operation 
because of thermal or mechanical stresses, such as from hotspots and 
static or dynamic loads. Frameless modules are additionally susceptible 

to damage from edge impacts and improper clamping. 
For c-Si modules, broken glass does not always have an immediate 

impact on performance and safety, because the cells, encapsulation and 
wiring can still be intact. Thin-film modules use a superstrate or sub-
strate configuration with the solar cells deposited onto the glass, so 
broken glass is a more direct concern. In all cases, broken glass may 
cause cell or circuit damage that may generate hotspots, and it can also 
no longer act as an impermeable barrier to moisture or as an electrical 
insulator. Because of this it may accelerate degradation of the encap-
sulant and other components [109]. 

4.1.1.2. Coating erosion. PV glass is sometimes coated with anti- 
reflection or anti-soiling layers to improve overall module perfor-
mance. Reflections off the surface of glass result in an optical loss of 
about 4% of incoming light, while soiling can cause optical losses of over 
50% in some locations [108,110–112]. Anti-reflection and anti-soiling 
coatings are intended to minimize these losses, but they are subject to 
erosion over time, and thus lose their efficacy. This will reduce the 
output of a module, but it does not cause any safety hazards by itself. 

4.1.2. Encapsulants 
Solar cells are in direct contact with elastomeric materials called 

encapsulants. The most common encapsulation material today is a co- 
polymer of ethylene and vinyl acetate (EVA). Historically, silicones (e. 
g. polydimethylsiloxane) and polyvinyl butyral were also used [19,93, 
113]. However, the combination of low cost and decent properties – 
even if not the best – long made EVA the first choice in the PV market. 
Limitations of EVA and ever increasing demands on module perfor-
mance and lifetime have led to the introduction of alternative encap-
sulation materials, most notably polyolefin elastomers, thermoplastic 
polyolefins, and ionomers [92,113]. 

The main degradation and failure modes of PV encapsulants include 
discolouration and delamination, such as in Fig. 5. Additionally, 
encapsulants are often partly responsible for degradation of other 
module components by facilitating or mediating degradation modes 
such as corrosion or potential induced degradation (PID) [25,61,104, 
114,115]. 

4.1.2.1. Discoloration and delamination. Discoloration is directly related 
to the polymer films [18,80,93,116–120], and leads to light absorption 
in front of the cell, and therefore power losses. In most cases dis-
colouration of the encapsulant is not attributed to photo-oxidation of the 
polymer chains themselves, but to the degradation of additives in the 
encapsulant. Discolouration was once a very common degradation 
mode, but in recent years encapsulants have been formulated with fewer 
or more stable additives, so its occurrence is much lower. Delamination 
is another relevant failure mode, and can occur at any interface within 
the laminate structure. Several factors affect adhesion strength, and 
physical and chemical aging processes of the encapsulants can promote 
delamination [86,121–123]. Though less common than discolouration, 
this failure mode can accelerate cell and internal circuit degradation by 
facilitating accumulation of moisture and degradation products. 

4.1.2.2. Material interactions. More often, material interactions with 
the encapsulant are a root cause for PV module degradation. For 
example, acetic acid, which is a degradation product of EVA not only 
causes corrosion of the solar cell metallization and interconnects [25,49, 
91,93,124–128], but also promotes PID and delamination [51,81, 
129–131]. Furthermore it accelerates the oxidation process of EVA it-
self. In addition to acetic acid, which increases ion mobility, the PID 
effect is strongly affected by encapsulant properties like polarity, vol-
ume resistivity, and water vapor transmittance rate [51,61,114,132]. 
The permeation behaviour of encapsulant films also plays a significant 
role in corrosion processes, which are accelerated by the presence of 
water [133,134]. These problems with EVA are major limitations for 
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further improvements in module lifetime, and have motivated the 
development of alternative encapsulants [92,113,135,136]. 

4.1.3. Backsheets 
The backside of a PV module is most often covered by a polymeric 

backsheet to provide electrical insulation and environmental protection. 
Alternatively, another layer of glass can be used to protect the backside, 
and there is ongoing discourse about the best architecture. Backsheets 
usually consist of a multilayer structure which is either laminated or 
coextruded, including an outer layer with good resistance to environ-
mental stresses, an electrically insulating layer, and an inner layer with 
good adhesive properties. The outer layer (air-side) is commonly a flu-
oropolymer material, which is resistant to environmental degradation 
due to the strong carbon-fluorine bonds. Non-fluoropolymer alternatives 
are also in use, but they require stabilization, especially against UV light. 
The core layer is most often polyethylene terephthalate (PET) which has 
a high dielectric breakdown strength and mechanical stability. The inner 
layer (cell-side) is usually an EVA film, or another polymer with modi-
fied properties to improve adhesion. Typical fluoropolymers used in 
backsheet outer and inner layers include polyvinyl fluoride, poly-
vinilydene fluoride, and fluorethylene vinyl ether. Non-fluoropolymer 
alternatives for outer layers include materials such as PET, polyamide, 
and polyolefin, but there is a trade-off between the environmental sta-
bility and cost [63,137–139]. 

Degradation mechanisms and hence durability of the backsheet films 
differ depending on the specific backsheet structure and material for-
mulations [63,137,140–146]. The most common degradation and fail-
ure modes observed during outdoor service are discolouration, chalking, 
delamination, and cracking, illustrated in Fig. 6. Several reports exist on 

the frequency of backsheet defects and failures, and while the reported 
ranges vary widely, they consistently appear as one of the most common 
PV module degradation modes [20,25,26,49,108,110]. 

4.1.3.1. Discoloration. Discolouration is mostly caused by photo- 
oxidative reactions during operation due to the formation of chemical 
degradation by-products called chromophores which give a yellow 
appearance [50,88,147–150]. White pigments such as TiO2 and BaSO4 
are often added to polymer formulations because of their light absorbing 
properties which can increase the backsheet UV stability. However, 
degradation of the polymer surface on the air-side can cause these pig-
ments to accumulate, which leads to gloss-loss and a chalky appearance 
[151–153]. Although both backsheet yellowing and chalking are not 
directly linked to module performance loss, their occurrence indicates 
chemical and morphological changes in the polymer structures and are 
early indicators of more serious forms of degradation such as embrit-
tlement, cracking, and delamination. 

4.1.3.2. Cracking. Backsheet cracking is a major problem found with 
increasing frequency [20,99–101,137,154,155]. Cracking impairs the 
electrical insulation and causes safety issues such as ground faults, 
current leakage, and reduced wet insulation resistance. It also opens new 
conduits for penetration of moisture and other chemicals into the 
module and thus facilitates degradation of other module components. 
After weathering, polymers have reduced molecular weight and 
increased crystallinity, which leads to embrittlement [99,104]. Cracks 
usually initiate at these weakened polymer chains and propagate in the 
presence of mechanical stresses. Therefore, in particular backsheet 
cracks that align with the gap between the cells and with metallization 

Fig. 5. Examples of encapsulant degradation and failure: discolouration (left; brownish haze) and delamination (right; lighter grey areas at the cell edges). 
Reproduced with permission from Refs. [18,25]. 

Fig. 6. Examples of backsheet degradation and failure: discolouration (left), cracking (center), and delamination (right). Reproduced with permission from Refs. 
[25,99]. 
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are critical. Cracking can be observed both on the cell-side and air-side, 
and crack patterns can vary depending on the material processing and 
exposure conditions [156]. 

4.1.3.3. Delamination. Delamination can occur at the backsheet/ 
encapsulant interface as well as between the layers of backsheet itself 
due to poor adhesion and lamination processes, or weather-induced 
degradation [86,109,157–162]. Delamination can be a cause for im-
mediate concern for both performance and safety if it occurs at the 
module edge or near the junction box because it can result in current 
leakage or cause the box to detach. If delamination occurs at the mod-
ule’s center, it can elevate the thermal resistance and lead to a higher 
operating temperature for the cells in that area and act as a point for 
water condensation [163–165]. 

4.1.4. Frontsheets 
As a frontside cover, polymeric sheets are sometimes used to replace 

glass, though they are less common than backsheets. Nonetheless, they 
are increasingly being used, especially in applications requiring light- 
weight and flexible module structures [166–168]. The materials for 
frontsheets are similar to those for backsheets, but they are not pig-
mented with mineral fillers for broadband light absorption because they 
must have high transparency. Instead, they are stabilized with chemical 
additives, including UV absorbers. The degradation modes described for 
backsheets are generally similar for frontsheets, however, in contrast 
with backsheets, discolouration and delamination will lead to immedi-
ate optical losses because of reduced light transmittance. 

4.1.5. Edge seals 
Both encapsulants and backsheets have some degree of permeability 

to moisture, so a PV module will become saturated with water after 
several months or years in the field [89,169]. Technologies which are 
especially sensitive to water (e.g. thin-film solar cells) sometimes have 
glass sheets both at the front and the back to ensure a long module 
lifetime. The weakest link for moisture ingress then becomes the edge 
sealant. Most edge sealants are based on desiccant-filled polyisobutylene 
[170–173]. 

In spite of their advantages, there are challenges in manufacturing 
modules with edge seals which has limited their adoption, and as such 
there is a lack of reports on their long-term performance. Edge sealing 
requires an additional process step prior to lamination. Moreover, edge 
seals are sensitive to glass edge pinching and they may prevent excess 
encapsulant from escaping a module during processing, leading to 
quality issues. Polyisobutylene edge seals are pigmented black for UV 
protection, and the material by itself is resistant to environmental 
degradation [170,172,173]. However, delamination can cause failure of 
the edge seal, especially in the presence of an external stress such as edge 
pinch. 

4.2. Module internal circuitry 

Solar cell metallization and interconnect wiring constitute the in-
ternal electrical circuit of a module laminate. Many failures or weak-
nesses in the circuit can occur because of design or processing factors, 
such as improper sizing or poor soldering quality [174–176]. Excluding 
such issues, the degradation of metallization and wiring is usually 
gradual and thus tends to have a delayed effect on performance. If the 
resistance of these components becomes too high, for example due to 
corrosion, hotspots and arcs may form which could pose safety concerns 
[25,26,49,109]. 

For crystalline silicon modules the front contact metallization layers 
(fingers and busbars) are usually made of a screen printed Ag-glass frit. 
Some emerging and high efficiency cell concepts utilize plating and 
additional metal layers for seeding, passivation, or improved contact 
resistance [177,178]. Rear contact metallization varies by cell 

architecture, with Al, Ag, Ni, and Cu in use. For CIGS and CdTe front 
contact metallization is not common in commercial modules, and 
instead a transparent conducting oxide (TCO) serves as front contact. 
Some have suggested a TCO plus metal grid structures to improve 
module efficiencies, in which case Ni/Al, Al, and Cu are used [179,180]. 
For the back contact in CIGS solar cells, Mo is the industry standard, 
whereas for CdTe cells, ZnTe and Cu/Au, and Cu/C are common 
[181–183]. 

The purpose of solar cell and string interconnects is to connect cells 
or strings of cells in series. For crystalline silicon modules these are 
usually made from solder-coated copper ribbons, which are soldered 
onto the silver busbars. Pb–Sb and Pb–Sn–Ag solders are the most 
commonly used, though there is a push towards lead-free solders 
[184–186]. In thin-film module architectures a laser-based monolithic 
interconnection is standard, in which the various layers are patterned by 
laser ablation and the TCO acts as the interconnect [187,188]. Less 
commonly, ribbons or deposited metals are used as the interconnect 
material for thin-film solar cells, in a so-called grid assisted 
interconnection. 

4.2.1. Corrosion, cracking, and contact failure 
For all technologies, the metallization is susceptible to corrosion, 

cracking, and contact failure, shown in Fig. 7, and degradation of 
metallization appears as one of the most common field module failure 
modes [20,25,26,49,108,189–192]. The presence of moisture acceler-
ates corrosion, and when an EVA encapsulant is used acetic acid is 
produced as it degrades, which poses an additional risk [91,93,125,126, 
128]. For soldered and glued interconnects the joint is a weak point, 
because solders coarsen and phase separate over time, while adhesives 
become brittle [193,194]. This, in combination with corrosion and 
thermal cycling can cause fatigue failure [109,128,184,186,190, 
195–197]. The impact of internal circuitry failure is severe because it 
reduces module performance and has a high risk of causing safety issues. 

4.3. Solar cells 

While the physics of failure for each PV absorber material (e.g. sili-
con, CIGS, CdTe, CdS) is unique, there are some general degradation 
modes which can affect all of them, including cell cracking, hotspots, 
light induced degradation (LID), and potential induced degradation 
(PID). Cell defects and degradation are among the most commonly re-
ported module defects in the field, but are not always readily detected by 
simple inspection. 

4.3.1. Cell cracking 
Many semiconductors are brittle, so cell cracking is a concern for PV 

modules [198,199]. Cell cracks can be initiated during manufacturing 
due to residual stresses from thermal processing, soldering, and lami-
nation [200–203]. They can also arise during transportation and 
installation, and from static or cyclic mechanical loads during operation 
[106,107,204]. Depending on the number and size of cracks, module 
power may be only slightly affected, or hotspots and dead areas may 
form. However, once present their severity is likely to increase over time 
due to mechanical or thermomechanical stresses, which would open and 
propagate cracks [201,205–208]. Thin-film solar cells are less suscep-
tible to cracking, because strain levels are comparatively lower than for 
silicon solar cells. Nonetheless, damage to the glass superstrate or sub-
strate may cause cell cracks. 

4.3.2. Hotspots 
As discussed, hotspots are cell areas of elevated temperatures, which 

can potentially cause severe module degradation and accelerate the 
formation and propagation of other failure mechanisms [71]. Hotspots 
form in areas where large currents pass through resistive areas, and can 
be caused by shading, soiling, and damaged cells or connections 
(metallization, interconnects) [71,209,210]. 
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4.3.3. Light induced degradation (LID) 
Light induced degradation (LID) is a power degradation effect which 

occurs during the initial stabilization of a PV module when exposed to 
light. It affects practically all module technologies, though the effect is 
typically small, resulting in a loss of up to 5% of module power. Because 
of its ubiquity and predictability the name-plate power ratings of 
modules already take these losses into account [25]. The mechanism of 
LID involves metastabilities in the semiconductor layers present from 
high temperature processing or diffusion between layers [211,212]. 

4.3.4. Potential induced degradation (PID) 
In recent years potential induced degradation (PID) has been iden-

tified as a major concern in field modules [25,49,108,115]. This occurs 
when there is a high electrical potential between the module frame and 
solar cells, which generates leakage currents through the module 
packaging and drives cations (notably sodium) from the glass into the 
solar cell, TCO, or anti-reflective coatings [51,81,115,129–132]. PID 
leads to enhanced recombination and shunt formation, and in thin-film 
modules it can also lead to TCO corrosion and p-n junction damage. The 
PID effect can lead to significant power losses, and is more severe on the 
negative pole of a string. PID can be mitigated by use of modified 
anti-reflective coatings, high volume resistivity encapsulants, Na-free 
glass or Na diffusion barriers, or alternative inverter configurations 
[51,114,115,132,213–215]. 

4.4. Other components 

4.4.1. Bypass diodes 
Bypass diodes are protective components intended to minimize 

module losses during reverse bias operation by providing a path for the 
current of good cells to bypass bad cells. When there is a large mismatch 
in short-circuit current between several cells, the cell or cells with lowest 
current may become reverse biased and then overheat. This can occur 
temporarily during shading or permanently when a cell or the internal 
electric circuit is compromised. 

Bypass diodes are usually integrated into the junction box, and are a 
somewhat common source of issues in underperforming or failed mod-
ules [25,108,110,216–220]. Catastrophic failure modes of bypass diodes 
include arcing, electrostatic discharge, and thermal runaway, and can 
lead to severe performance losses as well as safety problems [25,108, 
221–226]. Electrostatic discharge occurs when a large current passes 
through the diode over a short period of time, which can occur due to a 
lightning strike or during manufacturing if there are inadequate elec-
trostatic discharge protections in place. Thermal runaway happens 
when there is insufficient heat dissipation, which results in more current 
passing through the diode, and consequently higher temperatures. This 
runaway process continues until the temperature is high enough to 
destroy the diode. Aside from these catastrophic failures, gradual 
degradation of bypass diodes can occur due to continuous high tem-
perature operation or thermal cycling. In both cases excessive 

temperatures and temperature excursions degrade the semiconductor 
junction and contacts, ultimately resulting in their failure [223]. 

4.4.2. Junction box 
The junction box is typically located on the backside of a PV module, 

and less commonly on the edge. It protects the connections of the strings, 
external wiring, and often the bypass diodes. The box is typically made 
from polycarbonate, and adhered to the backside of the module. In 
documented module field failures the junction box is a fairly common 
problem [25,26,49,108,110,227–229]. The main failure modes for 
junction boxes include detachment (from the module backsheet), poorly 
sealed or closed boxes, corrosion, and arcing due to bad or degraded 
wiring. Degradation and failure of junction box components can lead to 
major performance losses and safety hazards because of the high current 
levels passing through [25,26,108]. 

4.4.3. Frame 
The majority of commercial modules are framed to protect the edges 

of the glass and provide module mounting points. Anodised aluminum is 
the most common frame material, because of its high strength, low 
weight, and low cost. Frames can become loosened, deformed, or 
corroded over time [25,192]. These can be caused or accelerated either 
by poor manufacturing quality or mechanical loading. Degradation of 
the frame is less common than most of the other failures modes 
described in this section [108,110]. Nonetheless, because it serves as a 
mounting point for modules, its weakness or failure can increase the 
likelihood of cell damage or module failure, especially in conditions of 
strong mechanical loading (e.g. wind or hurricane) [230]. 

4.5. Overview of complexity 

The interplay of stressors on component and resultant failure 
mecanisms and their effects on module functioning is complex. The 
same stressor can act upon multiple components, leading to multiple 
failure modes. Also, some failure modes also result in new stressors (e.g. 
a failure that allows water to ingress will result in a new stressor of 
corrosion). Fig. 8 serves as an aid so as to obtain a clear view of this 
complex interplay. 

5. Summary of reliability challenges and future perspective 

As shown in section 3, PV modules are exposed to various external 
(environmental conditions) and internal stress factors (processing, 
module architecture, bill of materials) that influence their performance 
and long-term reliability. In the rarest cases PV module failures are 
related to just one single stress but usually an effect occurs due to 
multiple combined stresses [25,231]. This complex stress situation 
however is usually not reflected in accelerated indoor aging testing, 
where samples are exposed to single stresses. Especially failure modes 
that include thermo-mechanical stresses or electrical potentials were not 

Fig. 7. Examples of degradation and failure of the internal electrical circuit, including corrosion (left: discoloration visible on the string interconect ribbon) and 
fatigue cracking (right: broken interconnect ribbon between cells). Reproduced with permission from Ref. [49]. 
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induced by traditionally used single stress tests. In the past this has led to 
unexpected degradation mechanisms several years after field deploy-
ment of PV modules, which were not previously foreseen in laboratory 
accelerated testing, such as PID [51] LeTID [53,232] and backsheet 
cracking [99,100,233]. In all cases, after a first description of the failure 
modes an analysis was executed, trying to identify the main stress fac-
tors, as well as the chemical and physical degradation mechanisms 
leading to the failure modes. Consequently, new accelerated test setups 
have been developed in order to trigger these specific failure modes, 
such as, for instance, PID tests on cell and modules level or the solder 
bump test developed for backsheet cracking [234]. 

A more recent approach is the development and implementation of 
so-called agnostic stress tests that try to replicate the complex stress 

situation as well as possible. These tests either rely on the sequential or 
combined exposure to multiple stresses [56,57,235,236]. In both cases 
failure modes like backsheet cracking [237] have successfully been 
triggered. To summarize this review, Fig. 8 shows potential relationships 
between stressors, components, failures and effects on the basis of our 
findings. The body of experimental data and field studies shows that 
there are a number of stressors that impact upon multiple parts of a PV 
module. A key effort to support future reliability work would be to un-
derstand which degradation mechanisms have the greatest impact in the 
field. Challenges exist with this as the dominant failure mechanism is 
likely to be influenced by the specific situation on location, 
manufacturing control, module type, vintage and bill of materials. Such 
studies will be a complex piece of work however utterly useful for the PV 

Fig. 8. Flow diagram representing the relationships between stressor, component, failure and effect. Lines are coloured to discern line crossings. Thick black lines to 
the left of the “component” and “effect” are there to indicate the termination of the connector from the previous point in the flow diagram. Thick coloured lines to the 
right indicate branching. Dotted lines indicate when failure results in a new stressor. 
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research community and essential for the development of reliable PV 
modules for various markets. 

So, what is the main lesson for deployment of future PV technologies, 
and where are the research gaps? The current PV market shows an 
extremely high-cost pressure, which is also the driving factor for the 
development and implementation of new module designs and the use of 
new materials and components. New technologies, which promise either 
higher efficiency for the same cost or cost reduction at same efficiency, 
are very often quickly introduced to the market [30,238]. Moreover, the 
process of material innovation for PV is further complicated by the 
complex interactions within a PV module. The advantage of one mate-
rial may be outweighed by its interaction with another component. For 
example, EVA is inexpensive and highly effective for encapsulation, 
however it degrades to form acetic acid which can cause corrosion of the 
metallization if it is not allowed to escape the module package due to use 
of an impermeable backsheet. New materials must work within the 
whole module package and in concert with the other materials present 
[238]. With current production capacities, many Gigawatts of modules 
with new technologies and materials can be produced and installed 
without having sufficient experience about long term reliability. This 
presents a technology risk for the industry. 

However, proper material selection and comprehensive knowledge 
of material properties combined with suitable qualification and reli-
ability testing exceeding current test protocols or IEC standards can help 
to minimize these risks. It is clear that future research is needed on new 
materials and module design changes as they are introduced. The bot-
tom line is that each module design or material combination has to be 
tested and qualified individually. Moreover, agnostic combined stress 
tests need to be used, so that also unknown, new failure modes related 
specific designs or BOMS may be triggered during the development 
phase. Standardization of such agnostic stress tests will be instrumental 
in the further development of long-lifetime modules and the necessary 
market acceptance and appreciation of long-lifetime claims. 

A future research gap is to consider the impact of performance, cost 
and reliability on the PV module sustainability. Greater research in this 
direction is needed as sustainability has long been an afterthought in PV 
research driven by cost reduction. As we have surpassed the point of grid 
parity and the module price is only a smaller fraction of the overall 
system cost, price differentiation becomes an option for longer-lifetime 
modules. It is worth stressing that through increased reliability and 
higher lifetime of PV modules, a significant impact on sustainability and 
economics is achieved. A recent study showed that module stability 
becomes more important for economic evaluation and that inferior 
stability cannot be compensated by lower module prizes but only by 
much higher efficiency [239]. Longer lifetimes would also reduce the 
environmental impact of photovoltaics, as they reduce the number of 
modules that need to be produced for replacement and consequently 
also PV waste. To give a rough estimation, improving the service life of a 
PV module from 25 to 40 years saves about 130 GW/year of new 
modules, that do not need to be produced and 7 million tons/year of PV 
panel waste, that does not require recycling. In addition, ‘Design for 
Recycling, Repair or Reuse’ might become a greater research area and 
design challenge. However, as designs and materials are changed, a 
strong understading of module reliability will still be needed and many 
of the testing/failure modes. 

6. Conclusions 

This review article has presented an overview of the state-of-the-art 
knowledge on the reliability of PV modules and their degradation 
mechanisms. The most common technology today is mono- and multi- 
crystalline silicon, but this article aims to give a generic summary 
which is relevant for a wider range of photovoltaic technologies 
including thin-film devices. Initially definitions for reliability and 
quality and testing standards were reviewed. Subsequently the primary 
stress factors that affect module degradation were summarised; this 

includes irradiance, temperature, moisture, mechanical stress, soiling 
and chemicals. Finally, common degradation and failure modes were 
identified that occur generically in photovoltaic technologies were 
reviewed. Many PV technologies consist of similar architectures in terms 
of the module materials and components. These elements include the 
module packaging, internal electrical circuit, bypass diodes, junction 
boxes, wiring and connectors, and frames. The dominant degradation 
phenomena and failure modes in all module components were sum-
marised. Quality and reliability testing has come to a stage where the 
durability of each component under a single stress can be predicted well, 
but accurate reliability estimations for a combination of materials under 
a combination of time-varying stresses remain challenging. Building on 
this knowledge, strategies to improve the operational lifetime of PV 
systems and thus, to reduce the electricity cost and improve the sus-
tainability can be devised and lifetimes of PV modules can be extended. 
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[68] Kilikevičius A, Čereška A, Kilikevičiene K. Analysis of external dynamic loads 
influence to photovoltaic module structural performance. Eng Fail Anal 2016;66: 
445–54. https://doi.org/10.1016/j.engfailanal.2016.04.031. 

[69] Cordero RR, Damiani A, Laroze D, MacDonell S, Jorquera J, Sepúlveda E, et al. 
Effects of soiling on photovoltaic (PV) modules in the Atacama Desert. Sci Rep 
2018;8:1–14. https://doi.org/10.1038/s41598-018-32291-8. 

[70] Sisodia AK, kumar Mathur R. Impact of bird dropping deposition on solar 
photovoltaic module performance: a systematic study in Western Rajasthan. 
Environ Sci Pollut Res 2019;26:31119–32. https://doi.org/10.1007/s11356-019- 
06100-2. 

[71] Kato K. In: Dhere NG, Wohlgemuth JH, Lynn KW, editors. PVRessQ!: a research 
activity on reliability of PV systems from an user’s viewpoint in Japan; 2011. 
81120K. https://doi.org/10.1117/12.896135. 

[72] Wang A, Xuan Y. Close examination of localized hot spots within photovoltaic 
modules. Energy Convers Manag 2021;234:113959. 

[73] Tang S, Xing Y, Chen L, Song X, Yao F. Review and a novel strategy for mitigating 
hot spot of PV panels. Sol Energy 2021;214:51–61. 

[74] Clement CE, Singh JP, Birgersson E, Wang Y, Khoo YS. Hotspot development and 
shading response of shingled PV modules. Sol Energy 2020;207:729–35. 

[75] Ahsan S, Niazi KAK, Khan HA, Yang Y. Hotspots and performance evaluation of 
crystalline-silicon and thin-film photovoltaic modules. Microelectron Reliab 
2018;88:1014–8. 

[76] Davis KO, Rodgers MP, Scardera G, Brooker RP, Seigneur H, Mohajeri N, et al. 
Manufacturing metrology for c-Si module reliability and durability Part II: cell 
manufacturing. Renew Sustain Energy Rev 2016. https://doi.org/10.1016/j. 
rser.2015.12.217. 

[77] Schneller EJ, Brooker RP, Shiradkar NS, Rodgers MP, Dhere NG, Davis KO, et al. 
Manufacturing metrology for c-Si module reliability and durability Part III: 

M. Aghaei et al.                                                                                                                                                                                                                                 

https://doi.org/10.1002/pip.3146
https://doi.org/10.1002/pip.3146
https://doi.org/10.1002/pip.3104
https://doi.org/10.1002/pip.3104
https://skypower.com/wp-content/uploads/2020/08/Global-Field-Reliability-Report-2020.pdf
https://skypower.com/wp-content/uploads/2020/08/Global-Field-Reliability-Report-2020.pdf
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref21
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref21
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref22
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref22
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref22
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref23
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref23
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref24
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref24
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref24
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref25
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref25
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref26
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref26
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref26
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref27
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref27
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref27
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref28
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref28
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref28
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref29
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref29
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref30
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref30
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref31
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref31
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref31
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref31
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref32
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref32
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref32
https://doi.org/10.13140/RG.2.2.23510.50244
https://doi.org/10.13140/RG.2.2.23510.50244
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref34
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref34
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref34
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref35
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref36
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref36
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref37
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref37
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref37
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref38
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref38
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref38
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref38
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref39
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref39
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref39
https://doi.org/10.1002/pip.2744
https://doi.org/10.1002/pip.2744
https://doi.org/10.1016/j.rser.2014.07.155
https://doi.org/10.1016/j.rser.2014.07.155
https://doi.org/10.1109/JPHOTOV.2013.2282741
https://doi.org/10.1109/JPHOTOV.2013.2282741
https://doi.org/10.1109/PVSC.2010.5617074
https://doi.org/10.1109/PVSC.2010.5617074
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref44
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref44
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref44
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref44
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref45
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref45
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref45
https://doi.org/10.1109/PVSC.2013.6744087
https://doi.org/10.1109/PVSC.2013.6744087
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref47
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref47
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref47
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref48
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref48
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref48
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref49
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref49
https://doi.org/10.1109/JPHOTOV.2014.2305472
https://doi.org/10.1109/JPHOTOV.2014.2305472
https://doi.org/10.1109/PVSC.2010.5616823
https://doi.org/10.1109/PVSC.2010.5614472
https://doi.org/10.1109/PVSC.2015.7355684
https://doi.org/10.1109/JPHOTOV.2018.2838438
https://doi.org/10.1109/PVSC40753.2019.8980545
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref56
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref56
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref56
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref57
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref57
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref57
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref58
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref58
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref58
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref59
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref59
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref60
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref60
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref60
https://doi.org/10.1016/B978-0-12-811545-9.00006-9
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref62
https://doi.org/10.1016/B978-0-12-811545-9.00007-0
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref64
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref64
https://doi.org/10.1109/PVSC.2009.5411248
https://doi.org/10.1016/B978-0-12-811545-9.00013-6
https://doi.org/10.1016/B978-0-12-811545-9.00013-6
https://doi.org/10.1016/j.solmat.2006.04.002
https://doi.org/10.1016/j.solmat.2006.04.002
https://doi.org/10.1016/j.engfailanal.2016.04.031
https://doi.org/10.1038/s41598-018-32291-8
https://doi.org/10.1007/s11356-019-06100-2
https://doi.org/10.1007/s11356-019-06100-2
https://doi.org/10.1117/12.896135
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref72
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref72
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref73
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref73
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref74
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref74
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref75
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref75
http://refhub.elsevier.com/S1364-0321(22)00088-0/sref75
https://doi.org/10.1016/j.rser.2015.12.217
https://doi.org/10.1016/j.rser.2015.12.217


Renewable and Sustainable Energy Reviews 159 (2022) 112160

15

module manufacturing. Renew Sustain Energy Rev 2016. https://doi.org/ 
10.1016/j.rser.2015.12.215. 

[78] Knausz M, Oreski G, Schmidt M, Guttmann P, Berger K, Voronko Y, et al. Thermal 
expansion behavior of solar cell encapsulation materials. Polym Test 2015;44: 
160–7. https://doi.org/10.1016/j.polymertesting.2015.04.009. 

[79] Dietrich S, Pander M, Sander M, Schulze SH, Ebert M. Mechanical and 
thermomechanical assessment of encapsulated solar cells by finite-element- 
simulation. In: Dhere NG, Wohlgemuth JH, Lynn K, editors. Reliab. Photovolt. 
Cells, modul. Components, vol. 7773. SPIE; 2010. 77730F. https://doi.org/ 
10.1117/12.860661. Syst. III. 

[80] Morlier A, Klotz S, Sczuka S, Kunze I, Schaumann I, Blankemeyer S, et al. 
Influence of the curing state of ethylene-vinyl acetate on photovoltaic modules 
aging. 28th. EUPVSEC; 2013. 

[81] Jonai S, Hara K, Tsutsui Y, Nakahama H, Masuda A. Relationship between cross- 
linking conditions of ethylene vinyl acetate and potential induced degradation for 
crystalline silicon photovoltaic modules. Jpn J Appl Phys 2015;54:8KG01. 
https://doi.org/10.7567/JJAP.54.08KG01. Japan Society of Applied Physics. 

[82] Kempe MD, Miller DC, Wohlgemuth JH, Kurtz SR, Moseley JM, Shah Q, et al. 
A field evaluation of the potential for creep in thermoplastic encapsulant 
materials. Conf Rec IEEE Photovolt Spec Conf 2012. https://doi.org/10.1109/ 
PVSC.2012.6317958. 

[83] Oreski G, Rauschenbach A, Hirschl C, Kraft M, Eder GC, Pinter G. Crosslinking 
and post-crosslinking of ethylene vinyl acetate in photovoltaic modules. J Appl 
Polym Sci 2017;134. https://doi.org/10.1002/app.44912. 

[84] Kuitche JM, Pan R, Tamizhmani G. Investigation of dominant failure mode(s) for 
field-aged crystalline silicon PV modules under desert climatic conditions. IEEE J 
Photovoltaics 2014;4:814–26. https://doi.org/10.1109/ 
JPHOTOV.2014.2308720. 

[85] Matsuda K, Watanabe T, Sakaguchi K, Yoshikawa M, Doi T, Masuda A. 
Microscopic degradation mechanisms in silicon photovoltaic module under long- 
term environmental exposure. Jpn J Appl Phys 2012. https://doi.org/10.1143/ 
JJAP.51.10NF07. 

[86] Novoa FD, Miller DC, Dauskardt RH. Adhesion and debonding kinetics of 
photovoltaic encapsulation in moist environments: adhesion and debonding 
kinetics of photovoltaic encapsulation. Prog Photovoltaics Res Appl 2016;24: 
183–94. https://doi.org/10.1002/pip.2657. 

[87] French RH, Podgornik R, Peshek TJ, Bruckman LS, Xu Y, Wheeler NR, et al. 
Degradation science: mesoscopic evolution and temporal analytics of 
photovoltaic energy materials. Curr Opin Solid State Mater Sci 2015. https://doi. 
org/10.1016/j.cossms.2014.12.008. 

[88] Gok A, Fagerholm CL, French RH, Bruckman LS. Temporal evolution and pathway 
models of poly(ethylene-terephthalate) degradation under multi-factor 
accelerated weathering exposures. PLoS One 2019;14:1–22. https://doi.org/ 
10.1371/journal.pone.0212258. 

[89] Hülsmann P, Weiss KA. Simulation of water ingress into PV-modules: IEC-testing 
versus outdoor exposure. Sol Energy 2015;115:347–53. https://doi.org/10.1016/ 
j.solener.2015.03.007. 
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