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a b s t r a c t

The planning of future power systems with high shares of renewable generation requires modelling large
and complex systems over long time periods, resulting in models which are computationally heavy to
solve. For this reason methods that can be used to decrease the size of power system dispatch models are
needed. A common method in large scale planning models is to decrease the model size by increasing the
size of the time steps. However, using larger time steps makes the representation of variability of
renewable generation and load less accurate, which can affect the results from the model. In this paper,
we investigate the possibility to use a power-based version of an economic dispatch model to decrease
the model time resolution while getting results which are close to the original high-resolution model. We
implement both power-based and the conventional, energy-based, versions of a dispatch model with
different time resolutions, and show that the power-based model has better agreement with the high-
resolution model, especially as the model time step increases. For example, using the power-based
model gives more accurate results for wind power curtailment in a high-renewable scenario.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Power systems world wide are undergoing big changes, as
variable renewable energy (VRE) sources are replacing conven-
tional fossil-based thermal generation. One of the main challenges
of operating power systems that rely on VRE production for a large
share of the generation is its variability. Due to its weather
dependence, VRE production is variable both on short and long
time scales. Wind power production from individual wind farms is
highly variable on an hourly and intra-hourly basis, but the short-
term variability is decreased when aggregating a large number of
wind farms [1,2]. Nevertheless, a country like Sweden can see
hourly ramp events close to 30% of installed wind power capacity
[3]. There are also low-wind periods: In Germany there is on
average one period per year when the wind capacity factor drops
below 10% for around five consecutive days [4]. Wind power is also
variable on an annual basis giving, e.g., annual variations of ±7.5%
for a 32 year period in the U.S. [5], but shows considerably less
variability than yearly hydro power production. Solar power has
r), german.morales@tno.nl
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more short-term variability than wind power, but usually a higher
correlation with demand [6].

Planning for future power systems that can deal with the impact
of VRE variability requires large-scale power system models that
are run for extended periods of time (months to years), to simulate
the expansion and operation of the power system. Notably, gen-
eration expansion planning (GEP) models [7] are used to optimize
expansion of both generation and transmission capacity. Many
studies are also focused on investigating the potential of specific
renewable technologies to meet future projected power demands.
For example [8], investigated the potential for wind power inte-
gration in China, using modelled wind speed data to determine
wind power production under different scenarios for wind power
capacity expansion, and [9] used a wind power production and
dispatchmodel to analysewind power curtailments under different
penetration levels. Several other studies also looked at wind power
curtailments, such as [10] which analysed wind curtailments in a
future Nordic power system, and [11] which analysed the need for
wind power curtailments in Ireland. Other studies have focused on
the effects of renewable generation on electricity prices [12] and on
the effect of VRE forecasts for large-scale hydro-thermal scheduling
problems [13]. Another important research area is power system
reliability, and how it is effected by increased VRE production.
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Nomenclature

Sets
A price areas, indexed a
AH3A price areas with hydro generation
G nuclear and thermal generators, indexed g
GT3G thermal generators
CI internal one-directional connections (a1 / a2),

indexed c
CE external connections (a / ext) with fixed transfer,

indexed c
CDC3CI internal HVDC connections
T time steps, indexed t ¼ 1, …, T
I instantaneous time marking beginning of each time

step, indexed t ¼ 1, …, T þ 1

Parameters
D number of hours in model time step [h]
h loss fraction for internal connections
m ramp penalization factor for power-based model
Cgt cost function for generator g2G and time t2T [EUR]

CW cost of wind generation, 1000 EUR/GWh

D
e
at nominal demand in area a for time step t2T , in

energy [GWh]

D
p
at nominal demand in area a for time t2I , in power

[GW]
Ha;Ha min/max hydro generation levels for area a [GW]
Iat total reservoir inflow in area a for time t [GWh]
Pg ;Pg min/max generation levels for generator g2G [GW]

PV
e
at available solar generation in area a for time step t2T ,

in energy [GWh]

PV
p
at available solar generation in area a for time t2I , in

power [GW]
Ra maximum reservoir level for area a [GWh]
Rend=inia final/initial reservoir level for area a [GWh]
RUg, RDg max/min ramp rates for generator g2G [GW/h]

RUH
a ;RD

H
a max/min ramp rates for hydro generation in area a

[GW/h]
RUDC, RDDC max/min ramp rates for HVDC connections [GW/h]

ROR
e
at run of river inflow in area a for time step t2T , in

energy [GWh]

ROR
p
at run of river inflow in area a for time t2I , in power

[GW]
VOLL value of lost load, 3 , 106 EUR/GWh

W
e
at available wind generation in area a for time step

t2T , in energy [GWh]

W
p
at available wind generation in area a for time t2I , in

power [GW]

X
e
ct maximum limit for transfer on connection c2CI for

time step t2T ; in energy [GWh]

X
p
ct maximum limit for transfer on connection c2CI for

time t2I , in power [GW]
Zect transfer on connection c2CE for time step t2T , in

energy [GWh]
Zpct transfer on connection c2CE for time t2I , in power

[GW]

Variables
deat demand reduction in area a for time step t2T , in

energy [GWh]
dpat demand reduction in area a for time t2I , in power

[GW]
pegt production from generator g2G for time step t2T , in

energy [GWh]
ppgt production from generator g2G for time t2I , in

power [GW]
pveat dispatched solar generation in area a for time step

t2T , in energy [GWh]
pvpat dispatched solar generation in area a for time t2I , in

power [GW]
rat reservoir content in area a at time t2I [GWh]
reseat reservoir hydro production in area a for time step

t2T , in energy [GWh]
respat reservoir hydro production in area a for time t2I , in

power [GW]
roreat run of river hydro production in area a for time step

t2T , in energy [GWh]
rorpat run of river hydro production in area a for time t2I ,

in power [GW]
sat spillage from reservoir in area a for time step t2T

[GWh]
we

at dispatched wind generation in area a for time step
t2T , in energy [GWh]

wp
at dispatchedwind generation in area a for time t2I , in

power [GW]
xect transfer for connection c2CI for time step t2T , in

energy [GWh]
xpct transfer for connection c2CI for time t2I , in power

[GW]
d
þ=�
gt variables to penalize ramp excursions for generator

g2GT for time t2T
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Studies of power system reliability require computationally
demanding simulations using techniques such as sequential Monte
Carlo simulation [14,15].

Although there are many differences between these studies in
terms of purpose and scope, they all have in common that they rely
on a dispatch model for the power system, to obtain the optimal
power system dispatch under different conditions. It is then
desirable to have a dispatch model that imposes a low computa-
tional burden. Firstly, these dispatch models are often solved for
large systems and long time spans, making them computationally
challenging. In GEP models, this problem is commonly handled by
limiting the time span for which the dispatch model is solved. For
945
example [16], models the power system dispatch for 576 h out of a
20 year planning horizon [17], models the dispatch for 7 days
during a year, and the MARKAL energy systems model [18] repre-
sents the electricity dispatch in each year by 6 time periods.
Decreasing the number of time steps for which the dispatch is
simulated can affect the results of the model significantly, but is
usually unavoidable to make the model size tractable. For example,
in Ref. [19] it was found that increasing the number of simulated
periods by a factor of 7 increased the system cost by 9.5% for a
European-scale energy systems investment planning model. The
more complexity is added to the model in other aspects, such as
sector coupling or increasing the system size, the greater will be the



Fig. 1. Representation of ramps using energy-based (left) and power-based (right)
formulation.
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need to reduce the complexity imposed by the dispatch model. An
example of this is the study of the Chinese power system in Ref. [8],
which used a heuristic technique based on different production
categories to calculate the dispatch in different periods, since using
a proper dispatch model would be computationally challenging.

Secondly, apart from being solved for large systems, it is often
needed to solve these dispatch models for many scenarios, e.g., for
assessment of generation adequacy and operational security. A
prominent example is the ENTSO-E Mid Term Adequacy Assess-
ment (MAF), which is based on Monte-Carlo simulation of different
weather years and outages. The adequacy estimates are then ob-
tained using repeated simulation of the dispatch model to compute
the unserved load [20].

Finally, properly accounting for uncertainty in power systems
with significant amounts of VRE production requires stochastic
optimization methods which also increases the computational
complexity of the models and hence increases the need for small
but realistic dispatch models. For example, in Ref. [13], which
looked at the impact of using extended weather forecasts for
operation scheduling in the Nordic power system, it took at least
27 h to solve the stochastic model even with 6 h time steps.

As the power system moves towards increasing penetration of
renewables, stochastic methods which increase the computational
complexity will be needed for operation simulation and GEP
models. For these reasons, methods that can be used to decrease
the size and solution time of dispatch models while maintaining
sufficient modelling accuracy are needed. In this paper, we inves-
tigate the possibility to speed up a dispatch model by converting it
into a power-based model. Conventional dispatch models describe
the production profiles of units as discrete energy blocks, as further
explained in Section 2. This has the downside of not capturing the
continuous trajectories of demand and variable renewable pro-
duction, and also not correctly representing unit ramps. For this
reason, a power-based unit commitment (UC) formulation has been
proposed in Refs. [21,22] and shown to significantly increase the
performance of UC formulations, in different settings such as when
dealing with wind power uncertainty [23] and when considering
N-1 security constraints [24]. In this paper we convert an existing
dispatch model for the Nordic power system [10] into a power-
based version, and evaluate the benefits of using the power-based
model compared to the energy-based model, while decreasing
the time resolution in the model in order to lower solution times.

A comparison of the power-based and energy-based UC for-
mulations with different time durations was carried out in Ref. [25],
but with increased time resolution, i.e., using time steps shorter
than 1 h, to investigate the effect of using shorter market trading
intervals. It was found that using power-based scheduling as
opposed to energy-based scheduling can reduce total operation
costs by several percentage points, and that the power-based
formulation leads to better scheduling decisions even when the
time resolution is decreased to 5min. In this study, we look at using
decreased time resolution in order to decrease the model size, thus
providing the first comparison of the power-based and energy-
based formulations using clustered time periods. Additionally, the
novelty of the study lies in investigating the impact of using the
power-based formulation for a dispatch model meant for medium
to long-term power operation simulation and wind integration
studies, as opposed to a UC formulation directed mainly at short-
term scheduling. Finally, our model includes a significant amount
of hydro power, and is thus the first case where the power-based
formulation is applied to the hydro-thermal scheduling problem.

We implement both power-based and energy-based versions of
the dispatchmodel with different time resolutions ranging from 1 h
to 6 h. In order to compare the models a 15-min time resolution
benchmark model is used. To facilitate a fair comparison the time
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series used in the low resolution models are constructed from the
15-min time series. For the power-based model, we suggest a
method for fitting the power profiles which results in a quadratic
programme and thus guarantees finding the global optimum.

The power-based and energy-based models are compared in
terms of how well they reproduce the results of the 15-min
benchmark model, when simulating the Nordic power system
over one year. It is shown that the power-based model gives better
results both when looking at a case with curtailment, due to
increased VRE production, and a case with load shedding due to
decreased conventional generation capacity. This means that the
power-based version of the dispatch model can be useful for ap-
plications where model size is critical, since a low resolution
version of the power-based model will be more accurate compared
to an energy-based version. For example, the power-based model
with decreased time resolution can be used for renewable inte-
gration studies where stochastic modelling of uncertainty of
renewable generation is required, in order to decrease the model
size while giving more accurate results for load shedding and VRE
curtailment.

The remainder of the paper is structured as follows. First Section
2 explains the concept of power-based modelling and compares it
to the traditional energy-based modelling. Next, Section 3 gives the
formulation of the models and describes the method used to obtain
the time series inputs to the models. Section 4 then compares the
formulations using two case studies, and Section 5 shows sensi-
tivity analysis of the results with respect to different model set-
tings. Finally, Section 6 concludes.
2. Power-based and energy-based modelling

In traditional energy systemmodels, continuous quantities such
as electricity demand and generation are approximated to discrete
time periods using staircase functions by modelling the average
energy quantity during a time step, as illustrated in Fig. 1. This type
of modelling has the drawback of not accurately capturing the ramp
rates of continuous quantities [26], and a power-based formulation
was proposed in Refs. [22,27] to overcome the drawbacks of
traditional energy-based UC formulations.

Fig. 1 shows an example illustrating the benefits of the power-
based formulation for modelling ramp rates. We assume that a
unit has min/max generation levels of 100 MW and 500 MW,
respectively, and a maximum ramp rate of 200 MW/h. Notice that
this unit may represent an individual power plant or an aggregation
of several smaller power plants, as is common in large scale dispatch



Fig. 2. Representation of wind variability using energy-based and power-based
formulation. The x-axis labels mark the beginning of each model time period.

Table 1
Ramp rates of wind power profile in Fig. 2

hour ramp rate

energy [MWh/h] power [MW/h] continuous [MW/h]

1 150 400 e

2 100 �400 e

3 �250 0 e

min �250 �400 �800
max 150 400 600

Fig. 3. Continuous wind profiles with the same energy content as in Fig. 2.
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models such as [10]. It is assumed that the energy production of the
unit during hour 1 is 100 MWh, which means that it must operate at
its minimum output level for the whole hour. Then, assuming the
unit must increase its output to meet demand, Fig. 1 shows how the
production profile can look with energy-based and power based
scheduling. Using the energy-based formulation and imposing the
ramp rate requirement of 200 MW/h on energy quantities, the unit
can ramp to 300 MWh during hour 2 and 500 MWh during hour 3.
However, since the unit starts hour 2 at 100 MW, the maximum
power output at the end of hour 2 is 300MW, and the corresponding
maximum energy output only 200 MWh, and similarly for hour 3.
Thus, the energy schedule resulting from the energy-based formu-
lation is in fact infeasible for the unit to provide, as shown by the
dark shaded area in Fig. 1. On the other hand, using the power-based
formulation correctly represents the unit's ramp rate and produces a
feasible power and energy schedule.

Apart from better modelling the ramp rates of units, the power-
based approach can also better represent variability of VRE produc-
tion and load. This is illustrated in Fig. 2, which shows an example of a
wind production profile during two model time steps. The original
wind profile has higher time resolution than the time step of the
model and is considered as the continuous wind profile, though the
resolution in this example is only 4 times the model time step. To be
used in the model, the wind profile must be resampled to the model
resolution. The energy profile is obtained by averaging the values
during an hour. Notice that the value at an hour shift is considered to
bepartof thehourstartingat that time.Toobtainthepowerprofile,we
can fit a piecewise linear curve that minimizes the distance to the
continuousvalues,whichwouldgive thepowerprofileshowninFig. 2.

An inspection intuitively shows that the continuouswind profile
is better approximated by the piecewise linear power profile than
the energy staircase profile. However, this can also be seen by
computing the ramp rates. For the energy profile, let the ramp rate
for an hour be given by

rampt ¼ et � et�1; (1)

where et is the energy produced during time step t, and for the
power profile by

rampt ¼ ptþ1 � pt ; (2)

where pt is the power output at the beginning of time step t. Table 1
shows the ramp rates of the energy and power profile for the time
steps 1e3, and compares the minimum and maximum ramp rates
during the period to the minimum and maximum instantaneous
ramp rates of the continuous profile. Although both the energy and
power profiles underestimate the maximum ramp rates due to the
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lower resolution, the power-based profile give ramp rates closer to
the actual values. Also, the power profile captures theminimumand
maximum output of the wind power better than the energy profile.

Another problem with the energy-based formulation is that
there is not a unique energy profile for a given continuous profile.
Fig. 3 shows two additional distinct continuous high resolution
wind profiles that have the same energy content as in Fig. 2.
Although the continuous profiles have distinctly different ramp
rates and maximum values, the low resolution energy profiles will
be identical. On the other hand, fitting low resolution piecewise
linear power profiles will result in different profiles that better
capture the variability of the continuous profile.

To show the benefits of the power-based formulation for a more
realistic example, Fig. 4 shows awind power profile from themodel
in Ref. [10] for 6 days. The original high resolution profile is shown
as well as the fitted 4-h energy and power profiles. It can be seen
that the mean absolute error (MAE) for the power profile is less
than half of the MAE for the energy profile. To better quantify the
agreement between the fitted profiles and the high resolution
profile, we can look at the profiles for a single day, and then
compute the min and max values and min and max ramp rates
during that day. Table 2 shows the difference between these values
for the energy and power profile compared to the high resolution
profile. It can be seen that the energy profile consistently over-
estimates the minimum daily production and underestimates the
maximum daily production. Similarly, the maximum 4 h ramp rates
are also underestimated by the energy profile. The power profile
performs much better at estimating both the daily min and max
values and the maximum ramp rates, decreasing the average errors
by an order of magnitude.

Using a piecewise linear power profile will also improve the
modelling of other continuous quantities, such as demand and solar
production. Thus there are two main benefits of using a power-
based dispatch model as opposed to a traditional energy-based
formulation. The first is the improved modelling of supply of flex-
ibility, by correctly modelling unit ramp rates and avoiding



Fig. 4. Fitted power and energy profile with 4 h resolution for wind production in SE1
during 6 days.
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infeasible energy schedules, and the second is an improved rep-
resentation of demand of flexibility, by more accurate modelling of
the variability of model inputs such as demand and VRE production.
The energy-based formulation, on the other hand, overestimates
the supply of flexibility and underestimates the demand of flexi-
bility, which is a drawback when modelling future energy systems
with high VRE penetration.

However, using a piecewise linear trajectory to describe the
power profiles of units also has disadvantages. The main drawback
is that it underestimates the flexibility of fast ramping units, as
discussed in Ref. [26]. Since the maximum ramp of a unit must be
within its capacity operating range, the maximum ramp rate that
can bemodelled is given by ðPg � PgÞ=D, where D is the time step in
the model. So for units with a higher ramp rate than this, the ramp
capability will be underestimated. Also, the larger the time step, the
greater will be the inflexibility imposed on fast-ramping units. This
is another reason why the power-based formulation can be ex-
pected to perform better for systems where ramp rates are a
limiting factor, compared to systems with lots ramping flexibility.
Thus the power-based formulation, unlike the energy-based
formulation, can underestimate the supply of flexibility. Still, for
power system security it is better to underestimate the flexibility
than to overestimate it.
3. Model formulation

This section starts by giving a short overview of the original
Nordic dispatchmodel in Section 3.1, and then presents the energy-
based version of the model in Section 3.2, and the power-based
Table 2
Daily errors for energy and power profiles compared to continuous profile from Fig. 4

min max

energy power energy pow

2018-01-01 0.027 �0.002 �0.054 0.01
2018-01-02 0.005 0.005 �0.004 0.00
2018-01-03 0.013 0.014 �0.043 0.00
2018-01-04 0.036 �0.002 �0.118 �0.
2018-01-05 0.051 0.002 �0.007 �0.
2018-01-06 0.078 0.017 �0.036 �0.
avg 0.035 0.006 �0.043 �0.
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version in Section 3.3. To distinguish between quantities in en-
ergy and power, all variables and parameters that can appear in
both energy and power are marked by the superscript e/p, e.g., pegt
and ppgt for production in energy and power, respectively. Quantities
without a superscript are always in energy. The input parameters
were computed differently depending on if they are in energy or
power, as described in Section 3.4. Section 3.5 describes how unit
ramps were penalized to remove unrealistic power oscillations
from the power-based model.
3.1. Nordic dispatch model

The Nordic dispatch model [10] is an hourly, area-based
dispatch model for the Nordic power system, modelling the gen-
eration in the different price areas in Sweden, Norway, Denmark,
and Finland. The model includes 12 price areas and six different
generation technologies (thermal, nuclear, reservoir hydro, run of
river hydro, wind power, and solar power). There is a significant
amount of reservoir hydro power productionwith seasonal storage,
with a total reservoir capacity of 120 TWh and hydro production
corresponding to roughly 55% of annual electricity generation.

The main inputs to the model are the fitted quadratic cost
functions, generation capacity, hydro reservoir inflow, potential
wind and solar generation, transmission capacities between
different price areas, and demand profiles. Themodel optimizes the
production in the different price areas and the content in the hydro
reservoirs to meet the demand, which is modelled as an inflexible
demand that can be curtailed at the maximum Nordpool price of
3000 EUR/MWh. Direct outputs of the model are production of the
different types in each price area, transfers between the areas,
reservoir contents, and prices which are obtained from the dual
variables of the demand balance constraints. For this paper, ex-
changes to external price areas are fixed, meaning that the Nordic
countries are modelled as an isolated system, and transmission
losses between areas are set to zero. However, Section 5 shows
sensitivity analysis of the results when the model was run with 1%
losses. For more details regarding the model and detailed input
data, see Ref. [10].

For the purpose of serving as a benchmark, the original hourly
model was converted into a 15-min time resolution model, by
interpolating the original hourly time series to 15-min values, as
described in Section 3.4. In this paper we provide the full mathe-
matical formulations for the low resolution energy-based and
power-based versions of the model. For the formulation of the
original and 15-min model, which are the same except for the time
resolution, we refer to Ref. [10].
3.2. Energy-based formulation

The energy-based model formulation is to minimize the system
energy costs (3) subject to demand balance (4), hydro constraints
4 h ramp down 4 h ramp up

er energy power energy power

1 0.065 �0.014 �0.000 0.027
2 0.020 0.004 �0.016 0.004
3 0.052 �0.023 �0.027 0.008
017 0.024 �0.024 �0.016 �0.001
009 0.013 0.012 �0.059 0.012
009 0.064 �0.009 �0.015 0.003
003 0.040 �0.009 �0.022 0.009
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(5)e(8), ramp rates (10)e(12), and variable limits (13)e(20). Notice
that in this formulation all quantities that appear are in terms en-
ergy, i.e., constant values during the model time step. To get the
correct costs, the objective is multiplied with the size of the time
step, D. Also, the time step multiplies the inflow and withdrawal
from the hydro reservoirs in (5), and the allowed ramp rates in (10)-
(12).

Objective:

D,
X
t2T

0
@X

g2G
CgtðpegtÞ þ

X
a2A

VOLL,deat þ
X
a2A

CW,we
at

1
A; (3)

Demand balance:

X
g2Ga

pegtþreseatþroreatþwe
atþpveat�ðDe

at�deatÞ�
X

c2fCI:a1¼ag
xect

þ
X

c2fCI :a2¼ag
ð1�hÞ,xect�

X
c2CEa

Zect¼0; ca2A;t2T : (4)

Hydro constraints:

ra;tþ1 ¼ rat þ D
�
Iat � reseat � ROR

e
at � sat

�
c a2AH; t2T (5)

Ha � reseat þ roreat � Ha c a2AH; t2T (6)

0 � roreat � ROR
e
at ca2AH; t (7)

ra;1 ¼ Rinia c a2AH (8)

ra;Tþ1 ¼ Renda c a2AH (9)

Ramp constraints:

DRDg � peg;tþ1 � pegt � DRUg c g2G; t ¼ 1;…; T � 1 (10)

DRDH
a � resea;tþ1 þ rorea;tþ1 � reseat � roreat � DRUH

a c a2AH; t

¼ 1;…; T � 1

(11)

DRDDC � xec;tþ1 � xect � DRUDC c c2CDC; t ¼ 1;…; T � 1

(12)

Variable limits:

0 � deat � D
e
at ca2A; t2T (13)

Pg � pegt � Pg cg2G; t2T (14)

0 � we
at � W

e
at ca2A; t2T (15)

0 � pveat � PV
e
at ca2A; t2T (16)

0 � rat � Ra ca2AH; t ¼ 2;…; T (17)

0 � reseat ca2AH; t2T (18)

0 � sat ca2AH; t2T (19)
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0 � xect � X
e
ct cc2CI; t2T (20)
3.3. Power-based formulation

With the power-based formulation, the production trajectories
are described as piecewise linear power trajectories, as illustrated
in Fig. 1. However, the objective is still given as the energy cost,

D,
X
t2T

0
@X

g2G
CgtðpegtÞ þ

X
a2A

VOLL,deat þ
X
a2A

CW,we
at

1
A (21)

where the energy-based quantities appearing are computed as the
averages of the power-based variables, e.g.,

pegt ¼
ppg;tþ1 þ ppgt

2

for pegt, and similarly for the remaining variables. Notice that in the
power-based formulation, all variables appearing in terms of en-
ergy are computed by obtaining their energy content in this way.

The demand balance is now specified as an instantaneous power
balance, meaning that all variables and parameters appearing in the
demand balance are power quantities:

X
g2Ga

ppgt þ respat þ rorpat þwp
at þ pvpat � ðDp

at � dpatÞ �
X

c2fCI :a1¼ag
xpct

þ
X

c2fCI:a2¼ag
ð1� hÞ,xpct �

X
c2CE

a

Zpct ¼ 0; c a2A; t2I : (22)

Since demand balance is enforced both at the beginning and end
of each time step, and all variables in (22) are changing linearly
within the time step, this ensures demand balance is enforced
continuously during the whole planning period. Notice that de-
mand balance is also enforced for t¼ Tþ 1, i.e., at the end of the last
time step.

Since the hydro reservoirs are a form of energy storage, the
reservoir balance (23) is still specified hourly in terms of energy.
However, the variables for reservoir and run-of-river hydro pro-
duction, respat and rorpat , appear in the demand balance and must be
defined in terms of power. Also the production limits (24)e(25) are
enforced in terms of power. For the reservoir balance (23), the
corresponding energy quantities must be used instead of the
power-based values. On the other hand, the spillage sat appears
only in the hydro balance and can thus be kept in terms of energy.
The initial and final reservoir levels (26)e(27) are enforced in the
same way as for the energy-based model.

ra;tþ1¼rat

þD
�
Iat�reseat�0:5,

�
ROR

p
a;tþ1þROR

p
at

�
�sat

�
ca2AH;t2T

(23)

Ha � respat þ rorpat � Ha c a2AH; t2T (24)

0 � rorpat � ROR
p
at ca2AH; t (25)

ra;1 ¼ Rinia c a2AH (26)



Table 3
Interpolation of 15-min data.

Parameter Method

Demand (D) cubic spline

Solar power (P V) cubic spline

Run of river (R OR) linear

Wind power (W) cubic spline

Exchange capacity (X) constant

External transfer (Z) linear
Reservoir inflow (I) linear

Fig. 5. Fitting piecewise linear power profile with n ¼ 2 segments.
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ra;Tþ1 ¼ Renda c a2AH (27)

The ramp constraints are the same as for the energy-based
formulation except that they are enforced using the power-based
quantities

DRDg � ppg;tþ1 � ppgt � DRUg c g2G; t2T (28)

DRDH
a � respa;tþ1 þ rorpa;tþ1 � respat � rorpat

� DRUH
a c a2AH; t2T (29)

DRDDC � xpc;tþ1 � xpct � DRUDC c c2CDC; t2T (30)

and the variable limits are also the same as before, except that the
time varying parameters restricting the variables in power are also
given in terms of power:

0 � dpat � D
p
at ca2A; t2I (31)

Pg � ppgt � Pg cg2G; t2I (32)

0 � pvpat � PV
p
at ca2A; t2I (33)

0 � rat � Ra ca2AH; t ¼ 2;…; T (34)

0 � respat ca2AH; t2I (35)

0 � sat ca2AH; t2I (36)

0 � wp
at � W

p
at ca2A; t2I (37)

0 � xpct � X
p
ct cc2CI; t2I (38)

3.4. Constructing the input time series

The energy-based and power-based versions of the model were
compared to a benchmark model with 15-min time resolution. The
15-min time series for the high-resolution model were obtained by
interpolating the original hourly time series, using the methods
shown in Table 3. In general, a standard way to create smooth high
resolution profiles is to use cubic splines, which was used for de-
mand, wind, and solar production. For transfers to external areas
and hydro inflows, which have less intra-hour variability, linear
interpolation was used. The time series for exchange capacities
were not interpolated, since these are effectively constant during
an hour. In Section 5, we also performed sensitivity analysis
regarding the choice of interpolation methods used to create the
15-min time series.

The 15-min model was used as a benchmark with which to
compare the low resolution models. To make a fair comparison
between the energy-based and power-based formulations, all low-
resolution time series were obtained from the 15-min time series in
the following manner. For the energy-based model, the time series
were obtained by averaging the 15-min values over a D-hour
period. For the power-based model, piecewise linear profiles were
fitted that minimized the deviation from the 15-min profiles.

Fig. 5 illustrates the fitting of the piecewise linear power profile.
Notice that the high resolution data points are treated as
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instantaneous power values when fitting the low resolution power
profiles. Let (xi, yi) for i ¼ 1, …, N be the set of equally spaced high
resolution (15-min) data points, and fj(x) ¼ ajxþ bj for j ¼ 1,…, n be
the set of linear segments to be fitted. It holds that N ¼ L , n þ 1
where L is the number of data points per segment (if, e.g., the
resolution D¼ 2 h this means that there areL¼ 4 , 2¼ 8 points per
segment, since the data has 15-min time resolution). Each data
point can be mapped to the corresponding segment by

jðiÞ ¼
�
i� 1
L

	
þ 1; (39)

meaning that the first L points are mapped to the first segment.
The last data point (xN, yN) is mapped to the segment n, which thus
has L þ 1 data points. The knot points, at which the y-values of the
piecewise linear power profile will be defined, are given by
x̂j ¼ xðj�1ÞLþ1 for j ¼ 1, …, n þ 1. The last segment n has two knot
points. Fitting the power profile considering the root mean squared
error (RMSE) can then be formulated as the following quadratic
optimization problem:

min
XN

i¼1

�
eþi
�2 þ �e�i �2 such that (40)

eþi � e�i ¼ fjðiÞðxiÞ � yi ci ¼ 1;…;N (41)

fjðx̂jþ1Þ ¼ fjþ1ðx̂jþ1Þ cj ¼ 1;…;n� 1 (42)

yj � fjðx̂jÞ � yj cj ¼ 1;…;n (43)

ynþ1 � fnðx̂nþ1Þ � ynþ1 (44)

eþi ; e
�
i � 0 ci ¼ 1;…;N (45)
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The optimization variables are the fitting errors eþi ; e
�
i for i ¼ 1,

…N and the coefficients of the linear segments, aj, bj for j ¼ 1, …, n.
Eq. (41) forces eþi and e�i to take on the positive and negative error,
respectively, for each data point and (42) ensures continuity of the
linear segments. The bounds on the piecewise linear profile at the
knot points are enforced by (43)-(44), where yj; yj for j¼ 1,…, nþ 1

are the lower/upper bounds, and (45) enforces positivity of the
fitting errors. It is also possible to enforce that the total energy
content of the fitted profile is the same as the high-resolution
profile, by adding (46) to the constraints:

Xn

j¼2
fjðx̂jÞ þ

f1ðx̂1Þ þ fnðx̂nþ1Þ
2

¼
 XN�1

i¼2
yi þ

y1 þ yN
2

!,
L

(46)

Fig. 6 shows the power profile fit for solar production in Sweden
over 7 days. Notice that if the bounds for the power profile are
constant in (43), the peaks of the power profile will not match the
peaks in the 15-min data. However, introducing time-varying
bounds calculated locally from the 15-min data the peak values
could be made to match the data, as shown by fit 2 in Fig. 6.
3.5. Penalizing power oscillations

Unlike for most energy system models [28e31], the objective in
the Nordic dispatch model is quadratic. This was important for the
performance of the model, as using quadratic costs significantly
increased the accuracy of the model when compared to historical
data [10]. Also, linear models can produce excessive cycling of units
that require ramp penalizations to be reduced [29]. However, the
objective is quadratic in terms of energy, and not in terms of power.
Thus what matters for the cost is only the average energy produced
by different generation types each time step. Hence, it is possible to
obtain solutions to the power-based model where the power pro-
duction oscillates as shown in Fig. 7. What happens is that the
thermal production in different areas oscillate in counter-phase, to
even out the fluctuations in the total production. Since only the
average energy during a time step enters the objective, these os-
cillations do not impose any additional costs in the model. In other
words, there are multiple vertices, or power trajectories, giving the
same global optimum. In order to remove such unrealistic oscilla-
tions, we introduced a small penalization for ramps in the power-
based model. This was done by adding
Fig. 6. Fitting 6 h resolution power profile for solar power in Sweden by minimizing
the RMSE. Fit 1 has a constant upper limit for the power profile, while fit 2 has variable
upper limits, computed as the maximum 15-min value over a 24-h rolling window.
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ppg;tþ1 � ppgt ¼ dþgt � d�gt cg2GT; t (47)

dþgt ; d
�
gt � 0 cg2GT; t (48)

to the model and introducing a penalization term in the objective,
thus replacing (21) by:

D,
X
t2T

0
@X

g2G
CgtðpegtÞ þ

X
a2A

VOLL,deat þ
X
a2A

Cw,we
at

1
A

þ m
X
g2GT

X
t2T

�
dþgt þ d�gt

�
(49)

As shown in Fig. 7, this eliminated the power oscillations. A
value of m ¼ 4.5 , 10�4 was found to be sufficient and was used in
the power-based model. Note that the penalization for the ramp
oscillations was removed when comparing the objective values of
the energy-based and power-based formulations in Section 4 and
Section 5.

4. Results

The models were implemented in Python and solved using
Gurobi 9.0.2 on a PC with Intel Core i7-4790 CPU @ 3.6 GHz and
32 GB of RAM. The power and energy-based models were imple-
mented with time steps of 1e4 and 6 h, and compared to the
benchmark 15-min time resolution model. The method used to
construct the time series with different time resolutions is
described in Section 3.4.

The models were solved for 2018 for two different cases, one
with increased renewable production which created the need for
curtailing wind power, and one case with decreased nuclear pro-
duction which created the need for load shedding. The original
generation mix in the Nordic power system for 2018 was 55% hydro
power production, 23% nuclear production, 12% thermal genera-
tion, and 10% wind power. There were 12 price areas and 8736 h in
the simulated time period, and the benchmark model had 4.2
million variables, 3.3 million constraints, and 12.1 million non-
zeros. Note that the year 2018 was chosen since this was the
most recent year with hydro power inflow data available in the
original model [10], but Section 5 also shows the results when the
case studies were run for 2017, to show the impact of a different
year. In the following subsections we compare the performance of
the models for the two case studies in greater detail.

4.1. Wind curtailment

To get a case with wind power curtailment, the wind power
production in Sweden was increased by 100% compared to the his-
torical values for 2018 and the PV solar power in Sweden was
increased to 5 GW. Fig. 8 shows the total amount of wind power
curtailment in the models run with different time resolution. Notice
that the energy-based model consistently underestimated the
curtailment, the difference compared to the benchmark model
increasing as the model time step increases, giving deviations up to
90%. On the other hand, the power-based formulation gave an esti-
mate of the curtailment closer to the benchmark model, being off by
at most 19%. Fig. 9 shows the time series and duration curves for the
total wind power curtailment, for the 6 h models. The duration
curves show that the result for the power-based model was closer to
the 15-min benchmarkmodel compared to the energy-based model,
both in terms of estimating the maximum amount of curtailment
and the number of hours with curtailment, which was around 200.



Fig. 7. Thermal production in Finland (FI) and Sweden (SE3) for power-based model with 6 h time step and 15-min benchmark model, without ramp penalization (left) and with
ramp penalization (right) with m ¼ 4.5 , 10�4. The legend is the same for both graphs. Notice that the power oscillations in FI and SE3 are in counter-phase.

Fig. 8. Total yearly wind curtailment in the Nordic system for different model time
resolutions. Values are normalized with results for the benchmark model, which is
35.8 GWh.

Fig. 9. Total yearly wind curtailment in the Nordic system for models with 6 h
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Fig. 10 shows the objective values obtained when solving the
models with different time resolution. Both models under-
estimated the system cost, but the difference for the energy-based
model was much larger, 1.6% for 6 h resolution compared to 0.4% for
the power-based model. The decreased costs for the energy-based
model can not only be explained by decreased wind curtailment
compared to the benchmark model. Assuming that the average
thermal cost to replace curtailed wind power is 30 EUR/MWh, the
potential cost decrease of avoiding the 36 GWh curtailment in the
benchmark model is 3 , 104 EUR/GWh , 36 GWh ¼ 1.08 , 106 EUR,
which is only 0.1% of the total costs (8.75 , 108 EUR). In general,
decreasing the time resolution can be expected to decrease the
costs, since the variability of the inputs such as demand and VRE
production is reduced, allowing smoother production profiles for
the thermal generation, which decreases the costs due to the
quadratic cost functions.

The time it took to solve the models is shown in Fig. 11. Notice
that the time needed to build the optimization problem (which was
done using Gurobi's Python api) and the time spent in the solver are
shown separately, but together comprise the total solution time.
For both the energy-based and power-based models, the solution
time decreased by about a factor 9 when going from 1 h time res-
olution to 6 h resolution. Notice that the solution time for the
power-basedmodel was consistently somewhat higher than for the
energy-basedmodel, which is different from the results obtained in
Ref. [25]. The reason that the power-based formulation was harder
time resolution, plotted as time series (left) and duration curves (right).



Fig. 10. Objective value for different model resolutions. Values are normalized with
results for the benchmark model, which is 8.75 , 108 EUR. For the power-based model
the cost for ramp penalizations has been excluded.

Fig. 12. Total yearly load shedding in the Nordic system for different model time
resolutions. Values are normalized with results for the benchmark model, which is
85.3 GWh.
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to solve can be due to the additional complexity introduced by the
constraints penalizing the power oscillations, as described in Sec-
tion 3.5.

4.2. Load shedding

To get a case with load shedding, 3 out of 4 reactors (block 1e3)
at the nuclear power plant Ringhals in SE3 were removed, and VRE
production in Sweden was set to the actual values for 2018. Fig. 12
shows the total load shedding for the models with different time
steps. Similarly to the case with curtailment, the energy-based
model consistently underestimated the amount of load shedding.
On the other hand, the power-based model overestimated the load
shedding, but gave results closer to the benchmark model for res-
olutions of 2e6 h, with a maximum error of 26% compared to 34%
for the energy-based model. Fig. 13 shows the load shedding for the
6 h models, plotted as time series and duration curves. Notice that
although the 6 h power-based model overestimated the total
amount of load shedding, the peak load shedding in GW was quite
close to the benchmark model.

Fig. 14 shows the objective values obtained for the low resolu-
tion models. In this case, the direct influence of the load shedding
on the costs wasmuch stronger compared to the previous casewith
Fig. 11. Model solution duration for different time resolutions.
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renewable curtailment. For the power-based model with 6 h time
resolution, the additional load shedding compared to the bench-
mark model was 22 GWh, which, given the load shedding cost of
3000 EUR/MWh, amounts to 66 million EUR, or 2% of the total costs
for the benchmark model. Thus the increased costs for the power-
based model resulted mostly from the increased load shedding. On
the other hand, the energy-based model underestimated the
amount of load shedding and thus also the costs.

Fig. 15 shows the time needed to run the models, which was
similar to the previous case study with curtailment.
5. Sensitivity analysis

This section presents sensitivity analysis performed to investi-
gate the robustness of the results from Section 4. One important
factor which could influence the results was the method used to
interpolate the time series for the high resolution model. As shown
in Table 3, the high resolution time series were obtained using
linear or spline interpolations of the hourly data. To investigate the
effects of the choice of interpolationmethods, the case studies from
Section 4 were rerun when all time series data were interpolated
with either linear or spline interpolation (except the exchange ca-
pacities which were fixed during an hour). Figs. 16 and 17 show the
objective function value for the curtailment and loadshed case
study, respectively, using both spline and linear interpolations.

The case studies in Section 4 were also run for 2017 instead of
2018, and applying a 1% loss to internal transfers, to check the
robustness of the results with respect to the modelled year and
losses. The results are also shown in Figs. 16 and 17.

Fig. 16 shows that the results for the curtailment case study
were quite similar across the different settings. Using the power-
based model gave results close to the high resolution model for
all resolutions, while the energy-based model underestimated
curtailment and therefore also the operation cost. For the loadshed
case study, shown in Fig. 17, the results were also similar for the
different settings. Using the power-based formulation over-
estimated loadshed and cost, while using the energy-based
formulation underestimated them. However, in this case the
energy-based formulation gave total costs closer to the result from
the 15-min model for some settings. In particular, the energy-based



Fig. 13. Total yearly load shedding in the Nordic system for models with 6 h time resolution, plotted as time series (left) and duration curves (right).

Fig. 14. Objective value for different model resolutions. Values are normalized with
results for the benchmark model, which is 2.97 , 109 EUR. For the power-based model
the cost for ramp penalizations has been excluded.

Fig. 15. Model solution duration for different time resolutions.

Fig. 16. Sensitivity analysis of the results for the curtailment case study. The objectives
are normalized relative to the results from the high resolution model, which is
different for each case. Dashed lines show results for power-based model and solid
lines for energy-based model.
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formulation performed better than the power-based model for
2017, and when using linear interpolation for the time series. This
shows that the power-based formulation is not guaranteed to give
better results than the energy-based formulation. As discussed in
Section 2, the power-based formulation underestimates the flexi-
bility of units with high ramp rates, especially as the time
954
resolution of the model increases. This applies to the studied sys-
tem, since it includes large amounts of hydro power which has high
flexibility. However, it should also be noted that using a linear
interpolation to calculate the 15-min values underestimates the
intra-hour variability, which can explain why the energy-based
formulation performed better in this case. Also, even if energy-
based models provide good results in terms of costs, the solutions
are not guaranteed to be feasible, since it does not guarantee the
existence of a feasible power trajectory, overestimating the flexi-
bility of dispatchable units and underestimating the variability of
demand and VRE production.

6. Conclusion

In this paper we proposed a power-based version of a dispatch
model using clustered time periods to reduce the size and
complexity of the model. Compared to the conventional energy-
based model, the power-based model allows to lower the time
resolution while better preserving the properties of the time series
inputs used in the model, such as ramp rates and peak values. This
increases the accuracy of the power-based model compared to the
energy-basedmodel when increasing the size of the time steps, and
is particularly useful when simulating systemswith high renewable
penetration, since it is paramount to accurately represent



Fig. 17. Sensitivity analysis of the results for the loadshed case study. The objectives are
normalized relative to the results from the high resolution model, which is different for
each case. Dashed lines show results for power-based model and solid lines for energy-
based model.
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renewable variability.
We evaluated the energy-based and power-based models for

different time resolutions using two case studies, one with
increased renewable generation and curtailment, and one with
decreased conventional generation and load shedding. For time
steps between 2 and 6 h, the power-based model gave results
closer to the 15-min benchmark model, both in terms of total
energy values (energy curtailed or amount of load shedding in
energy) and in terms of peak values. For example, the power-
based model with 6 h time resolution gave a difference of 10%
for total curtailment compared to the benchmark model, while
solving 30 times faster. The power-based model also gave total
costs closer to the benchmark model compared to the energy-
based model for most cases. Interestingly, the power-based
formulation overestimated demand curtailment while the
energy-based model underestimated it. This suggests that the
power-based dispatch model can be useful for applications where
it is important to decrease the complexity of the model while
maintaining relatively accurate modelling results, and not
underestimating load curtailment. As future research, the power-
based dispatch model with lower time resolution could be inte-
grated into a model for generation expansion planning, to study if
this gives improved investment decisions, compared to using an
energy-based dispatch model with the same time resolution.
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