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Research on brain signals as indicators of a certain attentional state is moving from

laboratory environments to everyday settings. Uncovering the attentional focus of

individuals in such settings is challenging because there is usually limited information

about real-world events, as well as a lack of data from the real-world context at hand

that is correctly labeled with respect to individuals’ attentional state. In most approaches,

such data is needed to train attention monitoring models. We here investigate

whether unsupervised clustering can be combined with physiological synchrony in the

electroencephalogram (EEG), electrodermal activity (EDA), and heart rate to automatically

identify groups of individuals sharing attentional focus without using knowledge of the

sensory stimuli or attentional focus of any of the individuals. We used data from an

experiment in which 26 participants listened to an audiobook interspersed with emotional

sounds and beeps. Thirteen participants were instructed to focus on the narrative of the

audiobook and 13 participants were instructed to focus on the interspersed emotional

sounds and beeps. We used a broad range of commonly applied dimensionality

reduction ordination techniques—further referred to as mappings—in combination with

unsupervised clustering algorithms to identify the two groups of individuals sharing

attentional focus based on physiological synchrony. Analyses were performed using the

threemodalities EEG, EDA, and heart rate separately, and using all possible combinations

of these modalities. The best unimodal results were obtained when applying clustering

algorithms on physiological synchrony data in EEG, yielding a maximum clustering

accuracy of 85%. Even though the use of EDA or heart rate by itself did not lead to

accuracies significantly higher than chance level, combining EEG with these measures in

a multimodal approach generally resulted in higher classification accuracies than when

using only EEG. Additionally, classification results of multimodal data were found to be

more consistent across algorithms than unimodal data, making algorithm choice less

important. Our finding that unsupervised classification into attentional groups is possible

is important to support studies on attentional engagement in everyday settings.

Keywords: unsupervised clustering, unsupervised learning, physiological synchrony, EEG, electrodermal activity,

heart rate, inter-subject correlation
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INTRODUCTION

Research on brain signals as indicators of mental state, such as
attention, is moving from laboratory environments to everyday
settings. This comes with several challenges. Firstly, contextual
information about the environment and the people acting in it
is limited. It is, for instance, usually unknown what events occur
in the environment that are of potential interest to individuals.

This complicates the process of uncovering attentional state by
referring to known events through traditional analysis of event-
related brain potentials. Secondly, everyday settings make it

difficult to acquire suitable data to train algorithms that uncover
mental state. Machine learning techniques have increased our
ability to uncover complex mental states even with limited
contextual information, but user-specific data from a similar
context is required to train well-performing machine learning
models. In a supervised machine learning approach, a model

is trained with data recorded when information was available
about events, and about the mental state of the individuals, to
enable discrimination between the mental states of interest for
unseen data collected when contextual information is limited.
Such paradigms have been widely applied, for instance to
recognize the emotional response to videos (Soleymani et al.,
2011, 2015), to distinguish between different mental workload
conditions (Hogervorst et al., 2014) or to estimate the attentional
state of individuals (Abiri et al., 2019; Vortmann et al., 2019).
The requirement of context-specific training for discrimination
between mental states is the major drawback of supervised
machine learning (Aricò et al., 2018). Especially in everyday
settings, the ground truth mental state information needed in the
training phase is often not available (Brouwer et al., 2015).

We here focus on further exploring an alternative approach
that requires little information about the individuals’
environment and does not require training. This approach
is based on the interdependence of physiological signals in
groups of individuals and may be used to probe attentional
engagement. A number of everyday settings exist in which
groups of individuals share their attention to some degree. An
example is a group of students listening to the instruction of a
teacher in a classroom. The degree to which physiological signals
in such groups of individuals uniformly change is often referred
to as physiological synchrony (Palumbo et al., 2017). It has been
related to the attentional engagement of individuals in a group,
for example when presented with the same narrative stimulus,
such as a movie or audio clip (Hasson et al., 2010; Dmochowski
et al., 2012). Ki et al. (2016) found that when a participant was
actively attending to a movie, his or her electroencephalogram
(EEG) was more synchronized with the EEG of others attending
to the same movie than when the participant’s attention was
focused inwardly on a mental arithmetic task. Perez et al. (2020)
found similar results when using heart rate instead of EEG.
Stuldreher et al. (2020a) found that physiological synchrony
in EEG, heart rate and electrodermal activity (EDA) could not
only distinguish between different attentional conditions within
an individual, but could also distinguish between participants
who had received different selective attentional instructions
toward the exact same external stimulus. That is, a majority of

participants showed more physiological synchrony with others
who received the same attentional instructions than with others
who received opposite attentional instructions.

Previous work indicates that both similarities in emotional
and cognitive processing may underlie physiological synchrony
across individuals. Poulsen et al. (2017) found that moments in
time with high physiological synchrony often coincided with
emotionally arousing scenes of presented movie clips, suggesting
that emotional engagement underlies high physiological
synchrony. Stuldreher et al. (2020b) showed that not only
presentation of emotionally arousing sounds led to high
physiological synchrony, but also the presentation of to-be-
counted beeps, suggesting shared cognitive processing can also
underlie high physiological synchrony. Dmochowski et al. (2014)
showed that physiological synchrony over time was predictive
of the number of tweets and viewership during a popular
television series, where emotional and/or cognitive engagement
may have resulted in being compelled to view the stimulus.
The contribution of shared emotional or cognitive processing
of specific stimuli to the overall interpersonal physiological
synchrony seems to depend on the specific physiological
measure. Stuldreher et al. (2020b) found that moments of
high physiological synchrony in EEG corresponded with the
occurrence of cognitive processing, but not with emotionally
arousing events. Moments of high physiological synchrony in
heart rate, on the other hand, corresponded well with emotionally
arousing events, but not with cognitive processing. Nonetheless,
physiological synchrony in all of the above measures was shown
to distinguish between groups with different selective attentional
focus toward the same narrative stimulus (Stuldreher et al.,
2020a).

Physiological synchrony thus enables monitoring the degree
of attentional engagement without training of a model, and
without detailed information about the environment. However,
researchers up to now have only identified the specific attentional
focus of an individual by putting physiological synchrony in
context of other individuals of whom the attentional focus is
known, such as inwardly vs. outwardly focused attention (Cohen
and Parra, 2016; Ki et al., 2016; Perez et al., 2020) or one of
two specific types of selective attentional instructions (Stuldreher
et al., 2020a). In everyday settings, such knowledge is not always
available. For example, it is not known a priori who out of a
group of students are attending to key elements of the lecture, and
who are attending to what is happening in the classroom around
them, which would be required to classify an unknown individual
into one or the other attentional group following the earlier used
methods. For such cases, we require unsupervised identification
of groups of individuals sharing attentional focus.

Unsupervised learning techniques may be used to find clusters
of individuals sharing attentional state. Unlike supervised
learning, unsupervised learning techniques are not based on
a model that is trained on a labeled dataset. Instead, these
techniques form clusters of samples that are proximate in a high-
dimensional space (Grira et al., 2004). Numerous algorithms
are available, from well-known algorithms such as traditional
k-means (Lloyd, 1982), and its more modern iterations (Yu
et al., 2018; Sinaga and Yang, 2020), to spectral clustering
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(Von Luxburg, 2007) or hierarchical clustering (Ward, 1963).
Complementary to data clustering are ordination techniques,
that pre-order objects in such a way so that similar objects are
close to each other and dissimilar objects are far away from each
other. Often used are the algorithms that are part of the family of
multidimensional scaling (Borg et al., 2018).

Unsupervised learning techniques have been explored before
in research using physiological measures to assess mental state.
For instance, Schultze-Kraft et al. (2016) successfully employed
unsupervised learning techniques to classify either low or high
operator workload in a laboratory setting based on EEG signals.
Existing work focuses on within-subject classification of mental
state (Carreiras et al., 2016; Schultze-Kraft et al., 2016; Maaoui
and Pruski, 2018). To the best of our knowledge, unsupervised
clustering of individuals sharing their attentional focus has not
been demonstrated before.

The goals of the current work are therefore two-fold.
First, we establish the feasibility of unsupervised clustering of
individuals based on physiological synchrony, to automatically
identify groups of individuals sharing attentional focus without
pre-knowledge of attentional focus of any of the individuals.
Clustering performance is evaluated by using ground truth
information on attentional state. Second, we investigate how
performance depends on the type of physiological measure used.
While distinguishing between different attentional conditions
using synchrony in EEG, EDA, and heart rate has been explored
before (Stuldreher et al., 2020a), we do not know how such
results transfer to an unsupervised approach. Additionally, we
test performance when multiple physiological measures are
combined. We investigate all of this with the use of a broad range
of classic and more modern unsupervised learning techniques. A
secondary goal therefore is to compare clustering performance
across algorithms.

In this study, we use the (Stuldreher et al., 2020a) publicly
available dataset (https://osf.io/8kh36/) in which ground-truth
information about the attentional state of individuals is available.
Though such information is generally not available in everyday—
and if it is, one would use supervised learning techniques due
to their higher performance compared to unsupervised learning
(Blankertz et al., 2016; Aricò et al., 2018)—we here need the
ground truth information to reflect on the performance of this
novel approach. We also investigate the use of the silhouette
coefficient as a potential way to evaluate unsupervised clustering
performance in scenarios where no ground-truth information is
available (Rousseeuw, 1987).

In sum, we investigate whether attentional focus can be
determined using unsupervised clustering, and if so, whether
clustering performance depends on the type of physiological
modality (EEG, EDA, and heart rate).

We hypothesize that:

1) Attentional focus can be determined using unsupervised
clustering techniques.

2) Classification accuracies are higher when using EEG rather
than EDA or heart rate.

3) Combining modalities into a multimodal approach leads to
higher classification accuracies than unimodal approaches

because amultimodal approach includes information of more
mental processes in the classification decision.

4) The silhouette coefficient is correlated with
clustering accuracy.

When testing these hypotheses, we use multiple clustering
algorithms. An additional exploratory research question is how
performance depends on clustering algorithm.

METHODS

Participants
Twenty-seven participants (17 female), aged between 18 and 48
years (M = 31.6, SD = 9.8 years), took part in the experiment.
They were recruited through the participant pool of the research
institute where the study took place. None of the participants
reported problems with hearing. Prior to the experiment all
participants signed an informed consent, in accordance with
the Declaration of Helsinki. All participants received a small
monetary compensation for their participation in the experiment
and for traveling costs. Data from 26 participants were further
processed due to a recording failure in one case. The experiment
was approved by the TNO Institutional Review Board. The
approval is registered under reference 2018-70.

Materials
Electroencephalogram, EDA, and electrocardiogram (ECG) were
recorded at 1,024Hz using an ActiveTwoMk II system (BioSemi,
Amsterdam, Netherlands). Electroencephalogram was recorded
with 32 active Ag/AgCl electrodes, placed on the scalp according
to the 10–20 system, together with a common mode sense active
electrode and driven right leg passive electrode for referencing.
The electrode impedance was maintained below 20 kOhm. For
EDA, two passive gelled Nihon Kohden electrodes were placed
on the ventral side of the distal phalanges of the middle and
index finger. For ECG, two active gelled Ag/-AgCl electrodes
were placed at the right clavicle and lowest floating left rib.
Electrodermal activity and heart rate were also recorded using
wearable systems (Movisens EdaMove 4 and Wahoo Tickr,
respectively). These data are not discussed here, but are publicly
available on https://osf.io/8kh36/ and compared to the data
recorded using the ActiveTwo in van Beers et al. (2020).

Stimuli and Design
Participants performed the experiment one by one. Each
participant listened to the same audio file, composed of a
66min audiobook (a Dutch thriller “Zure koekjes,” written by
Corine Hartman) interspersed with other auditory stimuli. The
13 participants in the audiobook attending (AA) group were
asked to focus on the narrative of the audiobook and ignore all
other stimuli or instructions. The 13 participants in the stimulus
attending (SA) group were asked to focus on the other stimuli,
perform accompanying tasks, and ignore the audiobook. The
order of interspersed stimuli was randomly determined, but was
identical for each participant. Intervals between the end of one
stimulus and the onset of the next one varied between 35 and 55 s
(M = 45, SD = 6.1 s). The short auditory stimuli were affective
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sounds, blocks of beeps, and the instruction to sing a song. For the
exact types and order of interspersed stimuli we refer the reader
to Stuldreher et al. (2020a).

After the experiment, all participants were asked to answer
two questionnaires. In the first questionnaire, participants used a
slider on a horizontal visual analog scale running from “not at all”
to “extremely” to rate their mental effort, distraction and emotion
during the short emotional sounds. The second questionnaire
was on the content of the stimuli: participants were asked to
report as many emotional sounds as they could remember, they
were asked to estimate the average number of beeps in a block,
and they were asked questions about the content of the narrative.
For more details we refer the reader to Stuldreher et al. (2020a).

Analysis
An outline of the complete analysis is depicted in Figure 1.
In the sections below, each part of the analysis is elaborated
upon separately.

Signal Pre-processing
Data pre-processing was done using MATLAB 2019a software
(Mathworks, Natick, MA, USA). Electroencephalogram was pre-
processed using EEGLAB v14.1.2 for MATLAB (Delorme and
Makeig, 2004). To remove potentials not reflecting sources
of neural activity, like ocular or muscle-related artifacts,
logistic infomax independent component analysis (Bell and
Sejnowski, 1995) was performed. Electroencephalogram was
first downsampled to 256Hz and high-pass filtered with the
passband edge at 1Hz using the standard finite-impulse-response
filter implemented in EEGLAB function pop_eegfiltnew. This
relatively high cut-off frequency has shown to work better for
independent component analysis compared to lower cut-off
frequencies (Winkler et al., 2015). Data were then notch filtered
at 50Hz, again using the standard finite-impulse-response filter
implemented in EEGLAB function pop_eegfiltnew. Channels
were re-referenced to the average channel value. Independent
component analysis was performed and the Multiple Artifact
Rejection Algorithm (Winkler et al., 2011) was used to classify
artifactual independent components. Components that were
marked as artifactual were removed from the data. Then, samples
whose squared amplitude magnitude exceeded themean-squared
amplitude of that channel by more than four standard deviations
were marked as missing data (“NaN”) in an iterative way with
four repetitions to remove outliers. By doing so, 0.8% of data were
marked as missing.

Electrodermal activity was downsampled to 32Hz. The fast
changing phasic and slowly varying tonic components of the
signal were extracted using Continuous Decomposition Analysis
as implemented in the Ledalab toolbox for MATLAB (Benedek
and Kaernbach, 2010). In further analyses we use the phasic
component, as this component of the EDA signal is mainly
related to responses to external stimuli (Boucsein, 2012).

Electrocardiogram measurements were processed to acquire
the inter-beat interval (inversely proportional to heart rate). After
downsampling to 256Hz, ECG was high-pass filtered at 0.5Hz.
R-peaks of the ECG signal were detected following Pan and
Tompkins (1985), resulting in a semi-time series of consecutive

inter-beat intervals. This inter-beat interval semi-time series
was transformed into a time series by interpolating consecutive
intervals at 32 Hz.

Physiological Synchrony
We computed inter-subject correlations in the time-domain as
a measure of physiological synchrony. Rather than treating EEG
signals separately, the inter-subject correlations were evaluated in
the correlated components of the EEG (Dmochowski et al., 2012,
2014). The goal of the correlated component analysis is to find
underlying neural sources that are maximally correlated between
participants, using linear combinations of electrodes. The
technique is similar to the more familiar principal component
analysis, differing in that projections capturemaximal correlation
between sets of data instead of maximal variance within a set
of data. After computing the correlated components based on
data from all 26 participants, EEG data of each participant were
projected on the component vectors. Inter-subject correlations
between a participant with all other participants were then
computed as the sum of correlations in the first three component
projections, as correlations in higher order projections are often
close to chance level (Ki et al., 2016). The result is aN×N matrix
inter-subject correlations of all possible pairs of participants. The
correlation values were normalized by dividing all correlation
values by the diagonal value—in this case three, as we computed
physiological synchrony as the sum of correlations in the first
three correlated components.

For EDA and heart rate, we also computed inter-subject
correlations in the time-domain as a measure of physiological
synchrony. Pearson correlations were calculated over successive,
running 15 s windows at 1 s increments. The overall correlation
between two participants was computed as the natural logarithm
of the sum of all positive correlations divided by the sum
of the absolute values of all negative correlations. Again the
correlation matrices were normalized. Originally, the diagonal
here contained infinite values (as there are no negative
correlations, the denominator in the ratio is zero). We therefore
chose to replace these cells with finite values in such a way that
the ratio between the diagonal value and the mean of the matrix
was the same for the matrices of EDA and heart rate as for EEG.
Then again, all correlations were divided by the diagonal value.

Clustering algorithms usually require distance matrices. Thus,
correlation matrices were transformed into distance matrices
before applying clustering algorithms. Several transformations
exist (Groenen and van de Velden, 2004). We followed the
suggestion of Gower and Legendre (1986) and computed the
values in the distance matrix as the square root of one minus the
values in the correlation matrix.

As the off-diagonal correlation values were close to zero, and
thus the off-diagonal distance values close to one, we applied
a linear transformation of each off-diagonal coefficient like in
interval multidimensional scaling (Borg and Groenen, 2005) to
evenly distribute the values between zero and one.

Mapping
Various ordination methods, or “mappings,” have been proposed
to create distance matrices. Mapping is complementary to data
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FIGURE 1 | Overview of the processing pipeline, divided in signal pre-processing, mapping, clustering, and evaluation. EEG, electroencephalogram; EDA,

electrodermal activity; ECG, electrocardiogram; HR, heart rate; PS, physiological synchrony; PCoA, principle coordinate analysis; mMDS, metric multidimensional

scaling; nMDS, non-metric multidimensional scaling; UMAP, uniform manifold approximation and projection; MVMDS, multiview multidimensional scaling; MVSC,

multiview spectral clustering.
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TABLE 1 | Overview of the used ordination techniques.

Method Description Reference

Principle Coordinate Analysis (PCoA) Also referred to as classical multidimensional scaling, PCoA intends to preserve

the distances in the distance matrix in the output mapping. To do so, for each

participant the objective is to find coordinates in a lower dimensional space that

minimize the strain with the original values.

Groenen and Borg,

2014

Metric Multidimensional Scaling (mMDS) mMDS is a superset of the PCoA that generalizes the optimization procedure,

where instead of strain often the stress is minimized. The minimization problem is

solved iteratively as there exists no exact solution.

Borg and Groenen,

2005

Non-metric Multidimensional Scaling

(nMDS)

Unlike PCoA, nMDS distorts the distances in the ordination solution. However, it

preserves the rank of dissimilarities by minimizing the non-metric stress in an

iterative approach.

Kruskal, 1964

Uniform Manifold Approximation and

Projection (UMAP)

UMAP is a non-linear manifold learning technique originally developed as

dimensionality reduction. It emphasizes local distances over global distances.

As the UMAP algorithm is also able to deal with ground-truth information known

about some of the data points, it can either be used as all other methods or with

self-supervised learning (SSL). With SSL, at the algorithm initialization, no labels

are known. When the first mapping and clustering are done, a known label is

assigned to the participant which is the closest to one of the cluster center. This

procedure is then repeated, each time adding the participant closest to one of

the cluster centers that has not been labeled yet.

McInnes et al., 2018

Multiview Multidimensional Scaling

(MVMDS)

Multi view dimensionality reduction solutions have emerged to solve problems

where various samples of the same observation are collected, as is the case

here with synchrony in EEG, EDA, and heart rate. MVMDS is a multimodal

extension of PCoA—with only one matrix as input, results are identical—that

intends to find the common eigenvectors across the different distance matrices

Trendafilov, 2010

Multiview Spectral Clustering (mvSC). Like MVMDS, this technique is a multimodal extension of the spectral clustering

ordination. It computes the common eigenvectors of the Laplacian of the

dissimilarity matrices.

Kanaan-Izquierdo

et al., 2018

clustering in such way that objects are ordered so that similar
objects are close to each other and dissimilar objects are far
away from each other. Mappings toward a different (lower-
dimensional) space can be of value for visualization of clusters,
and they can improve clustering performance (Kent et al., 1979).
The dimension of themapped space can be chosen arbitrarily.We
chose the output mapping to be in two-dimensional space, which
is most common in literature and easy to interpret. We applied
different, commonly known mappings, of which an overview can
be found in Table 1.

Clustering
After mapping, or skipping the mapping, we applied a range of
classical clustering algorithms (Table 2). Not all combinations
of mapping and clustering yielded valid results. Some methods,
for example, are not deterministic, but provide different
outcome maps for different initializations. We therefore
used multiple random initializations and averaged over
the clustering results for each initialization. However, this
approach did not converge when using k-means on the raw
distance matrices.

Evaluation: Clustering Quality Assessment
To assess the clustering quality we compared found clusters
to attentional condition labels (AA or short SA), so that the
clustering performance can easily be assessed. To investigate
whether clustering performance is above chance level, we
conducted a permutation analysis with shuffled group-labels,

so that we can compare the clustering accuracy to accuracies
obtained for 100 trials with randomized group-labels. We
determined the significance level using a one-tailed non-
parametric Mann Whitney U-Test. Chance level distributions
were determined for all algorithm combinations. The threshold
for significantly higher clustering accuracies compared to chance
were found to be either 65% (17 out of 26 participants correctly
clustered) or 70% (18 out of 26 participants correctly clustered).
We selected the strictest significance level (i.e., 70%) to compare
all classification results to.

In real-world conditions, ground-truth information on the
attentional state is often not a-priori available, which makes
it hard to tell how well-unsupervised clustering of attentional
states works in a particular condition. Therefore, we explored
an alternative measure of evaluating clustering performance,
known as the silhouette coefficient (Rousseeuw, 1987). This
index measures the compactness and separation of clusters and
may be informative as a confidence metric of the clustering
outcome. A confident clustering outcome would be associated
with tight and well-separated clusters, depicted by a silhouette
coefficient near one, whereas an unconfident clustering outcome
would be associated with broadly spread and overlapping
clusters, depicted by a silhouette coefficient near zero. The
silhouette coefficient cannot be determined for all combinations
of mapping and clustering methods, for example when using
random initializations before mapping over which has to
be averaged, as can be de the case with nMDS, mMDS,
or UMAP.
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TABLE 2 | Overview of used clustering algorithms.

Method Description Reference

k-means Probably the best known clustering algorithm, k-means aims to partition all n observations into k

clusters (here k = 2), in which each observation belongs to the cluster with the nearest mean.

Solutions are found iteratively.

Lloyd, 1982

k-medoids This adaptation of k-means is based on the same principle, but rather than minimizing the distance

between data points and the cluster center, that is not necessarily one of the input data points,

k-medoids chooses data points as centers and minimizes the distance between data points and

this medoid.

Bauckhage, 2015

Spectral clustering This technique makes use of the spectrum—or eigenvalues—of the similarity matrix to perform

dimensionality reduction before clustering using traditional algorithms like k-means. Therefore, this

algorithm somewhat combines a mapping and clustering algorithm in one.

Von Luxburg, 2007

Hierarchical clustering As the name suggests, this algorithm builds a hierarchy of clusters in a bottom-up fashion. Initially,

each data point thus belongs to its own cluster. The clusters are progressively merged according to

similarity criteria called linkage. We here use Ward linkage that finds new clusters by minimizing the

sum of squared differences within the merged clusters.

Ward, 1963

RESULTS

Clustering Performance Using
Physiological Synchrony in Either EEG,
EDA, or Heart Rate
A complete overview of clustering performance for all used
combinations of mapping algorithms and clustering algorithms
based on physiological synchrony in either EEG, EDA, or
heart rate is presented in Supplementary Table A1. It shows
the clustering accuracy, the misclassified participant IDs and
silhouette coefficient, wherever available. Figure 2 visualizes the
clustering accuracies across the eight mapping methods and
the three clustering methods that could all be combined with
each other, as well as results when using no mapping, for
which we could determine results for two out of the three
clustering methods. Classification accuracies above the black line
are significantly higher than chance level. That is, classification
accuracies of 70% or higher are significantly higher than the
chance level distribution at p < 0.05. The best performance is
obtained using physiological synchrony in EEG [Mdn = 73%,
Inter Quartile Range (IQR) = 12% across algorithms], with
a maximum clustering accuracy of 85% when using spectral
clustering on the raw distance matrix or after applying PCoA
ordination. For EDA, a median performance of 58% (IQR =

8%) was obtained; best EDA performance was reached using
k-means with nMDS mapping (65%). For heart rate, median
performance was 62% (IQR = 4%); best performance was
reached using hierarchical clustering with nMDS or mMDS
mapping (73%).

We determined the silhouette coefficient as a potential
alternative measure of clustering performance. The results
in Supplementary Table A1 do not suggest that a high
silhouette coefficient corresponds with high clustering accuracy
as evaluated using knowledge of the attentional instruction
groups. This impression is confirmed by a lack of correlation
between clustering accuracy and silhouette coefficient (r = 0.06,
p = 0.543). We can note, however, that the silhouette coefficient
is generally higher after mapping (Mdn= 0.33, IQR= 0.04) than
without mapping (Mdn= 0.13, IQR= 0.13).

Clustering Performance Combining
Physiological Synchrony in EEG, EDA, and
Heart Rate
Supplementary Table A2 presents the clustering results when
combining physiological synchrony in multiple modalities for all
possible mapping-clustering combinations. It shows clustering
accuracies, misclassified participant IDs and silhouette coefficient
when combining EEG and EDA, EEG and heart rate, EDA
and heart rate, and all three modalities. Figure 3 presents
an overview of the accuracies for each mapping-clustering
combination. Again, the dashed black line at 70% depicts
significance level compared to chance. The best clustering
performance of 92% is reached for EEG combined with heart
rate when k-means and MVMDS or MVMDS-with-rescaling
are used; as well as for the combination of EEG, heart rate,
and EDA when MVMDS with rescaling is used with spectral or
hierarchical clustering.

Table 3 shows statistical comparisons of classification
accuracy between single modality (EEG, EDA, or heart rate)
to all other multimodal combinations. Adding modalities
increases performance, except when EDA is complemented
with heart rate, or heart rate with EDA. Combinations of
EDA and heart rate results in median clustering accuracy of
58% (IQR= 8%).

While adding other modalities to EEG results in higher
clustering performance, perhaps more important is that
clustering performance seems more robust across algorithms.
When combining EEG with EDA (Mdn = 81%) IQR is 4%;
when combining EEG with heart rate (Mdn = 85%), IQR is 3%
whereas IQR is 12% when using EEG only. When combining
all three metrics, performance is as consistent as when combing
EEG with heart rate only (Mdn= 85%, IQR= 3%).

Comparing Clustering Performance With
Other Measures Reflective of Attentional
Engagement
Even though we specified the attentional instructions in the
current study, we should note that we cannot be sure the
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FIGURE 2 | Clustering accuracies utilizing physiological synchrony in EEG (red), EDA (yellow), heart rate (green) for different combinations of mappings (top-axis) and

clustering methods (bottom-axis). Transparent top-to-bottom bars represent missing data. The dashed black line depicts significance level compared to chance level

classification accuracies.

attentional focus of participants is always as specified in the
instructions. An incorrect classification may therefore not
necessarily mean that the algorithms provided the wrong
output, it may also be the case that the incorrectly classified
participants did not follow their attentional instructions. To
explore this possibility, we examined whether participants
that were incorrectly classified by the majority of the
methods for EEG performed worse on performance measures
reflective of their attentional focus (number of correctly
answered questions about the content of the narrative,
number of correctly described emotional sounds, estimated
number of averagely presented beeps), than participants
that were correctly classified by the majority of the methods
for EEG.

Seven participants were misclassified for more than 50%
of the methods and designated as “often misclassified” (ID’s:
2, 3, 8, 10, 16, 18, 25). Table 4 provides the performance
characteristics of often misclassified and often correctly
classified participants and test statistics comparing the two.
In the SA group, participants that were often misclassified
described significantly less emotional sounds correctly
than participants that were often correctly classified, which
indeed suggests that misclassified SA instructed participants
did not attend to the emotional sounds very well. For the
other two performance measures no significant differences
were found.

DISCUSSION

We here showed that by applying unsupervised learning

techniques to physiological synchrony, groups of participants

sharing selective attentional focus can be identified from a set
of participants with one of two different selective attentional
instructions. This confirms hypothesis 1. Obtained results were
found to depend on the physiological modality on which
clustering was based.

Clustering Performance Using
Physiological Synchrony in Either EEG,
EDA, or Heart Rate
We hypothesized that in line with previous research on
physiological synchrony, from the three physiological measures
EEG would perform best (hypothesis 2). Indeed, with the
use of EEG, best performance was obtained. The maximum
classification accuracy was 85% which is well above the threshold
of 70% above which classification is significantly higher than
chance level. However, performance varied strongly across
clustering algorithms, with accuracies as low as 54% for some of
the algorithms used.

Applying the clustering algorithms to physiological synchrony
in EDA or heart rate resulted in lower classification accuracies
than in EEG, and generally led to performance near theoretical
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FIGURE 3 | Clustering accuracies utilizing physiological synchrony in EEG and EDA (red), EEG and HR (yellow), EDA and heart rate (green), and EDA, EDA, and heart

rate (purple) for different combinations of mappings (top-axis) and clustering algorithms (bottom-axis). The dashed black line depicts significance level compared to

chance level classification accuracies.

TABLE 3 | Test statistics of comparison between classification results using

different combinations of physiological measures.

EEG vs. EEG –

EDA

EEG vs.

EEG – HR

EEG vs.

EDA – HR

EEG vs. EEG –

EDA – HR

t (37) = −2.77, p =

0.009

t (37) = −5.77,

p < 0.001

t (37) = 4.40,

p = < 0.001

t (37) = −4.78,

p = < 0.001

EDA vs. EEG –

EDA

EDA vs. EEG

– HR

EDA vs. EDA

– HR

EDA vs. EEG

– EDA – HR

t (38) = −10.92,

p =< 0.001

t (38) = −19.08,

p < 0.001

t (38) = −0.22,

p = 0.825

t (38) = −14.91,

p < 0.001

HR vs. EEG – EDA HR vs. EEG

– HR

HR vs. EDA

– HR

HR vs. EEG

– EDA – HR

t (38) = −7.61,

p < 0.001

t (38) = −12.88,

p < 0.001

t (38) = 1.66,

p = 0.104

t (38) = −10.61,

p < 0.001

Gray cells depict significant differences.

chance level. This is in line with other work, where synchronous
changes in peripheral modalities have been shown to reflect
attentional engagement with narrative stimuli less robustly than
EEG (Ki et al., 2016; Perez et al., 2020; Stuldreher et al., 2020a;
Madsen and Parra, 2021).

Effect of Multimodal Combination of
Physiological Measures on Clustering
Performance
We hypothesized that combining modalities in a multimodal
approach would enhance clustering performance compared
to a unimodal approach, because different modalities capture
different underlying mental processes (hypothesis 3). We partly
accept this hypothesis. Indeed, when combining heart rate
and EEG, EDA and EEG, or heart rate, EDA, and EEG, the
clustering accuracy for combined modalities is higher than
when using either of the modalities alone (Table 3). When
combining heart rate and EEG, or heart rate, EDA, and EEG,
the best obtained clustering accuracy across algorithms was also
higher than when using either of the measures alone. When
combining EDA with heart rate, classification accuracies were
not higher compared to EDA or heart rate alone and thus
still did not exceed chance level. Importantly, we found that
when combining multiple physiological measures, results were
not only generally higher but also more consistent across the
range of mapping and clustering approaches. This was even the
case when combination of modalities did not increase maximum
classification accuracies, as for the combination of EEG and
EDA. Thus, a multimodal approach resulted in classification
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TABLE 4 | Test statistics comparing performance on questions reflective of attentional focus of the often incorrectly classified participants and the often correctly

classified participants.

Often correct

participants AA

Often incorrect

participants AA

Often correct

participants SA

Often incorrect

participants SA

Number of correctly answered narrative questions Mdn = 5, IQR = 3 Mdn = 6.5, IQR = 2.5

W = −57, p = 0.445

Number of reproduced affective sounds Mdn = 7, IQR = 6 Mdn = 4, IQR = 2.3

W=83.5, p=.028

Difference between average number of estimated beeps

and true number of beeps

Mdn = 2.5, IQR = 13 Mdn = 1, IQR = 9

W = −74.5, p = 0.475

Cells with bold text refer to significant differences. The grey shades correspond to incompatible combinations.

performance that is less dependent on the specific algorithm
choice. This observation advocates a multimodal approach in
everyday settings where for unimodal data, the patterns of
variation in algorithm performance may be different than the
ones found here.

Factors Underlying Performance
Differences Between Modalities
We found that identifying two attentional groups in our study
works best when physiological synchrony in EEG is used rather
than EDA and heart rate. As mentioned in the introduction,
we previously found that inter-subject correlations in EEG
were especially sensitive to well-timed events inducing top-
down modulation of attention, more so than to emotional
sounds attracting attention bottom-up (Stuldreher et al., 2020b).
This and related work showed major pre-frontal and parietal
components contributing to inter-subject correlations in EEG
when attending to narrative stimuli (Dmochowski et al.,
2012; Cohen and Parra, 2016; Ki et al., 2016). Exactly these
cortical areas are of major importance in top-down conscious
attention processing (Vuilleumier and Driver, 2007). Inter-
subject correlations in EDA and heart rate were modulated
more by emotional sounds attracting attention bottom-up
than by events that caused top-down modulation of attention
(Stuldreher et al., 2020b). Other work also suggests that
autonomic synchrony during presentation of narrative stimuli
is mostly linked with emotional processing of these stimuli
(Golland et al., 2014; Steiger et al., 2019). Electrodermal
activity and heart rate are largely innervated by midbrain
structures, such as the hypothalamus, amygdala and insula
(Thayer et al., 2009; Boucsein, 2012) that are hard to capture
using EEG. Such midbrain structures have been related strongly
to bottom-up emotional modulation of attention (Behrmann
et al., 2004; Vuilleumier and Driver, 2007). The fact that in our
study, the difference between attentional groups was induced
by instructions that affected attention in a cognitive, top-
down manner, may have led to the finding that inter-subject
correlations in EEG can here better distinguish between the
groups with different selective top-down attentional conditions
than inter-subject correlations in EDA and heart rate. Future
work should investigate whether inter-subject correlations in

EDA and heart rate are more suitable than EEG to distinguish
between groups with different attentional conditions driven
by emotional.

While physiological synchrony in EEG was found to be
most informative of attentional group, adding other modalities
generally led to higher and more robust performance. We
see two potential explanations for the more robust clustering
performance when combining modalities. It may be so that
combining multiple modalities compensates for potential noisy
observations in any of themodalities. Recent work ofMadsen and
Parra (2021) showed that physiological synchrony in EEG and
heart rate in response to instructional videos are co-modulated.
Thus, one noisy measurement may be compensated for by
another measurement. Alternatively, more robust performance
when combining modalities is expected when the physiological
measures reflect different aspects of attentional engagement, so
that by combining modalities in a multimodal fashion, one
captures more aspects of the shared attentional engagement.

Effect of Mapping and Clustering
Approach on Clustering Performance
In our study, best classification results were obtained when using
ordination techniques, here referred to as mapping methods,
before applying clustering algorithms compared to directly
using clustering algorithms on the distance matrices. This
observation is supported by the silhouette coefficient, a measure
of compactness and separability of the clusters, indicating less
separable clusters when directly applying a clustering algorithm
on the distance matrices than when using mapping methods.
The low separability of clusters in the raw distance matrices
may also explain why clustering results obtained with methods
like k-medoids, that has random initializations, are different for
different runs with different initializations and often did not
converge. The only algorithm that provides good results when
directly applied on the distance matrices is spectral clustering.
This supports the notion that mapping before clustering is
important, as the spectral clustering algorithm itself already
computes a map before applying a clustering algorithm.

We cannot pinpoint the best mapping method for a general
case. Here, clustering performance generally was best using
PCoA or the multimodal equivalent MVMDS before applying
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clustering algorithms. Future work would have to show whether
these findings are generalizable across use cases and physiological
synchrony computation choices.

When using only a single modality, performance is strongly
depends on the mapping method, and to a lesser degree on the
clustering algorithm.With the exception of spectral mapping and
no mapping conditions, clustering accuracy difference between
the best and worst performing clustering algorithm with the
same mapping is only around 15%. We cannot pinpoint a single
clustering algorithm that performs best for each mapping.

Evaluation of Clustering Performance
In the current study we could employ the known attentional
instructions to evaluate clustering performance. However, as
noted before, we cannot be sure that the attentional focus always
corresponded to the instructions. An incorrect classification
may therefore not necessarily mean that the algorithms
provided the wrong output, it may also be the case that
the incorrectly classified participants did not follow their
attentional instructions. We examined whether participants that
were incorrectly classified by the majority of the methods
for EEG scored worse on performance measures reflective of
their instructed attentional focus (number of correctly answered
questions about the content of the narrative for NA participants,
number of correctly described emotional sounds, and estimated
number of averagely presented beeps for SA participants).
Indeed, we found that often incorrectly classified SA participants
performed worse on the retention of the emotional sounds than
the other participants, though there was no difference for the
other two measures.

In real-world applications where unsupervised methods as
proposed in the current workmay bemost applicable, the ground
truth attentional condition is often not available. We therefore
investigated whether the silhouette coefficient, a measure of the
separability of the found clusters, may be used as a reliable metric
of clustering performance. Unfortunately, a higher classification
accuracy did not correspond to a higher silhouette coefficient and
vice-versa. We thus reject hypothesis 4.

Since we have no reliable metric to evaluate clustering
reliability when ground-truth labels are not known in real-world
use cases, we suggest the use of a multimodal approach when
applying unsupervised clustering algorithms on physiological
synchrony data. Our results show that a multimodal approach
is less prone to incorrect results that can occur for specific
algorithm choices.

Future Work
In this study, we sought to identify two clusters as participants
were instructed to either attend to the audiobook or to the
interspersed stimuli. However, it may be the case that some
participants did not attend well to any of the presented
information, a proposition that is substantiated by the
observation that some participants showed low synchrony
with both the audiobook and stimulus-attending groups and
answered questions on the content of both presented streams
of information well below the average (Stuldreher et al.,

2020a). Others may have attended to both the audiobook and
the interspersed stimuli. These two types of participants not
necessarily fall into one of the two attentional groups considered
in the current work, and may have negatively impacted the
clustering performance, especially in algorithms such as k-
means, where classification is strongly influenced by extreme
values (Gupta et al., 2017). For more realistic clusters and
better applicability in real-world environments, future work
should evaluate clustering performance in relation to varying
the numbers of clusters. Possible ways to approach this would
be to take into account non-attending participants beforehand,
by using outlier detection (He et al., 2003), to pre-specify three
or four clusters in input of the clustering algorithm (e.g., to
take into account non-attending participants and all-attending
participants beforehand), or to use algorithms like mean shift
(Comaniciu and Meer, 2002) or DBSCAN (Schubert et al.,
2017) that automatically determine how many clusters appear in
the data.

Another issue not addressed in current work is that many
algorithms—such as k-means—tend to provide equal-sized
clusters. This effect was not damaging in our study because we
expected that the true clusters were about equal size, but in cases
where this is not the case, results might be influenced by this
algorithm bias. Future work should investigate how unequally
sized clusters influence results and should explore algorithms that
are less prone to such bias.

Future work should also explore other metrics for the
assessment of clustering quality. In the current work the
silhouette coefficient did not correspond well to ground truth
performance. Potential metrics are distance to the cluster
centroid or focus on clusters borders.

Finally, from a mathematical point of view, using other
ways of computing the synchrony between the physiological
signals could help improving clustering performance. In the
current work, simple Pearson correlations were used to
compute synchrony between two time-series, but computation
of meaningful physiological synchrony, and therewith clustering
performance, may be enhanced using other methods such as
Dynamic time warping (Berndt and Clifford, 1994). Computing
the correlation between two high dimensional signals can lead
to the curse of dimensionality, a phenomenon that occurs in
clustering with high-dimensional data, where data are more
uniformly spread in high dimensions compared to lower
dimensions when using a classical distance measure such as
Euclidean distance (Bellman, 1966). Dynamic time warping was
constructed with the aim of avoiding the curse of dimensionality,
which could potentially lead to better clustering results.

CONCLUSION

We here combined physiological synchrony and unsupervised
learning techniques with the aim to identify groups of individuals
sharing the same selective attentional focus. Clustering
performance well above chance level was reached when
using EEG, but above chance level accuracies were not reached
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when using EDA or heart rate alone. Obtained results differed
depending on the used mapping and clustering algorithm, but
applyingmapping before clustering generally led to better results.
Combining information from multiple modalities resulted in
a higher classification performance in cases where EEG was
combined with heart rate and/or EDA, and resulted in more
robust performance across different types of mapping and
clustering algorithms, making clustering results less dependent
on the specific algorithm choice. These results may enable
researchers to study attentional engagement in everyday settings.
We suggest researchers to use a multimodal approach due to its
robustness to specific algorithm choice, enabling more consistent
and generally better clustering results.
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Table A1. Overview of classification results for all combinations of mapping algorithm and clustering 
algorithm for EEG, EDA and HR. Each cell presents – in that order – the classification accuracy, the 
silhouette coefficient and misclassified participant IDs. 

Mapping Clustering EEG EDA HR 
None 𝑘𝑘-means x x x 

Spectral 85% 
0.154 
[2, 3, 8, 18] 

62% 
-0.073 
[0,1,3,5,8,9,10,19,20,25] 

58% 
0.013 
[0,2,6,10,12,13,16,17,19,23
,25 ] 

Hierarchical 65% 
0.173 
[0,2,3,7,8,10,16,18,25] 

54% 
0.207 
[0,1,3,4,5,6,10,12,15,19,23,
24] 

58% 
0.112 
[0,2,6,10,11,12,13,16,17,23
,25] 

𝑘𝑘-medoids No convergence No convergence No convergence 
Spectral 
clustering 
map 

𝑘𝑘-means 77% 
0.353 
[2,3,8,10,16,18] 

62% 
0.418 
[7,9,11,14,16,17,18,21,22,2
5] 

65% 
0.408 
[0,2,5,7,11,15,18,19,25] 

Spectral 54% 
0.341 
[1,3,5,8,9,10,11,15,16,17,1
8,19] 

54% 
0.306 
[1,7,8,9,11,14,16,17,19,21,
22,24] 

69% 
0.279 
[2,6,10,12,15,19,23,25] 

Hierarchical 65% 
0.173 
[0,2,3,7,8,10,16,18,25] 

62% 
0.418 
[7,9,11,14,16,17,18,21,22,2
5] 

58% 
0.328 
[2,6,9,10,12,13,16,17,19,23
,25] 

𝑘𝑘-medoids x x x 
PCoA 𝑘𝑘-means 77% 

0.409 
[2,3,8,10,16,18] 

62% 
0.441 
[7,9,11,14,16,17,18,21,22,2
5] 

50% 
0.352 
chance level 

Spectral 85% 
0.383 
[2,3,8,18] 

58% 
0.311 
[1,7,9,11,14,16,17,19,21,22
,24] 

58% 
0.329 
[0,2,6,10,12,13,16,17,19,24
,25] 

Hierarchical 77% 
0.409 
[2,3,8,10,16,18] 

62% 
0.441 
[7,9,11,14,16,17,18,21,22,2
5] 

54% 
0.329 
[0,2,6,9,10,12,13,16,17,19,
23,25] 

𝑘𝑘-medoids 77% 
0.409 
[2,3,8,10,16,18] 

62% 
0.441 
[7,9,11,14,16,17,18,21,22,2
5] 

50% 
0.352 
chance level 

mMDS 
(averaging
) 

𝑘𝑘-means 73% 
x 
[2,3,8,10,16,18,25] 

58% 
x 
[1,4,7,9,11,14,16,17,19,21,
22] 

62% 
x 
[2,6,10,12,13,16,17,19,23,2
5] 
 

Spectral 77% 
x 
[2,3,8,16,18,25] 

58% 
x 
[1,4,7,9,11,14,16,17,19,21,
22] 

62% 
x 
[2,6,10,12,13,16,17,19,23,2
5] 

Hierarchical 73% 
x 
[2,3,8,10,16,18,25]  

58% 
x 
[7,9,11,14,16,17,18,19,21,2
2,25] 

69% 
x 
[0,2,7,10,11,15,19,25] 

𝑘𝑘-medoids 73% 
x 
[2,3,8,10,16,18,25]  

54% 
x 
[0,2,5,8,10,12,13,15,18,20,
23,25] 

62% 
x 
[2,6,10,12,13,16,17,19,23,2
5] 



mMDS 
(PCoA 
initializati
on) 

𝑘𝑘-means 58% 
0.318 
[1,3,5,8,9,10,11,13,16,17,1
8] 

50% 
0.338 
chance level 

62% 
0.334 
[2,6,10,12,13,16,17,19,23,2
5] 

Spectral 73% 
0.310 
[2,3,8,10,11,18,25] 

54% 
0.337 
[0,2,3,5,6,10,12,13,15,18,2
0,23,24,25] 

62% 
0.334 
[2,6,10,12,13,16,17,19,23,2
5]  
 

Hierarchical 73% 
0.312 
[0,2,7,8,16,18,25] 

62% 
0.341 
[7,9,11,14,16,17,18,21,22,2
5] 

73% 
0.309 
[2,5,12,15,18,19,25] 

𝑘𝑘-medoids 58% 
0.318 
[1,3,5,8,9,10,11,13,16,17,1
8] 

62% 
0.331 
[0,5,10,12,13,15,18,20,23,2
5] 

62% 
0.334 
[2,6,10,12,13,16,17,19,23,2
5] 

nMDS 
(averaging
) 

𝑘𝑘-means 69% 
x 
[0,2,3,8,10,16,18,25] 

50% 
x 
chance level  

58% 
x 
0,2,6,10,12,13,16,17,19,23,
25 

Spectral 65% 
x 
0,2,3,8,10,11,16,18,25 

54% 
x 
[1,4,7,9,11,14,16,17,19,21,
22]  

62% 
x 
[2,6,10,12,13,16,17,19,23,2
5] 

Hierarchical 77% 
x 
[2,3,8,16,18,25] 

54% 
x 
[0,2,5,8,10,12,13,15,18,20,
23,25] 

62% 
x 
[2,6,10,12,13,16,17,19,23,2
5] 
 

𝑘𝑘-medoids 65% 
x 
[0,2,3,8,10,11,16,18,25] 

50% 
0.338 
chance level  

58% 
x 
[0,2,6,10,12,13,16,17,19,23
,25] 

nMDS 
(PCoA 
initializati
on) 

𝑘𝑘-means 65% 
0.339 
[0,2,3,8,10,11,16,18,25] 

65% 
0.331 
[0,10,12,13,15,18,20,23,25] 

62% 
0.331 
[2,6,10,12,13,16,17,19,23,2
5] 
 

Spectral x 58% 
0.328 
[1,4,7,9,11,14,16,17,19,21,
22] 

62% 
0.331 
[2,6,10,12,13,16,17,19,23,2
5] 
 

Hierarchical 54% 
0.281 
[1,3,5,8,9,10,11,15,16,17,1
8,19] 

58% 
0.282 
[0,2,5,12,13,15,16,18,20,23
,25] 

73% 
0.312 
[2,5,12,15,18,19,25] 
 
 

𝑘𝑘-medoids 62% 
0.317 
[2,3,5,8,9,10,11,16,17,18] 

54% 
0.314 
[2,3,5,6,12,13,15,18,20,23,
25]  

62% 
0.331 
[2,6,10,12,13,16,17,19,23,2
5] 

UMAP  𝑘𝑘-means 65% 
x 
[0,2,3,8,10,11,16,18,25] 

54% 
x 
[2,7,13,14,16,17,18,19,21,2
2,23,25] 

62% 
x 
[1,3,5,7,8,11,15,21,22,25] 

Spectral 65% 
x 
[0,2,3,8,10,11,16,18,25] 

58% 
x 
[0,1,3,4,5,6,7,9,11,22,24] 

62% 
x 
[1,3,5,7,8,11,15,21,22,25] 

Hierarchical 65% 
x 

54% 
x 

62% 
x 



[0,2,3,8,10,11,16,18,25] [2,7,13,14,16,17,18,19,21,2
2,23,25] 

[1,3,5,7,8,11,15,21,22,25] 

𝑘𝑘-medoids x x x 
UMAP 
(self-
supervised 
learning) 

𝑘𝑘-means 77% 
x 
[3,4,8,10,16,25] 
 

54% 
x 
[0,2,3,7,8,10,11,14,15,19,2
1,25] 

50% 
x 
chance level 
 

Spectral 77% 
x 
[3,4,8,10,16,25] 

54% 
x 
[0,3,5,7,8,11,14,15,19,21,2
2,25] 
 

54% 
x 
[0,3,7,8,10,11,14,15,19,21,
22,25] 

Hierarchical 77% 
x 
[3,4,8,10,16,25] 

58% 
x 
[0,3,7,8,10,11,14,15,19,21,
25] 

62% 
x 
[0,3,7,8,11,14,15,19,21,25] 

𝑘𝑘-medoids x x x 
 

Table A2. Overview of classification results for all combinations of mapping algorithm and clustering 
algorithm for the multimodal combinations EEG - EDA, EEG – HR, EDA – HR and EEG – EDA – HR. 
Each cell presents – in that order – the classification accuracy, the silhouette coefficient and misclassified 
participant IDs. 

Mapping Clustering EEG - EDA EEG – HR EDA – HR EEG – EDA -HR 
MVMDS 𝑘𝑘-means 85% 

0.295 
[8,14,18,25] 

92% 
0.381 
[2,19] 

58% 
0.371 
[0,5,6,10,12,15,18,1
9,20,23,25] 

81% 
0.368 
[2, 4, 7, 14, 24] 

Spectral 81% 
0.287 
[8,14,18,20,25] 

88% 
0.371 
[2,7,19] 

54% 
0.310 
[0,6,10,12,13,15,16,
17,18,19,23,25] 

85% 
0.354 
[2,7,14,24] 

Hierarchical 65% 
0.358 
[2,4,7,11,16,17,18,2
2,25] 

85% 
0.403 
[2,14,19,24] 

62% 
0.355 
[0,5,6,10,12,15,18,1
9,20,23] 

69% 
0.248 
[0,12,13,16,17,18,2
3,25] 

𝑘𝑘-medoids x x x x 

MVMDS 
with 
rescaling 

𝑘𝑘-means 85% 
0.321 
[8,14,18,25] 

92% 
0.389 
2,19 

58% 
0.378 
[0, 5, 6, 10, 12, 15, 
18, 19, 20, 23, 25] 

88% 
0.376 
2,7,25 

Spectral 85% 
0.321 
[8,14,18,25] 

88% 
0.380 
[2,7,19] 

54% 
0.323 
[0,6,10,12,13,15,16,
17,18,19,23,25] 

92% 
0.352 
[14,25] 

Hierarchical 65% 
0.369 
[2,4,7,11,16,17,18,2
2,25] 

84% 
0.409 
[2,14,19,24] 

62% 
0.358 
[0,5,6,10,12,15,18,1
9,20,23] 

92% 
0.331 
[14,24] 

𝑘𝑘-medoids x x x x 
MVSC 𝑘𝑘-means 81% 

0.614 
[8,16,18,20,25] 

85% 
0.621 
[2,12,19,24] 
  
  

54% 
0.652 
[0,2,10,12,13,15,16,
17,18,19,23,25] 

85% 
0.662 
[2,7,16,25] 

Spectral 81% 
0.614 
[8,16,18,20,25] 

85% 
0.621 
[2,12,19,24] 

62% 
0.615 
[0,2,10,12,13,15,16,
19,23,25] 

85% 
0.662 
[2,7,16,25] 

Hierarchical 81% 81% 54% 85% 



0.614 
[8,16,18,20,25] 

0.620 
[2,4,7,12,19] 

0.652 
[0,2,10,12,13,15,16,
17,18,19,23,25] 

0.662 
[2,7,16,25] 

𝑘𝑘-medoids x x x x 
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