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 Executive summary 

The project involved the design of a methodology to both estimate real time and 
predict future wind speeds at a wind turbine rotor location leveraging only the 
knowledge of live on-field measurements (i.e. LiDAR, anemometer/wind-vane, 
other…). A method capable of providing live predictions as such would have the 
potential of being used for predictive control and possibly increase energy production 
and/or reduce structural loads on the turbines. 

In preparation, the offline LAWINE dataset has been used. A reduced dataset of a 
few hours of measurement from both a two-beam LiDAR and a Meteorological mast 
was selected. SCADA data was also used to compute (offline) an estimated rotor 
speed as a pseudo-signal. This estimated rotor wind speed has been used as the 
objective signal to be mapped by a number of regression algorithms. The algorithms 
that have been tested in the scope of this project were two: (1) a Gradient Boost 
ensemble method and (2) a Feed Forward Neural Network. 

Using these two approaches, it was possible to obtain both live and (time) predictive 
estimates of the wind speed at the turbine rotor location using only far-field LiDAR 
data (measurement range: 80-440m from the turbine). It was observed that the 
prediction accuracy was best for 5s ahead in time predictions and would then 
decrease until reaching a minimum for any attempt to predict 30s in advance, or 
further ahead in time. Furthermore, the second and third measurement ranges of the 
LiDAR (120-160m, or 1.5D-2D) were observed to have the highest correlation with 
the objective wind speed estimate. Therefore the range, or more generally the 
location, of the input measurements has an impact on the accuracy of the prediction 
and should be smartly chosen. 

In brief, the project has achieved to both presents the potential of using Machine 
Learning (ML) algorithms as reliable tools for predictive estimation of the expected 
wind speeds at the turbine rotor plane, as well as set the scene to study the influence 
of the input measurements location to obtain the best wind speed estimates. The 
computation time of the wind speed predictions was not a limitation, and could be 
integrated into a live data processing stream. Furthermore, this computation time of 
the predictions is independent of how far ahead in time the prediction is done but is 
influenced by both the dataset preparation method and the type of offline training of 
the algorithms. 

The tested methodology has potential for improvement along two pathways. On one 
hand, the algorithms used can be improved, or even changed. Currently, 
recursiveness is not a prior knowledge given to the algorithms. In the case of time-
series prediction, deploying algorithms that do consider recursiveness, or put in other 
words, that have memory, is generally expected to have a positive impact on the 
accuracy of the results. On the other hand, the input signals' complexity and 
information quantity could be increased to leverage the power of the ML tools. This 
could be done by both/either moving from a two-beam LiDAR to a 4+ beams or 
scanning LiDARS, or by adding in the data stream the use of gaussian process 
regression to reconstruct the multi-dimensional wind field and use the latter as input 
instead of the raw measurements. 
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 1 Introduction 

The proprieties of the wind (speed, direction, eddies size and strength) that either a 

single wind turbine or a wind farm is subject to, have an influence on the system’s 

functioning and therefore also their control strategy. As a direct consequence, new 

technologies are continuously developed with the goal of  increasing the quality and 

the quantity of information obtained through on-line measurements. These 

measurements are centre-point for the continuous improvement of the wind power 

industry. Nonetheless, measuring the wind field directly in front of a wind turbine rotor, 

despite a few technological attempts [1], remains to this day a challenge. The 

presented project aims to propose a methodology to rely on both LiDAR 

measurements and numerical algorithms to obtain a reliable estimation and forecast 

of the rotor wind speed. 

 

This documents presents an assessment of the impact of the measurement location 

onto the obtained wind field estimation. Hereafter, a two beam lidar is used as 

support, allowing for a one dimensional Horizontal Wind Field (HWS) reconstruction. 

It will be seen that given a specific wind condition; measurements ranges will be more 

of importance than others. To achieve this analysis, machine learning tools such as 

Ensemble Methods and Artificial Neural Networks are used.  

 

As a by-product of the latter point, this project sets a baseline for the investigation of 

the available potential in methods combining machine learning with LiDAR 

measurements. The tests are aimed at developing tools capable of either estimating 

the wind at the rotor location live using remote measurements or predict future states. 

The outcome of positive results are, among others, predictive control techniques to 

improve the Annual Energy Production (AEP) of turbines and minimize the loads on 

the system.  

 

The hereby presented Wind Field Estimation project also contributed in large part to 

the development of the in-house tool GPyDAR. The latter tool offers a method for 

Radial Wind Speed (RWS) interpolation (and limited extrapolation) of data coming 

from LiDAR measurements for three dimensional field reconstruction. 
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 2 Site presentation and measurement campaign 

The project uses data obtained by the “LiDAR Application for WINd farm Efficiency”, 

or LAWINE, project, a measurement campaign from 2016 led by ECN together wind 

Delft University of Technology, Avent LiDAR Technology and XEMC Darwin in the 

framework of TKI Wind op Zee. The LiDAR data was obtained by NORCOWE. 

The ECN Wind Turbine test site Wieringermeer (EWTW) is a flat terrain consisting 

mainly of agricultural area, with few farmhouses and rows of trees. It’s location and 

the detail of the layout can be seen in Figure 1 and Figure 2 respectively. 

Figure 2: Layout of the test site indicating the position of the Nordex turbines, the 
prototypes turbines, the meteorological masts, the measurement office and 
the LAWINE LiDAR locations [2]. 

 

Figure 1 : Map of the province North-Holland, The Netherlands and a detailed 
map of the test site [2]. 
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 The LiDAR of interest in this project is the Avent Wind Iris LiDAR (WI) placed on the 

top of Turbine Nordex 6 (N6), and the nearby located Meteorological Mast number 3 

(MM3). The relative placement of the Nordex turbines, and the MM3 is visible in 

Figure 3.  

 

The WI LiDAR is a two beam LiDAR with a beam angle of 15 [deg] from to the centre 

line (see Figure 4). When the wind is coming from SSW (~200 [deg]), the nacelle Line 

of Sight (LOS), and therefore the WI, are aligned with the MM3. The MM3 is equipped 

with a cup anemometer at hub height (80m) and a wind vane, used as reference for 

Wind Speed (WS) and Wind Direction (WD) measurements. The latter will hereafter 

be the reference for wind speed measurements at the MM3 location. 

 

The WI LiDAR measurements are done on the beam LOS on ranges spanning from 

40m to 440m, with a spacing of 40m. The frequency of the signal is of 4Hz. 

 

Figure 4 : Schematics of the Wind IRIS beams geometry (adapted from [3]). The 
measurements are planar (2D). 

The MM3  For more information on the site and the measurement campaign, refer to 

the “LAWINE Instrumentation report” internal document [2]. 

Figure 3: Locations of the five Nordex N80 turbines and Meteorological Mast 3 [2]. 
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 3 Data overview 

There are three sources of wind speed mentioned in this report. The first two are the 

wind speed measurements from the WI LiDAR and the MM3, and the third one is a 

Wind Speed Estimate (WSE) at the turbine rotor. The latter is a pseudo signal 

computed using SCADA data from the turbine. A Kalman Filter estimator model 

generates the expected wind that the turbine rotor is experiencing during operation 

using high frequency measurements. The so called WSE is, in the presented project, 

the objective function for the machine learning regression algorithms. 

 

While there is no higher limit in the amount of data that can and should have been 

used for a project such as the one presented, 6 hours of measurements have been 

chosen for analysis (2014-01-07 01:00:00-07:00:00). This time window has been 

selected for its consistent recorded wind speeds and wind directions appropriate for 

an alignment of the WI LOS and the MM3. 

 

Figure 5 and Figure 6 represent respectively 420 and 30 minutes time series of the 

HWS as obtained by the three mentioned sources. For or visualisation purposes, the 

data is filtered using a 60s moving average. Figure 5 presents a visualisation of the 

HWS as computed by the WI at the MM3 location.  

 

 

Figure 5 : In green, orange, and blue, 6h time series of the HWS as measured by the 
MM3 and the WI 200m from the turbine, and the WSE as computed by the 
estimator at the turbine rotor location. 

Figure 6 depicts the HWS WI measurements plotted against the WSE during a 

shorter time window (30 minutes). This representation allows to visualise the observe 

lag (11.5s) that appears between the two signals.  

 

This time lag is due to the difference in space of 200m. The lag was computed by 

cross correlation analysis. In the present case, the mean wind speed was 16 [m/s] 

(200m~=11.5 [s] *16 [m/s]). The lag in time and space will be hereafter discussed as 

directly correlated, leveraging the concept of information traveling over space and 

time. 
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Figure 6 : 30 minutes time series of the HWS reconstructed by the WI LiDAR at 200m 
from the N80 wind turbine and the WSE at the rotor. 

 

To quantify the linear correlation (similarity in temporal evolution) between two 

signals X,Y, the Pearson coefficient, or R coefficient, is used hereafter and in sections 

to come of this document. A high Pe coefficient is synonym of signals in phase, with 

correlated dynamics. The definition is given by the following equation: 

 

𝑃𝑒 =  
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑥𝜎𝑦
 

 

Where 𝐶𝑜𝑣(. , . ) is the covariance function and 𝜎𝑖 is the standard deviation of signal 

i=[X,Y ]. 
 

Figure 7 offers an overview of the correlation between input signals (MM3, WI) and 

objective signal (WSE). The signals are compared between filtered and unfiltered 

(noisy), using a moving average of 60s. As expected, the correlation decreases as 

the range increases. This is due to (1) the time delay induced by the shift in space 

(2) the non-frozen nature of the wind travelling downstream but instead subject to 

changes as it travels. It is to be noted that the correlation between the HSW measured 

by the WI at 200m and the WSE is comparable to the correlation between the MM3, 

also located at 200m, and the WSE. This was expected as the WI accuracy has been 

in the past validated against the MM3 measurements [4]. A noticeable increase in the 

correlation is also visible after smoothening of the signals suing the presented moving 

average approach. 
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Figure 7 : Correlation analysis between the measurement signals coming from the 
MM3 and the WI compared against the WSE. For each range, the filtered 
and unfiltered signals are compared against the also filtered and unfiltered 
WSE. 
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 4 Wind estimation methodology 

Linking input signals to output signals using empirical model and machine learning 

model is nowadays common practice. The problem can be approached in numerous 

ways, from simple regression to recursive algorithms taking into account past 

information for the estimation of future states. For this preliminary study, the base 

approach of a non-linear regression is set up and investigated. 

 

As the objective is to see the influence of the input measurements spatial origin onto 

the output estimate, the regression problem is set as follows: 

 

- The regression input are 10 values, one for each range of the WI LiDAR.  

- The regression output is 1 value, the WFE at the turbine. 

 

The problem is to be seen as an observer scanning time step by time step 10 time 

series simultaneously, moving forward in time and outputting the time step of the 

objective time series at the queried time instant. The queried time instant can be 

before (negative lag), after (positive lag) or at the same instant (null lag). It is clear to 

see that as the problem is set up, the model used is not given the opportunity to learn 

time correlations in recursive events. 

 

As a negative time lag is not of interest here, the analysis of the estimation of the 

wind speed will be done with increasing lag, representing how far in the future it is 

possible to predict. 

 

The regression models used in this project are two: an Ensemble Technique of 

Gradient Boosting (GB), and a Deep Feed Forward Neural Network (DFFNN). 

 

4.1 Gradient Boosting 

 

Gradient boosting is a type of ensemble methods, or ensemble of regression trees 

(models/learners…, see Figure 8). It relies on the intuition that the best possible next 

tree, when combined with previous ones, minimizes the overall prediction error. The 

algorithm relies on a number of learners and trains them in sequence so that the 

subsequent trees are built with knowledge of the precedent trees. At the end of the 

iterative process, the final model is a weighted sum of the n existing trees. 

 

The subset of parameters used is: 

• n_estimators : the number of boosting stages that will be performed.  

− 300 

• max_depth : limits the number of nodes in the tree. The maximum depth is the 

depth of the decision tree estimator in the gradient boosting regressor. 

− 9 

• min_samples_split : the minimum number of samples required to split an 

internal node.  

− 500 

• learning_rate : how much the contribution of each tree will shrink. 

− 0.1  

• loss : loss function to optimize. 

− Mean Squared Error 
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 Where the values indicated have been chosen combining empirical best guesses and 

a grid search for optimizing the accuracy of the results. 

  

 

 

Figure 8 : Construction of a Gradient Boost ensemble of N trees. 

 

4.2 Deep Feed Forward Neural Network 

 
Neural Networks are a type of machine learning that relies of a structure of artificial 

neurons called processing units or nodes. These processing units linked by activation 

functions. The input units receive structures of information based on an internal 

weighting system. Recursively, the neural network attempts to link input structures to 

output structures using a loss function as an learning indicator. Several type of nodes 

and activation functions exist. In the presented case, a feedforward structure is used. 

This is the most accessible type of NN and can be considered the baseline of most 

applications involving NN. 

 

The structure used is visible in Figure 9. The structure of two hidden layer of 64 nodes 

is chosen as a compromise between a perceptron (1 layer, or ensemble of nodes) 

and a more deep structure which would risk to underfit or overfitting the training data, 

respectively. The structure was approximated by a best guess and optimised 

iteratively. Layers are interconnected using relu functions. 

 

 

Figure 9 :  Diagram of the DFFNN used. The arrow indicate the data flow direction 
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 5 Results 

Both the GB and the DFFNN have been trained on about 290 minutes of HWS 

measurements signals and evaluated on 72 minutes of input signals. The frequency 

of the signals being of 4 Hz, this corresponds to 691200 data points for training and 

172800 data points for validation.  

 

The index used for the evaluation of the results are the Person factor (Pe), as 

presented in section 3, and the MSE, computed as follows: 

 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 

 

Where 𝑛 is the number of samples, 𝑌𝑖 is the estimated value and �̂�𝑖 is the true (or 

objective) value. Figure 10 summarizes the results of the analysis. The Pe and MSE 

index evolution as the time lag is increased can be observed for the estimations done 

using (1) the GB model, (2) the NN model and (3) the mean value of the inputs. The 

latter is used as baseline for the other models, indicating the un-weighted sum of the 

input values. 

 

Figure 10: Summary of the results for the NN model (left) and the GB model (left). 
In blue, the MSE error between the estimated signal and the objective. In 
green, the correlation factor. In dashed, the results using the mean value 
of all the inputs as reference. 

It is clear that the both the Neural Network and the Gradient Boost models are already 

a clear improvement from the mean of the input signals. This trend is most strongly 

visible for a time lag between 0 and 10/20s. Both the Pe and the MSE show record a 

peak for a time lag lg=5s, with best values of 0.88 and 0.17 respectively. As the time 

lag is extended beyond the 30s mark, the added value brought by models slowly 

disappears. It is interesting to notice that the NN seems to produce a better estimate 

all the way until a lag of 60s. The information of the state of the wind is not available 

to the model, since 60s of time lag corresponds, on average, to ranges above 700m, 
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 while the furthest measurement point is much closer at 440m. Therefore, despite the 

non-recursive set up of the model, a pattern was most likely learned during training. 

 

Figure 11 illustrates the correlation between inputs and the target function. The 

structure allows to visualise how certain inputs are expected to have a higher 

importance in the learning of the models. It can be seen that the mean highest 

correlation between inputs and the target depends on the time lag. For a null time 

lag, the first, or closest measurement to the turbine has the higher correlation. As the 

lag increases, the peak of correlation shifts to measurement ranges further away from 

the turbine. Nevertheless, we see that the correlation peek, even for time lags of 30s 

or higher, remains centred around the measurement ranges WI2 and WI3, the third 

and fourth closest point from the turbine. It can be noted that the WI2 and WI3 ranges 

correspond to 120-160m, or 1.5D/2D, on the region bordering the end of the induction 

zone of the turbine. 

 

 

 

 

 

Figure 11 : Correlation matrixes between. The signals WIX_WS indicate 
the WI measurements at location X = [1;10], and the target 
signal, the WSE at the turbine rotor. 



 

TNO PUBLIC 

TNO PUBLIC | TNO report | TNO 2021 R12377 | Final report  14 / 17  

 6 Discussion 

From the results presented in section 5, it was shown that: 

 

1- The range (or spatial location) choice of the measurements used as input for 

live and predictive wind speed estimation at the turbine rotor has an impact 

on the accuracy of said estimation. Indeed, some ranges have shown to have 

a higher correlation with the objective function. When the time lag matched 

on average the distance of these ranges from the turbine, the estimation 

accuracy was at a maximum (lowest MSE = 0.17, highest Pe = 0.87) 

 

2- Regression tools such as GB or NN have the potential to create smart 

connection between the measurements as inputs, and the output of interest: 

the wind speed estimate. Both the model have shown that without physics 

driving the learning, it is possible to leverage their potential to attempt time 

series regression for live, but also predictive estimations. 

 

From this observation, it is of interest to ponder on roads for improvement.  

 

On one hand, in this project, the spatial location was only made vary in one 

dimension, i.e. closer or further away from the wind turbine, in a line of sight parallel 

to the turbine rotor axis. The use of either 5 beams nacelle mounted lidars or scanning 

lidars placed nearby the turbine would allow to expand the study to three dimensions. 

For this, a combination of the LiDAR measurements with the in-house developed 

GPyDAR tool should be considered. As a matter of fact, the use of the presented 

alternative LiDAR technologies in combination with the GPyDAR tool would allow to 

precisely grid the volume of wind flow. Virtual measurements could be precisely 

located in space, and used as input to models similar to the ones used in this project. 

 

On the other hand, the machine learning tools developed in this project, while already 

having yield promising results, are basic. The room for improvement is large, from 

more complex regression models, to advanced techniques that would be capable of 

capturing the time variance of the input data. A few tools can be considered as 

suggestion: 

 

1- Recurrent Neural Networks 

2- Sliding window regression methods 

3- LSTM Networks 

 

The second point is hereby left for future development. As for the first point, it can be 

noted that this has been attempted in this project. The GPyDAR tool has been set up 

to use the data gathered by two beam forward looking Wind Iris LiDAR (see Figure 

12). Nevertheless, the measurements obtained by the WI were not spatially nor 

temporally sparse, making the use Gaussian Process interpolation a computationally 

expensive tool with scares added value. Therefore, the use of the estimation of the 

RWS from the GPyDAR tool has not been considered valuable and left on the side 

during the analysis of the results. 
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Figure 12 : 2D wind field reconstruction on a grid of 400x400m, placed 
at hub height. On the left, the RWS field, on the right, the 
uncertainty field. 
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 7 Conclusion 

This project considered the design of a method aimed at producing online and 

predictive estimation of the wind speed experienced by wind turbines using LiDAR 

measurements during turbine operation. The set up considered a forward looking 

lidar, two machine learning regression tools, and an estimator model based on turbine 

SCADA data. 

 

The study has shown the possibility of achieving accurate estimations of effective 

wind speed live and as far as 10 seconds ahead in time before experiencing a drop 

of both the Pearson correlation factor (<0.8) and the MSE (>0.2) computed between 

the estimated and the true signals. The estimation beyond 10 seconds using the 

regression models sustained a visible improvement from the best guess baseline 

models until reaching a lower limit at time lags of 30s and more. The Neural Network 

model, while not entirely out performing the Gradient Boost model, has shown to be 

capable of drawing correlations between input and output signals beyond the 30s lag 

mark, indicating a potential to rely on patterns in the close field rather than information 

on the far field for predictive estimations. As a matter of fact, the maximum LiDAR 

range measurements was 440m, corresponding in theory to a capability to father 

information of winds incoming at up to 30s ahead on average for a mean speed of 

13-14m/s. 

 

The spatial influence of the incoming measurements was also observed, noticing that 

the peak in both Pearson correlation coefficient (0.9) and the minimum in the MSE 

was found for a 5s lag. Given the mean wind speed of the period used for validation 

(13m/s), this time lag value corresponded to the 80m range or the first range of 

measurement of the WI LiDAR. It was seen that the ranges with highest correlation 

between inputs and outputs, even when the time lag moved beyond 5s, remained 

centred around the value of 1.5D-2D. 

 

Given the promising results of this project, a few paths for further improvement have 

been proposed. On one side, the spatial influence of the input measurements points 

could be directed towards the use of multi beam and scanning LiDAR measurements 

to further understand the correlation between space and wind speed estimation 

accuracy, expending from the 1D analysis proposed by this document. On the other 

side, a number of machine learning tool have been presented as possible 

improvements to the current set up. The proposed ones along other available, have 

potential if implemented in online measurement streams with the goal of improving 

turbine performance.  
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