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Abstract

At Philips IGT, we develop and produce interventional X-ray
systems. For a controller in these systems, we have an ap-
proximately five years old domain specific language. Like
general programming languages, domains specific languages
also evolve. These languages co-evolve together with their
domain. The language used at IGT was initially created for
one system instance. Because of our positive experiences
with the language, we want to evolve the language to sup-
port a family of systems. In this paper, we report on our
experiences with the modifications we made to the original
language. We made these changes preserving the behavior
of the existing system instance. To prevent confidentiality
issues, we use a Lego robot in our examples.
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1 Introduction

Model-based techniques use models to describe several as-
pects of a system, from its architecture to its behaviour. These
techniques are usually applied to raise the level of abstrac-
tion, improve communication between multi-disciplinary
teams and, ultimately, to increase productivity. An approach
to model-based techniques is Model Driven Engineering
(MDE) [13]. MDE is a software methodology focused on
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creating and exploiting models, its goal is to use models to
describe particular uses cases (i.e. domains) of the system
and to use those same models as the basis for the actual
implementation.

Models are often created using Domain Specific Languages
(DSLs) [12]. DSLs trade generality for conciseness, they are
used to describe domain requirements and behaviour in a
concise way by providing notations and constructs tailored
to the domain. Their concepts and relations are known to
the domain experts allowing them to contribute directly to
the development process. The limited expressiveness and
the reduction of programming expertise needed to create
the models correspond to gains in productivity and reduced
maintenance costs.

DSLs are created by developers and domain experts to cap-
ture all the knowledge about the domain in the DSL, while
the execution semantics are covered by the DSL compiler/in-
terpreter. Consequently, domain experts understand, modify,
and even develop DSL-based models. The use of DSLs sup-
ports software evolution. Working at a high level of abstrac-
tion preserves the user from unsafe or inconsistent program
modifications with respect to the original design. It makes
the code of developed applications more clear; simplifying
the documentation and reducing the need of updating when
the application evolves. As the domain makes the DSL self-
documented, it shifts the paradigm from document-based
development to model-based development.
However, the DSL is strictly coupled to the domain and

its requirements/capabilities at the time in which the DSL
is written. If the domain requirements and/or capabilities
change, then the DSL could become inadequate to deal with
the changed domain. When the domain requires new fea-
tures, we may need to develop a new DSL or adapt the ex-
isting one to the new features. To develop a new DSL, even
if small, implies a great effort because the development of
the supporting environment is a challenging task. To adapt
the existing DSL to the changed domain by reusing part of
the original DSL implementation requires a particular DSL
design. In this work, we focus on the evolution of the DSL
while preserving its existing capabilities, expressiveness and
execution semantics.
In this paper, we report about the evolution of a DSL at

Philips IGT, a business unit of the Philips company. Philips
IGT develops and produces interventional X-ray systems, see
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Figure 1. Interventional X-ray system

Figure 1. These systems can be used for many medical treat-
ments. The systems have a sub-system which is responsible
for positioning the X-ray beam with respect to the patient.
The user of the system can initiate movements by joystick
requests to change the region of interest of which the X-ray
pictures are taken. This sub-system has a controller which
decides how the movement requests need to be handled. The
controller can reduce the speed of a movement when system
comes too close to the patient or stop the movement when
the system comes even closer to the patient.
Approximately five years ago, we created the so-called

Azurion DSL to describe the behavioral rules for the con-
troller. The user of the language describes how movement
requests are handled depending on the state of the system.

The Azurion DSL was created for a single system type. At
creation, the language included a pre-defined set of move-
ments, system states (e.g. motor defect) and actions (e.g. stop
movement) as part of its grammar. These language features
are hard-coded in the generator to be able to generate source
code in our target language C++.

Because of the positive experiences with the Azurion DSL
at Philips IGT, the aim is to extend the DSL to support a fam-
ily of products. The language features need to be extended.
Extending language features means: 1) extend the expressive-
ness of the language, 2) updating the code generator, and 3)
using the new features in the language instances. Our experi-
ence is that it works best if DSL experts perform steps 1 and
2. DSL users are only concerned with performing step 3. We
co-evolved our language in such a way that, e.g., movements,
system states and actions are no longer fixed and predefined,
but can be defined by the user in the language instance.

Due to the nature of our systems, it is paramount that we
do not change the behavior of existing released products.
Our goal is to evolve the language to support a family of
systems without changing the generated artifacts and hence
preserving its verified behavior.
We took an incremental approach for the DSL evolution.

Every evolutionary change started with storing the current
state of the generated artifacts. After which we made a

change to the grammar, the code generator and the instance
of the language. Lastly, we generated the artifacts again and
checked if they were equal to the stored state. If the arti-
facts were different, the generator or instance needed to be
changed until the artifacts were equal.
For maintainability and reuse, we splitted the new gram-

mar over multiple languages. The lower-level languages we
created could be reused in languages for different domains.
This paper is organized as follows. Related work is pre-

sented in Section 2. In Section 3 the DSL is introduced with
the help of a Lego robot example. Next we describe the
changes we made to the language to support a family of
systems and how we splitted up the grammar in Section 4.
Section 5 describes the industrial embedding of our language.
The conclusion is in Section 6.

2 Related Work

Many papers have been written about the initial creation
of DSLs in industry. For instance, over 20 industrial applica-
tions of DSLs are described in [10]. They observed that DSLs
are beneficial for design guidance and early error prevention
or detection. In addition, they report that DSLs increase pro-
ductivity due to the raised level of abstraction. As any piece
of software, also DSLs evolve over time. The challenge of the
evolution of software, with a focus on the co-evolution of
meta-models and models, were already identified in [6]. Tratt
discusses the evolution of a simple state machine DSL, con-
centrating on the consequences of adding more functionality
and making it more robust [11].
A large case study can be found in [8]; they study the

impact of a large number of revisions of four modeling lan-
guages provided by the open source Graphical Modeling
Framework (GMF). This framework is maintained by more
than ten developers in several countries and its evolution is
well-documented which makes it very suitable for studies
on co-evolution. The authors of [9] describe the problem of
a large number of DSL ecosystems at the company ASML.
The largest ecosystem consists of 22 EMF-based DSLs, 95
QVT model transformations, and 5500 unit-test models sup-
porting development of these transformations. Co-evolution
is more complex than a single DSL because of the reuse of
concepts between DSLs and implicit relations. The paper
describes a high-level architecture for co-evolving models.

Different ways in which metamodels may evolve and the
relations with modeling artifacts are identified in [5]. The pa-
per also discusses the ingredients for a comprehensive solu-
tion, including a possible implementation. The authors of [3]
disusses the analysis of dependencies between modifications
which is an important challenge when aiming at complete
automation of the coupled evolution of meta-models and
models. To automate co-evolution, the paper [2] proposes
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a higher-order model transformation based on a represen-
tation of the metamodel evolution. The approach of [4] au-
tomatically generates suggestions to repair inconsistencies
based on consistent change propagation. A survey of a large
number of approaches for meta-model co-evolution can be
found in [7].

3 Case

In this section, we explain the DSL as far as needed to under-
stand the paper. The DSL is used at Philips IGT. Because of
confidentiality reasons, we illustrate our DSL using a robot
example with a comparable domain. Note that we did tailor
the grammar to fit our example.

We start this section with a description of the robot. Then
we explain the characteristics of the playing field. We de-
scribe how the robot processes movement requests from a
remote controller. Next we introduce the DSL with an exam-
ple instance. Followed by an analysis of the evolvability of
our DSL. We end the section with a comparison between the
Lego DSL and the Azurion DSL.

3.1 Robot

For the case, we assume that we drop a robot on a playing
field. Its mission is to explore the playing field and search
water in colored lakes. When it has found a lake, it will sent
the color of the lake back to the remote operator.

Figure 2. Robot

Figure 2 depicts the robot we use to explore the playing
field. The robot has the following hardware mounted to its
chassis. It has three wheels: one at the back in the middle
and two wheels on each side which are individually driven
by a motor. At the front, it has two bumpers that can detect
if it crashed onto an object. Also at the front is a downwards
facing color sensor. An ultrasonic sensor is mounted on the
top.

For driving the robot, we have a remote control. There are
joysticks for the following movement requests:

• Analog deflection for moving forward at the desired
speed.

• Analog deflection for moving backward at the desired
speed.

• Sharp left turn. Left wheel moves backward. Right
wheel moves forward.

• Sharp right turn. Right wheel moves backward. Left
wheel moves forward.

• Wide left turn. Right wheel moves forward. Left wheel
does not move.

• Wide right turn. Left wheel moves forward. Right
wheel does not move.

In this paper, we discuss the controller that is responsible
for decision making. The implementation for receiving re-
mote control messages, reading the sensors and moving the
motors is out of scope.

3.2 Playing Field

Figure 3. Playing field

Figure 3 is a top view of the playing field with a robot on
it. The playing field has the following characteristics:

• The playing field is square and flat. The surface of the
playing field is black and the edge has a white line.

• The playing field has lakes with colored edges.
• There are bricks.

The color sensor at the front of the robot can send the color
of the lake back to the remote operator when it has found
one. In addition, the color sensor is used for edge detection;
to make sure that the robot will not fall of the playing field.
To detect the bricks, the robot has two types of sensors. The
distance to a brick is determined with the reading of the
ultrasonic sensor. The ultrasonic sensor needs calibration
before use. The bumpers can detect a collision with a brick.
The robot uses a coordinate system to know its place on

the playing field. It distinguishes the following zones:

• 5 cm before the edge of the playing field. The edge is
the white line, see Figure 3.

• On the edge.
• Over the edge.

The coordinates of the zones are calibrated and stored on the
robot. During start-up, the robot checks if the calibrations
are present.
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3.3 Movement Requests

Movement requests from the joysticks are processed by the
robot. Depending the state of the robot, the position of the
robot or the sensor readings of the robot, the controller will
alter movement requests. We will give an example for each
of the three reasons a movement request can be altered:

State. When a certain state is true (for instance, a sensor
is not calibrated or there is a faulty sensor), the movement
can be altered to for instance a slower speed or not start at
all.

Position. Zone near the edge of the playing field, the
robot can reduce the speed to a lower value.

Sensor value. The robot has sensors for detecting a col-
lision. When detecting a collision, all movements can be
stopped.
Note that when none of these three reasons are present,

the robot will execute the given movement request with the
requested speed.

3.4 Language

Our language and generators are created using the Xtext and
Xtend Eclipse plug-ins [1].

Listing 1 is an example instance of the Lego DSL. It is used
as a running example throughout the paper.

Next we explain what the example instance describes. All
words in bold and blue are keywords i.e. part of the gram-
mar. Lines 1 till 3 define a condition called ReducedPerfor-

manceCondition. This condition is false when the position
and ultrasonic sensor are calibrated. Note that Position
calibrated and Ultrasonic sensor calibrated are part of
the language. A language instance can have more conditions.
One condition can be used in another condition.
As explained in Section 3.3, a movement request can be

altered by the controller. Lines 4ś15 provide four examples.
The first one describes that all movements will be executed
with safe speed when the ReducedPerformanceCondition con-
dition is true. This line implements the following behaviour
for the controller. If the requested movement speed is faster
than safe speed, then the movement will move with safe
speed. Alternatively, if the requested movement speed is
slower than safe speed, then the movement will move with
the requested speed. When no movement is requested, the
controller will not execute this rule. The word between ł[ž
and ł]ž is an identifier which is used in the generated code
and needs to be unique.
The second rule defines that when the collision sensor

is active all movements except for the BackwardMove are
quickly stopped with stop release. The latter means that the
movement can continue when the joystick is released first.

1 Condition ReducedPer fo rmanceCond i t i on

i s

2 (NOT Posit ion ca l i b ra t ed ) OR

3 (NOT Ultrasonic sensor ca l i b ra t ed )

4 [ RedPer f ] WHILE

ReducedPer fo rmanceCond i t i on

5 DO Maximum speed i s safe

6 APPLIES TO a l l movements

7 [ Col lCond ] WHILE Col l i s ion sensor

ac t ive

8 DO QStop with stop re lease

9 APPLIES TO a l l movements except

BackwardMove

10 [ InEdgeZone ] WHILE Inside Before edge

of playing f i e l d zone

11 DO Maximum speed i s safe

12 APPLIES TO Sha r pL e f t + Sha rpR igh t +

WideLef t + WideRight

13 [ InEdgeZone ] WHILE Inside In edge of

playing f i e l d zone

14 DO NormalStop

15 APPLIES TO ForwardMove

16 Movement ForwardMove descr ipt ion :

17 Main Action defined as Forward move

18 End of movement ForwardMove

descr ipt ion

19 Movement BackwardMove descr ipt ion :

20 Main Action defined as Backward

move

21 End of movement BackwardMove

descr ipt ion

22 Movement Sha r pL e f t descr ipt ion :

23 Main Action defined as Sharp l e f t

turn

24 End of movement Sha r pL e f t descr ipt ion

25 Movement SharpR igh t descr ipt ion :

26 Main Action defined as Sharp r ight

turn

27 End of movement Sha rpR igh t

descr ipt ion

28 Movement WideLef t descr ipt ion :

29 Main Action defined as Wide l e f t

turn

30 End of movement WideLef t descr ipt ion

31 Movement WideRight descr ipt ion :

32 Main Action defined as Wide r ight

turn

33 End of movement WideRight descr ipt ion

Listing 1. DSL example statements
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Note that BackwardMove is an instance of Backward

move. Hence, for each movement instance (like Backward-
Move), a movement definition (specified in the language) is
required.
The third rule makes the controller alter the SharpLeft,

SharpRight, WideLeft and WideRight movements to safe
speed when the robot approaches the edge of the playing
field.

The last rule stops the ForwardMove when the robot is on
the edge of the playing field.
The movements used in the above rules are defined on

lines 16 to 33. These lines define six movements, all in the
same way. We only explain the first movement. The move-
ment name can be chosen by the user of the language. In this
example ForwardMove. The movement name is mapped to
Forward move which is a keyword. Because of Forward

move, the code generator knows what to generate when
ForwardMove is used.
From the language instance, the artifacts in C++ source

files are generated. The code generator generates all behavior
as specified by the language instance. Depending on the
system capabilities (for instance, some movements might not
be present because a customer chooses not to buy certain
options) some code will never be executed.

3.5 Supporting a Family of Systems

Figure 4. Another Robot

The language we created was intended for one robot, see
Figure 2. To support a family of systems, we also need to deal
with robots with different hardware configurations. Figure 4
is an example of a new robot with different hardware. Com-
pared with the robot of Figure 2, this robot has a sensor at
the back to make sure it will not fall of the playing field when
moving backwards. This sensor value is present in the new
hardware instance and is not present in the old hardware
instance of the robot. There are other differences, such as
two addition color sensors at the front and a measuring arm.
To deal with the large number of sensors the robot has two
controllers.
In the next section, we describe the changes we made

to support a family of systems instead of a single system
instance. Some features of the presented language are not
variable. They can only be added by changing the grammar
and the generator of the language.
We use Listing 1 to decide what needs to co-evolve with

the domain:

• Movement:Movements are part of grammar. For in-
stance, Backward move is a keyword on line 20.

• Zones, system states and actions are also part of the
grammar:
ś Position: Before edge of playing field zone on
line 10 is a keyword.

ś System state: Line 2 uses the Position calibrated

keyword.
ś Action: NormalStop is a keyword, see line 14

• Configuration: Because we need to support a family
of systems, it might be that depending on the used
chassis of the robot a specific movement is available
in e.g. two instances of the system, but we want to
have different behaviour for one of the two system
instances. With the language presented in Listing 1,
we cannot support such a case.

Summarizing, observe that the grammar and the generator
have to be adapted to deal with new movements, zones,
actions and system states, while ideally only the instance
needs to be updated.

3.6 Validity of Example

Here we compare the presented Lego DSL with the Azurion
DSL used for the real system from Figure 1.
The keywords with capital letters (e.g. NOT, WHILE

, APPLIES TO) are exactly the same in both languages.
The actionsMaximum speed is safe,QStop with stop re

−lease and NormalStop are a subset of the actions present
in the Azurion DSL. As mentioned, it was not allowed to dis-
close the actual positions, system states or movements. The
zones Before edge of playing field zone and In edge of

playing field zone are not used at Philips IGT. However,
one can imagine that the system has some notion about
where its parts are such that collisions between stand and
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patient support can be avoided. The same is the case for
people in the room. In the Lego DSL we have Collision

sensor active for this as part of the grammar. The actual
DSL also has keywords for states related to the calibration of
sensors. The movements Forward move, Backward move

, Sharp left turn, Sharp right turn, Wide left turn and
Wide right turn are not part of the Azurion DSL. The Azu-
rion DSL has movement keywords in the grammar for the
movements the stand and patient support can make.

Figure 1 is an example hardware configuration of the Azu-
rion system. The customer can choose different stands and
patient supports. Depending on the hardware configuration
a customer has chosen, the current states, sensors and move-
ments might be different.

4 Evolution

In this section, we describe how we evolved the language.
First we describe how the language co-evolved with the
domain. Then the internal structure of the language has
changed. Last we describe how we divided the grammar
over multiple languages to improve maintainability and to
allow the re-use of languages.

4.1 Grammar Changes of Language

In this section, we describe how our language co-evolved
with the domain.

Position. In Listing 1 on line 10 Before edge of playing
field zone was part of the grammar. In the evolved lan-
guage called Movement Specification Language (MSL), zones
can be added by the user of the language without changing
the grammar or generator. Listing 2 shows that zones are
user defined in the MSL.

1 msl UserDef inedZones {

2 Zones {

3 UserDefined

BEFORE_EDGE_OF_PLAYING_FIELD_ZONE

[ function :

"isBeforeEdgeOfPlayingFieldZone()" ]

4 UserDefined

ON_EDGE_OF_PLAYING_FIELD [

function : "isOnEdgeOfPlayingField()" ]

5 }

6 }

Listing 2. DSL example user defined zones

The user defined name BEFORE_EDGE_OF_PLAYING_FIELD-
_ZONE is mapped by the generator to a manually imple-
mented function with the isBeforeEdgeOfPlayingFieldZone
name. The assumption is that these functions have a boolean
return value. During building the source code, the C++ com-
piler will statically check if this is indeed the case. We use ł{ž
and ł}ž because multiple groups can be created.

System state. System states in the old language were part
of the grammar, see e.g. Listing 1 on line 2. In the evolved lan-
guage, system states can be defined by the user. In Listing 3,
we use the same notation as in Listing 2. Here we also have
the assumption that the defined functions have a boolean
return value.

1 msl Use rDe f i n edSy s t emS t a t e s {

2 SystemStates {

3 UserDefined

POSITION_IS_CALIBRATED [

function : "isPositionCalibrated()" ]

4 UserDefined

ULTRASONIC_SENSOR_IS_CALIBRATED

[ function :

"isUltrasonicSensorCalibrated()" ]

5 UserDefined

COLLISION_SENSOR_IS_ACTIVE [

function : "isCollisionSensorActive()" ]

6 }

7 }

Listing 3. DSL example user defined system states

Action. Analogously, Listing 4 is an example of an user
defined action. The action is mapped to a manually imple-
mented class that implements the desired behaviour. As men-
tioned, the class is implemented in C++. The C++ linker will
produce an error when the class does not exist. In line 3, we
have a string that is used for documentation purposes. This
notation can be used for everything that is defined by the
user.

1 msl Use rDe f i n edAc t i on s {

2 Actions {

3 @user.doc("This documentation describes what
the NormalStop action does.")

4 UserDefined NormalStop [ c l a s s :

"NormalStop" ]

5 UserDefined

QuickS topWi thS topRe l ea se [

c l a s s : "QuickStopWithStopRelease" ]

6 UserDefined MaximumSpeed [ c l a s s :

"MaximumSpeed" ]

7 }

8 }

Listing 4. DSL example user defined actions

4.2 Supporting a Family of Systems

To support a family of systems, we introduced a capability
specification language (CSL). The CSL is used to specify
systems, configurations and their capabilities.
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A CSL model defines physical objects. The chassis type
of our example robot is a physical object. For the Azurion
system, one can think of stands or table supports. Physical
objects have capabilities. A capability is the ability of the
system to do something. In our case, we define movements
as capabilities.

A CSL model also defines configurations. A configuration
is a system type instance. For instance, the combination
of stands and table supports that a customer can chose for
the Azurion system. A configuration refers to a physical
object and specifies which capabilities are available for that
configuration.
Below is a detailed description of the evolution of the

language for movements and configurations.

Movement. Listing 1 has movements that are part of the
grammar, see for instance line 20. To support a family of
systems, we need to be able to easily add new movements.
In Listing 5, we can add user defined movements per chassis.
We start by defining a name for the chassis type, in this case
ChassisA. Next we add movements to the chassis. We add
a movement with the identifier ForwardMove, and define
its maximum and safe speeds. How behaviour is added to a
movement will be described in the next section.

1 c s l Movements

2 {

3 Chassis Chass i sA

4 {

5 ForwardMove maxSpeed : 500 mm/

sec safeSpeed : 100 mm/ sec

6 BackMove maxSpeed : 200 mm/ sec

safeSpeed : 100 mm/ sec

7 . . .

8 }

9 }

Listing 5. DSL example movement

Configuration. From the different chassis, we can com-
pose a system configuration, see Listing 6. The movements
that are used in the ChassisConfiguration are imported
on Line 1. These imported movements are defined in List-
ing 5. A system configuration inherits the movements from
a chassis, in this example ChassisA. When required, a system
configuration can override the safe speed from the chassis
definition. This is done on lines 8 and 15. The default values
are used otherwise.

Lines 19ś21 define constants for sets of movements. Con-
stants are variables that cannot be altered after their def-
inition. Movements can be added to these constants, see
for instance line 19. Line 20 and 21 define the same set of
movements, but in a different way. Next to the difference
keyword, we also added the union and intersection set
operators.

1 import "Movements.csl"

2

3 c s l Con f i g u r a t i o n s

4 {

5 @gen.config("isConfigurationA()")

6 ChassisConfiguration Conf i gu ra t i onA

: Chass i sA

7 {

8 ForwardMove safeSpeed : 50 mm/

sec

9 BackMove

10 . . .

11 }

12 ChassisConfiguration Con f i gu r a t i onB

: Chass i sA

13 {

14 ForwardMove

15 BackMove safeSpeed : 50 mm/ sec

16 . . .

17 }

18

19 const STRAIGHT_MOVEMENTS =

ForwardMove + BackMove

20 const TURN_MOVEMENTS_1 = Sha r pL e f t

+ Sha rpR igh t + WideLef t +

WideRight

21 const TURN_MOVEMENTS_2 = (

allMovements ) =>di f ference (

STRAIGHT_MOVEMENTS )

22 }

Listing 6. DSL example configuration

The annotation on line 5 is used by the code generator.
When code needs to be generated that is specific for Con-
figurationA, the generator will use isConfigurationA(). The
assumption is that isConfigurationA() is a manually imple-
mented function with a boolean return value.

4.3 Putting It All Together

Behaviour. In this paragraph, we describe a replacement
of Listing 1. In Listing 7, we present the behavioral part of
the language that is ready to support the family of systems.
At the top, the earlier described listings are imported.

The condition statement now uses the imported user de-
fined system states on lines 8 & 9. The user defined system
states are defined in Listing 3.

As explained in Section 3.3, a movement request can be al-
tered by the controller. Listing 7 provides four example rules.
The first rule uses the same ReducedPerformanceCondition.
TheMaximumSpeed is defined in Listing 4. The safe keyword
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1 import "Capabilities.csl"

2 import "Configurations.csl"

3 import "UserDefinedSystemStates.msl"

4 import "UserDefinedActions.msl"

5 import "UserDefinedZones.msl"

6

7 Condition ReducedPer fo rmanceCond i t i on

i s

8 (NOT POSITION_IS_CALIBRATED ) OR

9 (NOT

ULTRASONIC_SENSOR_IS_CALIBRATED )

10

11 [ RedPer f ] WHILE

ReducedPer fo rmanceCond i t i on

12 DO MaximumSpeed safe

13 APPLIES TO allMovements

14

15 [ Col lCond ] WHILE

COLLISION_SENSOR_IS_ACTIVE

16 DO QuickS topWi thS topRe l ea se

17 APPLIES TO ( allMovements ) =>

di f ference ( BackwardMove )

18

19 [ InEdgeZone ] WHILE Inside

BEFORE_EDGE_OF_PLAYING_FIELD_ZONE

20 DO MaximumSpeed safe

21 APPLIES TO TURN_MOVEMENTS_1

22

23 [ InEdgeZoneA ] WHILE configuration

Conf i gu ra t i onA AND Inside

ON_EDGE_OF_PLAYING_FIELD

24 DO NormalStop APPLIES TO

ForwardMove

25 OTHERWISE [ InEdgeZoneO ]

26 DO QuickStop APPLIES TO ForwardMove

Listing 7. DSL example statements

alters the maximum speed for the involved movements to
safe. The value for the safe speed is defined in Listing 6. The
keyword all movements is changed to allMovements to
prevent parser issues which we do not discuss here.
The CollCond rule uses the state COLLISION_SENSOR-

_IS_ACTIVE from Listing 3. In Listing 1 on line 9 except

is used to exclude movements from the all movements

keyword. In the modified language, we added support for
set operations. The line in the new instance results in the
same movements.

The InEdgeZone rule makes the controller alter the Sharp-
Left, SharpRight,WideLeft andWideRight movements to safe
speed when the robot approaches the edge of the playing
field. The involved movements are now packed in a constant
TURN_MOVEMENTS_1. As described, TURN_MOVEMENTS-

_2 would give the same behaviour. These constants can also
be used in the previously described set operations. In the
latter, the keyword Before edge of playing field zone is
replaced by an user defined zone from Listing 2.

The InEdgeZoneA rule stops the ForwardMove movement
when the robot is on the edge of the playing field. The main
difference compared to Listing 1 is that with the support for a
family of systems, it can be the case that one specific system
instance requires different behaviour than the other system
instances. In Listing 6, we can define a system configuration
that can be used in the behavioural rules. We also added an
OTHERWISE keyword to define the behaviour for all other
system instances. The code generator will use the annotation
isConfigurationA() (see line 5) from Listing 6 for this and
generates an else for the otherwise. Hence, ConfigurationA
will perform a NormalStop and all other system instances a
QuickStop for the ForwardMove movement when the robot
is on the edge of the playing field.

4.4 Divide Language into Multiple Languages

Before we started refactoring the language, we had one large
grammar and code generator. To improve maintainability
and support the re-use of languages and code generators,
we divided the languages. Figure 5 gives an overview of our
languages and how they relate to each other.

Figure 5. Relation of languages

Below we describe these languages in more detail.

Common. The common language is the root of all our
languages. It defines the infrastructure concepts for all the
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other language, e.g. it is used to import files into other files.
Examples of importing files are in Listings 6 & 7.
Annotations are used to add documentation that can be

made visible in the editor by a tooltip. In Listing 4 on line
3, we provided an example. When hovering with the mouse
over line 24 of Listing 7, the documentation will be displayed.
In addition, annotations are used to instruct the code gener-
ator, see Listing 6 line 5 for an example.

Expression. The Expression language provides features
for numerical and boolean operations. It also provides sup-
port for operations on sets. This language inherits the Com-
mon language.

CSL. The Capability Specification Language (CSL) adds
support for capabilities (e.g. movements) and configurations.
Listing 5 and Listing 6 are instances of the CSL.
As can be seen in Figure 5, the CSL inherits from the Ex-

pression language and the CSL uses the Common language.
In Listing 6 on line 5, there is an example of using the Com-
mon language in the CSL. This line provides guidance for the
code generator to map ConfigurationA to function isConfig-

urationA(). In addition, on lines 19, 20 and 21 set operations
of the Expression language are used to define constants.

MSL. Listing 7 is an example of the Movement Specifi-
cation Language (MSL). The MSL inherits the CSL, and it
makes use of the Common and the Expression languages.
An example of the usage of the importing mechanism of

the Common language are the lines 1ś5 of Listing 7. And
lines 8 & 9 give an example of the use of the boolean opera-
tions of the Expression language inside the MSL. Constants
defined in the CSL can used in the MSL, see for instance the
definition of TURN_MOVEMENTS_1 in Listing 6 line 20 and
its use in Listing 7 line 21.

5 Industrial Embedding

Released products are installed in hospitals and need to be
supported for more than a decade. Hence, our code needs to
support these systems for a very long time. We use trunk-
based development. For every product release, we create a
branch in our code archive. Our code archive consists of
several components. One of these components includes the
grammar and code for the artifacts generator. From this com-
ponent, we generate the plug-ins needed for the editor that is
used by the users of the language. When a user starts the ed-
itor, it will automatically load the plug-ins from the archive.
With this mechanism, the user always uses the version of the
Azurion DSL that corresponds to that version of the archive.
In addition, the version of the Azurion DSL is always aligned
with the other code in the archive. The users of our language
are approximately 40 engineers that use the language to cre-
ate new functionality, solve field problem or add support for
new hardware configurations. Before a change, a user takes
the latest version of the archive for the product release he or

she is working on. The user starts the editor that loads the
current version of the plug-ins, starts changing the instance,
and generates code when done editing. Azurion DSL users
do not change or use the component that holds the grammar
and code generator. The first two authors of this paper made
the changes to the grammar and code generator described
in this paper. They also update the plug-ins that are used by
the users.
We made the changes described in Section 4 incremen-

tally over the course of half an year. Before every change,
we stored the generated artifacts on a separate location such
that they could not be overwritten by a newly generated ver-
sion. Next we changed the grammar and adapted the code
generator for the changed grammar. Then we changed the
instance to be compliant with the new grammar. The editor
pointed us to the errors in the current instance. Last, we
generated the artifacts and compare them with the stored ar-
tifacts using a diff tool. When equal, we had some confidence
that we did not break anything.When unequal, the generator
or instance were adapted to make them equal. In addition,
to increase the confidence we also run all pre-delivery test
cases. The changes were driven by requests of users and the
current ideas we had on improving the DSL. There was not
a predefined plan at the start. We took the following steps:

1. The zone definitions and movement definitions were
taken out of the grammar and generator. With this
change, the users could adapt and create zones and
movements. After this change, the zone definitions
and movement definitions were still part of the MSL.

2. In this step, we took out expressions from MSL. We
created an Expression language and refactored the
MSL to use the Expression language.

3. We moved movement definitions to a separate file and
created the mechanism to import this file in an MSL in-
stance that describes the behaviour of the movements.

4. Next we added support for constant variables in the
file with movement descriptions.

5. In this step, we added max and safe speed values sup-
port as part of the movement definitions.

6. We took out the fixed action definitions from the gram-
mar and made them user defined, analogue to the
zones. We also introduced annotations for generator
guidance.

7. Then we did the same for system states definition.
After this step, these have to be specified by the user
in a separate file.

8. We added configuration support. Configurations can
be defined in a separate file. These can be imported
and used in the MSL.

9. Last we refactored out the CSL. The grammar for
movements, constant variables and configuration, was
placed in the CSL and the MSL was adapted to use the
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CSL. In this step, we also created the Common lan-
guage. The import and annotation features were taken
out of the MSL and placed in the Common language.
The CSL and MSL were changed to use the Common
language.

Splitting up the languages has enabled their reusability
in other (related) domains. Common, Expression and CSL
are now the basis of other languages used for priority of
movement definitions and testing specifications.

Domain experts no longer need DSL experts to define new
configuration with new movements, states and zones. We
now have a clear distinction between the users of the DSL
and maintainers of the DSL.

6 Concluding Remarks

We have co-evolved a five year old DSL together with its
domain. The DSL was created to describe the behaviour of a
controller used in an interventional X-ray system. Initially,
this DSL was created for a single hardware configuration of
the system.

We incrementally changed the language to support a fam-
ily of systems, supporting multiple hardware configurations.
In the old language, the hardware capabilites of the single
hardware configuration were fixed in the grammar. To sup-
port a family of systems, the fixed language features (such
as system states and zones) were removed and replaced in
the grammar to be user defined. Regardless on how future
system instances look like, the required concepts can be user
defined now.
In addition to the grammar improvements, we also en-

hanced the architecture by splitting up the grammar over
multiple languages. This architecture allows for the re-use
of lower-level languages for DSLs that cover other domains
or parts of our systems.
With the described evolution, we are confident that our

DSL will have a bright future in our industrial setting.

Limitations. After evolutionary step in which the gram-
mar changed, the language instances were changedmanually.
We could do this because of the limited amount of instances
and the size of these instances. Our approach of having a
grammar using Xtext and a generated meta-model does not
really suit automated model-to-model transformations.
Changing to an approach that start with a meta-model

would mean a full reimplementation of the language, which
would definitely be more work than the evolutionary steps
we took as described in this paper.

We could only gain confidence in our evolutionary steps
by comparison of the stored and newly generated artifacts.

There was no existing test suite available for testing the code
generator we could use.

Future work. After the work presented in this paper, we
want to improve early feedback to the user of the Azurion
DSL. We think that with static checks on the model, we can
provide useful feedback to the user of the language before
the artifacts are generated.
We also would like to extend the CSL to describe more

capabilities of the system and extend its use in the product
code.
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