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Metabolic disorders, such as obesity and type 2 diabetes have a large impact
on global health, especially in industrialized countries. Tissue-specific chronic low-
grade inflammation is a key contributor to complications in metabolic disorders. To
support therapeutic approaches to these complications, it is crucial to gain a deeper
understanding of the inflammatory dynamics and to monitor them on the individual
level. To this end, blood-based biomarkers reflecting the tissue-specific inflammatory
dynamics would be of great value. Here, we describe an in silico approach to select
candidate biomarkers for tissue-specific inflammation by using a priori mechanistic
knowledge from pathways and tissue-derived molecules. The workflow resulted in
a list of candidate markers, in part consisting of literature confirmed biomarkers as
well as a set of novel, more innovative biomarkers that reflect inflammation in the
liver and adipose tissue. The first step of biomarker verification was on murine tissue
gene-level by inducing hepatic inflammation and adipose tissue inflammation through a
high-fat diet. Our data showed that in silico predicted hepatic markers had a strong
correlation to hepatic inflammation in the absence of a relation to adipose tissue
inflammation, while others had a strong correlation to adipose tissue inflammation in
the absence of a relation to liver inflammation. Secondly, we evaluated the human
translational value by performing a curation step in the literature using studies that
describe the regulation of the markers in human, which identified 9 hepatic (such as
Serum Amyloid A, Haptoglobin, and Interleukin 18 Binding Protein) and 2 adipose
(Resistin and MMP-9) inflammatory biomarkers at the highest level of confirmation. Here,
we identified and pre-clinically verified a set of in silico predicted biomarkers for liver and
adipose tissue inflammation which can be of great value to study future development of
therapeutic/lifestyle interventions to combat metabolic inflammatory complications.
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INTRODUCTION

Inflammation is an important component of normal responses
to infection and injury, whether locally confined or systemic. An
healthy immune response follows a characteristic pathway, where
the first response is strong but short, resulting in the exclusion
of the pathogen/damage followed by a recovery to homeostasis.
This characteristic pathway of inflammation is essential for
recovery and remodeling of tissues and helps to regain a healthy
homeostasis including its critical function (Hotamisligil and
Erbay, 2008). The evolutionary benefits of an optimal effective
immune system are evident in protecting against pathogenic
intruders. Since immune responses are also linked to energy
metabolism, it can therefore be argued that the integration of
these systems and their cooperation in responding to fluctuations
in the energy and nutritional environment would be beneficial.
These responses, however, need to be temporally and locally
regulated to maintain an healthy homeostasis.

Chronic disruption of metabolic homeostasis that occurs in,
for example, overnutrition, could lead to disturbed immune
responses. Especially when the chronic inflammatory activation
occurs in metabolically important organs such as liver and
adipose tissue, these tissues are stimulated to produce pro-
inflammatory cytokines, acute phase proteins, pro-inflammatory
lipids, and other biological inflammatory mediators into the
circulation, leading to a systemic inflammatory condition
(Gregor and Hotamisligil, 2011; Minihane et al., 2015;
Hotamisligil, 2017). These processes have a crucial role in
the chronic metabolic disease development, such as obesity,
type 2 diabetes, fatty liver disease and cardiovascular
disease (Hotamisligil, 2006), and forms the mechanistic
basis for risk factors of viral infections, such as coronavirus
disease 2019 (COVID-19) (Stefan et al., 2021). In order
to support therapeutic approaches of metabolic diseases,
it is crucial to gain a deeper understanding regarding the
inflammatory dynamics in time to monitor or even predict
the homeostatic inflammatory status of the individual. To this
end, tissue-derived plasma biomarkers reflecting the tissue-
specific and systemic inflammatory dynamics in time would
be of great help.

Several systemic pro-inflammatory markers such as C-reactive
protein (CRP), interleukin (IL) 6, IL 18, fibrinogen, and adhesion
molecules [e.g., E-selectin, intercellular adhesion molecule 1
(ICAM-1), and vascular cell adhesion protein 1 (VCAM-1)]
(Pradhan, 2001; Thorand et al., 2005; Kelesidis et al., 2006; Li
et al., 2009; Shibata et al., 2009) have been identified to monitor
“end-stage” of chronic-low-grade inflammatory diseases such as
type 2 diabetes, cardiovascular disease (CVD), and cancer. In
contrast, plasma levels of the anti-inflammatory adiponectin were
inversely associated with CVD (Shibata et al., 2009), type 2
diabetes (Li et al., 2009), and obesity-related cancer (Kelesidis
et al., 2006). To know whether these and other biomarkers
represent early stages of disease progression at the tissue level,
and not at the systemic level, careful assessment of inflammatory
biomarkers is required at the pathway level to select those
markers that enable assessment of tissue-derived sub-clinical
low-grade inflammation.

Recent advances in high-throughput technologies have made
it possible to generate, analyse and integrate large multi-
omics datasets at molecular and cellular levels (genes, proteins,
metabolites, cells) to identify molecular markers of disease
processes. The increasing use of in silico approaches and
bioinformatics has encouraged researchers to use these multi-
level datasets together with existing knowledge and databases
in order to generate a systems-level overview of disease
development (Mcdermott et al., 2013; Vafaee et al., 2018).
GeneSet Enrichment Analysis (GSEA) has become the golden
standard in the analysis of omics data, thereby reducing the
complexity of the analyses and providing a systems view
of the biological processes involved in disease development
(Khatri et al., 2012). A large number of methods have been
proposed in the literature for this task. The majority of these
methods use expression levels as input together with their
associated biological pathways (Khatri et al., 2012; García-
Campos et al., 2015). The approach described here inverts this
strategy, taking known pathways and tissue-derived biomolecules
a priori, thereby creating immediately interpretable candidate
biomarkers that may help the monitoring of disease at an early
phase and/or support treatment strategies. Focusing on the key
events leading to chronic low-grade inflammation, enabled us
to focus on generic features of a broad range of metabolic
diseases. We developed an in silico-based approach which uses
prior knowledge on dysregulated pathways in chronic low-grade
inflammation to predict blood-based candidate biomarkers. We
verified this approach in biomarker databases, experimental
data, and scientific literature to identify blood-based biomarkers
reflecting the dynamic inflammatory status during the sub-
clinical process of chronic low-grade inflammation in liver
and adipose tissue.

MATERIALS AND METHODS

Selection of Genes From Gene Ontology
and Human Protein Atlas
The workflow of the biomarker selection approach used in this
study is visualized in Figure 1. Briefly, an initial selection of gene
ontology (GO) terms was listed using the search terms “adipose”
or “adipocyte” to identify adipose tissue related GO terms, and
“liver,” “hepatic,” or “hepatocyte” to identify liver tissue related
GO terms in the Gene Ontology knowledgebase (1accessed
September 2020). The list of GO terms was manually curated
and only those that were associated with human, non-embryonic,
endogenous and tissue-specific processes were selected, together
with their “child” terms (i.e., a more specialized term than their
broader “paren” term). Subsequently, all immune related genes
from the GO knowledgebase were selected from the GO terms
“immune system process,” “inflammatory response,” “cytokine
production,” and their child terms. In order to select those tissue-
specific pathways potentially associated with inflammation, only
those adipose and liver GO terms were taken that contained genes
also present in immune-related GO terms (Meijerink et al., 2019).

1www.geneontology.org
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FIGURE 1 | Workflow of the selection of candidate protein biomarkers for
tissue inflammation of liver and/or adipose tissue.

The genes from these adipose and liver GO terms were then
extracted from the GO knowledgebase under the conditions of
species “homo sapiens” and type “protein.”

Parallel to the extraction of genes from the GO knowledgebase,
tissue-specific genes for adipose tissue and liver were selected
from the Human Protein Atlas (HPA) (2accessed September

2www.proteinatlas.org

2020). Details on the definition of tissue specificity can be found
in the HPA documentation. In short, it is defined as at least four-
fold higher mRNA level in a particular tissue or a group of 2–5
tissues compared to any other tissue or the average level in all
other tissues. Only immune related genes as defined from the
GO knowledgebase described above and those genes that were
assigned a UniProt ID or a gene name were selected.

Selection and Curation of Candidate
Protein Biomarkers
All gene names and the associated UniProt ID’s from the selected
genes were compared to biomarkers from the Clarivate Analytics
Integrity biomarker database3 labeled with type “proteome,”
substrate “plasma” or “serum,” and evidence “early human
studies,” “late human studies,” or “recommended/approved” to
select only those candidate markers that are being identified as
human protein biomarker in blood.

Thereafter, the candidate biomarker set was assessed for its
novelty using 3 criteria: (i) candidate biomarker is described in
one of the following low-grade inflammation related diseases or
conditions (Clarivate Analytics Integrity term: “condition”):
metabolic syndrome, type 2 diabetes, hyperglycemia,
prediabetes, insulin resistance, glucose intolerance, dyslipidemia,
hyperlipidemia, hypertriglyceridemia, or atherosclerosis; (ii)
candidate biomarker is commonly analyzed in the human adult
population; (iii) candidate biomarker is used as diagnostic
biomarker in the diseases or conditions under the first criterium.
If the answer was no to one of these 3 criteria, the candidate
biomarker was assigned as potentially “novel” candidate
biomarker. If the answer was yes to these 3 criteria, the candidate
biomarker was assigned “curated” candidate biomarker.

Verification of Candidate Biomarkers
Obese Ldlr−/−.Leiden Mice
The in silico predicted candidate biomarkers were verified for
their suitability as markers for liver- and/or adipose tissue
inflammation in male 14–16 week-old obese and inflammation-
prone Ldlr−/−.Leiden mice (van den Hoek et al., 2020).
Animal care and use were performed in accordance with the
general principles governing the use of animals in experiments
of the European Communities (Directive 86/609/EEC) and
Dutch Legislation (The Experiments on Animals Act, 1997).
This included approval of the study by the ethical review
committee (approval reference number TNO-312). The control
and reference group of a larger study evaluating the organ-
specific effects of lifestyle interventions (van den Hoek et al.,
2021) were used for biomarker verification. Briefly, two
experimental groups of Ldlr−/−.Leiden mice were included
in the study: one group of mice (n = 10; healthy reference
group) were fed a low-fat grain-based chow diet (R/M-H, Ssniff
Spezialdieten GmbH, Soest, Germany) and the second group
of mice (n = 17) were fed a high fat diet (HFD) containing
45 kcal% fat from lard, 35 kcal% from carbohydrates and
20 kcal% casein (D12451, Research Diets, new Brunswick, NJ,

3https://www.cortellis.com/intelligence/
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TABLE 1 | Selected parent gene ontologies with the number of child ontologies and genes, as well as the number genes also present in immune related ontologies.

Tissue GO accession GO term (parent) Number of child
ontologies

Number of genes Number of immune
genes (%)

Adipose tissue GO:0070162 adiponectin secretion 2 6 3 (50%)

GO:0060612 adipose tissue development 4 38 19 (50%)

GO:0005901 Caveola 5 83 30 (36%)

GO:1904606 fat cell apoptotic process 1 1 1 (100%)

GO:0045444 fat cell differentiation 9 213 94 (44%)

GO:0070341 fat cell proliferation 2 10 2 (20%)

GO:0044321 response to leptin 5 24 11 (46%)

Additional from Human protein atlas 69 29 (42%)

Liver tissue GO:0034382 chylomicron remnant clearance 1 8 3 (38%)

GO:0002384 hepatic immune response 1 2 2 (100%)

GO:0035733 hepatic stellate cell activation 2 6 3 (50%)

GO:0061868 hepatic stellate cell migration 1 2 1 (50%)

GO:1990922 hepatic stellate cell proliferation 1 2 1 (50%)

GO:0097284 hepatocyte apoptotic process 1 12 6 (50%)

GO:0001889 liver development 5 130 60 (46%)

GO:0034379 very-low-density lipoprotein particle assembly 1 12 3 (25%)

Additional from Human protein atlas 326 131 (40%)

United States) for 50 weeks to induce an obese phenotype.
Mice were group housed in a temperature-controlled room on
a 12 h light-dark cycle and had free access to food and heat
sterilized water. Body weight and food intake were determined
regularly during the study. At t = 50 weeks mice were sacrificed
unfasted using gradual-fill CO2 asphyxiation. Liver tissue and
perigonadal white adipose tissue (WAT) were collected, weighed
and fixed in formalin and paraffin-embedded for histological
analysis or fresh-frozen in N2 and subsequently stored at -
80◦C for gene expression analysis. Hepatic inflammation was
scored using 3 µm sections which were stained with hematoxylin
and eosin (H&E) and by counting the number of aggregates of
inflammatory cells per field using a 100x magnification (view size
of 4.2 mm2). The averages of five random non-overlapping fields
were taken and values were expressed per mm2. Perigonadal
WAT inflammation was scored using 5 µm sections which
were stained with hematoxylin-phloxine-saffron (HPS) using
3 randomly selected fields (1.56 mm2 for perigonadal WAT).
Adipose tissue inflammation was measured by counting crown-
like structures (CLS) per field using a 100× magnification and
values were expressed as number of CLS per 1000 adipocytes.
Plasma levels of Serum Amyloid A (SAA) were measured by
ELISA specific for SAA (Invitrogen, # KMA0021).

Transcriptome Analysis of Liver and Adipose Tissue
To perform gene expression analysis RNA isolation was
performed as described previously in detail (Verschuren et al.,
2014). Total RNA was extracted from fresh frozen liver and
perigonadal WAT samples using glass beads and RNA-Bee
(Campro Scientific, Veenendaal, Netherlands). Briefly, mRNA
was extracted from total RNA using oligo-dT magnetic beads.
After fragmentation of the mRNA, cDNA was synthesized
followed by ligation with the sequencing adapters and amplified

by PCR. Quality and yield of the amplicon was determined
(Fragment Analyzer, Agilent Technologies, Amstelveen,
Netherlands) and fulfilled QC-criteria (broad peak between 300
and 500 bp). In total, a concentration of 1.1 nM of amplicon-
library DNA was used for sequencing. Clustering and DNA
sequencing, using the Illumina NovaSeq6000, was performed
according to manufacturer’s protocols by service provider
GenomeScan B.V (Leiden, Netherlands), yielding 15–40 million
sequencing clusters per sample and 2 × 150 bp Paired-End
reads (PE) per cluster. These counts serve as input for the
statistical analysis using DEseq2 package (Love et al., 2014).
Selected differentially expressed genes (DEGs), corrected for
multiple testing (available in DEseq2 package), were used for
expression analyses.

Verification in Human Studies
The candidate biomarkers for low grade inflammation in liver
and/or WAT that were verified in the obese Ldlr−/−.Leiden
mice, were further evaluated for their confirmed use as hepatic
or adipose inflammation markers in human in the MEDLINE R©

database. The database was searched during February 2021 and
March 2021 using the biomarker names and the tissue names.
Publications were manually screened and evaluated to assess the
use of the candidate biomarkers in a human inflamed setting. The
level of confirmation was determined based on (i) a mechanistic
rationale present for the marker to be related to liver or adipose
tissue; (ii) the biomarker has been described to be associated
with tissue specific diseases (e.g., steatosis for liver or obesity
for adipose tissue); (iii) the biomarker has been described to be
associated with one or more metabolic disorders (i.e., metabolic
syndrome, type 2 diabetes, hyperglycemia, prediabetes, insulin
resistance, glucose intolerance, dyslipidemia, hyperlipidemia,
hypertriglyceridemia, or atherosclerosis).
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TABLE 2 | The selected candidate biomarkers in each parent Gene Ontology term.

Tissue GO accession GO term (parent) Number of candidates
for tissue specific

inflammationa

names literature-confirmed biomarkers “candidate biomarkers
confirmed in biological context”

Adipose tissue GO:0070162 adiponectin secretion 1 IL1B#

GO:0060612 adipose tissue
development

6 NAMPT#; SORL1#; LEP#; FTO; PIK3CA#; GHRL#

GO:0005901 Caveola 8 ADCY8#; SELE#; INSR; IRS1; TFPI; HMOX1#; FASLG#; NOS3

GO:1904606 fat cell apoptotic
process

1 LEP#

GO:0045444 fat cell differentiation 18 LEP#; FTO; FRZB; ADIPOQ#; SORT1; SREBF1; LPL#; RARRES2#;
FABP4#; TGFB1#; TNF#; METRNL#; GPX1#; FABP3; RETN#;
FNDC5; IL6#; PPARG#

GO:0070341 fat cell proliferation 1 FTO

GO:0044321 response to leptin 4 LEP#; LEPR#; FGF23; EDN1#

Additional from Human protein atlas 10 ACP5#;CD36#;CHIT1#;GPNMB#;ITLN1#;MMP9#;PLA2G7#;
PRG4#;PTX3#;SAA1#

Liver tissue GO:0034382 chylomicron remnant
clearance

7 LDLR#; LIPC; APOB#; APOC3; APOC2; APOC1; APOE#

GO:0002384 hepatic immune
response

2 IL6R#; IL6#

GO:0035733 hepatic stellate cell
activation

2 LEP#; GCLC

GO:0061868 hepatic stellate cell
migration

0

GO:1990922 hepatic stellate cell
proliferation

0

GO:0097284 hepatocyte apoptotic
process

2 GSN#; KRT18

GO:0001889 liver development 11 FGL1#; HAMP#; CPB2#; EGFR#; PIK3CA#; REG1A#; HMOX1#;
VTN#; IL10#; PCSK9; FGF1

GO:0034379 very-low-density
lipoprotein particle
assembly

3 APOB#; APOC3; APOC1

Additional from Human protein atlas 49 A1BG#;A2M#; ADAMTS13#;AGT#;AHSG#;AMBP#;APOA1#;
AZGP1#; CAT#;CD14#;CHI3L1#;CLU#;AGTR1#;CPN2#;F7#;
FST#;GDF2#;HP#;HRG#;ICAM1#;IGFBP2#;IL18BP#;IL27#;
KLKB1#;KNG1#;LBP#;LEPR#;LRG1#;MASP1#;MBL2#;ORM1#;
PLA2G2A#;PLG#;PRDX4#;PRG4#;PROC#;PROS1#; RARRES2#;
RBP4#;SAA1#;SDC1#;SERPINA1#;SERPINA3#;SERPINC1#;
SOD1#;TF#; SERPING1#; TNFSF14#;TTR#

Candidate biomarkers that represent the overlap with immune GO terms are indicated with an #. Candidate biomarkers identified as tissue-specific marker according to
the Human Protein Atlas database are bold-marked and underlined. As some candidate biomarkers are present in multiple GO terms, the sum of these numbers per
tissue exceeds the total number of selected genes presented in the text (44 for adipose tissue and 73 for liver tissue).

Three levels of biomarker confirmation were determined:
The biomarker was regarded confirmed (level 3) as tissue
inflammation derived biomarker if all three conditions were met;
putative (level 2) if two out of three conditions were met; possible
(level 1) if only one condition was met, being either condition i
or ii; not confirmed (level 0) if none of the conditions or only
condition 3 was met.

Statistics
All values shown in graphs represent means ± Standard
Error of the Mean (SEM). Statistical differences between
groups were determined by using non-parametric Kruskal-
Wallis followed by Mann-Whitney U test for independent
samples using SPSS software. Two-tailed p-values were used

and P-values < 0.05 was considered statistically significant.
In the case of transcriptome analysis, differentially expressed
genes were selected using p-values adjusted for multiple testing
(available in DEseq2 package; False Discovery Rate, FDR) < 0.01.
Candidate biomarkers were selected based the following criteria:
(a) biomarker is detected on gene level in tissue from the mouse
study; (b) biomarker is significantly different in liver or adipose
tissue; (c) expression (count) level in target tissue is higher than
expression in non-target tissue. Spearman’s Rank correlation
analysis (MS office package, MS-Excel) was performed to
calculate the relation between the absolute gene expression in
the tissue and the quantified inflammatory aggregates per animal.
A correlation cut-off value of ±0.6 was considered relevant for
further evaluation.
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FIGURE 2 | (A) Panels of immuno-histochemical staining of inflammatory aggregates in liver and adipose tissue; (B) quantification of inflammatory aggregates in
HFD-fed mice (black bars) in liver (left) and adipose tissue (right) as compared to chow fed mice (open bars). ∗∗∗ indicates significance with P-values < 0.05.

RESULTS

Selection of Genes From Gene Ontology
and Human Protein Atlas
Table 1 presents an overview of human gene ontologies and genes
that were selected as input for the biomarker workflow (Figure 1).
For adipose tissue, the initial database search retrieved 47 gene
ontologies of which 9 parent ontologies were manually selected
(Supplementary Table 1). After extension with their child terms,
41 ontologies were selected for adipose tissue. After mapping with
immune-related genes, 7 parent adipose tissue ontologies with 28
child ontologies were selected for further processing (Table 1).
These ontologies contained 43% (20%–100%) genes that were
also present in immune related ontologies. The search for liver
ontologies resulted in 115 hits of which 15 ontologies were
selected (Supplementary Table 2). With their child ontologies, a
total of 37 terms were selected for liver. A number of 8 parent
liver ontologies with their 13 child ontologies were selected
for further processing based on their overlap with immune

ontologies (Table 1). In these ontologies, 45% (25%–100%) of
the genes were also related to immune GO terms. Overall, 375
adipose tissue related genes and 174 liver associated genes were
selected from the GO knowledgebase.

Additionally, a number of 79 adipose and 359 liver specific
genes were retrieved from the Human Protein Atlas. Of these
genes, 29 adipose and 131 liver specific immune-associated genes
were a unique addition to the genes selected from GO.

Selection of Candidate Protein
Biomarkers
Of the 404 adipose related genes selected from the Gene
Ontology database and Human Protein Atlas database, 44 genes
qualified as a curated candidate plasma protein biomarker of
adipose tissue inflammation (Figure 1 and Table 2). Adipose
processes that were highly represented included caveola (ADCY8,
SELE, INSR, IRS1, TFPI, HMOX1, FASLG, NOS3), fat cell
differentiation (SREBF1, METRNL, GPX1, RETN, TNF, FRZB,
LPL, RARRES2, PPARG, ADIPOQ, SORT1, TGFB1, IL6), brown
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fat cell differentiation (ADIPOQ, FABP4, METRNL, FABP3, LEP,
FTO, METRNL, FNDC5), white fat cell differentiation (FABP4,
PPARG), and response to leptin (LEP, LEPR, FGF23, EDN1). Of
the candidate biomarker list for adipose tissue LEP, ADIPOQ,
LPL, FAB4, IL6, and PPARG are represented in the Human
Protein Atlas as adipose tissue specific genes.

Of the 305 liver-related genes selected from the Gene
Ontology and Human Protein Atlas databases, a number of
73 genes qualified as a curated candidate plasma protein
biomarker for hepatic tissue inflammation (Figure 1 and
Table 2). Highly manifest liver processes included chylomicron
remnant clearance (LIPC, APOB, APOC3, APOC2, APOC1,
APOE), liver regeneration (HAMP, CPB2, EGFR, REG1A,
HMOX1, VTN, IL10), and very-low-density lipoprotein particle
assembly (APOB, APOC3, APOC1). In the case of the candidate
biomarkers, APOB, APOC3, APOC2, APOC1, APOE, GCLC,
FGL1, HAMP, CPB2, VTN, PCSK9, APOB, APOC3, APOC1,
were also present in Human Protein Atlas as tissue specific genes.

Verification in Obese Ldlr−/−.Leiden
Mice
The first step of biomarker verification is based on their
expression in tissue upon increased inflammatory conditions.
To this end, curated candidate biomarkers (Table 2) for
inflammation in liver and adipose tissue were determined in
liver and adipose tissue after 50 weeks of HFD treatment and
compared to the expression under healthy (chow-fed) conditions.
As compared to their chow-fed counterparts, HFD feeding
resulted in a strong induced hepatic inflammation, characterized
by inflammatory cell aggregates of immune cells (Figure 2A).
Quantification of the number of inflammatory aggregates showed
that the HFD feeding resulted in a strong increase in the
number of aggregates as compared to chow fed animal (31.6-
fold increase, P < 0.01). High fat diet feeding also resulted in
increased inflammation in perigonadal WAT depot as compared
to the chow fed controls (Figure 2B). Quantification of the data
shows that HFD feeding increased the number of crown-like
structures (CLS)/mm2 perigonadal WAT (9.1-fold, p < 0.001).
In all, these data show an increased inflammatory status in both
liver and adipose tissue of mice fed a HFD as compared to
chow fed controls.

Thereafter, the genes coding for the 44 adipose tissue-derived
biomarker candidates and 73 liver tissue-derived biomarker
candidates were analyzed in the inflamed tissues using RNAseq
technology. A heatmap visualization of a selection of the
candidate biomarker genes (see criteria in Materials and Methods
section) is depicted in Figure 3. In inflamed livers from obese
mice fed a HFD, the candidate biomarkers KRT18, SAA1, HP,
GCLC, LEPR, LG1, IL27, GDF2, and IL18BP were significantly
upregulated, whereas HRG, KLKB1, CPN2, PROC, SERPINA1,
LDLR, KNG1, SERPINC1, SOD1, CAT, MBL2, APOC3, PCSK9,
LIPC, SERPINA2, SDC1, A1BG, IGFBP2 and F7 are significantly
downregulated in the inflamed livers. In the WAT from obese
mice fed a HFD, FASLG expression was increased, while RETN,
MMP9, PIK3CA, and FTO were significantly downregulated in
the inflamed WAT.

FIGURE 3 | Heatmap representation of significant differential expressed
genes from liver and adipose tissue and after 50 weeks of High Fat Diet
feeding as compared to chow fed mice. ∗ indicate significance of gene
expression in specific tissue (P < 0.05).

Next step was to evaluate whether there is a relation between
the differentially expressed biomarkers and the inflammatory
state in liver and adipose tissue on the individual level.
To this end we performed Spearman’s rank correlation to
calculate the relation between the absolute gene expression
in the tissue and the quantified inflammatory aggregates per
animal (Table 3). This analysis shows a positive correlation
of IL18BP, KRT18, SERPINA3, LRG1, LEPR, HP, and SAA1
with the level of inflammation in the liver and a negative
correlation of IGFBP2, LIPC, MBL2, PCSK9, SERPINA1,
SERPINC1, F7, LDLR, and CAT with the level of inflammation
in the liver. In adipose tissue, a negative correlation of
MMP9 and RETN expression was found with the level
of inflammation.

To illustrate how a strong correlation between gene
expression and inflammation of a specific gene can be
translated in the concentration of a plasma marker SAA
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TABLE 3 | Spearman’s Rank correlation between the amount of inflammation in the tissue (liver and adipose tissue) and the expression of the candidate marker based on gene expression.

Biomarker (gene/protein) Correlation to hepatic
inflammation

Correlation to adipose
tissue inflammation

Literature confirmation as tissue-specific diagnostic biomarker

MMP9/Matrix
metalloproteinase 9

#* −0.76 Level 3 confirmationa. Matrix metalloproteinases (MMPs) have multiple functions, including tissue remodeling in response to
injury. MMP-9 is mainly expressed in lymphoid tissue, blood and adipose tissue and involved in several biological processes,
including inflammation (Nagase et al., 2006). Circulating levels of MMP-9 are increased with obesity, metabolic syndrome (MetS)
and cardiovascular disease (Hopps et al., 2016; Jaoude and Koh, 2016; Ritter et al., 2017).

RETN/Resistin # −0.70 Level 3 confirmation Resistin is an adipokine that is secreted by adipose tissue and stimulating expression of
pro-inflammatory cytokines. Although there is some discussion, there is increasing consensus on the positive association
between resistin and obesity, insulin resistance, and cardiovascular disease (Su et al., 2019; Recinella et al., 2020).

CAT/Catalase −0.69 # Level 1 confirmation. Catalase is an antioxidant enzyme in microsomes of liver and plays a major role in detoxification of
peroxides and reactive oxygen species (ROS) (Glorieux and Calderon, 2017). Overexpression of catalase protects against
inflammation associated injury including atherosclerosis and diabetic complications (Góth, 2001)

F7/Coagulation Factor VII −0.68 # Level 1 confirmation. Coagulation factor VII is synthesized in liver and adipose tissue and is part of the coagulation pathway
where it binds to Tissue Factor (TF). Plasma concentrations of F7 were shown to be significantly higher in obese as compared
to non-obese subjects (Lorenzet et al., 2012).

HP/Haptoglobin 0.85 # Level 3 confirmation. Haptoglobin is an acute phase protein, synthesized by the liver and scavenges hemoglobine in the
circulation. Haptoglobin concentrations in the circulation are in healthy subjects very low, but in response to inflammation it is
released rapidly in the circulation (Quaye, 2008).

IGFBP2/
Insulin Like Growth Factor
Binding Protein 2

−0.65 # Level 2 confirmation. IGFBP2 protein levels are altered in type 2 diabetes mellitus patients and associated with cardiovascular
disease risk factors. IGFBP2 concentration is lower in T2D patients vs healthy controls; inversely associated with pulse wave
velocity in T2D and healthy controls (Hjortebjerg et al., 2017)

IL18BP/Interleukin 18
binding protein

0.75 # Level 3 confirmation. Human IL-18BP is secreted mostly by hepatocytes and macrophages in the liver. The binding protein
binds the pro-inflammatory IL-18 and to a lesser extent also the anti-inflammatory IL-37 cytokine. Inherited IL-18BP deficiency
underlies hepatitis by unleashing IL-18 (Belkaya et al., 2019). The IL-18/IL-18BP balance plays a role in several metabolic
disorders, such as obesity, diabetes, and atherosclerosis, however, the exact mechanism is yet elusive (Kaplanski, 2018).

KRT18/Keratin 18 0.79 # Level 2 confirmation. Keratin 18 is expressed in epithelial tissue. Circulating levels of keratin 18 predict drug induced liver
injury (Llewellyn et al., 2021), act as diagnostic and prognostic biomarker for acute alcoholic hepatitis (Vatsalya et al., 2020), and
are associated with hepatic steatosis in elderly T2D patients (Morling et al., 2014). Keratin 18 had weak positive associations
with several metabolic risk factors (glucose, HbA1c, BMI, waist, triglycerides) in elderly T2D patients (Morling et al., 2014).

LDLR/Low Density
Lipoprotein Receptor

−0.64 # Level 3 confirmation. LDLR most investigated role is in the clearance of atherogenic Low Density Lipoproteins particles.
However, LDLR can also be detected in circulation after cleavage by ADAM-17, an enzyme activated by inflammation
(Mbikay et al., 2020).

LEPR/Leptin receptor 0.64 # Level 3 confirmation. The action of leptin is mediated by the leptin receptor, a membrane bound receptor which can be
cleaved from the membrane and detected in circulation (van Dielen et al., 2002). Leptin and soluble leptin receptor are
independently and inversely associated with gestational diabetes (Mosavat et al., 2018). Soluble leptin levels are associated with
pancreatic beta-cell dysfunction in T2DM patients (Morioka et al., 2018). Hepatic steatosis is negatively correlated with soluble
Leptin receptor (Cernea et al., 2018).

LIPC/Hepatic Lipase −0.65 # Level 1 confirmation. Hepatic lipase (HL) is an enzyme that hydrolysis triglycerides and has a putative role in the catabolism of
HDL particles (Connelly, 1999). HL can either remain attached to the liver or is in free form in blood. HL deficiency causes
hepatic inflammation in mice (Andrés-Blasco et al., 2015), the potential effect in humans needs to be studied.

LRG1/Leucine Rich
Alpha-2-Glycoprotein 1

0.63 # Level 2 confirmation. LRG1 is highly abundant in the liver
and has been associated with acute-phase response, being induced by pro-inflammatory cytokines (Pek et al., 2018). LRG1
was shown to be increased in T2D patients with vascular disease (Liu et al., 2020).
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was analyzed. The experimental liver data shows a strong
correlation between hepatic SAA1 expression and the number
of hepatic inflammatory aggregates (Figure 4A) while a relation
between adipose tissue gene expression and inflammation
based on number of crown-like structures is clearly absent
(Figure 4B). Biomarker analysis in plasma showed a good
relation between hepatic inflammation and the concentration of
plasma SAA (Figure 4C).

Verification in Human Studies
The expression of 18 candidate biomarkers that correlated to
inflammation in mice (Table 2, first three columns) could be
further verified in literature as tissue-derived biomarker for
adipose tissue and liver inflammation in humans (Table 3, last
column). All 18 human candidate biomarkers could be more
or less confirmed by literature: 4 out of 18 showed level 1
confirmation, 3 out of 18 showed level 2 confirmation, and 11
out of 18 showed level 3 confirmation.

As depicted in Table 3, the confirmed candidate biomarkers
for inflammation in adipose tissue are linked to extracellular
matrix processes (MMP-9) and to lipid metabolism (Resistin).
The confirmed candidate liver inflammation biomarkers are
linked to biological processes such as growth factors regulation
(IGFBP2), serine proteases and inhibitors (coagulation factor
VII, SERPINA1, SERPINA3, and SERPINC1), lipid metabolism
(LEPR, LDLR, LIPC, and PCSK9), oxidative stress (Catalase), and
immune response (SAA1, Haptoglobin, LRG1, MBL2, Keratin
18, and IL18BP). These data show that the in silico selection
procedure, followed by in vivo verification in mice, results in a
useful set of candidate biomarkers for human application.

DISCUSSION

Chronic inflammatory diseases are recognized as the leading
cause of death in industrialized countries today, with the majority
of deaths accountable to inflammation-related diseases such
as cardiovascular disease, diabetes mellitus, non-alcoholic fatty
liver disease (NAFLD) and autoimmune and neurodegenerative
conditions (Roth et al., 2018). Research has shown that obesity,
similar to the most chronic diseases, is characterized by an
inflammatory state reflected by elevated circulating levels of pro-
inflammatory proteins (de Heredia et al., 2012). Both the local
and systemic responses initiated by an inflammatory process
can result in a dysbalance in metabolism in the tissues affected
referred to as chronic low-grade inflammation. It is important
to explore the general molecular mechanisms that integrate the
immune response with systemic and local metabolic homeostasis
and to identify biomarkers that reflect these pathways for
early diagnosis and prevention/treatment of chronic metabolic
diseases. Organ-specific candidate biomarkers of inflammation
have been postulated previously by others in the context of
many different diseases, however, whether these biomarkers
are clinically validated or have diagnostic value remains to
be clarified. Here, we describe an approach to predict and
verify candidate biomarkers that can allow assessment of local
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FIGURE 4 | (A) Correlation analysis of hepatic inflammation based on immuno-histochemical staining of inflammatory aggregates in liver and hepatic SAA1
expression in mice (R2 = 0.82; P < 0.01); (B) Correlation analysis of adipose tissue inflammation based on immuno-histochemical staining of crown-like structures
and adipose tissue SAA1 expression in mice (R2 = 0.15; P > 0.5); (C) Correlation analysis of hepatic inflammation in liver and plasma SAA1 levels (R2 = 0.68;
P < 0.01).

inflammation in the context of metabolic imbalance as early
indicators of chronic low-grade inflammation.

A workflow was created for screening of large databases
(GO database and Human Protein Atlas) to determine the
overlap between liver and adipose tissue-specific genes and
inflammation-related genes. The overlapping genes/proteins
were then selected based on their previous utilization as
circulating biomarker in human clinical studies as indicated in
the Clarivate Analytics biomarker database. Verification with
murine gene expression data and human biomarker literature on
tissue-derived low-grade inflammation indicated the feasibility
of the workflow, represented by in a list of 18 biomarkers, of
which 16 candidate plasma biomarkers were correlated with
hepatic inflammation and 2 candidate biomarkers with adipose
tissue inflammation. It must be noted that currently applied
biomarkers for chronic low grade inflammation [e.g., Interleukin

6, adiponectin and soluble tumor necrosis factor-a receptor 2
(sTNFRII)] were not automatically selected in our verification
procedure as they are not found to be tissue-specific and/or not
expressed in mice as acute phase protein (C-reactive protein) and
not fulfilling the selection criteria (e.g., differentially expressed as
genes in inflamed tissue) as described in M&M.

Eleven out of 18 candidate biomarkers could be confirmed by
human studies with the highest level of confirmation (Table 3). It
should be noted that the number of verified candidate biomarkers
was restricted to the genes that are also expressed in murine tissue
(Figure 5) suggesting that the actual yield of the approach can be
larger than described here.

The candidate biomarkers with the highest level of
confirmation included extracellular matrix remodeling proteins,
serine proteases (inhibitors), lipid metabolism related proteins,
and mediators of immune activation (Table 4). Further study
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FIGURE 5 | Workflow of the verification of the curated candidate biomarkers. Curated candidate biomarkers were checked for up/down regulated gene-expression
in WAT and livers of obese mice. The curated candidate biomarkers were divided into 2 groups: markers differentially expressed in inflamed tissues; markers not
differentially expressed in inflamed tissues. *Cut-off criteria described in M&M; ** Due to absence of murine analog of human candidate biomarker and/or lack of
(differential) expression in murine tissues in RNAseq experiment.

TABLE 4 | Biological function of the 11 human candidate biomarkers with the highest level of confirmation (level 3).

Biological function Candidate biomarkers
Correlated with hepatic inflammation

Candidate biomarkers
Correlated with AT inflammation

Remodeling extracellular matrix – Matrix metalloproteinase-9 (MMP-9)

Lipid metabolism Leptin receptor (LEPR), Low Density Lipoprotein receptor (LDLR) Resistin (RETN)

Mediators immune activation Serum Amyloid A1 (SAA1), Haptoglobin (HP), Mannose Binding Lectin
2 (MBL2), Interleukin 18 binding protein (IL18BP)

–

Serine protease inhibitors Alpha 1-antitrypsin (SERPINA1), Alpha-1-anti chymotrypsin
(SERPINA3), Anti-thrombin (SERPINC1)

–

of the selected candidate biomarkers confirmed the selection
procedure:

MMP-9 is related to remodeling of extracellular matrix
processes and inflammation. MMP-9 regulates inflammatory
processes by its proteolytic activity (Manicone and Mcguire,
2008) and circulating levels of MMP-9 are increased in
obesity, metabolic syndrome (MetS) and cardiovascular disease
(Hopps et al., 2016; Jaoude and Koh, 2016; Ritter et al., 2017).

Serine protease inhibitors (SERPINs) are key regulators of
numerous biological pathways that are principally involved in
regulation of the inflammatory cascades by enzyme activity
modification, fibrinolysis, complement activation and kinin
release. Alpha1-antitrypsin (a1AT) is produced in the liver
and protects tissues from damage caused by proteolytic
enzymes of inflammatory cells, especially neutrophil elastase
(Janciauskiene et al., 2018). Similarly, alpha-1-anti chymotrypsin
protects tissues from damage by inhibiting the activity of
cathepsin G that is found in neutrophils and chymases

found in mast cells (Kalsheker, 1996). Antithrombin, for
example modulates inflammatory responses not only by
inhibiting thrombin and other clotting factors that induce
cytokine activity and leukocyte endothelial cell interaction,
but also by coagulation independent effects, including
direct interaction with cellular mediators of inflammation
(Levy et al., 2016). Together, these findings confirm the
selection procedure by which these 3 members of the SERPIN
family were selected as candidate biomarkers correlated with
hepatic inflammation.

Three of the highest level candidate biomarkers that were
negatively associated with inflammation, were involved in lipid
metabolism, viz. LDLR, LEPR, and RETN coding, respectively,
for low density lipoprotein receptor, leptin receptor and
resistin. Resistin is a pro-inflammatory adipokine associated
with insuline resistance and obesity (Bokarewa et al., 2005;
Su et al., 2019). LDLR and LEPR are in part related to
triglyceride and cholesterol metabolism in the liver. The
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hepatic LDL receptor plays an important role in the clearance
of cholesterol-rich LDL lipoproteins from circulation to the
liver (Brown and Goldstein, 1983). We have shown, in
animal studies that increased clearance of these cholesterol-
rich LDL particles contribute to increased hepatic inflammatory
response (Kleemann et al., 2007). Leptin is a circulating
adipokine derived from adipose tissue regulating food intake,
insulin action and modulation of the immune system. These
biological processes are initiated by the leptin receptor upon
interaction with circulating leptin. In parallel, Leptin receptor
is known to activate Janus kinase-STAT3 pathway (Ikejima
et al., 2004) which contributes to an inflammatory response
(Kubler, 2014).

Four of the selected candidate biomarkers are involved
in direct activation of the immune pathways. Haptoglobin
and SAA1 are well-known acute phase proteins produced
by hepatocytes. Their plasma levels are increased rapidly
in subjects following an inflammatory trigger. Our data
shows their gene expression is positively correlated with
inflammation in liver. Mannose-binding lectin 2 plays an
important role in the innate, non-specific immunity, by
activating complement resulting among others in cell lysis,
phagocytosis, and inflammation (Beltrame et al., 2015). IL-
18 Binding Protein was positively associated with hepatic
inflammation, which could be confirmed by literature. IL18BP
binds and neutralizes the pro-inflammatory cytokine IL-
18, thereby inhibiting IL18-induced IFNgamma production
(Dinarello et al., 2013).

The approach described here is promising, but the verification
of this approach also has its limitations. One important limitation
is that samples from human studies with well-characterized
tissue inflammation and corresponding serum/plasma samples
were not available to validate the biomarkers. Alternatively
we used published human studies to validate the presence
of predicted biomarkers in serum/plasma, and used animal
data to link biomarkers to tissue inflammation. TAlso, it
is known that literature is biased toward studies in which
effects were observed and raw datasets are often not made
available thereby limiting direct validation possibilities. As an
alternative, we have used mouse tissue and plasma samples
from preclinical studies, which were limited by the use
of one particular mouse strain, the use of one particular
diet instead of multiple different liver and adipose tissue
evoking diets, and the use of one gender (male mice).
Another important consideration may be that biomarkers
could be synthesized before inflammation in liver or adipose
tissue becomes manifest. Therefore it could be possible that
biomarkers do not always correlate with cellular inflammatory
features. Therefore, future studies for the identification of early
markers of tissue inflammation would require dedicated studies
(preferably time resolved).

One important issue is the validity to translate the
experimental murine data to humans (Perlman, 2016), given
the known difference in metabolism of mice and humans.
It is known that the metabolic rate of mice version human
is closely correlated with size, thus a 30 g mouse has a
specific metabolic rate (metabolic rate per gram of tissue)

roughly seven times that of a 70-kg human (Kleiber, 1961;
Schmidt-Nielsen and Knut, 1984). Mice have relatively higher
amounts of metabolically active tissues, such as liver and kidney
and differ in the mitochondrial density and metabolic rate
and also in the fatty acid composition of their membrane
phospholipids [higher contents of polyunsaturated fatty
acid docosahexaenoic acid (Hulbert, 2008)]. Despite these
differences in metabolism between mice and humans, we
have shown previously that the key molecular inflammatory
responses in obese Ldlr−/−.Leiden mice and humans are similar
(Morrison et al., 2018): the hepatic inflammatory response
in NASH patients (non-alcohol steatohepatitis; due to an
increased metabolic load) has large similarities to the obese
Ldlr−/−.Leiden mice fed with a HFD demonstrated by the
activation of the majority of identical inflammatory processes
and master regulators (e.g., TNF, CSF2, TGFB1) (Morrison
et al., 2018). Moreover, the candidate biomarkers that were
verified in the obese Ldlr−/−.Leiden mice were further evaluated
for their confirmed use as hepatic or adipose inflammation
in human, albeit in a different disease context. Therefore we
believe it is valid to translate the identified biomarkers to
the human situation, although they still require validation
in a human study.

Our study shows that by combining prior knowledge from
multiple studies we were able to select and verify a set of
in silico predicted biomarkers for liver and adipose tissue-derived
inflammation. These biomarkers may be of great help to form a
starting point to clarify tissue-specific inflammatory mechanisms.
Tissue-specific chronic low-grade inflammation is an important
underlying contributor to complications of metabolic disorders.
To support therapeutic approaches to these complications, it
is crucial to gain a deeper understanding of the inflammatory
dynamics and to monitor them on the individual level. A hugh
advantage of our approach is that our workflow is for a
substantial part automated (database searches) which enables
the screening of enormous amounts of data, thereby saving
time and resources.

As one of the critical selection criteria of our approach was
the selection based on the ability to detect these candidate
markers as proteins in human plasma. This made it plausible that
these candidate biomarkers can easily be implemented in future
human studies to monitor or predict liver- and adipose tissue
inflammation. This will become of great value to study future
development of therapeutic/lifestyle interventions to combat
metabolic inflammatory complications. Our next step will be
to validate these selected candidate biomarkers in a human
nutritional study as proof-of-concept of our approach.

CONCLUSION

We describe a promising Systems Biology approach that predicts
tissue-derived, blood-based biomarkers reflecting liver- and
adipose tissue inflammation that may be of great use to gain
more mechanistic knowledge on tissue-specific inflammation and
to monitor or predict the efficacy of interventions in metabolic
inflammatory conditions.
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Table S1 - overview of adipose ontology search result and the selection of parent gene ontologies

included = ontology included

is part_of = ontology not included because it is part of another included parent ontology

not within scope = not included because not specific to adipose tissue in humans

Selection GO ID GO term

included GO:0060612 adipose tissue development

is part_of GO:1904178 negative regulation of adipose tissue development

is part_of GO:1904179 positive regulation of adipose tissue development

is part_of GO:1904177 regulation of adipose tissue development

included GO:1904606 fat cell apoptotic process

is part_of GO:1904649 regulation of fat cell apoptotic process

is part_of GO:1904651 positive regulation of fat cell apoptotic process

is part_of GO:1904650 negative regulation of fat cell apoptotic process

not within scope GO:0061285 mesonephric capsule development

not within scope GO:0061286 mesonephric capsule morphogenesis

not within scope GO:0061287 mesonephric capsule formation

is part_of GO:0060613 fat pad development

is part_of GO:0060611 mammary gland fat development

included GO:0070162 adiponectin secretion

included GO:0045444 fat cell differentiation

is part_of GO:0070347 regulation of brown fat cell proliferation

is part_of GO:0070346 positive regulation of fat cell proliferation

is part_of GO:0070349 positive regulation of brown fat cell proliferation

is part_of GO:0070348 negative regulation of brown fat cell proliferation

is part_of GO:0070350 regulation of white fat cell proliferation

is part_of GO:0070352 positive regulation of white fat cell proliferation

is part_of GO:0070351 negative regulation of white fat cell proliferation

included GO:0070341 fat cell proliferation

is part_of GO:0070343 white fat cell proliferation

is part_of GO:0070342 brown fat cell proliferation

is part_of GO:0070345 negative regulation of fat cell proliferation

is part_of GO:0070344 regulation of fat cell proliferation

not within scope GO:0072213 metanephric capsule development

not within scope GO:0072265 metanephric capsule morphogenesis

not within scope GO:0072266 metanephric capsule formation

not within scope GO:0072128 renal capsule morphogenesis

not within scope GO:0072129 renal capsule formation

not within scope GO:0072127 renal capsule development

is part_of GO:0033210 leptin-mediated signaling pathway

is part_of GO:0044320 cellular response to leptin stimulus

included GO:0044321 response to leptin

is part_of GO:0090335 regulation of brown fat cell differentiation

is part_of GO:0090336 positive regulation of brown fat cell differentiation

is part_of GO:0050873 brown fat cell differentiation

is part_of GO:0050872 white fat cell differentiation

is part_of GO:0060642 white fat cell differentiation involved in mammary gland fat development

is part_of GO:0045599 negative regulation of fat cell differentiation

is part_of GO:0045598 regulation of fat cell differentiation



is part_of GO:0045600 positive regulation of fat cell differentiation

is part_of GO:1903444 negative regulation of brown fat cell differentiation

included GO:0055100 adiponectin binding

included GO:0005901 caveola



Table S2 - overview of hepatic ontology search result and the selection of parent gene ontologies

included = ontology included

is part_of = ontology not included because it is part of another included parent ontology

not within scope = not included because not specific to adipose tissue in humans

Selection GO ID GO term

is part_of GO:0060344 liver trabecula formation

is part_of GO:0097421 liver regeneration

not within scope GO:1990402 embryonic liver development

is part_of GO:0071910 determination of liver left/right asymmetry

is part_of GO:0072575 epithelial cell proliferation involved in liver morphogenesis

is part_of GO:0072576 liver morphogenesis

included GO:0001889 liver development

not within scope GO:0015234 thiamine transmembrane transporter activity

not within scope GO:0015127 bilirubin transmembrane transporter activity

is part_of GO:0090320 regulation of chylomicron remnant clearance

is part_of GO:0090321 positive regulation of chylomicron remnant clearance

not within scope GO:0051413 response to cortisone

included GO:0036333 hepatocyte homeostasis

not within scope GO:0036378 calcitriol biosynthetic process from calciol

not within scope GO:0061011 hepatic duct development

not within scope GO:0061009 common bile duct development

not within scope GO:2001069 glycogen binding

not within scope GO:0014831 gastro-intestinal system smooth muscle contraction

is part_of GO:0035622 intrahepatic bile duct development

not within scope GO:0045122 aflatoxin biosynthetic process

is part_of GO:0070365 hepatocyte differentiation

is part_of GO:0070367 negative regulation of hepatocyte differentiation

is part_of GO:0070366 regulation of hepatocyte differentiation

is part_of GO:0070368 positive regulation of hepatocyte differentiation

not within scope GO:0030975 thiamine binding

not within scope GO:0048175 hepatocyte growth factor biosynthetic process

not within scope GO:0009228 thiamine biosynthetic process

not within scope GO:0009230 thiamine catabolic process

not within scope GO:0034363 intermediate-density lipoprotein particle

not within scope GO:0034362 low-density lipoprotein particle

not within scope GO:0034361 very-low-density lipoprotein particle

not within scope GO:0034360 chylomicron remnant

not within scope GO:0034364 high-density lipoprotein particle

included GO:0034382 chylomicron remnant clearance

included GO:0034379 very-low-density lipoprotein particle assembly

not within scope GO:0006772 thiamine metabolic process

not within scope GO:0004806 triglyceride lipase activity

not within scope GO:0097330 response to 5-fluoro-2'-deoxyuridine

included GO:0097284 hepatocyte apoptotic process

not within scope GO:0043639 benzoate catabolic process

not within scope GO:0043691 reverse cholesterol transport

not within scope GO:0018952 parathion metabolic process

not within scope GO:0018874 benzoate metabolic process



not within scope GO:0042199 cyanuric acid metabolic process

included GO:1990828 hepatocyte dedifferentiation

included GO:1990922 hepatic stellate cell proliferation

not within scope GO:0003046 regulation of systemic arterial blood pressure by stress relaxation

not within scope GO:0002251 organ or tissue specific immune response

included GO:0002194 hepatocyte cell migration

not within scope GO:0002542 Factor XII activation

not within scope GO:0002337 B-1a B cell differentiation

included GO:0002384 hepatic immune response

not within scope GO:0071388 cellular response to cortisone stimulus

not within scope GO:0046222 aflatoxin metabolic process

not within scope GO:0046223 aflatoxin catabolic process

not within scope GO:0007503 fat body development

not within scope GO:0071934 thiamine transmembrane transport

is part_of GO:0072574 hepatocyte proliferation

not within scope GO:0015888 thiamine transport

not within scope GO:0019339 parathion catabolic process

is part_of GO:1904898 negative regulation of hepatic stellate cell proliferation

is part_of GO:1904897 regulation of hepatic stellate cell proliferation

is part_of GO:1904899 positive regulation of hepatic stellate cell proliferation

included GO:0061521 hepatic stellate cell differentiation

included GO:0061872 hepatic stellate cell contraction

is part_of GO:0061873 regulation of hepatic stellate cell contraction

is part_of GO:0061874 positive regulation of hepatic stellate cell contraction

is part_of GO:0061875 negative regulation of hepatic stellate cell contraction

is part_of GO:0061870 positive regulation of hepatic stellate cell migration

is part_of GO:0061871 negative regulation of hepatic stellate cell migration

is part_of GO:0061869 regulation of hepatic stellate cell migration

included GO:0061868 hepatic stellate cell migration

not within scope GO:0061007 hepaticobiliary system process

not within scope GO:0061008 hepaticobiliary system development

included GO:0035733 hepatic stellate cell activation

is part_of GO:2000491 positive regulation of hepatic stellate cell activation

is part_of GO:2000490 negative regulation of hepatic stellate cell activation

is part_of GO:2000489 regulation of hepatic stellate cell activation

not within scope GO:0010901 regulation of very-low-density lipoprotein particle remodeling

not within scope GO:0010903 negative regulation of very-low-density lipoprotein particle remodeling

not within scope GO:0010902 positive regulation of very-low-density lipoprotein particle remodeling

not within scope GO:0034369 plasma lipoprotein particle remodeling

not within scope GO:0034374 low-density lipoprotein particle remodeling

not within scope GO:0034372 very-low-density lipoprotein particle remodeling

not within scope GO:0034375 high-density lipoprotein particle remodeling

not within scope GO:0004454 ketohexokinase activity

is part_of GO:2000346 negative regulation of hepatocyte proliferation

is part_of GO:2000345 regulation of hepatocyte proliferation

is part_of GO:2000347 positive regulation of hepatocyte proliferation

not within scope GO:0036458 hepatocyte growth factor binding

not within scope GO:2001113 negative regulation of cellular response to hepatocyte growth factor stimulus

not within scope GO:2001114 positive regulation of cellular response to hepatocyte growth factor stimulus

not within scope GO:2001112 regulation of cellular response to hepatocyte growth factor stimulus



not within scope GO:0035729 cellular response to hepatocyte growth factor stimulus

not within scope GO:0035728 response to hepatocyte growth factor

not within scope GO:0048178 negative regulation of hepatocyte growth factor biosynthetic process

not within scope GO:0048177 positive regulation of hepatocyte growth factor biosynthetic process

not within scope GO:0048176 regulation of hepatocyte growth factor biosynthetic process

not within scope GO:0048012 hepatocyte growth factor receptor signaling pathway

not within scope GO:0005008 hepatocyte growth factor-activated receptor activity

not within scope GO:0005171 hepatocyte growth factor receptor binding

not within scope GO:1902202 regulation of hepatocyte growth factor receptor signaling pathway

not within scope GO:1902203 negative regulation of hepatocyte growth factor receptor signaling pathway

not within scope GO:1902204 positive regulation of hepatocyte growth factor receptor signaling pathway

not within scope GO:0032726 positive regulation of hepatocyte growth factor production

not within scope GO:0032646 regulation of hepatocyte growth factor production

not within scope GO:0032686 negative regulation of hepatocyte growth factor production

not within scope GO:0032605 hepatocyte growth factor production

is part_of GO:1903944 negative regulation of hepatocyte apoptotic process

is part_of GO:1903945 positive regulation of hepatocyte apoptotic process

is part_of GO:1903943 regulation of hepatocyte apoptotic process

is part_of GO:0015126 canalicular bile acid transmembrane transporter activity

included GO:0033675 pericanalicular vesicle

is part_of GO:0061017 hepatoblast differentiation

included GO:0015722 canalicular bile acid transport
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