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Abstract: Nanophotonic structures are powerful tools for sensing, with the goal of retrieving
parameters accurately at maximum speed and minimum photon budget. As information on
those parameters can be distributed over multiple output scattering channels that propagate
to the far field, considering well-chosen combinations of far-field optical degrees of freedom
could benefit measurement precision. We explore how multiplexing readout across different
polarization channels enhances parameter retrieval in nanophotonic overlay sensors. We measure
the relative position between layers with nanoscale scattering structures, known as overlay in
semiconductor metrology, and show that multiplexing either incident or analyzed polarization
leads to improved parameter retrieval in the systems studied. At fixed photon budget, we extract
additional information equivalent to more than 7 dB in signal level. These results demonstrate
that significant advantages in measurement performance of nano-optical sensors can be gained
by exploiting the vectorial nature of optical fields.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Nanophotonic devices are known as excellent sensors in (bio)molecular detection and spectroscopy
[1–4], thanks to nanoscale field confinement and the availability of high-quality quantum-limited
light sources and detectors. The complexity of optical far-fields also makes nanophotonic sensors
exquisitely suited for multi-parameter retrieval problems. Examples of multi-parameter retrieval
problems range from few-parameter problems like overlay measurement, which measures in-plane
positioning error between two fabricated layers in terms of two parameters (X and Y), to imaging,
with parameters for each of possibly millions of pixels. Overlay measurement, a technique crucial
to continued semiconductor device miniaturization [5–9], is commonly performed using sets
of overlapping gratings, with nanophotonic models used to extract overlay and other process
parameters from scatterometry data [10–15]. Likewise, computational imaging retrieves complex
spatial optical information from non-imaging detection set-ups [16–22], with localized surface
plasmon assisted structured illumination microscopy in particular exploiting nearby nanophotonic
scattering structures in image reconstruction [23,24]. Multi-parameter retrieval problems are
thus of widespread fundamental and practical interest.

The optical far field is a high-dimensional concept, with information contained in wavevector,
frequency and polarization degrees of freedom. Information from different channels must be
combined to resolve the parameters in complex parameter retrieval problems. Various strategies
exist to solve the inverse problem of retrieving scattering parameters from the resulting light
fields [25–28]. In order to retrieve information optimally efficiently, we need to understand how
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precisely nanoscopic information on the scattering system is encoded in far-field channels. Of
particular interest is polarization information, which is often disregarded through polarization-
agnostic measurement schemes. Mueller polarimetry, which resolves the full 4 × 4 matrix that
describes polarization transfer through a sample [29,30], provides a wealth of information about
sample structure [9,31]. The power of polarimetry is further enhanced when combined with
other information channels, for instance as in angle-resolved polarimetry [32]. However, full
reconstruction of the polarization matrix may not be needed to combine polarization information
with other degrees of freedom. The key question is how information from some particular degree
of freedom can be exploited optimally to improve parameter estimates in any specific problem.

In this work, we show that for a given photon budget, more precise nanophotonic parameter
retrieval can be performed through polarization multiplexing than from unpolarized measurements.
We illustrate our approach by applying it to the task of pattern overlay measurement. We measure
overlay error on few-nanoparticle scattering sensors and aim to optimize measurement precision,
considering several strategies for multiplexing light polarization in input and output channels.
Applying a calibration-based method to retrieve overlay from devices with a wide range of overlay
errors, we compare the performance of the different strategies to quantify the information gained
by combining polarization channels. We explore the dependence of measurement precision on
photon budget through a discrete dipole model and analyze both theoretically and in experiment
how overlay performance for different strategies relates to wavevector resolution. Finally, we
discuss how combining information from different polarization channels may benefit nano-optical
sensing more broadly.

2. Method

We study polarization multiplexing by applying it to the retrieval of the two-dimensional location
of a single nanoparticle above a layer with fixed nanoscale structure. This task is a model
example of overlay measurement, where we consider two layers of a sample that have a small but
unknown in-plane displacement with respect to the design, as a result of fabrication tolerances.
The challenge is to measure this displacement, known as the overlay error [5–9]. We use overlay
targets with an exceptionally small footprint of only 400 nm to a side, consisting of four nominally
identical gold discs of thickness 40 nm and diameter 110 nm. These structures have previously
been shown to be suitable for overlay measurement, in spite of their small size and the fabrication
imperfections arising from prototyping using electron-beam lithography [33]. Such particles
have a plasmonic resonance at a wavelength around 700 nm, around which wavelength they
strongly scatter incident light. We use a layout with three particles in the bottom layer, arranged
in an L-shape, and a solitary particle in the top layer, all embedded in commercial spin-on
glass (MicroResist Ormocomp) with the layers separated by approximately 89 nm. This system
is studied optically from below, as sketched in Fig. 1(a). The overlay error in this target is
the in-plane distance from the midpoint between opposite particles in the bottom layer, to the
midpoint of the particle in the top layer. The relevant displacements and axes are indicated on a
scanning electron image of one such structure in Fig. 1(b). This design breaks the symmetry
between some of the axes, such as D and A, without breaking that between H and V unless
the top-layer particle does so. This may lead to some polarizations, or combinations thereof,
providing more sensitive overlay measurements than others. We fabricate such targets with a
wide range of relative displacements. Devices lie on a grid where both X and Y overlay nominally
range from −187.5 nm to 187.5 nm in 37.5 nm steps. Fabrication produced a constant offset
of around 15 nm and nanometer-scale fabrication errors on top of that. We will refer to these
engineered overlay errors as overlay values. The grid allows us to verify our overlay measurement
performance over this entire parameter range and compare the different polarization readout
strategies.
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Fig. 1. (a) Schematic cross-section of device, showing arrangement of layers and objective.
(b) Scanning electron image showing overlay error on an overlay target: zero overlay occurs
when the red cross, centred on the red-circled particle, overlaps with the white cross, centred
between the blue-circled particles. Circled arrows define the polarization axes in the same
XY frame as the electron image. (c)-(e) Three strategies for polarization multiplexed
measurement, either (c) changing an input polarizer between measurements, (d) changing an
analysis polarizer between measurements or (e) reading out two polarization channels in
parallel. (f)-(g) Example measurements using quadrant detectors in two input polarization
channels. Circular panels show detector pixel intensities, square panels show the relative
arrangement of particles that produced this reading. Inset: the full-resolution masked
radiation pattern integrated to obtain one of the four-pixel datasets. (h)-(i) Two entries from
the singular value decomposition of a full reference set for 11 × 11 overlay values. Circular
panels show pixel intensity components corresponding to this basis element, square panels
show the weight this basis element has for each position of the fourth particle.

There are several possible strategies for measuring complementary far-field polarization
channels for a static sample structure. In the first we consider polarizing a beam of light before
directing it to a sample. The reflected (or transmitted) light is captured on a detector. By
rotating the input polarizer, the sample response to light of complementary polarizations may
be measured separately, as sketched in Fig. 1(c). Both independent measurements can then be
used together to address the overlay problem. We refer to this approach as input polarization
multiplexing. Alternatively, the sample may be illuminated with light of a fixed polarization,
or with unpolarized light, whereupon the reflected light is analyzed along different polarization
axes. This analysis may be performed in series by rotating an analyzer, in analogy with the
input polarization multiplexing scenario, as sketched in Fig. 1(d). Alternatively, both channels
may be measured at once by employing a beam splitter and two analyzers (or a polarizing beam
splitter), as sketched in Fig. 1(e). We refer to the latter two strategies as output polarization
multiplexing. We wish to explore how input and output polarization multiplexing compare to
standard approaches that use a single fixed polarization or unpolarized light, as well as to each
other.
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In our measurements, we collect radiation patterns with a detector in a Fourier plane, thus
measuring radiant flux versus parallel wavevector (kx, ky). The sample is illuminated with
supercontinuum laser light (NKT Whitelase Micro) filtered down to a 10 nm band around 620 nm.
This light is used to illuminate the target with NAin = 0.37 and the part of Fourier space
corresponding to specular reflection of the illuminating light is blocked from detection. The
detector is divided into a number of square pixels, capturing light up to the numerical aperture
of our objective NAout = 0.95. We will mostly consider measurements made with an effective
quadrant (four-pixel) detector, with the radiation pattern centred on the detector, so that all
pixels show equal intensity in the case of a symmetric radiation pattern. We implement such a
detector experimentally by projecting Fourier images onto a camera (Basler ACA1920-40UM)
and integrating the counts in each quadrant of the observed back focal plane image, as acquired
over an integration time of 40 ms. This produces four pixel values per measurement in the case
of traditional single-polarization measurements and eight in polarization-multiplexed cases. We
collect far-field data for the full grid of overlay values available on the sample. Two example
measurements for different overlay values are shown in Fig. 1(f) and 1(g). Circular panels show
intensity on each segment of the quadrant detectors for horizontal (top) and vertical (bottom)
polarization.

The measured intensities are the result of an interplay of scattering events within the device.
We opt for a calibration-based method to retrieve overlay error from these intensity patterns.
Unlike forward theoretical modelling, such calibration-based methods handle realistic fabrication
artefacts and parasitic reflections without complication. The calibration-based method we use to
extract overlay value from far-field data was previously used to localize point-like light sources
[34] and scattering objects [35]. It requires one reference measurement per resolvable value in
the calibrated domain. In this case, this means one measurement for each overlay value in the
sample grid. Each such measurement is used as a row in a signals matrix A. Singular value
decomposition (SVD) allows any such matrix A to be rewritten as A = UΣV∗, where the asterisk
represents conjugate transposition, with U and V unitary matrices and Σ diagonal [36]. Singular
value decomposition finds the principal components of the data set, giving us basis vectors such
that each next basis vector has maximum overlap with the part of the data not captured in previous
basis vectors. Practically, this means that complex datasets can be captured in just a few basis
elements [34].

Two elements of such an optimal basis, from the singular value decomposition of the data
collected on the full grid before, are shown in Figs. 1(h) and 1(i). Circular panels show the value
of the basis elements at each pixel for either polarization. Square panels show the weight these
basis elements have at each position in the reference set. There are as many basis elements as
pixels, but only a few have appreciable weight anywhere. The examples shown are interesting
because they have large weight, but also a smooth dependence of weight on position, with broad,
contiguous regions of positive or negative weight. Importantly, each of the basis elements has
different pixel values for the two polarization channels. This means that being able to resolve the
polarization channels may provide additional information: there is a difference that would have
washed out in a single-polarization or unpolarized light measurement.

3. Results

We use this calibration-based method to reconstruct overlay from new data, i.e. independent
measurements that may differ from the calibration data because of varying noise and/or instru-
mental deviations. In order to illustrate the qualitative behavior of the method, we first turn to a
theoretical model. We use a discrete dipole approximation, where the overlay target is modelled as
four point scatterers of polarizability |α | = 5.56 × 10−33 C m2V−1 and a quality factor Q = 10 in
a homogeneous medium. Discrete dipole models let us quickly estimate the qualitative behavior
of sets of interacting particles [37–40], taking into account multiple scattering, self-action and
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retardation [41,42]. We can calculate far-field data on quadrant detectors and analyze them in
much the same way as for the experimental data. We specifically include synthetic shot noise for
the appropriate photon budget, around N = 106, which corresponds to the integrated intensity
over all pixels in all measured polarization channels. We calculate far-field data for a large grid
of overlay values, 2λ in 31 steps to a side, and take their singular value decomposition. This
constitutes our reference library. Next, we calculate a new set of data, with independent noise,
to mimic an independent measurement. We project these new data onto the optimal basis and
compare the coefficients with those for the positions in our reference library through the least
square of residuals. The reference position corresponding to the best match is taken as the overlay
value estimate. In Fig. 2(a) we show the error in such estimates for one full set of newly generated
test data using input polarization multiplexing, projected onto the optimal basis. Some patterns
can be seen in these noisy data, with retrieval errors largest in the corners and along the symmetry
axes of the quadrant diode. We can average many (ni) instances to find an average error ∆OVa at
some overlay value (x, y):

∆OVa,xy =
1
ni

∑︂
i
|vi |, (1)

where vi are the individual error vectors between the estimated and correct overlay value, for
each instance i. Averaging 300 instances of the error map from Fig. 2(a), with different noise
realizations, produces the average error map in Fig. 2(b). We see some fine structure in average
error versus overlay, but mainly observe that overlay performance is best for small overlay value.
We can now rephrase our original challenge: we intend to find out if and how such average error
maps improve with the introduction of polarization multiplexing at constant total photon budget.

Fig. 2. Overlay retrieval in theoretical polarization multiplexing. (a) Overlay retrieval error
versus overlay value for one set of noisy synthetic data. (b) Average error versus overlay
value for the scenario used in (a). (c-d) Average error versus position for experimentally
relevant library dimensions, for (c) unpolarized detection and (d) H-V input polarization
resolved detection. (e) Ensemble error versus photon budget for a range of input polarization
multiplexing strategies, with library dimensions as in (c). (f) Overlay retrieval in theoretical
output polarization multiplexing. Ensemble error calculated as a function of photon budget
for a range of polarization strategies, using a library of the same dimensions as in experiment.

We first test input polarization multiplexing in theory. We consider the same overlay values
available in experiment and calculate average error for two polarization strategies: unpolarized
light and input polarization multiplexing between H and V polarization (as defined in Fig. 1)
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for the same total photon budget. The consideration of constant photon budget means that any
advantage of multiplexing would imply that the incorporation of another polarization channel
is more valuable to overlay retrieval than integrating twice as long. We calculate average error
versus overlay and, as can be seen in Figs. 2(c) and 2(d), average error is appreciably lower with
polarization resolution than without. In some cases, polarization resolution appears to allow
distinguishing between some non-unique solutions, like directly below the outer particles in the
bottom layer. Practically all positions show an improvement in average error. We can further
analyze these data by averaging the error maps across all overlay values to produce an ensemble
error ∆OVe:

∆OVe =
1

nxny

∑︂
(x,y)
∆OVa,xy, (2)

for all nx × ny pairs of overlay value (x, y) in the library. This ensemble error depends on the
size and density of the library, but may be compared with ensemble errors for libraries with
the same dimensions. The ensemble error for given library dimensions will be a function not
only of the polarization multiplexing strategy used, but also of the available photon budget. We
calculate this ensemble error over a range of photon budgets and for the polarizations used before,
as well as multiplexing between D and A polarizations and all corresponding single polarizations.
We compare three scenarios of unpolarized input, single-polarization input (A, D, V, H), and
polarization-resolved input (A-D, V-H), all having polarization-insensitive detection. The results
of these ensemble average calculations, plotted in Fig. 2(e), show the two multiplexed strategies
drastically outperforming both unpolarized and single-polarization measurements. As a rule, the
V-H polarization channels and their combinations perform a bit better than the A-D ones, but
the difference is small compared to the large advantage from polarization multiplexing, which
corresponds to an effective improvement in photon budget of around 7 dB for photon budgets
around 3 × 105: the performance obtained with multiplexed data would otherwise require four
times the acquisition time.

Due to the nature of the calibration-based method used, average and ensemble errors depend
on the size and density of the library. The largest possible average error corresponds to

√
2(N − 1)

steps for a square library of N × N positions. Moreover, even without any signal, we can achieve
an ensemble error of only around half the library width by guessing all data were taken at the
library center. This is likely to limit observed ensemble error at very small photon budgets. Our
method thus is only valid in the regime of ensemble errors small compared to the width of the
library. This is the case for the ensemble errors in Fig. 2(e), so we do not expect these to be
affected by the finite size of the library. Instead, we observe clear differences between polarization
strategies. This improved performance of the polarisation resolved data in the discrete dipole
model predicts that polarisation multiplexed measurement will result in a significant improvement
in overlay retrieval performance.

We test this hypothesis in experiment by measuring overlay value with different polarisation
strategies. As a reference library we use the previously-acquired data set of Fig. 1, of which
two elements of the singular value decomposition are shown in Figs. 1(h) and 1(i). Now, we
collect a new set of measurements on the same structures and project these measurements
onto the reference library. We estimate the overlay value using the library and calculate the
overlay retrieval error. In Fig. 3(a) and 3(b), we show such error maps for unpolarized and V-H
resolved measurements. Unlike in the theoretical case (Fig. 2(c)), we do not directly recognize
the shape or orientation of the overlay target in the data. It is likely that fabrication errors
or experimental details dominate the pattern of errors, as both are expected to be large with
few-nanoparticle overlay targets. Nonetheless, we see a drastic improvement in overlay retrieval
performance from including polarization information when comparing the unpolarized case to
the polarization-resolved one. We repeat this experiment on different realizations of the same
set of structures. When we calculate ensemble error for each set of such measurements, as well
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as for single-polarization measurements (the same combinations of polarizations as in theory),
we find the results shown in Fig. 3(c). These results confirm the improvement in performance:
single-polarization and unpolarized measurements perform similarly, but polarization-resolved
measurements perform much better, with average ensemble error across a series of measurements
going from around 70 nm (two library steps) to around 10 nm (a fraction of one library step). This
improvement is greater than the improvement found at similar ensemble error in the theoretical
results (Fig. 2(e)). This may be because experimental performance is limited by other sources of
error than shot noise, the only noise source included in the theory. The experimental data confirm
that input polarization multiplexing can drastically improve the precision of measurement of a
parameter of a scattering system, as applied to overlay retrieval here.

Fig. 3. Overlay retrieval in experimental input (a-c) and output (d-f) polarization multi-
plexing. (a-b) Overlay retrieval error for (a) unpolarized detection and (b) H-V polarization
resolved detection. Dimensions are the same as in Fig. 2(c). (c) Ensemble error for experi-
mental data versus polarization strategy: a single fixed polarization, unpolarized illumination
and detection and resolved orthogonal polarization channels. Differently oriented triangles
correspond to different devices under test, averages are calculated across all data for a given
polarization strategy. (d-f) Like (a-c), but using output polarization multiplexing.

We similarly study output polarization multiplexing. Discrete dipole analysis, using the
same library dimensions as in experiment, shows very similar trends as for input polarization
multiplexing. Figure 2(f) shows ensemble error calculated versus photon budget for unpolarized
input and readout, single-polarization input (H or V) and readout along the same polarization
and for unpolarized input with H-V polarization resolved readout. Like for input polarization
multiplexing, we see that single-polarization and unpolarized analysis perform similarly, but are
outperformed by polarization-resolved readout. The effective improvement in photon budget
is over 7 dB at a photon budget of 106. We test this prediction in experiment. Repeating
our earlier experiments with output polarization multiplexing instead of input polarization
multiplexing, we again see a significant improvement going from unpolarized measurements
to H-V polarization resolved ones, as in Figs. 3(d) and 3(e). A series of such measurements
across different devices (Fig. 3(f)) show the same trend as the theory: polarization-resolved
analysis significantly outperforms the other strategies, confirming that, like input polarization
multiplexing, output polarization multiplexing leads to more precise overlay retrieval.
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At this point we ask how polarization channels relate to other possible information channels
in causing the observed improvement in performance. We have so far considered quadrant
detectors. Instead, we can analyze the calculated or measured radiation patterns at higher
resolution in momentum space, keeping the detector pixel grid centered on the center of Fourier
space and covering the same numerical aperture with more pixels. We calculate the theoretical
photon budget, i.e. measurement time, required to obtain a certain maximum ensemble error.
Several observations may be made about the results of these calculations for output polarization
multiplexing, shown in Fig. 4(a). First, detectors with more pixels allow a given performance
to be obtained at lower photon budget than those with fewer pixels. The largest advantage is
seen going from just a few pixels to some tens, beyond which the improvements become smaller.
This may be related to the number of effective degrees of freedom of the radiation patterns
considered: the small size of our overlay targets means that their radiation patterns will be fairly
smooth and may be reconstructed from fewer samples than would be needed to reconstruct the
radiation patterns of extended structures. Another observation is that the polarization-resolved
photon budget requirements are consistently lower than those for unpolarized measurement. This
demonstrates that polarization multiplexing is advantageous over a wide range of photon budgets
and detector resolutions (in pixels). One way to quantify this advantage is as effective noise
reduction: the reduction in measurement time to obtain equal overlay retrieval performance when
using (output) polarization multiplexed analysis instead of unpolarized analysis. We calculate
effective noise reduction as a function of initial (unpolarized) photon budget, which is related to
ensemble error as per the data in Fig. 2. This analysis is shown in Fig. 4(b). We see that effective
noise reduction generally increases with photon budget. Few-pixel detectors are much more
helped by polarization resolution than the high-resolution detectors that permit good overlay
retrieval even without polarization resolution, as we saw from Fig. 4(a). Effective noise reduction
at 106 photons appears to plateau at slightly more than 3 dB for anywhere between tens and
thousands of pixels. With lower photon budgets, effective noise reduction decreases for all
detector resolutions, but more strongly so for few-pixel detectors. These few-pixel detectors are
much more error-prone with or without polarization resolution at these photon budgets, such
that noise reduction at a photon budget of 105 is nearly independent of detector resolution. The
2 dB effective noise reduction in this regime still corresponds to an appreciable speed-up in
measurement time for a given precision.

We can also use experimental data to analyze how greater detector resolution affects overlay
retrieval performance. This is implemented experimentally by taking the original high-resolution
camera images and dividing the region of interest into smaller superpixels than the quadrants
considered before, thus incorporating more of the wavevector information into the camera images.
In Fig. 4(c) we show the dependence of ensemble error on detector resolution for unpolarized
measurement and output polarization multiplexed measurement. We see that performance
improves rapidly with the number of pixels for small numbers of pixels but then plateaus,
matching our expectation that the small scales involved would lead to broad features in Fourier
images. Polarization resolution with a quadrant detector, for 8 degrees of freedom in total,
provides performance between those of non-resolved detection with 9 and 16 degrees of freedom.
We thus see that, one-for-one, the additional polarization-resolved degrees of freedom are more
valuable in overlay retrieval than the additional wavevector degrees of freedom. We also see
that a polarization-resolved 3 × 3 pixel detector outperforms non-resolved detection at many
thousands of pixels. The precise numbers and degree of improvement are likely to depend on the
details of the scattering problem under study. However, these data show that not all degrees of
freedom are equally informative, polarization proving to be a particularly informative one on
scattering systems such as those considered here.
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Fig. 4. Overlay retrieval performance versus detector resolution. (a) Theoretical required
photon budget for given maximum ensemble error calculated for different detector resolutions.
Solid lines indicate performance with polarization multiplexing, dashed lines without. (b)
Theoretical effective noise reduction, the reduction in integration time to achieve a certain
maximum ensemble error, calculated at different photon budget as a function of detector
resolution. The detector resolution axis represents the number of pixels along one side of a
square detector. (c) Experimental overlay retrieval performance versus detector resolution.
Ensemble error as measured with different strategies, plotted versus detector resolution.
Triangles show the experimental data averaged to obtain the lines.

4. Conclusion and discussion

We have explored how combining different polarization channels may assist nanophotonic
parameter retrieval. Our results indicate that combining information from multiple polarization
channels leads to significantly higher measurement precision than standard approaches in overlay
retrieval on few-nanoparticle targets. Pairing different incident light polarizations and pairing
different analysis polarizations both provide an improvement in effective photon budget of
7 dB or more, as compared with either unpolarized or single-polarization illumination and
detection. These results are expected from discrete dipole theory, which predicts the advantage
will persist over a wide range of photon budgets, and verified using experiments. Comparing
polarization-multiplexed readout with additional degrees of freedom from higher wavevector
resolution, we see that polarization resolution is particularly valuable, with a 3 × 3 detector
with polarization multiplexing outperforming a non-polarization-resolved detector with many
thousands of pixels.

It seems likely that polarization multiplexing can help in parameter retrieval not just for
our few-particle overlay targets, but for any metrology problem where sample interactions are
polarization-dependent, particularly in such applications as alignment and shape measurement.
The technique may be particularly valuable for nanoscale scattering systems, which due to their
size cannot encode information in fine features in scattering patterns. It would be interesting
to explore which combinations of polarization channels would provide most information for a
given target. Conversely, overlay targets may be designed for maximum sensitivity for given
measurement conditions [43,44]. One may consider a similar multiplexing approach working
based not on the polarization degree of freedom, but for instance on distinct incident wavevectors
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or wavelengths, all of which may interact differently with samples. Further studies may investigate
how these different degrees of freedom interact and complement one another in terms of sample
information encoded. Multiplexing strategies like those tested here are particularly attractive
because of their simplicity. Output polarization multiplexing in particular can be performed very
easily and at minimal expense, requiring only a polarizing beam splitter and twice the camera
pixels to introduce. As such, polarization multiplexing has the potential to enable more precise
measurements in a myriad of applications.
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