
Adaptive On-the-Fly Changes in
Distributed Processing Pipelines
Toon Albers1, Elena Lazovik1, Mostafa Hadadian Nejad Yousefi 2 and Alexander Lazovik2*

1Monitoring & Control Services Department, TNO, Groningen, Netherlands, 2Distributed System Group, Faculty of Science and
Engineering, Bernoulli Institute, University of Groningen, Groningen, Netherlands

Distributed data processing systems have become the standard means for big data
analytics. These systems are based on processing pipelines where operations on data
are performed in a chain of consecutive steps. Normally, the operations performed by
these pipelines are set at design time, and any changes to their functionality require the
applications to be restarted. This is not always acceptable, for example, when we
cannot afford downtime or when a long-running calculation would lose significant
progress. The introduction of variation points to distributed processing pipelines
allows for on-the-fly updating of individual analysis steps. In this paper, we extend
such basic variation point functionality to provide fully automated reconfiguration of
the processing steps within a running pipeline through an automated planner. We have
enabled pipeline modeling through constraints. Based on these constraints, we not
only ensure that configurations are compatible with type but also verify that expected
pipeline functionality is achieved. Furthermore, automating the reconfiguration
process simplifies its use, in turn allowing users with less development experience
to make changes. The system can automatically generate and validate pipeline
configurations that achieve a specified goal, selecting from operation definitions
available at planning time. It then automatically integrates these configurations into
the running pipeline. We verify the system through the testing of a proof-of-concept
implementation. The proof of concept also shows promising results when
reconfiguration is performed frequently.

Keywords: distributed computing, big data applications, on-the-fly updates, adaptive dynamic systems, industrial
data management, dynamic software updating

1 INTRODUCTION

Industrial organizations are increasingly dependent on the digital components of their business.
Industry 4.0 is based on further digitalization and, in particular, on the concepts of automation and
data exchange to achieve efficiency and zero-downtime manufacturing. Organizations trying to keep
pace with the new challenges are faced with processing a large number of data (Che et al., 2013). It is
required for their core business and it becomes a part of their decision-making processes.
Additionally, it provides a competitive advantage over companies not investing in digitalization.
To achieve their goals, industrial organizations must often deal with various kinds of data. This leads
to different requirements regarding how that data is processed. For example, some data such as
readings from physical sensor networks from factory equipment may require real-time processing,
while other data such as customer or supplier analytics can be processed in batches at set intervals
(Assunção et al., 2015).
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Performing analysis on all available datasets on a single
computer may not be fast enough or may be impossible due
to the operational infrastructure requirements (such as storage
space or memory). By distributing the processing over multiple
computers, the hardware requirements per computer can be
decreased and total processing time can also be lowered as
each computer operates in parallel. While taking a mainframe
approach (i.e., a single high-performance computer) may be
possible, it is often not as cost-effective as a distributed
approach (Franks, 2012). Such distributed processing and
analysis are commonly done through distributed processing
pipelines. Note that the term pipeline is sometimes also used to
describe machine learning systems built on top of distributed data
processing frameworks. Machine learning specific aspects are not
covered in this paper. We define a pipeline as generic distributed
data processing performed through a sequence of steps, where
each step performs a specific part of data processing, and the
output of that step is used as an input to one or multiple
subsequent steps.

The distributed data processing in Industry 4.0 has a number
of open issues. One of these is the fixed nature of distributed
processing platforms currently available on the market. That
means that steps in a pipeline on one of these platforms
cannot be changed once a calculation has been started.
However, updating a running pipeline is needed in many cases
including the following:

• After changes in the environment
e.g., external services become unavailable or a new data source
provides data in a different format.

• After changes in business model and goals
e.g., calculating different statistics based on the same data as a
result of business industrial demands.

• Upgrading of processing models or parameters
e.g., fixing errors in the pipeline code to provide new
functionality, introducing more accurate algorithms, or
tweaking and tuning algorithm parameters for better results.

Two approaches are generally used to update distributed
processing pipelines1. The first requires stopping a running
pipeline and then starting a new updated version. It is not
always appropriate or possible, such as in the case of
permanent monitoring and controlling systems that need to be
operational 24/7 or for batch processing pipelines that are in the
middle of a long-term computation. In these cases, we cannot
always afford the resulting downtime or loss of progress, or it
could simply not be desirable. The second option is executing a
new updated version in parallel with the old version and taking
over processing when the new pipeline is ready. If the processing
resources required for a pipeline are significant, running a new
pipeline in parallel is not always an option because of the limited
infrastructure available or excessive extra costs required for it.

In the case of stopping and then restarting, the resulting
downtime could delay or completely miss the analysis of vital
data. In the case of parallel computations, significant progress
could be lost, depending on how long ago the computation had
been started.

In a previous paper, we have developed a framework spark-
dynamic (Lazovik et al., 2017), built on top of the popular
distributed data processing platform Apache Spark (The
Apache Software Foundation, 2015b) to enable the updating of
the steps and algorithm parameters of running pipelines without
restarting them. This process is called reconfiguration. In this
work, we extend the functionality of spark-dynamic to automate
parts of the reconfiguration process using Artificial Intelligence
Planning techniques to guarantee consistency of performed
updates. The resulting system uses constraints of different
types to model pipeline behavior. It is able to automatically
generate and validate pipeline configurations based on the
provided model and goals and can automatically integrate
these configurations into a running pipeline, even when
internal pipeline data types differ between versions.

The need for verified reconfiguration is twofold. First, the
spark-dynamic library only provides a basic updating mechanism
with checks for serialization success and type compatibility.
However, this is not enough, because, for example, changes to
the internal functionality of one step could differ from the
expectations of some subsequent step, which could result in
general inconsistencies or outright crashes of the whole
process. Secondly, the verification process is a complex task,
and by automating some aspects of the reconfiguration process,
we can drastically simplify it. In the future, this may allow
industrial users without any development experience to make
changes to a running pipeline when they are required without
coding efforts. For example, an asset manager who wants insight
into the state of equipment and the trends in aging of that
equipment can start such a permanent analysis, check the
results at any moment, and tweak the business or technical
constraints when it is needed. What is important, though, is
that when the update happens, the end user should have enough
trust that it does not crash the whole system. Automated synthesis
and validation of every update allow us to formally ensure
that trust.

Many distributed data processing frameworks operate on the
principles of a Directed Acyclic Graph (DAG), distinguishing
themselves through their focus on batched or streaming data
processing [e.g., Apache Spark (The Apache Software
Foundation, 2015b) mainly focuses on batched processing
while supporting streaming workloads, whereas for Apache
Flink (The Apache Software Foundation, 2015a), the opposite
is true]. In this paper, we use Apache Spark as the distributed data
processing framework due to its popularity. However, as many
modern frameworks are built on similar principles, the
mechanisms described in this paper are in major parts
applicable to other distributed data processing frameworks.

A typical example of a distributed data processing pipeline for
Industry 4.0 is the case of predictive maintenance with the goal of
zero downtime. With predictive maintenance, factories and other
industries can improve the efficiency of their systems and prolong

1See https://spark.apache.org/docs/latest/streaming-programming-guide.
html#upgrading-application-code
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their lifetime. Consider a goal of finding devices in a factory that
degrade over time. With predictive maintenance, we could find
degraded devices before they fail. Predictors could be the age of
devices or the measured efficiency through some sensors. A
schematic Spark data pipeline can be constructed as shown in
Figure 1.

Later, new predictors could be developed such as one based on
the failure rate of each type of device. Existing predictors could
also be found ineffective and be removed from service.

In summary, the main contribution of this paper is a
distributed data processing pipeline reconfiguration framework
based on constraint-based AI planning. It ensures that the current
industrial user goals are satisfied, takes into account the
dependencies between related steps within the pipeline (and
thus ensuring its data type and structural consistency), and
automatically incorporates the new configuration. The
feasibility of the approach is tested using Apache Spark as a
target distributed processing framework. In this paper, we further
demonstrate the generic methodology to enable adaptive on-the-
fly changes of applications in distributed data analysis for
industrial organizations in the Industry 4.0 era and a software
library as a proof of concept with the demonstration of the
guarantees of updating for the industrial user.

The rest of the paper is organized as follows. In Section 2, we
look at current research into runtime updating, pipeline
synthesis, and consistency checking. Then, in Section 3, we
show an overview of our proposed system. This is followed by
a closer look at the planner design in Section 4. Next, we provide
an evaluation of the system in Section 5. Finally, we provide
conclusions and discussion in Section 6.

2 RELATED WORK

The problem of distributed software reconfiguration is not new.
We, therefore, start with an insight into the state of the art of
relevant techniques. We begin by looking at dynamic updates not
specific to distributed processing.

2.1 Runtime Updating
A common term for runtime updating is Dynamic Software
Updating (DSU) (Hicks and Nettles, 2005; Pina et al., 2014).
With DSU, running processes are updated by rewriting the
running code and process memory. Compared to traditional

software updating, the process does not need to be stopped,
although possibly it can be temporarily halted. Because of this, the
state of the running process can be preserved. As a result, running
sessions and connections can be kept active and no costly
application boot is required.

Many early updating systems require a specialized program
environment. Notably, Cook and Lee (1983) have described a
system called DYMOS that encompasses nearly all aspects of a
software system: a command interpreter, a source code manager,
an editor, a compiler, and a runtime support system. By having
control over all of these aspects, they have the ability to add and
monitor synchronization systems allowing the updates to be
performed seamlessly.

More recent models for DSU do not require an all-
encompassing system. Instead, DURTS (Montgomery, 2004)
requires only a custom linker and a module to load and
synchronize replacement modules. The linked module is
loaded into heap space from within the application and a
pointer-to-function variable is used to execute the function,
where the pointer value is updated to point to newer versions.
Similarly, Hicks and Nettles (2005) have described an approach
where they used the C-like language Popcorn, compiling code
patches into Typed Assembly Language that can be dynamically
linked and integrated. There are other works on a language level
like (Mugarza et al., 2020), which are implemented on the Ada
programming language. Alternatively, Bagherzadeh et al. (2020)
present a language-independent approach based on model
execution systems (Hojaji et al., 2019).

Some other systems use and extend the functionality provided
by the platform an application runs on. For example, Kim et al.
(2011) used the Java Virtual Machine (JVM) HotSwap capability
to replace code, adding features such as bytecode rewriting to
work around HotSwap limitations. One of the more complex
systems is Rubah (Pina et al., 2014). It uses a manual definition of
update points, combined with bytecode rewriting. Their update
process consists of three steps. The first step is quiescence,
reaching a stable state where it is safe to perform updates. In
the next step, the running state is transformed, going over the
objects in heap memory and changing the fields and methods
from existing objects to their new versions. Next, the program
threads are restarted at their equivalent location in the new
version of the application. Later, Pina et al. (2019) improved
system availability by warming up updates. They run old and new
versions and perform the update if both versions converge.

FIGURE 1 | Example predictive maintenance pipeline.
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Neumann et al. (2017) and Gu et al. (2018) later introduced
similar systems based on the same principles. Šelajev and
Gregersen (2017) presented a runtime state analysis system to
detect runtime issues caused by updating Java applications.

Clearly, many different DSU systems and types of systems
exist. In fact, as early as 1993, Segal and Frieder (1993) have given
a summary of on-the-fly updating. Some solutions require a
complete restructuring of code to support updates and some
even act as an entire operating system. Seifzadeh et al. (2013) have
provided a more recent overview of different dynamic software
update frameworks and approaches. They have also included a
categorization for these updating frameworks and describe the
metrics by which the frameworks are then compared. Mugarza
et al. (2018) also analyzed the existing DSU techniques focusing
on safety and security.

Most approaches require complete control over the
environment in which the software is executed. However,
developing applications in distributed systems is much more
complicated, because process control has been handed to
distributed data processing platforms such as Apache Spark
(Zaharia et al., 2010), Flink (Carbone et al., 2015), and Storm
(Toshniwal et al., 2014) instead of the user code. The platforms
handle distribution, scheduling, and execution automatically,
and users have only marginal influence in these areas.
Implementing the approaches described above would require
changes to the distributed processing platforms. However,
modifying the existing distributed stream processing
frameworks is undesirable as they are meant to act as a
general core, where the user applications simply use existing
functionality. Solutions should then be found that work within
the current control paradigms to also work with the newer
version of the application.

2.2 Updating Distributed Data Processing
Pipelines
Updating variables of a pipeline is a common way of adding
flexibility to distributed pipelines. Boyce and Leger (2020)
provided a solution on top of Apache Spark for changing
variables at the runtime by extending Broadcast variables. In
Apache Flink, one can use the CoFlatMapFunction to get two
streams of the original data and the parameters streams and
assign parameters for each data record or use Apache Zookeeper
(Hunt et al., 2010) for storing the configuration and let the
Apache Storm application listen for an update. However, all
these approaches have two significant limitations, 1) only the
parameters can be updated; 2) the updates should be anticipated
before launching an application.

Another approach is to use variation points as originally
defined for Software Product Lines (SPLs) (Pohl et al., 2005).
SPL is a concept where reusable components are created for a
domain that can then be composed in multiple ways to develop
new products. However, the variation points still need to be
defined before launching the software. Overcoming this issue,
Dynamic Software Product Lines (DSPLs) (Hallsteinsen et al.,
2008; Eichelberger, 2016) extend SPL to allow the composition of
predefined components to be done at runtime.

To apply DSPLs to distributed data processing pipelines, we
must first be able to model such pipelines. Berger et al. (2014) and
Dhungana et al. (2014) have described approaches to model
topological variability, by which they mean connecting
components in a specific order and in interconnected
hierarchies. These hierarchies then have to be respected during
reconfiguration. Qin and Eichelberger (2016) have previously
implemented DSPLs on top of Apache Storm, allowing runtime
switching between alternatives, but requiring that they already be
implemented at design time.

2.3 Spark-Dynamic
In a previous work done by the authors (Lazovik et al., 2017), we
have investigated the feasibility of dynamically updating the
processing pipeline of an Apache Spark application. Apache
Spark is one of the most popular big data processing
platforms. It is a unified engine providing various operations,
including SQL, Machine Learning, Streaming, and Graph
Processing. Spark is based on the concept of Resilient
Distributed Datasets (RDDs). An RDD is a read-only,
distributed collection partitioned into distinct sets distributed
over a computing cluster. RDDs form a pipeline which is a DAG
where performing an operation over one RDD results in a new
RDD. Edges of the Spark DAG are standard operations, e.g., map
and reduce, while inside each operation, there is a user-defined
function. Internally, the Spark task scheduler uses scopes instead
of RDDs, where a single operation is represented by one scope but
may internally create multiple (temporary) RDDs.

The spark-dynamic framework is an extension on top of
Apache Spark, making it able to update both parameters and
functions within pipeline steps during runtime. Variation points
can be updated using a REST API, where functions are updated
by providing a new byte code. Instead of the fixed alternatives of
Qin and Eichelberger (2016), new algorithms and new version of
algorithms can be used. The extension wraps each operation to
pull the updated value for parameters and functions on every
invocation. The wrapped methods are named
dynamic(Operation) where operation is the original method
name. For example, dynamicMap is a wrapper for the map
operation.

Apart from updating parameters and functions, spark-
dynamic can also change data sources on the fly. An
intermediate Data Access Layer is introduced to intervene
between the Spark processing pipeline and Spark Data Source
Relation, which is responsible for preparing the RDD for the
requested data.

The performance of the prototype was also measured as part of
the feasibility study, with promising results (Lazovik et al., 2017).
The solutions from this paper are applied on top of this earlier
system.

2.4 Techniques for Building and Checking
Pipelines
With research showing the feasibility of modeling and updating
distributed processing pipelines, given a distributed
computational pipeline with placeholders, we should also be
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able to automatically select a component for each placeholder to
satisfy the goal of the pipeline. To ensure that the newly generated
pipeline configuration is valid and, for a running pipeline, that
parameter updates do not introduce any errors, we must apply
some form of consistency checking. When developers want to
introduce an update, they are able to change both objects and
functions as long as their signatures stay the same. However, these
signatures do not describe all details of these updates. For
example, a function may take the same types and number of
arguments and yet provide different results. Consider f(a:Double,
b:Double)→ apb and g(a:Double, b:Double)→ a/b that share the
same signature but should be used differently. Since only
signature checking is not enough, we must research other
methods of consistency checking. We have focused on the
topics of model checking, constraint programming, and
automated planning since these techniques are relatively
popular (Ghallab et al., 2004) and extensible and do not
require the use of complex features such as a cost function or
probability calculations.

Model checking is a brute-force method of examining all
possible states of a system (Baier and Katoen, 2008), to
determine if, given a program M and a specification h, the
behavior of M meets the specification h (Emerson, 2008). The
program is represented in specialized languages such as
PROMELA or through analysis of source code such as C
(Merz, 2001). The specification can among others be done
through Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL).

We could use model checking to verify if a proposed pipeline
configuration is valid. For the generation of configurations,
however, we would need to brute-force the search space;
i.e., we would need to iterate over every possible configuration
until one is found that satisfies the property specification. This
method of evaluation is not very efficient and therefore we would
also have to investigate heuristics to speed up the process.

In constraint programming, the behavior of a system is
specified through constraints, for example, by restricting the
domains of individual variables or imposing constraints on
groups of variables (Bockmayr and Hooker, 2005). This is
done by having each subsequent constraint restrict the
possible values in a constraint store. This way all possible
combinations can be tested and a solution can be given if
all constraints can be met. Basic constraints exist such as
v1.gt(v2) that defines an arithmetic constraint over two variables
v1 and v2, as well as global constraints such as
model.allDifferent(v1,. . .,vn) (van Hoeve, 2001) that are
defined over sets of variables.

Automated planning is a relatively broad subject, but classical
planning is perhaps the most general. Classical planning is based
on transition systems. States are connected through transitions, in
which an action is applied that actually changes the one state into
a consecutive one (Ghallab et al., 2004). An action typically has
preconditions and effects. The preconditions are propositions
required on a state to be able to apply the action, and the effects
are the propositions set on the resulting state. Note that, in
literature, an action is typically defined as a ground instance
of a planning operator or action template (Ghallab et al., 2016).

These operators or templates can include parameters that define
the targets on which the preconditions and effects must apply. For
simplicity, we will only reason about grounded planning
operators in this work, and as such we will use only the term
action instead of planning operator. Planning aims to solve a
planning problem, which often consists of the transition system,
one or more initial states, and one or more goal states.

Different types of transition systems are used, one of which is
State Transition Systems (STSs) (Ghallab et al., 2004; Ghallab
et al., 2016). In this model, states can be changed not only by
actions but also by events, which cannot be controlled. They are
defined as Σ � (S, A, E, c), with S being the set of states, A being
the set of actions, E being the set of events, and the state transition
function c: S × (A ∪ E)→ 2S (Nau, 2007). Further, restricted STSs
do not allow events; thus, Σ � (S, A, c). In this case, Ghallab et al.
(2016) define the transition function as c: S × A→ S since there is
only one resulting state for a transition. A planning problem on
such a system is defined as P � (Σ, s0, g), with s0 being the initial
state and g being the set of goal states.

Ghallab et al. (2004) distinguish three representations of
classical automated planning: set-theoretic representation,
classical representation, and state-variable representation.

In the set-theoretic representation, each state is a set of
propositions, and each action has propositions that are
required to apply the action (preconditions), propositions that
will be added to a new state when the action is applied (positive
effects), and propositions that will be removed (negative effects).
The classical representation is similar to the set-theoretic
representation, except states are logical atoms that are either
true or false, and actions change the truth values of these atoms.
In the state-variable representation, each state contains the values
for a set of variables, where different states contain different
values for these variables and actions are partial functions that
map between these tuples.

These base techniques are often extended. For example, some
authors describe the use of model checking to solve planning
problems (Cimatti et al., 1998; Giunchiglia and Traverso, 2000).
Similarly, Kaldeli (2013) describes a planner built through
constraint programming, based on earlier work from Lazovik
et al. (2005), Lazovik et al. (2006). The planner definitions such as
the actions and goals are first translated into constraints. Then,
the constraints are evaluated using an off-the-shelf Constraint
Satisfaction Problem (CSP) solver.

When comparing model checking and automated planning,
both techniques have the same time complexity (EXPTIME or
NEXPTIME for nondeterministic planning) (Ghallab et al., 2004;
Meier et al., 2008). However, instead of the brute-force validation
of configurations when using model checking, automated
planning can use heuristics to reduce the search space, which
could decrease the final planning time. Furthermore, automated
planning techniques use proven concepts for the generation of
plans which could serve as a basis on top of which we define our
pipeline concepts, whereas for model checking, the basic
configuration generation algorithms would still need to be
designed.

Finally, we compare constraint programming and automated
planning. The automated planning concepts are more abstract,
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separating the planning goal from the state and transition
behaviors. Planning has a solid foundation with its transition
systems, while constraint programming permits a lot of freedom
in the behavior that can be built using constraints. Instead of
choosing between these two techniques, we can combine them.
We can use constraint programming as a basis to create an
automated planner, by implementing the transition systems and
other planning concepts using constraints. We then retain the
flexibility of constraint programming in case we want to add
features to the planner later.

3 GENERAL OVERVIEW

We designed a system to help the designer plan a pipeline while
supporting runtime updates in distributed systems. The
proposed system is depicted in Figure 2. There are three
types of user activities: I) submit a new pipeline, II) create
or update modules, and III) request replanning the pipeline
during runtime. Our design is platform-independent and
could be implemented on top of various distributed data
processing platforms. The blue components are the bases of
almost every such platform, and the green ones are the extra
components that we proposed and could be seen as plugins to
the existing platforms.

The user does almost everything the same as before, which was
developing the code for the designed pipeline describing what
each step does and how they are connected. However, we help the
user in deciding what each step should do to reach the goal. The
user can create a pipeline where the steps of the pipeline contain
calls to variation points instead of directly containing user code.
The code referenced from the variation points is not fixed and can
be updated at runtime. The user can also annotate the pipeline
with constraints, such as specifying initial conditions and goals.

Finally, the user submits the pipeline code to the pipeline
manager.

Apart from the pipeline, the user also submits code that can be
executed from the variation points. This code is prepared as a
PlanningModule, which contains the user code as well as
metadata such as the function signature and user constraints.
These constraints describe the functionality of the module in such
a way that the planner can determine if the module is needed to
fulfill a pipeline’s goal.

After submission, the pipeline manager compiles the
pipeline code into tasks and pipeline information. The tasks
are directly related to pipeline steps which may have fixed
functionalities or contain a variation point. The pipeline
manager then distributes the tasks among the cluster of
workers to execute the tasks. The pipeline manager and
workers can be mapped to any platform. For example, they
can be a Spark Driver and Workers or Hadoop JobTracker and
NodeManagers. Simultaneously, the pipeline manager submits
a planning request to the planner. The request contains the
pipeline information describing the steps, inputs, desired
output, and variation points.

The planner then decides on the modules that need to be
placed at each variation point in the pipeline to meet the goals. If
there is a feasible assignment, the planner will send it to the
coordinator.

At the same time, the workers start executing tasks. For
each execution of variation points, the workers will request
the coordinator to hand them the respective module to run.
The coordinator will then fetch the module from the
repository according to the planner assignment or wait
until a plan is available. The workers and the coordinator
continue to run the pipeline collaboratively, where the worker
executes the modules provided by the coordinator for each
variation point.

FIGURE 2 | Conceptual overview of the system.
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The module repository contains PlanningModules and
their different versions. Note that the assignment contains the
modules’ versions, and the coordinator will continue to use the
assigned version unless a new assignment arrives.

After the pipeline has started, the user can also manually request
the planner to update the assignments. The planner will do the same
as before while also fetching the new and updated modules from the
repository. If the planner finds a new feasible assignment, it will
inform the coordinator about the updates; otherwise, the
assignments will remain intact. Any updates to the assignments
of variation points must go through the planner to ensure that the
pipeline is consistent and the update will not break it.

4 PLANNER DESIGN FOR PIPELINE
RECONFIGURATION

The planning process described in this section performs two roles
at once, both generating and validating configurations. If we
represent the planning problem using constraints, any valid
assignment of variables that satisfies all constraints can be
regarded as a valid plan. Given an encoding of the planning
problem as a CSP, the constraint solver would be able to perform
the planning process by attempting each possible configuration of
actions. We use classical planning techniques as they have been
shown to be appropriate for restricted STSs. We use the state-
variable representation for its expressiveness as well as the
similarity of concepts with constraint programming.

4.1 Core Planning Model
Before we describe how to transform our pipeline information
into a planning problem, we must first formulate the problem of
pipeline reconfiguration as a planning problem.

We modify the classical definitions presented by Ghallab
et al. (2004); since our planning problem does not contain a
single initial state, our transition system can contain branches
and joins and our plans must match the topology of the Spark
pipeline we are planning for. Thus, we define our planning
problem as

P � (Σ, Σ≃ , S0, Sg) (1)

With the transition system Σ � (S, A, c) and with Σ
≃
to map the

planning problem to our domain, we simplify the notation sm ∈
c(sn, a), that is, the application of action a onto sn resulting in sm,
as sn →

a
sm. Each state in S is represented by state variables; i.e.,

(∀s ∈ S): s � {v ∈ Vars|(v, val(s, v)4Dom(v))} (2)

Here, Vars is the set of variables in our planning problem,
Dom(v) is the domain of a specific variable v (i.e., all possible
assignments to an instance of that variable), and val(s, v) represents
the value or possible values of the state-variable representing
variable v in state s. S0 4 S is the set of initial states and Sg
4 S is the set of goal states. Note also that there are no states
before the initial states, i.e., (∀s0 ∈ S0)(∀sn ∈ S)(∀a ∈ A):
s0 ∉ c(sn, a), and there are no states after the goal states,
i.e., (∀sg ∈ Sg)(∀a ∈ A): c(sg, a) � ∅.

As in Ghallab et al. (2004), we define an action as

a � (name(a), precond(a), effects(a)) (3)

Supported preconditions and effects are variable equality
(both with constant or other variables), constraint conjunction,
constraint disjunction, and the negation of these constraints [e.g.,
“(a :� 1) &:& (b !:� true)”]. Similar to (Kaldeli, 2013),
each constraint is a propositional formula over a state variable or
a combination of two constraints. To apply sn →

a
sm, we must

ensure that sn satisfies all preconditions of the action and that the
effects of the action can be applied onto sm. We can encode this
with a generalized “state satisfies constraints” relation, where sn
satisfies precond(a) and sm satisfies effects(a). We define this
relation, using Cstrs as the set of all constraints in the
planning problem, as

(∀c ∈ Cstrs): satf(state, c) (4)
satf(s, constraint(a, op, b)) �

val(s, a) � b, if a ∈ Vars∧ b ∈ Dom(a)
val(s, a) � val(s, b), if a ∈ Vars∧ b ∈ Vars

{ eq

val(s, a)≠ b, if a ∈ Vars∧ b ∈ Dom(a)
val(s, a)≠ val(s, b), if a ∈ Vars∧ b ∈ Vars

{ neq

satf(s, a)∧satf(s, b), if a ∈ Cstrs∧ b ∈ Cstrs{ and
satf(s, a)∨satf(s, b), if a ∈ Cstrs∧ b ∈ Cstrs{ or
¬satf(s, a)∨¬satf(s, b), if a ∈ Cstrs∧ b ∈ Cstrs{ nand
¬satf(s, a)∧¬satf(s, b), if a ∈ Cstrs∧ b ∈ Cstrs{ nor

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where a constraint is described by a source a, a target b, and an
operation op, with op translated from a constraint as defined by
Table 1.

We also formulate the frame axiom similar to Barták et al.
(2010) and Kaldeli (2013), which specifies that, unless the action
being applied on a state modifies a state variable, the state variable
will remain the same in the state following that action:

(∀sn ∈ S)(∀sm ∈ S)(∀v ∈ Vars)(∀a ∈ A):
sm ∈ c(sn, a) 0 val(sn), v � val(sm, v)

∨ v affectedByAction(a)
(6)

v affectedByAction(a) ≡ (∃c ∈ effects(a)): c aff(v) (7)

constraint(a, op, b) aff(v) �
a � v, if a ∈ Vars
b � v, if b ∈ Vars
a aff(v)∨ b aff(v), if op ∈ {and, or, nand, nor}
false, otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(8)

TABLE 1 | Mapping between constraints and their representation in the planning
problem as op.

Op Constraint Constraint type

eq a �:� b Precondition
a :� b Effect

neq a !:� b Precondition
a !:� b Effect

and a &:& b Both
or a|:|b Both
nand (not) a &:& b Both
nor (not)a|:|b Both
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With the base planning model fully described, we extend it below
to support the planning of pipelines.

4.2 Mapping to the Distributed Pipeline
Since the plans we generate must be applied onto a fixed Spark
pipeline topology, we cannot simply generate any plan that satisfies
the goal constraints. Instead, we must relate our STS (State →
Action→ State) to the Spark DAG (Scope→ Operation→ Scope).
To implement thismapping, we first construct a separate transition
system to which the final plan must be isomorphic. That is, any
relation in the STS should be represented in the DAG and vice
versa. We define this isomorphic system as

Σ
≃ � (R, T, rdd, VP, vp, c≃ ) (9)

We describe the parts of this equation in this section. The set R
represents the RDD scopes in the pipeline, and T represents the
Spark operations that transform one RDD scope to a new scope.
The transition function c

≃
: R × T→R describes how the

transitions apply to the RDD scopes.
Besides adding constraints to actions, we also allow constraints

to be added to the pipeline topology itself, both manually by the
user and automatically inferred from the pipeline topology, such
as the datatype of the initial RDD. Preconditions added by the
user are applied to the scope they are defined on, while effects are
applied to the scope(s) following it.

We connect these transition systems through the relation rdd:
S → R, where

(∀sn ∈ S)(∀a ∈ A)(∀sm ∈ S): sm ∈ c(sn, a) 0
(∃t ∈ T)(∃rn ∈ R)(∃rm ∈ R):

rn � rdd(sn)
∧ rm � rdd(sm)
∧ rm ∈ c

≃ (rn, t)
∧ sm satisfies effects(rn) ∪ precond(rm)

(10)

Figure 3 shows an example mapping between planning
transition system Σ and a Spark DAG Σ

≃
, based on the

scenario from Section 1. In this example, c for some states
contains multiple applicable actions (e.g., a1 and a2 can both
be applied from the first state) or multiple possible result states
based on an action (e.g., a1 from the first state leads to two next
states if an or-constraint was used).

Since we only support planning for our variation points, we do
not include in our planning problem any scopes that do not
contain a variation point. On the other hand, we add a scope at
the end of the pipeline so that we can attach the goal constraints,
even if the final action of the pipeline does not contain a
variation point.

We also add special handling for join operations.We show this
in Figure 3 as a transition function in the form of c(sn, in). These
transitions are applied when there is a transition in the Spark
DAG that the user has no control over. For example, when joining
two RDDs, the user cannot provide their own function that will be
applied during the join. Nevertheless, we want to encode these
transitions in order to accurately represent the pipeline. We
introduce these implicit transitions in Section 4.2.3.

FIGURE 3 | Example mapping between a Spark DAG Σ
≃
(bottom) and STS Σ (top).
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We use the relation vp: T → VP to map our transitions to
variation points. This allows us to take into account additional
constraints relating to the topology, such as the input/output
combinations from Table 2, which we will discuss in Section
4.2.1. Additionally, we encode a constraint that ensures that if a
single variation point is used in multiple transitions in a pipeline,
the actions applied in those transitions are the same. This is done
because one variation point can only hold a single
PlanningModule and therefore can only be assigned a
single action.

(∀sn, sm, sk, sl ∈ S)(∀ai, aj ∈ A)(∃ti, tj ∈ T):
sm ∈ c(sn, ai)

∧ sl ∈ c(sk, aj)
∧ rdd(sm) ∈ c

≃ (rdd(sn), ti)
∧ rdd(sl) ∈ c

≃ (rdd(sk), tj)
∧ vp(ti) � vp(tj) 0 ai � aj (11)

Expanding our definition of the transition function sn →
a
sm

with the isomorphism requirement, we get

sn →
a
sm 5sn satisfiesprecond(a)

∧ sm satisfies effects(a)
∧ (∀v ∈ Vars): val(sn, v) � val(sm, v)

∨ v affectedByAction(a)
∧ (∃t ∈ T): rdd(sm) ∈ c

≃ (rdd(sn), t)
∧ sm satisfies effects(rdd(sn))
∧ sm satisfiesprecond(rdd(sm))

(12)

4.2.1 Data and Operation Types
An important property of Apache Spark pipelines and of most
distributed data processing pipelines in general is typed data. Each
vertex in the DAG has a type, and operations can change the data
type. We, therefore, add Type as a variable to each planning state,
and actions can change this type from one state to the next. In
order to properly represent the intricacies of a Spark pipeline, we
treat the Type variable differently from other state variables. In the
first place, this is because we can infer the appropriate type
constraints from the provided actions and pipeline topology. A
second reason is that Spark treats RDDs differently depending on if
they contain a single value or a tuple of two values (a value pair).

For example, some operations (such as reduceByKey) require an
RDDwith a value pair to be applicable, while for others, it does not
matter. Furthermore, some operations (such as map and reduce)
can transform between these categories, while others require the
input/output multiplicity to be the same (such as filter). In our
planner, we must therefore distinguish between these input/output
categories, labeled OneToOne, OneToPair, PairToPair,
and PairToOne. We store this category in the variation point
and then ensure only appropriate actions are selected, with
“categoryOf” as a lookup for the category:

sn →
a sm 0(∃t ∈ T):

rdd(sm) ∈ c
≃ (rdd(sn), t)

∧ | vp(t)| � 1
∧ categoryOf vp(t) � categoryOf a (13)

Apart from the RDD types, the applicability of an action is also
dependent on the logic of the operation itself. For example,
consider an RDD of type T. When you apply a
plannedFilter operation, the filter function receives the
same type T as input but gives a Boolean as output.
However, Spark uses that result to filter the dataset and
returns an RDD that still contains the same T type. The
different combinations used by Spark are listed in Table 2.

To be able to handle all required type restrictions, we have split
our Type variable into a TypeLeft and a TypeRight variable,
representing the left and right elements of a tuple, respectively.
For types that are not tuples, only the value for TypeLeft will be
set, and TypeRight will be set to a null value. This allows us to
specify constraints based on only one part of the data type, for
example, with TypeLeft � Boolean for plannedFilter.

To distinguish between the RDD type and Function type
from Table 2, type information is encoded differently
depending on the Spark operation used. For example, for
plannedReduceByKey with a PairToOne module, we
encode our constraints as

sn →
a sm 0 val(s1, TypeLeft) � val(s2, TypeLeft)

∧val(s1, TypeRight) � val(s2, TypeRight)� inLeft(a)
� inRight(a)
� outLeft(a) (14)

TABLE 2 | Operation shape categories, where T and U are placeholders for some type and (T, U) represents a tuple of type T and U.

RDD Function Example operation Compatible categories

Pre Post In Out

T U T U map OneToOne
OneToPair
PairToOne
PairToPair

T T T Boolean filter OneToOnea

PairToOnea

T T (T, T) T reduce PairToOne
PairToPairb

(T,U) (T,U) (U, U) U reduceByKey PairToOne
PairToPairc

aIf action output is of type Boolean.
bIf T is also a tuple.
cIf U is also a tuple.
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with inLeft(a) and inRight(a) describing the input types for
action a and outLeft(a) describing the output type for a. Since
a represents a PairToOne module, outRight(a) would
return ∅.

4.2.2 No-Operation
Some pipeline topologies may contain more operations than
required to fulfill the planning goal. We introduce the no-op
action τ (De Nicola and Vaandrager, 1990; Ghallab et al., 2004) so
that we can still assign an action to every variation point in the
pipeline, while not performing unnecessary computations. We
create both a NoOpOneToOne and a NoOpPairToPair action
but do not include no-op actions for the OneToPair and
PairToOne categories as performing any operation on them
would not be idempotent.

4.2.3 Join States
Finally, we must support pipelines that contain join operations
such as the union of two datasets. To simplify our planner, we
restrict our implementation to join operations that do not
change the datatype. We initially support the union and
intersection operations.

To illustrate why we need to explicitly add support for join
operations, consider the example illustrated in Figure 4. Here,
two states with conflicting state variables are joined. For variable
y, it is clear that, in s4, the state variable y � 2. However, for
variable x, it could be true that either x � 0 or x � 1.

There are two strategies to resolve this conflict:

• Require equality
If we add a constraint requiring both values to be equal [e.g.,
val(s3, v) � val(s1, v) � val(s2, v)], there will be no uncertain
values in s4. The actions applied onto s1 or s2 will have to be
changed so that all state variables end up with the same values,
in order to generate a valid plan.

• Accept either
By accepting either value, we say val(s3, v) � val(s1, v) ∨ val(s3,
v) � val(s2, v). This introduces nondeterministic behavior in the
steps following s3. We do not apply this functionality to the
Type variable, as the RDD resulting from the join must always
be set to a single data type.

The “require equality” strategy can be too rigid for certain
pipelines, while the “accept either” strategy can greatly enlarge the
search space of our planner since there are more possibilities to
try. We, therefore, allow the user to set the resolution strategy for
each join individually.

Since join operations do not allow custom code, we should not
allow the selection of any action for these operations. We,
therefore, modify the STS to include implicit transitions that
reach the next state without an action being applied. We could
redefine c to support this but for simplicity, we instead define an
implicit transition as a regular transition that always only applies
the no-op action.

We also add intermediary states on which constraints of the
transitions before the join states are encoded. If we directly
encode the constraints onto the join state, both sets of

FIGURE 4 | Three views of an example transition system with a join state and conflicting state variables. Variable x in s4 could have multiple values.
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constraints must always hold, and the “accept either” strategy
would not be respected. Instead, the intermediary states allow
us to evaluate the strategy over the intermediate variables of
each intermediary state, represented as the white boxes in
Figure 4A.

4.3 Planner Representation as CSP
Now that we have a formal description of our planning model; we
can describe how we have implemented it. We have used the Java-
based Choco-solver (Prud’homme et al., 2017) library to
implement our CSP-based planner, which has good
interoperability with Scala.

We encode each “state variable” as a CSP variable [e.g.,
val(s1, y) is encoded as variable y@1]. The domain of the
variable is the set of possible assignments found in the
planning problem. All values are converted to integers in
the CSP. For the Type variables, we first convert a type
name into a fully qualified name [e.g., Seq(String) becomes
“scala.collection.Seq(java.lang.String)”], and for each unique
name, we assign a unique integer in the domain. The actions
applied on transitions are tracked through “action variables”
(e.g., a1@1→ 3), where a value of true indicates that the action
(in this case a1) is applied in that transition (in this case 1→ 3).
Figure 4C shows a CSP encoding of the join example discussed
in subsection 4.2.3.

Encoding the constraints from Eq. 5 defined on the topology
and on actions is also straightforward, since equality and
inequality can be encoded as constraints {e.g., val(s, v) � b
becomes arithm[v@s, “�,” encode(b)]}, with encode being the
conversion of values described above. Conjunction and
disjunction of constraints can also be encoded in the CSP
[e.g., val(s, v1) ≠ val(s, v2) becomes arithm(v1@s, “!�” v2@s)].

By only creating transitions between the scopes following
the Spark DAG, we automatically fulfill part of the
requirement of the plan to be isomorphic to Σ

≃
such that

sn →
a
sm 0 (∃t ∈ T): rdd(sm) ∈ c

≃ (rdd(sn), t).
Subsequently, we add a constraint stating that exactly one of

the action variables in each transition can be used. If we treat a
false Boolean value as zero and a true Boolean value as one, we
can add a constraint that sums each action variable in a transition
and ensures the sum is equal to one.

Finally, we add an optimization objective that maximizes the
occurrences of the no-op actions, to ensure that we do not
perform extremely unnecessary processing (e.g., performing
some function f, undoing it, and then redoing it).

From the action variables defined on the transitions in the
CSP, we can then extract the actions assigned on those
transitions, which correspond to user code that should be
assigned to variation points.

4.4 Planning Model Justification
Having defined our planning system, we must first know that it
provides correct results before it can be used in practice. This is
based on the concepts of soundness and completeness (Ghallab
et al., 2016). A planning system is sound if, for any solution plan
it returns, the plan is a solution for the planning problem. A

system is complete if, given a solvable planning problem, the
system will return at least one solution plan.

Because we represent our planning problem as a CSP and use
an existing constraint solver, we do not evaluate the planning
problems ourselves. Nevertheless, we can guarantee that the
planning process is complete; i.e., it will eventually stop and
result in either a generated configuration or a failure. This is
true because our planning problem is finite (the Spark DAG is of
finite size, each state in Σ has a finite number of state variables,
and each state variable has a finite domain) and as a result, the
encoded CSP also contains a finite number of variables with a
finite number of domains. Since the CSP solver works through
piecemeal reduction of the variable domains, given a correct
solving algorithm (Kondrak and van Beek, 1997), eventually, a
solution will be reached or the solving will fail in case the CSP is
unsatisfiable. The result is also sound since we encode all aspects
of our planning problem as constraints as described in the
previous section (i.e., every possible variable and its type and
all possible actions), and the constraint solver will ensure every
constraint on the CSP is met. Therefore, any solution to the CSP is
a solution to the planning problem.

Soundness and completeness of the planning problem itself
are based on both the construction of the transition system Σ as
well as the representation of the distributed processing pipeline
Σ
≃
. This is again focused on the Spark DAG but can be modified

for other distributed processing frameworks. Since our planning
system is based on the state-variable representation as described
by Ghallab et al. (2004), we know that this approach can yield
correct results. Therefore, we will only discuss the correctness of
the Spark DAG translation, i.e., Σ

≃
. We do this based on our

definitions in Section 4.2, of which the most important is the final
definition of the transition function in Eq. 12.

Since Spark uses a (directed) acyclic graph, the transition system
must also be acyclic. We represent the DAG as c

≃
: R × T→R.

Since c
≃
is created from the Spark DAG, these properties (such

as it being acyclic) also hold for c
≃
. Next, recall the rdd relation

between c
≃
and c, defined as (∀sn ∈ S)(∀a ∈ A)(∀sm ∈ S)

(∃ti ∈ T): sm ∈ c(sn, a) 0 rdd(sm) ∈ c
≃ (rdd(sn), ti). If there

If there isa cycle between states in c, there must then also be a cycle
between RDD scopes in c

≃
. This is not possible; therefore, c must also

be acyclic.
Apart from relating c with c

≃
as described above, the rdd

relation also ensures that topology constraints that specify the
behavior of the pipeline are met. This is achieved through the
encoding of effects(rdd(sn)) and precond(rdd(sm)) as constraints
that must be satisfied, given (∃t ∈ T) such that
rdd(sm) ∈ c

≃ (rdd(sn), t). If there is no transition t, that means
there is no sn ∈ c that results in sm. In this case, sm is an initial state
and as such, it is already described by the initial conditions S0.

Further complications arise from the possibility ofmultiple RDDs
to be joined, for which our solution is described in Section 4.2.3. We
support two strategies that reconcile the state variables between the
two branches. For the “require equality” strategy, all state variables
are related through an equality constraint. If a state variable in one
branch is different from the other, this constraint would be violated
and the configuration would not be provided as a solution. For the
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“accept either” strategy, the user explicitly states that such conflicting
state variables are still acceptable in a solution for the planning
problem. Nevertheless, the final Spark configuration is still limited in
that an RDD can only be assigned a single type. As a result, a solution
where multiple possible types are assigned to a single state could not
be applied to the pipeline. As mentioned in the description of the
“accept either” strategy, we slightly restrict the planning model by
specifying that the Type variables should always be equal between
branches regardless of the chosen strategy.

Another complication of join operations is that they are the
only operations supported by our planning system that do not
accept a user function (in which an action could be applied). A
configuration would therefore be invalid if an action is assigned to
such an operation. Through the implicit transitions mentioned in
Section 4.2.3, we enforce a constraint that ensures a no-op action
is applied in those transitions; therefore, no invalid action can be
assigned.

Finally, through the vp relation, we ensure that a module is of
the same category as the variation point in an operation.
Furthermore, we ensure that the module is compatible with
the operation. If the user attempts to use a variation point in
an operation of a type that is not compatible, the chosen module
must be of the same incompatible type. As this is prevented in our
action encoding, no plan can be generated.

5 EVALUATION

In this chapter, we evaluate our planning and runtime updating
system with respect to its runtime performance. We measure the
performance using three different experiments:

• Plan generation time
Determine how long it takes to generate a plan for a pipeline
with either a varying number of steps, a varying number of
possible actions per step, or varying numbers of joins.

• Runtime overhead
Determine the difference in performance between our solution
and regular Spark, excluding the time it takes to perform the
configuration planning process.

• Restarting experiment
Quantify the performance of reconfiguring the pipeline by
updating running scenarios versus having to restart the entire
application.

We performed experiments several times for a fair and stable
evaluation. Each experiment has been run a total of six times, each
time executing in the above order.

The experiments were run on a dedicated cluster consisting of one
master and five slaves, running in Spark’s standalone clustermode. All
six machines have the same specifications, listed in Table 3.

5.1 Plan Generation Time
The plan generation time experiments explore three different
properties of a pipeline to determine their impact on the time it
takes to generate a configuration.

The first property we examine is pipeline length.Wemeasure how
long it takes to generate a plan for a pipeline with n sequential
operations, as shown in Figure 5A. We first measure the planning
time for only one operation, followed by the planning time for two
operations, up until n � 16. For each step, only a single action is
applicable. This is achieved by generating an action specifically for
each step in the pipeline, as shown in Listing 1.

TABLE 3 | Experiment cluster node specifications.

Spark version 2.1.0
Java version jre-1.8.0-openjdk
Operating system CentOS 6.8 64 bits
Processor 2.7 GHz AMD hexacore
Memory 48 GB, 1,333 MHz DDR3

FIGURE 5 | Plan generation for a varying number of (A) steps, (B)
possible actions per step, and (C) joins. Circles and rectangles represent
steps and actions, respectively.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 66617412

Albers et al. Adaptive Changes in Distributed Processing

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Listing 1.Overview of the generator for variable length pipelines. The second property being examined is the number of
alternatives per step, as shown in Figure 5B. We generate a
pipeline with four steps, but instead of having exactly one action
for each Spark operation, we generate multiple actions with the
same preconditions and effects on the Step variable, as shown in
Listing 1 with ALTERNATIVES > 1.

The last property under examination is the number of joins in a
pipeline. We again allow only one possible module per step, but
instead of applying a single operation to the initial RDD, we apply
two separate map operations on the same RDD, followed by a
union. The resulting pipeline topology is shown in Figure 5C. We
determine the time it takes to generate such pipelines for both join
strategies mentioned in Section 4.2.3: “require equality” and
“accept either.” We otherwise generate the pipeline in the same
way as Listing 1.

The results of all measurements in this experiment are shown
in Figure 6.

Let us first discuss the results for the varying number of
operations and number of alternative actions per operation.
For both measurements, the growth is exponential, although
the planning generation time for the variable pipeline length
grows considerably faster.

We attribute this higher growth rate to multiple factors. First,
the domain for the Step variable increases, as the final goal value is
increased. Next, the system also needs to test the applicability of
more possible actions, since we generate one action for each step

FIGURE 6 | Results of the plan generation time experiments. The lines represent the average value of each measured property, and dots represent individual
measurements.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 66617413

Albers et al. Adaptive Changes in Distributed Processing

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


in the pipeline. For the steps themselves, we need to encode more
constraints (described in Section 4), and we also have more steps
where we try to apply the no-op actions. The measurements for

the varying number of alternatives are also affected by the
increase of possible actions to be tested; however, this
introduces much fewer constraints to the CSP.

FIGURE 7 | Pipelines for three different scenarios: (A) simple, (B) middle, and (C) complex.
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The results for the experiments using a variable number of
joins show a higher growth rate when using the “accept either”
strategy compared to the “all equal” strategy. The planning
time when using the “all equal” strategy still grows faster than
that of the varying pipeline size and varying number of
alternatives, since for each join, two actions need to be
applied, one for each branch. Using the “accept either”
strategy results in even bigger planning time growth, since
the system must accept either value as a result of one join. This
uncertainty propagates through every step in the pipeline,
meaning that we cannot reduce the search space as quickly
as for the other experiments.

5.2 Dynamic Versus Static
Next, we compare the adaptive framework with the spark-
dynamic framework (Lazovik et al., 2017) and with regular
Spark implementations. These experiments are based on three
implemented scenarios inspired by real projects, each built using
commonly used operations and increasing in complexity.

5.2.1 Scenarios
The simple scenario is from the Energy domain. Based on the
temperature inside and outside a house, we calculate the power
required to heat the house based on an ideal temperature.
Accurately estimating the future power usage of a building
may allow more efficient distribution of available power within
Smart Buildings (Georgievski et al., 2012) or Smart Power Grids
(Kok, 2013), resulting in lower energy costs. A representation of
this pipeline is shown in Figure 7A.

The middle scenario is based on autonomous driving. In this
scenario vehicles are driving along a highway that has been outfitted
with sensors that track the location of all vehicles driving on it, as well
as the location of any accidents that happen on that highway. We
focus our scenario not on autonomous driving itself, but on a small
part of the information processing. When a vehicle approaches an
accident, laws or safety requirements could indicate that a vehicle
should have a specific (minimum) distance to the vehicle in front of
it. In this scenario, we calculate the speed required to reach the
required distance based on several factors: the location of the
accident (from the starting point of the roadway), the speed and
location of the current vehicle, and the speed and location of the
vehicle ahead. We use this data to calculate the distance from the
current vehicle to the vehicle ahead and the distance from the
current vehicle to the accident. The pipeline used in this scenario is
shown in Figure 7B. This scenario is a bit more complex than the
previous one because the pipeline contains a split and join as well as
operations other than just plannedMap.

The final scenario is the most complex, containing multiple splits
and joins as well as multiple types of operations. This scenario is
related to the healthcare domain. In the scenario, patients are being
monitored remotely based on their heart rate, blood pressure, how
much they are moving, and whether they are in their bed. Several
risk assessments are done relating to the health of the patients based
on this data. For example, if the heart rate of the patient is high and
they are not moving, something might be wrong. By creating a
plannable pipeline for thismonitoring, changes can bemade without
having to temporarily interrupt the monitoring process, which could

result in dangerous or relevant medical situations being missed. The
pipeline for this scenario is shown in Figure 7C.

Each of these scenarios is implemented in three different ways:

• Static
This implementation is a regular Spark pipeline as it would be
written without the system described in this paper.

• Dynamic
The dynamic implementation uses the variation points from
spark-dynamic for each operation, with the variation points
given preassigned functions.

• Planned
The planned version uses the planner and plannable variation
points from this paper.

The planned implementations of the simple and complex
scenarios also include alternative PlannedModules that can fulfill
the scenario goals. The middle scenario instead contains extra
variation points that should be assigned no-op actions. This way,
all three scenarios are given a bigger search space during the planning
process. For the static implementation of each scenario, only the base
scenario is implemented, since updating it is not possible. The
dynamic implementations also only contain the base scenario.
This is because the Spark pipeline is still restricted to static RDD
types with the spark-dynamic library. The implementations of the
scenarios can be found in an external repository2. This includes the
code used to generate the input data. We have also added detailed
DAG representations to the repository for each scenario that
includes pipeline constraints and assigned PlannedModules.

5.2.2 Runtime Overhead
In the runtime overhead experiment, we run each implementation of
every scenario and measure how long one iteration takes to complete.
For the planning implementation, we do not replan the pipeline
between iterations, as we are just interested in the actual runtime
overhead. Within this experiment, all scenarios (simple, middle, and
complex) were executed 240 times. Every 60 iterations, the application
terminates so that any optimization to the bytecode done by the JVM
during a run does not greatly affect the benchmark. This scheduling is
shown in Listing 2. Since each experiment is repeated six times, each
scenario is started four times and each scenario runs the pipeline 60
times; in total, we have 6 × 4 × 60 � 1440 measured runs.

Listing 2. Scheduling of the runtime overhead experiment.

Each iteration of the simple scenario is run with 4,400 input
objects, the middle scenario is run with 1551 × 2 input objects from
two source RDDs, and the complex scenario is run with 6600 × 4 �
26400 input objects from four source RDDs.

2See https://github.com/rug-ds-lab/planning-dynamic-spark-supplemental
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Listing 3 shows how a single run of this experiment is
performed. First, we randomly generate the data that will be
used for that run of the experiment. Next, we run the pipeline
once and store the generated plan since that is not a factor we
want to test with this experiment. We then perform warmup
cycles on the data to eliminate JVM startup interference, followed
by timing the real benchmark cycles.

Listing 3. Overview of the runtime overhead experiment code.

The results of this experiment are shown in Figure 8, Table 4.
First, the dynamic implementation of each scenario takes longer to
run than the static Spark implementation. This matches the results
of the earlier experiments done for spark-dynamic (Lazovik et al.,
2017). The reason for this is that we have added extra functionality
on top of the existing static Spark code.

Looking at the results for the simple scenario, when using the
static implementation as a baseline, the dynamic implementation
takes approximately 13% longer since we have to download the
assigned contents of the variation points and process them. The
running time of the planned implementation is approximately 46%
longer than the baseline. This is because we do not only have the
overhead of the dynamic implementation but also have extra logic
to enable the dynamic typing, such as casting the input data. The
loading of variation points is also slightly more complicated since
the library must make sure that planning has been completed.
Individually, these steps would not take much time but since this is
repeated for every record of every operation in the pipeline, their
effects become significant. The planned implementation also suffers
(more than the other implementations) from irregular increases in
the time per iteration, which could be the result of networking lag,
thread scheduling, or garbage collection.

The results for the middle scenario are similar, with the
dynamic implementation having an overhead of approximately
11% above baseline, and the planned implementation having an
overhead of 27%. Since the average iteration time for this scenario
is longer than the simple scenario, the irregular spikes mentioned
above have a smaller effect on the averages.

The results for the complex scenario show overhead for the
dynamic implementation of approximately 10% above baseline
and overhead of approximately 31% over the static baseline for
the planned implementation. These results show a new phenomenon,
where the iterations appear to increase in running time every iteration

FIGURE 8 | Results of the runtime overhead experiment per scenario. Each scenario is given a color, with the lightest, the mild, and darkest shades of each color
representing the static, the dynamic, and the planned implementations, respectively. The vertical lines indicate 60 pipeline iterations, after which the Spark application is
restarted.

TABLE 4 | Averaged results of the runtime overhead experiment per scenario.

Impl. Scenario

Simple (ms) Middle (ms) Complex (ms)

Static 76.00 — 241.62 — 1311.58 —

Dynamic 86.08 (+13.3%) 267.85 (+10.9%) 1441.57 (+9.9%)
Planned 111.18 (+46.3%) 306.85 (+27.0%) 1711.74 (+30.5%)
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until the Spark application is restarted. This is primarily the result of
garbage collection performed by the JVM. Switching to a different
garbage collection implementation or changing the memory size
allocated to Spark executors changes the curves of the results.

5.2.3 Restarting Experiment
In this experiment, we determine how much increase in
performance we can achieve by using the planning system. We
define the performance gain as the difference in time it takes to
process a set of data while performing reconfiguration at runtime
compared to having to restart a static Spark application.

A basic overview of this experiment is shown in Figure 9. Here,
we split the dataset into sections and first process all eight sections
of the dataset. For the static implementation, this means we only
start the application once, and for the planned implementation, this
means we only generate a new plan once. In the next test, we only
process half of the dataset before a reconfiguration takes place: for
the static implementation, Spark terminates after each section of

the dataset and we restart it for the next dataset; for the dynamic
case, we simply start the next iteration without making any
changes; for the planned case, our system must generate a new
plan. After the reconfiguration, we continue processing the other
half. We continue subdividing the dataset for these tests until we
have to reconfigure the application after every section of the
dataset.

FIGURE 9 | Overview of the restarting experiment, with the start and stop symbols representing the reconfiguration of the pipelines.

FIGURE 10 |Results of the restarting experiment per scenario. The zoomed subfigures show the breakdown for each scenario. Each scenario is given a color, with
the lightest, the mild, and darkest shades of each color representing the static, the dynamic, and the planned implementations, respectively. Iterations to process full
dataset indicates the number of sections in the dataset. With one iteration, the entire dataset is processed without restarting, while with 80 iterations, the pipeline is
restarted 79 times to process all data.

TABLE 5 |Results of the restarting experiment per scenario for 1 and 80 iterations.

Itt Impl. Scenario

Simple (s) Middle (s) Complex (s)

1 static 9.6 — 16.8 — 71.6 —

Dynamic 10.4 (+8.4%) 17.6 (+5.0%) 78.5 (+9.7%)
planned 12.1 (+25.8%) 19.2 (+14.3%) 86.2 (+20.3%)

80 static 572.9 — 708.4 — 854.6 —

dynamic 18.5 (−96.8%) 31.6 (−95.5%) 71.1 (−91.7%)
planned 26.8 (−95.3%) 43.3 (−93.9%) 114.0 (−86.7%)
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In the actual experiment, we do not use just eight sections of the
data as described above but instead use the scheme shown in
Listing 4, e.g., one iteration with 80 copies of the database, followed
by two iterations of 40 copies of the database, etcetera. During
experimentation, the number of iterations/slices per dataset was
increased until a stable trend was found at 20 iterations per dataset
and further increased to 80 iterations to ensure that the trend
remained stable. Since the static implementation cannot be
updated, it is fully restarted for every iteration. Listing 5 shows
a rough overview of the applications used in the experiment.

Listing 4. Scheduling of the restarting experiment.

Listing 5. Overview of the restarting experiment code.

The averaged results of these experiments are shown in Figure 10.
We see that if the static implementations have to be restarted 80
times, it takes a considerable amount of time for all scenarios.
Restarting only 40 times takes around half as much time. The
dynamic implementations take a roughly constant amount of time
for each scenario, as there is barely any cost apart from the actual
processing of the sections of the datasets. The planned
implementations show a slight linear increase in processing time
when the number of reconfigurations is increased, and this is most
pronounced for the complex scenario. This increase is the result of the
planning process, where a plan has to be generated and the variation
points have to wait for the planning process to complete for each
iteration. The planned implementations nevertheless perform much
better in this experiment than the static implementations.

Table 5 shows the results of this experiment for the cases
where the dataset is processed without restarting and where the

dataset is divided into 80 sections. Similar to the previous
experiment, when the dataset is processed without restarting,
the static implementation of each scenario outperforms the other
implementations. However, when the reconfiguration is done 80
times, the planned implementations process the entire dataset in
around 90% less time than it takes for the static implementations
to finish. The results when the dataset is processed without
restarting only roughly match those of the runtime overhead
experiment since that experiment does not include the planning
and application startup time in its measurements and its RDDs
contain much fewer records.

In this experiment, we assumed that the data is not dependent and
can be split into chunks, and all updates are anticipated. However, in
many cases, the same algorithm should be applied to the whole
dataset where a restart will lose progress, and the updates are
unforeseen. For example, a pipeline with only two steps, α and β,
is running.While α is almost over, youwill find a bug in β. Applying a
bug fix in the static implementation means losing α’s computations
while using our system β can be updated separately. In the worst-case
scenario, the planned implementation introduced 46% overhead,
which means even a single update after 46% of the pipeline runtime
will benefit from planned implementation. Obviously, the planned
implementation will outperform the static implementation in
multiple update scenarios. It is noteworthy to mention that this is
just a proof-of-concept implementation of our system.

6 CONCLUSION AND DISCUSSION

In this work, we have introduced a system for adaptive on-the-fly
changes in distributed data processing pipelines using constraint-
basedAI planning techniques. The feasibility of the approach is tested
using Apache Spark as a target distributed processing framework. In
this paper, we also present the generic methodology that enables
adaptive on-the-fly changes of applications in distributed data
analysis for industrial organizations in the Industry 4.0 era. While
the proof-of-concept implementation is specific to Apache Spark,
the methodology and planning model can be applied to any
distributed data process platform operating on the same
principles (that is, through a sequence of operations forming a
DAG that allows custom user code to be executed). Regarding the
proof of concept itself, rapid development and modification of
running pipelines could in some cases already benefit from the
use of this system.

The results of our experiments show the exponential nature of the
planning time, which is dependent on the computational complexity
of the planning problem itself (pipeline length, number of alternative
actions, and number of joins). The results also show the overhead
introduced by the additional functionality that enables dynamic
typing, compared to the more restrictive spark-dynamic system
(Lazovik et al., 2017).

Wealsonote that our evaluationwasperformedusing comparatively
small datasets, with between 4,400 and 264,000 entries per RDD in the
runtime overhead experiment. As a result, the overhead introduced by
both spark-dynamic and our planning system could be overemphasized
compared to real-world usage of the system. However, this did allow us
to repeat the experiments multiple times.
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We believe that the system described in this paper provides
a solid foundation and starting point for automated DSU
systems for distributed data processing frameworks, where
the general feasibility of this approach is shown through our
implemented scenarios and their evaluation.

Since this work is one of the first attempts at integrating
adaptive reconfiguration and DSU to the field of distributed data
processing, a lot of directions for possible future research exist.
Due to the novel nature of this research, we do not consider this
as a weak point but instead as an opportunity for further
development of this field. Techniques such as distributed
planning, optimized replanning (fewest changes compared to
the previous plan), compile-time validation, and preplanning
can increase the performance of the planning process, as well as
pipeline development in general. Furthermore, allowing
extended goals (such as achieve-and-maintain), partial
knowledge, dynamic goals (updating topology constraints), and
planning over multiple pipelines can increase the usefulness of the
system. Another beneficial feature would be the ability to perform
replanning for batch pipelines where some steps have already been
completed, in which case only uncompleted steps should be
replanned. Finally, implementing reconciliation strategies for in-
transit data (when a pipeline is updated while processing) and
allowing dynamic pipeline topologies are important points that still
need to be addressed. It is also important to investigate in which

cases a dynamic updating framework as described in this paper
should (or should not) be used, which will require using it in
operational settings in different domains.
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