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Summary

Wind measurement is probably the most essential input for any wind energy
technology applications. The wind speed and turbulence intensity are traditionally
and still popularly measured with cup anemometer or sonic anemometer.

In recent years lidar technology, and particularly nacelle lidar technology, emerged
in the wind energy industry with its many advantages: reduced cost compared to
meteorological mast; always measuring in front of the wind turbine to enable a wider
measurement sector with high correlation to wind power; measuring at more ranges;
measuring over a plane or volume instead of a point; potability; assisting smart wind
turbine control etc. It is adopted by the industry through various pilot and commercial
projects over the world for warranty Power Performance Testing already. The IEC
standards based on the best practices for ground based lidar, nacelle mounted lidar
and floating lidar are coming on their way. However lidar is still not accepted for
turbulence measurements.

A novel application of Machine Learning for lidar measurement was developed by
TNO Wind Energy, based on Gaussian Process regression, to produce reconstructed
wind field from lidar measurements. In this report, the potentials of using Gaussian
Process regression to improve the wind turbulence intensity for lidar wind
measurements are studied with several Gaussian Process implementation tests:
upsampling the data to higher frequency, filling missing data, predicting in space and
predicting in the center of the beams. For a two-beam lidar, although the Gaussian
Process does not show effective improvements for calculating turbulence intensity.
The main reasons are firstly that its bias towards the mean values when predicting
away from measurement data, and secondly that it relies on the methods of
converting the radial wind speeds to horizontal wind speeds. However the results do
demonstrate that Gaussian Process can be applied to almost any lidar system to
predict beam radial wind speeds in space and time. And there is still potential to
improve turbulence intensity by using lidar with more beams for predictions within a
volume as opposed to a plane, or by further developing Gaussian Process
mechanisms to calculate turbulence intensity with different methods.

TNO acknowledges Leosphere for using their lidar data in this project.
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1 Introduction

Wind measurement is probably the most top essential input for any wind energy
technology applications. The wind speed and turbulence intensity (T1) are traditionally
and still popularly measured with cup anemometer or sonic anemometer.

In recent years the lidar (Light Detection and Ranging) technology, and particularly
nacelle lidar technology, emerged in the wind energy industry with its many
advantages: reduced cost compared to meteorological mast (MM); always measuring
in front of the wind turbine to enable a wider measurement sector with high correlation
to wind power; measuring at more ranges; measuring over a plane or volume instead
of a point; potability; assisting smart wind turbine control etc. It is adopted by the
industry through various pilot and commercial projects over the world for Power
Performance Testing already. The IEC standards based on the current best practices
for ground based lidar, nacelle mounted lidar and floating lidar are coming on their
way. However lidar is still not accepted for turbulence measurements [1].

A novel application of Machine Learning (ML) for lidar measurement was developed
by TNO Wind Energy [4], based on Gaussian Process (GP) regression, to produce
reconstructed wind fields from lidar measurements. In this report, the potential of
using GP regression to improve the wind TI calculation for lidar wind measurements
are studied and the results are presented.

Chapter 2 describes the technical background about wind turbine Type Certification
(TC), lidar and GP. Chapter 3 describes the wind field reconstruction using GP and
results from different implementations tests. Chapter 4 gives the conclusions and
recommendations for future work.

TNO PUBLIC
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2.2

Technical Background

Wind turbine Type Certification (TC)

Wind turbine TC is a must-have for wind turbine OEMs to be able to bring their
products to market. The type certification process provides confirmation that the wind
turbine type, components and systems have been designed, manufactured and
tested in conformity with the requirements as mandated by international standards
and site-specific condition. It is an all-inclusive verification of wind turbine safety,
reliability and performance according to standards, which makes it quite a time
consuming process. Moreover with the increase of wind turbine size, the time of the
type certification process is also increasing.

Type testing evaluation is part of the type certification, where a prototype is erected
and tested on site. During type testing, the wind properties need to be measured.
Following the latest IEC standard [2], a remote sensing device (RSD) can be
deployed, but this is limited to non-complex terrain and a short MM (not less than the
minimum of the wind turbine lower blade tip-height or 40m) must exist for comparison
purpose.

Lidar has been in the spotlight of IEC standardisation over the recent years. It is not
only because of its high potentials to bring down both the time and cost of wind
measurement, but also because of the innovative applications of lidar which can
reduce the Cost of Energy (CoE) effectively such as yaw misalignment correction,
site suitability pre-construction studies and lidar assisted control etc. The draft IEC
guideline IEC 61400-50-2 for application of ground based lidar (GBL) and the draft
IEC guideline IEC 61400-50-3 for application of nacelle mounted lidar (NML) are
submitted to all IEC members in 2021 and on the way to the final release. The IEC
guideline IEC 61400-50-4 for application of floating lidar will also come as planned in
2022. It will be a big step to have all those IEC standards to speed up the application
of lidar for TC, however there are still many research challenges for further
applications of lidar, such as the application in complex terrain or superseding MM
completely.

Lidar

Lidar is based on Doppler shift of the backscattered light to determine the wind speed
in the line of sight (LOS) direction.

There are different types of lidar. Most commercial wind lidars use homodyne
detection to determine the Doppler shift. With homodyne detection information on the
magnitude of the shift is gathered, but no information on whether it is positive or
negative which means the wind is towards the lidar or away from the lidar is unknown.
The heterodyne detection gathers both magnitude and sign but requires more
hardware which drives up the cost to produce a lidar. Another way to categorize the
lidar is based on it is light source: pulsed wave or continuous wave. For pulsed lidar,
the time of the pulsed light used to travel to the target and back is used to determine
the measurement distance. For continuous wave lidar, the measurement distance is
determined by focus. According to the application, the lidar is also commonly
categorized as GBL, NML, scanning lidar and floating lidar.
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2.3

The application of different lidar technology in wind energy industry had been
researched for many years. TNO Wind Energy (formerly known as ECN Wind
Energy) also conducted a large test campaign to study and quantify numerous
advantages of GBL, NML and scanning lidar [3].

Nowadays lidar is accepted and used for warranty Power Performance Testing
(PPT). However for TC, an installed lidar without accompanying MM is still not
accepted in the latest IEC standard [2] to provide wind measurements for power
performance and mechanical loads measurements. One of the possible reasons is
that current lidar technology obtains Tl measurements differently than a wind cup
anemometer or sonic anemometer mounted on a MM.

Lidar technologies perform averaging over a large measurement volume (i.e. the
probe volume). For turbulence measurements, this has a similar effect as applying a
low pass filter, which reduces the standard deviation of the measured signal (i.e. wind
velocities) resulting in reduced values of the TI. Deducing unfiltered turbulence
statistics from the raw lidar data has been and remains the most challenging aspect
of lidar application and many research has been done to develop algorithms to
improve this situation [1].

Another drawback of lidar technology is that using a single lidar with only LOS wind
speeds makes it impossible to distinguish between wind shear and wind direction.
This is called the cyclops dilemma (ref?). Currently the standard wind field
reconstruction algorithms from lidar manufacturers assume homogeneous wind flow.

Gaussian Process (GP)

As described in [4], TNO wind energy has developed a novel ML algorithm based on
GP regression to remove the assumptions when producing 3D wind fields from lidar
measurements. This algorithm is naturally robust to overfitting and predicts
uncertainty in the prediction derived from data density and machine error. In a GP, it
is assumed that variables in a stochastic process are jointly normally distributed, and
can be described as such. A GP is fully specified by a mean and a covariance
function, and can be fitted to any variable as illustrated in Figure 1. These properties
allow the machine learning algorithm to predict anywhere in the input space and time,
essentially turning it into a powerful regression tool. As such, GP provides a number
of powerful benefits:

e prediction of higher-frequency data,

e interpolation of missing data,

e spatial prediction of data within the measurement volume and

e calculation of prediction uncertainty is included in the process itself.

The main limitation of GP are its bias towards the mean when predicting away from
measurement data.

An additional limitation to the overall methodology is in regards to how the GP is used.
They predict radial wind speeds, and so conversion to horizontal wind speed (HWS)
is highly dependent on the methodology used.
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3.1

Turbulence Intensity calculation

TNO has been working with different types of lidar, including GBL and scanning lidar
configurations. While HWS is resolved well by lidar systems, Tl continues to be a
challenge topic. Specifically, the TI measured by lidar is not as the same as that
measured by a cup or sonic anemometer due to volume-averaging (as mentioned in
2.2). In this report, a two-beam NML is considered to apply the GP. The purpose of
the works is to assess the ability for a GP to improve Tl measurement from a NML.

The following goals are considered:
e apply the GP to a two-beam NML, producing wind statistics,
e analyse the effect of the GP on lidar-based TI predictions, and
e explore potential ways to improve the Tl calculations, using the GP.

Wind dataset

The dataset used for this campaign is that for the Lawine campaign [5]. The details
of this campaign, including information on the installation, can be found in the
instrumentation report [6]. A two-beam Wind Iris lidar was installed on a turbine in
order to investigate turbine performance. The flat terrain and proximity to a MM
makes this an ideal dataset to test the GP on.

An 8-hour analysis period was chosen when the wind was aligned in the direction
from the mast to the turbine, unobstructed, at high wind speeds (above 10 m/s).
During this period, the lidar was also configured to measure at a distance equal to
that between the turbine and the mast. If the turbine was pointing 15° offset from the
mast direction, one of the two lidar beams would be measuring at the MM location.
As such, filters on the data were:

e Measurement sector: During the 8-hour period, the wind was consistent, flowing
from the south-west, ensuring it passed the MM prior to reaching the wind turbine.
As such, with the lidar mounted on the turbine, it would always point close to the
MM within the period.

e Wind speed: The period analyzed had wind speeds above the rated wind speed
of the mounted turbine, ensuring the lidar would be facing the correct direction.
Specifically, ten-minute averaged HWS from the MM was never recorded as
lower than 10 m/s.

o lidar status: The lidar itself must be outputting an operational status for all ranges
so the signals in Table 1 should be available.

e CNR Value: The CNR was bounded by -22 dB on the lower end and -3 dB on the
upper end. High values of the CNR values indicate obstruction of the lidar beam
(such as by the MM itself), while low values indicate atmospheric events, which
can affect results.

Table 1 below shows the measured signals from the Windlris lidar, while Table 2
shows the same used from the met mast. Table 3 provides a list and description of
all outputs from the Windlris lidar.

TNO PUBLIC
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Table 1 Measured signals Windlris

9/19

Measured signals WindIris

Sampling

Description Short name rate [Hz.] | Unit
Tilt T6_WI_tilt 1 °
Roll T6_WI_roll 1 °

Short name

xx = 1 (80m), 2 (120m), 3 (160m), 4

(200m), 5 (240m), 6 (280m), 7
Description (320m), 8 (360m), 9 (400m), 10 Sampling
For every height (440m) rate [Hz.] | Unit
Line of sight T6_WI_Dxx_los 1 [-]
Horizontal wind speed T6_WI_Dxx_ws 1 m/s
Wind direction T6_WI_Dxx_wd 1 °
Radial wind speed T6_WI_Dxx_rws 1 m/s
Radial wind speed deviation | T6_WI_Dxx_rws_dev 1 m/s
Carrier to noise ratio T6_WI_Dxx_cnr 1 dB
Radial wind speed status T6_WI_Dxx_rws_st 1 [-]
Overrun Status T6_WI_Dxx_overrun_st 1 [-]
Horizontal wind speed status | T6_WI_Dxx_ws_st 1 [-]
Time T6_WI_Dxx_TIME 1 ms

Table 2 Hub height measured signals - MM
Hub height measured signals meteorological mast
Sampling rate

Description Short name [Hz.] Unit
Wind speed, 120deg boom MM3 WS80 120 4 m/s
Wind speed, 240deg boom MM3_WS80 240 4 m/s
Sonic wind speed, u component | MM3_S80N U m/s
Sonic wind speed, v component | MM3_S80N_V 4 m/s
Sonic wind speed, w component | MM3_S80N_W m/s
Sonic wind speed, status MM3 S80N_St [-]
Air temp MM3_Tair80 4 °C
Humidity MM3_RHS80 4 %
Air pressure MM3_Pair80 4 hPa
Wind direction, 120deg boom MM3 WD80 120 4 °
Wind direction, 240deg boom MM3_ WD80 240 4 °
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3.2

Table 3 Windlris lidar output description

Column Title Unit Description
Timestamp (s) Coordinated Universal Time (UTC)
Distance (m) Distance along symmetry axis of lines of sight.
Line of sight (a.u.) | 2 lines of sight possible (0/1)

HWS (m/s) | Horizontal wind speed

Direction () Direction of wind

RWS (m/s) | Radial wind speed

RWSD (m/s) | Radial wind speed deviation

CNR (dB) | Carrier to noise ratio

Tilt () Tilt of system telescopes

Roll () Roll of system telescopes

RWS status (a.u.) | 0=RWSis not valid
1=RWS s valid

RWS RT status | (a.u.) | 0= no valid RWS within “real time availability period”

1 = at least 1 valid RWS within “real time availability period”
Overrun Status | (a.u.) | 0 =the measurement is late

1=the measurement is in time

HWS status (a.u.) | 0=HWSis not valid

1=HWS s valid

HWS RT status | (a.u.) | 0=no valid HWS within REAL TIME AVAILABILITY PERIOD

1= at |east 1 valid HWS within REAL TIME AVAILABILITY PERIOD

Wind field reconstruction

As the limitation of a single lidar to distinguish horizontal wind shear and wind
direction at the same time (cyclops dilemma), the wind flow is assumed as
homogeneous on horizontal plane without wind shear. The Windlris lidar measures
consecutively radial wind speeds on its two lines of sight (LOS) and reconstructs
HWS and direction based on these two consecutive radial wind speed
measurements. Remembering that the wind has three components with respect to
three directions, there are now two equations and three unknowns. In order to solve
the equations, the vertical wind component of wind is assumed null.

The wind filed reconstruction is illustrated as in Figure 2. v, is the measured LOS
radial wind speed. u, v are the wind speed component on horizontal X and Y direction
respectively. u, is the calculated HWS and y is the calculated wind direction. This
reconstruction is performed on the 10-minute average values of the radial wind
speeds, as reconstructing on instantaneous values tends to skew HWS results, as
shown later in the report. Finally, individual beam Tl is calculated as the standard
deviation of the radial wind speed divided by the average over ten minutes. For the
wind field, the Tl is the average between the individual beam TI’s.

y (v) *  Wind field reconstruction:
ULOSI [ —tya [ ]
ULosz tx2 —ty,

Measurement matrix A

- [l=4[]

~ v
Soo = oy, =Ju?+v?  y=tan -
u

Figure 2: Wind field reconstruction [7]
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Considering the measured LOS radial speeds in space and time are variables, a GP
is fitted to them. Then velocities at any space and time can be predicted [4] and a 2D
(based on a 2-beams lidar) wind field can be reconstructed.

3.3 GP implementation

Data between the turbine, met mast, and lidar were combined and synchronized, to
provide a robust analysis, and the GP’s were successfully applied to this dataset.

The GP implementation pipeline:

1. For every 60 seconds of data, fit a GP’s hyper-parameters to the provided
times, locations, and radial wind speed data. These are considered training
GP1’s

2. Use a second GP layer to smoothen the hyper-parameters from the training
GP1’s. These are considered the GP2.

3. Using the GP2, predict hyper-parameters for individual 30-second,
overlapping GP1’s at the requested times/locations. These are considered
prediction GP1’s

4. Finally, using these parameters, generate radial wind speed predictions from
each prediction GP1, obtaining the requested radial wind field

Generate
Training GP1
Parameters

Model Generation

Data Prediction
Generate
prediction GP1
parameters/
models

Predict radial
wind field

Figure 3: GP implementation pipeline
3.4 Results

34.1 Initialization of the GP’s
Figure 4 and Figure 5 below show the outputs of the GP process. The first figure
shows 60 seconds of LOS radial wind speeds utilizing a training GP1 to predict at
one lidar beam location. This is prior to having smoothened hyper-parameters from
a GP2. It can be seen that the GP is able to up-sample the lidar measurements of a
single beam accurately, following the overall trends of the measurement equipment.
Figure 5 on the other hand shows the output at two beam locations for the overall
process: utilizing training GP1’s, overarching GP2’s, and prediction GP1’s. Here, up-
sampling was done in order to provide a lidar prediction for each beam at every

TNO PUBLIC
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second, unlike the lidar which has staggered measurements (the left and right beams
are measured at different times). Once again, a strong correlation between the
measurements and the predictions can be seen, validating the ability of the GP’s to
predict lidar measurements at the beam locations.
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Figure 4: Comparison between lidar output and GP1 prediction at 120m. GP output is upsampled
from 0.75 Hz/beam to 1.5 Hz/beam
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Figure 5: Comparison between lidar output and GP2 prediction at 200m. GP output is up-sampled
from a staggered 1.5Hz to a consistent 2Hz

3.4.2 Upsampling: 1.5Hz to 4Hz
The first experiment performed on the GP predictions was to see the effect of
increasing the data frequency, from 1.5 Hz from the lidar to a total of 8 Hz with the
GPs, 4 Hz per beam. This is illustrated in Figure 6 below, which shows a zoomed in
view of the radial wind speed predictions and WindlIris outputs.
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Figure 6: Comparison between lidar output and GP2 prediction at 200m. GP output is up-sampled
from a staggered 1.5Hz to a consistent 4Hz

Figure 7 shows the 10-minute wind statistics obtained for this dataset, utilizing the
reconstruction methodology for lidar data detailed in the instrumentation report [6].
The values are computed at the meteorological mast distance, 200 m, and this
remains consistent for the remainder of the analyses in this report. Here, the 10-
minute average values of the lidar data are calculated, and then these are used for
reconstruction (vector reconstruction). Note that the dashed line here, and in all future
plots with a dashed line, is simply a visualization of a perfect 1-to-1 correlation; if the
lidar or GP results were to perfectly match the meteorological mast measurements,
then the points would fall on this line.

The HWS appears to be broadly unaffected, and both datasets follow the values
output by the met mast. This shows that the GP’s have little effect on the HWS output
and can predict this well, even at higher frequencies. The Tl values do follow those
from the met mast, but much less accurately. Additionally, the GP’s show a drop in
measured Tl compared to the lidar values. This is attributed to the inherent properties
of the GP's themselves: when lacking measurement data for the regression, they
tend towards the mean. As such, when providing ‘new’ data, they act as a low-pass
filter, reducing the standard deviation of the prediction and, therefore, the TI.
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Figure 7: Vector reconstructed HWS (left) and Tl (right) for the 1.5Hz lidar and the 8 Hz GP
predictions, compared to the MM values. Dashed 1-to-1 lines are provided in order to
illustrate differences from the mast data

Note that if reconstruction is undergone with the high frequency data and a 10-minute
average is performed afterwards (called a scalar reconstruction), over-speeding is

TNO PUBLIC



TNO PUBLIC | TNO report | TNO2021 R11603 | Final report

14/19

seen as expected. This occurs with certain lidar configurations, such as two-beam
nacelle lidars. The GP’s were unable to resolve the over-speeding, as seen in Figure
8. It is possible that the higher data frequency and ability to predict anywhere within
the measurement volume may allow GP’s to correct for this phenomenon, if different
reconstruction methods were used.

13 » Scalar GP “ » Scalar GP
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Figure 8: Scalar reconstructed HWS (left) and TI (right) for the 1.5Hz lidar and the 8 Hz GP
predictions, compared to the MM values

3.4.3 Filling missing data

Next, the ability for the GP to fill missing nacelle lidar data was assessed, with 10
seconds of every minute of every measurement distance range was removed from
the data provided to train the GP’s. Here, the data was predicted at a frequency of 2
Hz, 1 Hz per beam, as shown in Figure 9. The GP predictions here, where data is
missing, drift following the overall trends and the mean, but do not capture the subtle

changes in the data.

20 1

15 A1

rws 0 (mjfs)

10 4

| LiDAR
1 GP

rws 1 (m/s)

20021 22 2224 25 26 27 28 29 30 31 32 33 34 35 36 37 38 19 40
Seconds after start (s)

Figure 9: Comparison between lidar output and GP2 prediction at 200m, with 10 second gaps in
prediction data at all ranges every minute. GP output is up-sampled from a staggered

1.5Hz to a consistent 2Hz

Figure 10 shows the reconstructed statistics compared to the MM values while the
GP’s were filling data. Similar to the up-sampling case, the GP’s are required to fill
data, which tends towards the mean. As such, the average HWS is unaffected, while

a drop in the Tl is noted.
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Figure 10: Vector reconstructed HWS (left) and TI (right) for the 1.5Hz lidar and the 2 Hz GP
predictions, compared to the MM values, with only 50 seconds of every minute for all
ranges provided to the GP model

It is important to note the benefit of including other variables in space when utilizing
the GP’s. As such, the previous experiment was conducted a second time, however
instead of removing ten seconds of data from all ranges, only data from the 200m
range was removed. This allows the GP’s to predict what is occurring during missing
data periods utilizing not just temporal relationships, but also spatial relationships
from the information at the other ranges.

Figure 11 shows the same reconstructed statistics for this case. HWS is unaffected,
still containing a high correlation. There is a slight improvement compared to the all-
ranges-excluded case: the average difference in Tl compared to a lidar with 100%
data availability decreases from 0.004 to 0.003. This shows the strength of including
more physical measurement points when utilizing the GP’s, further indicating the
need for testing with a lidar whose beams encompass a volume instead of a plane.
These configurations naturally have more beams, and allow for more spatial
relationships to be generated by the GP’s during prediction.
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Figure 11: Vector reconstructed HWS (left) and Tl (right) for the 1.5Hz lidar and the 2 Hz GP
predictions, compared to the MM values, with only 50 seconds of every minute for one
range provided to the GP model

3.4.4

Predictions in space

Moving away from time, the GP’s can also be used to predict in a region in space
outside the locations of the lidar beams. This can be used for a variety of

methods/applications, such as that employed in [4] to visualize a horizontal wind field
using a “mixture of experts” approach.
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Figure 12 shows the predictions of mean radial wind speed in a 2D plane near the
lidar measurement height, while Figure 13 shows the uncertainty in the prediction as
output by the GP. The mean predicted wind field is visualized, showing turbulent
pockets of different length scales. The standard deviation provides a method of
assessing GP accuracy at different points in space. It can be directly seen that the
uncertainty of the predicted wind speed is much better near the lidar measurement
points. Both towards the center and outside the measurement plane, the values
approach the mean and the standard deviations get quite high. It is believed that this
is due to the design of the GP’s: they were created to estimate with points that create
a 3D control volume in space. With only two beams, the best that the WindlIris can
create is a 2D plane for the GP’s, limiting accuracy.

18

Z[m]

Figure 12: Radial wind speed predictions for one time within a plane using the GP methods.
Colour is the measured radial speed, in m/s, while the star indicates the position of the
met mast

Figure 13: Standard deviation of the GP prediction of radial wind speed for one time within a plane
using the GP methods. Color is the measured radial speed standard deviation, in m/s,
while the star indicates the position of the met mast

345 Predict in the center of the beams

The GP’s can be used to predict the wind speed at the center between the two beams,
allowing for an approximation of the HWS. This requires assumptions that the lidar is
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not tilting, and that the turbine is facing directly into the wind. However, for the
purposes of this report, these can be assumed to be true in order to see how a
prediction in space with the Windlris data and how the GP’s performs.

Figure 14 shows the results of this methodology, displaying the GP predictions of the
10-minute average wind speed and the Tl with the assumptions that the turbine was
facing the wind and that the lidar was horizontal. It can be seen that, once again, the
10 minute average mean wind speeds still match those of the MM values, though
they are slightly more variable. The TI, on the other hand, shows a large drop overall,
indicating that the standard deviation of the data has dropped sharply. This can be
seen with a quick comparison of the mean wind speeds in time, shown in Figure 15
for a 10-minute period.
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Figure 14: Vector reconstructed HWS (left) and Tl (right) for the 2 Hz GP predictions, compared to
the MM values, predicting at the center of the lidar beams
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Figure 15: GP prediction of mean HWS between the two lidar beams over 10 minutes, compared
to the MM values
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4 Conclusions

The goal of this project is to explore the potentials of using GP to improve the TI
calculation for lidar wind measurements. Several different GP implementations have
been tested: up-sampling the data to higher frequency, filling missing data, predicting
in space and predicting in the center of the beams. Although GP does not show
effective improvements for calculating T1 with the data from a two-beam lidar, it does
demonstrate that GP can be applied to almost any lidar system to predict LOS radial
wind speeds in space and time.

We identified the following recommendations for further exploring the application of
GP to improve lidar Tl calculation:
e using lidar with more beams for predictions within a volume as opposed to a
plane,
o further research into different methods of modelling/calculating TlI, and
e deeper investigation into the GP mechanics: change in GP time lengths or
overlapping GP1’s.

TNO PUBLIC



TNO PUBLIC | TNO report | TNO2021 R11603 | Final report 19/19

5 References

TNO PUBLIC

[1].
[2].
[3].
[4].

[5].
[6].
[7].

A. Sathe and J. Mann, ‘A review of turbulence measurements using ground-
based wind lidars’, Atmos. Meas. Tech., 6, 3147-3167, 2013

IEC 61400-12-1:2017, ‘Wind power generation systems - Part 12-1: Power
performance measurements of electricity producing wind turbines’.
K.Boorsma, et al, ECN-E-16-044, ‘lidar application for wind energy
efficiency’, 2016

C. Stock-Williams et al, ‘Wind filed reconstruction from lidar measurements
at high-frequency using machine learning’, J. Phys.: Conf. Ser. 1102 012003,
2018

J.W. Wagenaar, et al, ‘Turbine performance validation; the application of
nacelle LIDAR’, EWEA 2014

G. Bergman, J.W. Wagenaar and K. Boorsma, ECN-X-14-085, ‘LAWINE
instrumentation report’, Rev. 2, 2016

E. Simley, A. Scholbrock, ‘Nacelle Mounted lidar for Wind Energy
Applicaitons’, Wind Workforce Development Webinar Series, NREL, 2020



	1 Introduction
	2 Technical Background
	2.1 Wind turbine Type Certification (TC)
	2.2 Lidar
	2.3 Gaussian Process (GP)

	3 Turbulence Intensity  calculation
	3.1 Wind dataset
	3.2 Wind field reconstruction
	3.3 GP implementation
	3.4 Results
	3.4.1 Initialization of the GP’s
	3.4.2 Upsampling: 1.5Hz to 4Hz
	3.4.3 Filling missing data
	3.4.4 Predictions in space
	3.4.5 Predict in the center of the beams


	4 Conclusions
	5 References

