
Model-Driven System-Performance Engineering for
Cyber-Physical Systems

Industry Session Paper

Bram van der Sanden1, Yonghui Li1, Joris van den Aker1, Benny Akesson1,3, Tjerk Bijlsma4,
Martijn Hendriks1, Kostas Triantafyllidis1, Jacques Verriet1, Jeroen Voeten2, Twan Basten2,1

1ESI (TNO), Eindhoven, Netherlands
2Eindhoven University of Technology, Eindhoven, Netherlands

3University of Amsterdam, Amsterdam, Netherlands
4DEMCON, Eindhoven, Netherlands

ABSTRACT
System-Performance Engineering (SysPE) encompasses modeling
formalisms, methods, techniques, and industrial practices to design
systems for performance, where performance is taken integrally
into account during the whole system life cycle. Industrial SysPE
state of practice is generally model-based. Due to the rapidly in-
creasing complexity of systems, there is a need to develop and
establish model-driven methods and techniques. To structure the
field of SysPE, we identify (1) industrial challenges motivating the
importance of SysPE, (2) scientific challenges that need to be ad-
dressed to establish model-driven SysPE, (3) important focus areas
for SysPE and (4) best practices. We conducted a survey to collect
feedback on our views. The responses were used to update and val-
idate the identified challenges, focus areas, and best practices. The
final result is presented in this paper. Interesting observations are
that industry sees a need for better design-space exploration sup-
port, more than for additional performance modeling and analysis
techniques. Also tools and integral methods for SysPE need atten-
tion. From the identified focus areas, scheduling and supervisory
control is seen as lacking established best practices.

CCS CONCEPTS
• General and reference → Performance; Design; Empirical
studies.

KEYWORDS
System-performance engineering, model-driven design, CPS
ACM Reference Format:
Bram van der Sanden, Yonghui Li, Joris van den Aker, Benny Akesson, Tjerk
Bijlsma, Martijn Hendriks, Kostas Triantafyllidis, Jacques Verriet, Jeroen
Voeten, Twan Basten. 2021. Model-Driven System-Performance Engineering
for Cyber-Physical Systems: Industry Session Paper. In 2021 International
Conference on Embedded Software Companion (EMSOFT’21 Companion),
October 8–15, 2021, Virtual Event, USA. ACM, New York, NY, USA, 12 pages. 
https://doi.org/10.1145/3477244.3477985

EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8712-5/21/10.
https://doi.org/10.1145/3477244.3477985

1 INTRODUCTION
System performance – the amount of useful work
done by a system - measured in production speed of
products of a predefined quality.

System – a group of interacting interdependent ele-
ments forming a unified whole.

System performance often brings the competitive advantage
for high-tech Cyber-Physical Systems (CPS) like semiconductor
equipment, production printers, analytical instruments, andmedical
equipment. To meet market demands for product quality, product
customization, and total cost of ownership per product, systems
need to meet ever more ambitious performance targets relating to
system productivity. Performance is a cross-cutting system-level
concern, with intricate relations to other system-level concerns like
product quality, cost, reliability, security, and customizability.

Designing for performance implies that system performance is a
first-class citizen integrally taken into account during the full sys-
tem life cycle. System-Performance Engineering (SysPE) en-
compasses modeling formalisms, methods, techniques, and indus-
trial practices to design for performance. In this paper, we position
SysPE as a field of study. We primarily target the domain of CPS,
with a focus on single systems, i.e., CPS with a single managerial
and operational scope of control (following Maier’s differentiation
between systems and systems of systems (SoS) [44]). The expressed
views and insights may be useful in other domains than CPS and
they extend to SoS. However, performance-engineering challenges,
focus areas, and best practices in other domains and for SoS may
differ to some extent in content and importance.

SysPE in today’s industrial practice is typicallymodel-based, with
models being used to support design decisions.We advocateModel-
Driven System-Performance Engineering (MD-SysPE) to sys-
tematically address SysPE challenges in industry. In model-driven
development, models are pivotal. Models act as single source of
truth and they form a basis for the automated synthesis of imple-
mentation artifacts. In MD-SysPE, for instance, schedules, sched-
ulers, or controllers may be synthesized from models, guaranteeing
performance by construction. MD-SysPE is essential to make the
right design decisions during early stages of system development
and to optimize performance during system operation. Early insight
in system performance improves time-to-quality by requiring less
rework in later stages of development. Designing for performance

11

2021 International Conference on Embedded Software (EMSOFT)

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/


EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA van der Sanden, et al.

improves the cost-performance ratio of the final product by mini-
mizing system over-dimensioning. Furthermore, it enables a wider
range of system variants and operating conditions by taking into
account system variability and context during design and operation.

To structure the field of SysPE, we identify (1) industrial chal-
lenges motivating the importance of MD-SysPE, (2) scientific chal-
lenges that need to be addressed to realize MD-SysPE; (3) focus
areas for SysPE covering the entire system life cycle from devel-
opment to operation, and (4) best practices for each of these focus
areas. An initial overview was based on our experiences in almost
20 years of public-private partnership programs on performance
engineering in the Dutch high-tech ecosystem, involving ESI (TNO)
and both industrial and academic partners in the CPS domain. We
then conducted a survey to collect feedback from the international
industrial and academic community on the focus areas and best
practices and to validate our views. We also gathered input on the
state of practice and future challenges in SysPE. The received input
and feedback has been integrated in the presented SysPE overview.

In the next section, we elaborate the context in whichwe position
SysPE.We then consider the challenges in SysPE in Sec. 3, from both
industrial and scientific perspectives. From these challenges, we
identify five focus areas for SysPE in Sec. 4, that together cover the
full system life cycle. For each of these areas, Sec. 5 then provides an
overview of best practices. Sec. 6 highlights the importance of tool
support and integral methods for MD-SysPE, identifying tooling
andmethods as an additional focus area, orthogonal to the life-cycle-
related focus areas of Sec 4. Sec. 7 presents the survey methodology.
In Sec. 8, we summarize the most important results from the survey.
We moreover explain how the survey results affected the views
expressed in the earlier sections. Sec. 9 concludes.

2 CONTEXT
The SysPE challenges, focus areas, and best practices presented in
this paper specifically address the performance and system per-
spectives of CPS. However, systems operate in and interact with an
environment, and performance cannot be considered in isolation.
In this section, we briefly chart the context in which we elaborate
our views on SysPE, providing both the scope for our work and
pointers for further reading.

Systems Engineering. Systems Engineering [38] is an established
approach to enable the realization of successful systems. Systems
engineering covers all relevant aspects from the needs of customers
to the business needs of the supplier. This includes system perfor-
mance. The trend is towards Model-Based (Systems) Engineering
(MB(S)E) [37]. MB(S)E is a methodology that focuses on using do-
main models as primary means of communication, in contrast to
document-centric engineering. Whereas in MBE, models play an
important role in the engineering process, in Model-Driven Engi-
neering (MDE) [10], models drive the process during the entire
system life cycle, from requirements engineering to development,
implementation, verification and validation, deployment and op-
eration. Theelen [68] suggests to structure MB/DE methodologies
in terms of formalisms, techniques, methods, and tools, a proposal
that was later adopted in the BoDERC framework [31]. Models
are expressed in formalisms, like automata, logic, and differential

equations, or languages like SysML [27] or a domain-specific lan-
guage (DSL) [25, 75]. Techniques are used to retrieve information
from models, such as performance metrics, to optimize designs,
or to generate code. Methods specify how to apply formalisms,
techniques, submethods, and tools to address the design questions
at hand. Tools support the application of formalisms, techniques,
and methods. Throughout the paper, we use these methodology
concepts to systematically present and express our views.

Empirical evidence supporting the success of MB/DE for com-
plex systems such as CPS in practice is still inconclusive. A recent
study [32] shows that claimed benefits are not yet supported by
scientific literature, and more research is needed to formally mea-
sure the benefits. Another study [43] confirms perceived benefits of
MBE in the embedded-systems domain through a survey among
practitioners, but it also identifies challenges. In the current paper,
we advocate MD-SysPE, and we present feedback collected from
the industrial and academic community on the identified best prac-
tices. The feedback confirms the envisioned benefits of MD-SysPE,
but also shows that many challenges remain, e.g., with respect to
tooling. The latter is in line with a key conclusion from [43].

Software Performance Engineering. Software is an important part
of any CPS. The need for explicit performance engineering in the
software domain was recognized early, dating back to the early
years of computing [60]. The software performance engineering
(SPE) methodology, for instance, has evolved over several decades
and provides formalisms, techniques, methods, and tools for op-
timizing software performance [61]. SPE promises that software
designs and implementations will meet the performance require-
ments with a shorter development cycle. Techniques that are used,
range from predictive modeling to the creation of a clear business
case for performance engineering. The methodology fits well with
an MDE approach and it links with performance monitoring [22],
where data from system operation is used to manage and optimize
performance. SPE has started to move into the CPS domain [62].
SysPE typically involves more disciplines than only software, giving
rise to new challenges. However, SPE is more mature than SysPE
for CPS and SysPE can benefit from established SPE practices.

Embedded Performance. Embedded systems are systems that are
an integral part of other systems. They often comprise a combi-
nation of hardware and software and are used to control and/or
monitor the system they are part of. As such, embedded-systems
performance is crucial for the performance of any CPS. Modern
embedded computing systems are high-performance systems that
must meet stringent requirements related to (real-time) perfor-
mance, power/energy consumption, and cost [77]. SysPE for CPS
needs to integrally consider performance of the embedded comput-
ing systems at the heart of the CPS. Many aspects play a role in
analyzing and optimizing performance of embedded systems, rang-
ing from timing analysis [45] to resource allocation [59]. Relevant
techniques from the embedded domain need to be integrated in
MD-SysPE methods for CPS being developed to date.

Systems of Systems. Systems are often part of a bigger whole,
operating in an environment with other systems and human users.
In smart industry, warehousing, or intelligent transportation, for

12



Model-Driven System-Performance Engineering for Cyber-Physical Systems EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA

instance, CPS are combined into SoS such as a complete manufac-
turing plant, an automated warehouse shuttle system, or a vehicle
platoon connected to an intelligent traffic infrastructure. Maier [44]
postulated several characteristics of such SoS, of which managerial
and operational independence are the most important ones. Perfor-
mance of SoS depends not only on the systems themselves, but also
on their interaction. Performance engineering for SoS therefore has
specific challenges, beyond the challenges for SysPE for individual
CPS. Examples are emergent behavior among interacting systems
and evolutionary change of the SoS, as e.g. observed by Falkner
et al. [21]. To cope with these additional challenges in optimizing
performance of SoS, they propose anMDE solution combining high-
level behavioral and workload modeling in ‘what-if’ simulations
with generated executable deployments on prototype platforms.
Such an approach complies very well with the SysPE focus areas
and best practices we identify in this paper for individual CPS.

3 CHALLENGES IN DESIGNING FOR
PERFORMANCE

For industry, system-level performance, typically in combination
with other system-level KPIs, is a crucial business driver. The
performance-engineering challenges that industry is facing lead to
interesting scientific challenges. Solutions to those scientific chal-
lenges are needed to realize MD-SysPE and as such may have a
high impact on industrial practice. We therefore summarize indus-
trial challenges (IC) and scientific challenges (SC) in MD-SysPE.
The identified challenges are based on our extensive experience in
public-private collaborations involving SysPE, complemented with
input received through the survey (as explained in Sec. 8.4). The
challenges serve as motivation for the focus areas and best practices
presented in later sections, and as an inspiration for researchers
and developers active in SysPE. Addressing the challenges is crucial
to establish MD-SysPE in industrial practice.

3.1 Industrial Challenges
In today’s industrial practice, performance problems often only
materialize late (IC1) in the development process of CPSs, in
the prototyping or integration phases, or during system opera-
tion. Typically, system performance targets are broken down into
performance targets and budgets for the key components in the
system. Component and system prototypes are then used to eval-
uate whether performance targets are met. The need for proto-
types often leads to a costly and time-consuming iterative
development process (IC2) of updating and re-evaluating per-
formance targets and budgets. Performance problems materialize
during system operation when systems are used in configurations
or operating conditions that were not foreseen (IC3) or not
properly evaluated. The way in which the user or other systems in-
teract with the system can have a significant impact on the system
load and performance. Design-timemodeling and analysis need
to resemble real use cases as close as possible (IC4). Accurate
data about the system usage is needed to achieve this.

To avoid costly rework and system updates, it is essential to con-
sider system performance during early development (IC5)
and to trace performance targets and budgets throughout sys-
tem development and operation (IC6). To this end, industry

needs industrially-usable, domain-specific languages, meth-
ods, and tools (IC7) to specify, model and analyze system-level
performance early in the development process. These languages,
methods and tools need to be usable by developers with different
backgrounds, and they need to cover all performance-related
aspects of relevant disciplines (IC8), including for instance soft-
ware, mechanics, and electronics. Models, methods, and tools are
often company-specific, resulting in limited re-use of methods
and tools across industries (IC9).

Typical available performance-engineering solutions focus on
individual disciplines at low abstraction levels. Models are also
often limited to individual system components, because system-
level models are too complex to develop and analyze (IC10)
with existingmethods and tools.Traceability of performance as-
pects across levels of abstraction, across system components,
and across disciplines is lacking (IC11).

Platform-based development approaches are used to tailor the
system towards specific markets, introducing variation points in
the design for specific configurations, modules, and options. This
increased diversity makes it difficult to keep a good overview of
system performance across a product line (IC12)without eval-
uating all system variants individually, and to identify the region
of operation with good performance.

High performance computing is needed to deal with the increas-
ing amounts of data that need to be processed. Techniques are
needed to allocate computations to a heterogeneous comput-
ing infrastructure and to analyze the impact of data process-
ing on system performance (IC13), considering computational
resources, network limitations, and communication overhead.

3.2 Scientific Challenges
To address the industrial challenges and to realize MD-SysPE in in-
dustrial practice, we need to tackle several scientific challenges. We
need performance models at high abstraction levels that are
sufficiently accurate (SC1) to support decision making during
system development and operation. These models not only need to
capture relevant performance aspects, but also the relations and
trade-offswith other system-level concerns (SC2) like product
quality, cost, reliability, security, and energy usage. We need tech-
niques andmethods to analyze thesemodels, to optimize de-
signs for performance, and to explore trade-offs (SC3) with
other system-level concerns. System variability should be in-
tegrally supported (SC4) in modeling formalisms, analysis and
optimization techniques, and performance-engineering methods.

Timing predictability (SC5) of systems and system compo-
nents is a prerequisite to come to accurate system performance
predictions. The performancemodels, techniques andmethods need
to link to models, techniques and methods from all relevant
disciplines (SC6) that impact performance. This is particularly
challenging because the various disciplines use discrete, continu-
ous, and stochastic models. It is not straightforward to meaningfully
combine analysis results for these different types of models.Model
consistency (SC7) is essential in this context.

Modelling, analysis, and optimization need to scale (SC8)
to the highly complex systems we see in the modern high-tech sys-
tems industry. We also need solutions that work during system

13



EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA van der Sanden, et al.

operation (SC9), under tight timing and resource constraints, to
cope with different system configurations and changing operat-
ing conditions. We need traceability of performance and per-
formance optimization across abstraction levels, across dis-
ciplines, throughout system development, and during sys-
tem operation (SC10). Further, learning and evolving perfor-
mance models from data (SC11) in line with system operation
and evolution is an important challenge. The ultimate goal is to
constructively synthesize and automatically adapt systems
to optimize performance (SC12), starting from models. That is,
to truly achieve MD-SysPE.

4 FOCUS AREAS
Given the industrial challenges presented in the previous section,
we advocate MD-SysPE throughout the whole system life cycle
to address these challenges. Domain-specific conceptual model-
ing techniques are needed that capture all relevant aspects across
disciplines in a particular domain, such as production systems or
networked systems. Models should provide an explicit overview of
how different system components relate and interact, and how com-
ponents impact performance and other relevant system qualities.
Models should be the single source of truth. The models should link
to analysis, synthesis, scheduling, and control techniques, enabling
automated reasoning about the performance of design alternatives,
constructive design-space exploration, and on-line performance
optimization. Data collected during system operation provides feed-
back on operation and design. We identify five main focus areas for
SysPE. In each of these areas, further research and development is
needed to realize MD-SysPE:

(1) Performance architecting (PA)
(2) Model-driven design-space exploration (DSE)
(3) Performance modeling and analysis (PMA)
(4) Scheduling and supervisory control (SSC)
(5) Data-driven analysis and design (DDAD) (including data

collection and model learning)
The five focus areas cover all aspects of system development

and system operation that are relevant for MD-SysPE. They are
largely independent of the chosen development process, and fit
with, for instance, agile development and classical V-model devel-
opment [24]. Fig. 1 positions the focus areas in the V-model system
development process. System development starts with the require-
ments and architecting phase. Progressing to the system design
and system implementation phases means detailing more specific
system elements. After implementation of the needed components,
the system is integrated, verified and validated. While the system is
in operation, incremental development iterations may be performed
to update the system or to adapt it to specific operating conditions,
as illustrated by the small V-development iterations at the right.

Designing for performance starts with performance architect-
ing (see, e.g., [31, 58]), to determine the performance aspects that
need to be taken into account at the start of the development pro-
cess and during the system life cycle, to balance those with other
system-level concerns, and to ensure that the system (reference)
architecture fits with the performance requirements.

In the early design phases,model-driven design-space explo-
ration [50] is performed to explore trade-offs and find optimal

Figure 1: System development process with a positioning of
the MD-SysPE focus areas

Figure 2: System life cycle with a positioning of the MD-
SysPE focus areas

designs within a given system architecture. Exploration is done at
a high abstraction level, following pre-defined patterns to systemat-
ically cope with system complexity [29]. Performance modeling
and analysis techniques [19, 39] are used to express and analyze
the performance of specific system configurations. Techniques are
targeted to the type of systems and performance requirements
at hand, ranging from analytical modeling and reasoning about
performance bounds to simulation and stochastic reasoning about
performance. For CPS, modeling and analysis often needs to com-
bine multiple modeling formalisms and analysis techniques to cover
all relevant disciplines (see e.g., [12]). Fig. 1 positions PMA at the
center of the development process. In practice, PMA plays a role
throughout the entire process at all abstraction levels. The impor-
tance of PMA will only increase when moving from MB-SysPE
towards MD-SysPE.

Scheduling and supervisory control techniques [7, 52, 55]
are essential to achieve the required performance during system
operation. Schedulers and control strategies need to be designed
during system development. Scheduling and control may then be
optimized during system operation when the full operating condi-
tions and all system inputs are known. Such on-line computations
need to be donewithin strict time budgets andwith the often limited
processing resources available during system operation.

Accurate models are essential for all the mentioned activities.
Data-driven analysis and design [9, 13, 65] techniques enable
model learning [80], model validation [46], and model calibra-
tion [51]. Operational data can be used for monitoring performance
targets during system operation [42], for diagnosing unexpected
performance degradation [11, 48], for development of system up-
dates, and for system (re-)design when developing new variants of
the system at hand. Selecting the right data to be collected and light-
weight, non-intrusive system instrumentation are essential [74].

14



Model-Driven System-Performance Engineering for Cyber-Physical Systems EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA

Fig. 2 positions the focus areas in the system life cycle, emphasiz-
ing the feedback cycles from system operation to improve system
performance. Operational data may be used to improve system
performance at runtime and through system updates. It may also
serve as valuable input for the development of new systems.

5 BEST PRACTICES
This section presents best practices for each of the five SysPE focus
areas. The best practices reflect a combination of the industrial
state of practice in SysPE (which is mostly model-based) and best
practices that we envision as prerequisites to establish MD-SysPE.
Sec. 8 discusses to what extent these best practices are recognized
as established by industry and as important by academia. One of
the best practices presented in this section (PA1) was added based
on feedback from the survey participants; see Sec. 8.3 for details.

5.1 Performance Architecting
A reference architecture [15] is a prescribed template solution for
the architecture of a concrete system at hand. Reference architec-
tures are a commonly used best practice in systems engineering, in
particular for product families and product lines. A reference archi-
tecture may prescribe, for instance, the structural decomposition of
the system and the software architecture, as well as hardware and
software interfaces. As first best practice for SysPE, we observe
that it is important to include a performance view in reference
architectures (PA1). In manufacturing, for example, the Overall
Equipment Effectiveness (OEE) method [1] takes into account avail-
ability, productivity, and quality of a manufacturing system. OEE
computes the effectiveness of a system from the ratio between the
realized value and expected value for each of these three aspects.
OEE aligns closely with our notion of system performance defined
as the production speed of products (productivity) of a predefined
quality (quality).

Architecting commonly distinguishes artifacts, domainmodels,
and aspect models [57]. Artifacts, such as documentation, code,
and system data, describe the current system. Domainmodels gener-
alize the essential domain concepts and their inter-relations beyond
the scope of specific systems to the domain at hand, covering all rel-
evant disciplines. The domain models link to aspect models that en-
able analysis of particular aspects of design alternatives. For perfor-
mance architecting, domain models (PA2) and aspect models
(PA3) should make performance aspects explicit, including
their relation to other system-level concerns [6, 16, 78, 81].

Platform-based design (PA4) [56] and budget-based design
(PA5) [26] form a basis for first-order system decomposition.
Platform-based design targets the development of re-usable com-
ponents, subsystems, and technology (comprehensively referred to
as platforms). Budget-based design aims to budget critical aspects,
including performance, and resources in a design. When integrated
in a model-driven design flow, e.g., through virtual prototypes, plat-
forms and budgeting help to speed up the development process, to
better evaluate project risks, and to obtain better design trade-offs
that explicitly consider performance during early design.

5.2 Model-Driven Design-Space Exploration
Model-based design-space exploration is the process of iterative
model-based prediction (DSE1) and validation (DSE2) of the
performance of design alternatives [39], to obtain feedback on
the development process. Model-based DSE may help to reduce
and refine the high-level design alternatives identified during ar-
chitecting (e.g., through set-based design [58]) towards concrete
designs. Model-based DSE is a step towardsmodel-driven DSE (MD-
DSE), in which models drive the development process and are the
single source of truth. MD-DSE uses virtual prototypes for per-
formance prediction and exploration of alternatives. In the devel-
opment of system variants (product families, product lines), DSE
may follow the predict-the-past, explore-the-future paradigm
(DSE3) [36, 49]. The past is predicted by creating aspect models of
existing systems or system components, calibrated or validated with
measurements. This gives prediction accuracy and builds trust. To
explore the future, performance aspects of design alternatives can
be analyzed with the models adapted to these design alternatives.

To facilitate effective and efficient design-space exploration, it
is important to separate concerns regarding system functional-
ity and implementation aspects, and make the variation points
explicit. The Y-chart paradigm (DSE4) [33, 40, 41] proposes to
model application functionality and the implementation platform
as separate elements, with an explicit mapping as variation point be-
tween them. This allows easy variation of application functionality,
platform resources, and mapping choices and facilitates analyzing
the performance impact of these choices. Design-space exploration
systematically explores design alternatives around these variation
points. Efficient DSE is difficult if alternatives require structural
model adaptations that go beyond these explicit variation points.

5.3 Performance Modeling and Analysis
Performance modeling is typically done using a combination of
knowledge-driven and data-driven modeling [20]. Knowledge-
driven modeling (PMA1) builds on expert knowledge of do-
main specialists. Data-driven modeling (PMA2) creates models
through regression or model learning from data collected from
prototypes, tests, or system operation. Whereas domain models
are typically developed during system architecting, performance
aspect models are mostly developed and used during later phases,
primarily design, but also for verification and validation. MD-SysPE
requires models with rigorous mathematical foundations and tool
support. Examples of such combinations are state charts [30] in
StateFlow (mathworks.com/products/stateflow.html), timed sto-
chastic decision processes [5, 67, 76] in POOSL [69] (poosl.esi.nl),
and max-plus linear systems [18] in LSAT [72] (lsat.esi.nl).

A common technique to analyze performance of specific system
behaviors is simulation (PMA3) [23, 47] (e.g., in Simulink, math-
works.com/products/simulink.html, or POOSL). Mourtzis [47], for
instance, provides a nice survey on simulation for the design and
operation of manufacturing systems, also covering the plant and
manufacturing networks (i.e., the SoS) perspectives. Analytical
analysis (PMA4) [18, 67] is used to derive performance estimates
or bounds, e.g., in LSAT.Model checking (PMA5) [14], e.g., in UP-
PAAL [4] (uppaal.org), is used to exhaustively verify performance

15



EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA van der Sanden, et al.

properties on a system model. Property verification can also be ap-
plied to execution or model traces (Gantt charts) built from actions,
events, and signals, where timing properties are captured in formal
logic as used for example in TRACE [34] (trace.esi.nl).

5.4 Scheduling and Supervisory Control
Supervisory controllers and schedulers need to realize correct
system operation optimizing performance in relation to other
system-level concerns like product quality and accuracy. Based
on models of system behavior, (template code for) schedulers
and controllers can be synthesized (SSC1) [3, 55]. Those sched-
ulers and controllers should optimize performance at runtime
(SSC2) [53] for varying system configurations and operating con-
ditions. Runtime performance optimization through scheduling
and control ranges from performance optimization for workloads
being processed by the system [73] to model-driven quality- and
resource management [35] to cope with configuration and opera-
tional changes in general, managing all relevant system qualities
and resources. Schedulers and controllers should guarantee per-
formance by construction (SSC3) [28]. For instance, a scheduler
may guarantee a minimum productivity under varying operating
conditions. Another example is a controller that minimizes energy
usage at runtime taking into account operational information on
energy usage while ensuring that the expected number of missed
deadlines does not exceed 2%. SSC3 fits well with e.g. the Rigorous
System Design (RSD) approach [8], which advocates model-driven
correctness by construction in a broad sense. Performance is one of
the mentioned aspects. Supervisory controller synthesis (SCS) [55]
is a method to automatically synthesize a supervisor from a system
model that restricts the system behavior to a given specification
describing the allowed behaviors, hence guaranteeing correctness
by construction. Performance is not explicitly optimized in SCS, but
the resulting supervisor may be optimized for performance after-
wards [64, 71]. A recent overview of scheduling theory and practice,
covering both the scheduling of product flows and scheduling of
software tasks on embedded processors, can be found in [7].

5.5 Data-Driven Analysis and Design
With the availability of large quantities of data and computing
power, data-driven modeling, analysis, scheduling, and control com-
plement their knowledge-based counterparts. Operational data may
be used to improve system performance. It is essential to collect the
right data (DDAD1), via light-weight, non-intrusive system
instrumentation and timingmeasurements (DDAD2) [63, 74]
to minimize the impact on system performance. It is important to
ensure timing accuracy (DDAD3) (e.g., via clock synchroniza-
tion) and to consider storage and bandwidth (DDAD4) limita-
tions that determine whether the required data can be collected
in a real-time manner or not [79]. Operational data can be re-
lated to models through model validation and calibration
(DDAD5) [51],model learning (DDAD6) [70, 80], or digital twin-
ning [66], balancing knowledge-driven and data-driven de-
sign approaches (DDAD7) [54]. DDAD1 through 4 focus on the
collection of data, whereas DDAD5, 6, and 7 focus on the use of
data in modeling and design.

6 TOOLS AND METHODS
Any MDE methodology needs supporting tools and methods. The
focus areas and best practices presented in the previous sections
cover methods to some extent (albeit superficially), but do not cover
the tooling perspective. Several responses to the survey that we
conducted comment on tools and methods for SysPE, mostly on the
lack of proper tooling and methods. Responses indicate the need for
automation, e.g., in support of DSE, the lack of interoperability be-
tween tools, and the lack of integration in performance-engineering
methods. This conforms to observations made in literature, e.g.,
[43]. In this section, we therefore briefly discuss the role and im-
portance of tools and methods in MD-SysPE, concluding that tool-
supported MD-SysPE methods (TSM) should be an additional
cross-cutting focus area for MD-SysPE, complementing the earlier
life-cycle-oriented focus areas identified in Sec. 4.

Tools are essential to support the efficient application of for-
malisms, techniques, and methods. Models can be expressed in
DSLs [25, 75], tailored to the application domain, or in more generic
languages like SysML [27] or Simulink [17]. By using tools, vari-
ous engineering activities can be automated, including (domain-
specific) model validation, analyzing performance of design alterna-
tives, producing artefacts like documentation and code, evaluating
trade-offs, and verification and validation. Design models can be
(semi-)automatically refined into aspect models for a particular sys-
tem aspect of interest, such as performance. Such aspect models can
be analyzed, and the results can be taken into account in the design.
This design-analysis feedback loop supports rapid DSE and helps
in making the right design choices. To date, however, mature, in-
dustrially usable tool-supported performance-engineering
methods covering all relevant disciplines and the full life
cycle of CPS are lacking. Some languages and tools, like UML,
SysML and Simulink, are in common use in industry in the CPS do-
main. Also, there is a plethora of academic formalisms, techniques,
and tools that may be used in performance engineering. However,
there are no systematic methods that connect these formalisms,
techniques, and tools. The precise relations between models made
with various tools and analysis results obtained from those models
are often not clear, leading to potentially inconsistent results and
conclusions. Traceability of performance aspects across abstraction
levels, disciplines, and the system life cycle is lacking. These obser-
vations conform to the industrial and scientific challenges identified
in Sec. 3. Therefore, we decided to introduce TSM as an additional
cross-cutting focus area for MD-SysPE. It is orthogonal to the five
focus areas of Sec. 4 in the sense that integral tool-supported meth-
ods are needed to support all these areas in a coherent manner,
and across the full system life cycle. The development of model-
driven methods and tool support for SysPE can only be done in
close collaboration between industry and academia, where from
industry both equipment manufacturers and tool providers need to
be involved.

7 VALIDATIONWITH THE ECOSYSTEM -
SURVEY METHODOLOGY

As explained, the challenges, focus areas, and best practices pre-
sented so far are the result of many years of experience of the
authors in public-private collaborations and a validation of the

16



Model-Driven System-Performance Engineering for Cyber-Physical Systems EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA

developed viewpoints with the SysPE community through a survey.
This section describes the way in which we set up and executed
the survey to collect feedback from the international industrial and
academic performance-engineering community.

Survey Design. The survey was designed (in Survalyzer) as an
anonymous cross-sectional study, where we collected responses in
June 2021. The survey consisted of four parts:

(1) Company & personal profile;
(2) Performance engineering focus areas - your feedback;
(3) Best practices - your feedback;
(4) The future of performance engineering - challenges you see.
We used a combination of closed and open questions. Closed

questions were used in Part 1 to collect characteristics about the
respondent’s organization, role and experience in SysPE. In Parts 2
and 3, we used closed questions to determine to which extent the
focus areas and best practices are recognized as such and deemed
important. We used open questions to allow respondents to give
feedback on the focus areas and best practices. Part 4 used open
questions to collect feedback on performance- and performance-
engineering challenges and regarding the availability of meth-
ods/tools/techniques to address those challenges.

We tailored some questions to the respondent’s role and or-
ganization to distinguish between respondents directly involved
in SysPE, like architects and engineers, and those only indirectly
involved, like university researchers.

• Role: System engineer/architect, engineer/designer, manager
– To what extent do you recognize [focus area] in the daily
practice of your company?

– Do you think [focus area] gets the right level of attention
in your organization?

• Role: Consultant, researcher, other
– How important is [focus area] in your work?
– Do you think [focus area] gets the right level of attention?

• Organization: System development organization, first or sec-
ond tier industrial supplier, consulting firm, other
– What system performance-related challenges do you fore-
see in the coming 5 years?

– How are you planning to address these challenges?
• Organization: University, applied research organization
– What new, or upcoming, scientific challenges do you see
with respect to system-performance engineering of CPS?

Sampling Method. There is not yet an established network to
reach the target audience of researchers and practitioners work-
ing on SysPE. We therefore used a combination of convenience
sampling and snowball sampling. With convenience sampling,
we reached out to the target population using the authors’ com-
bined networks, as well as to the academic and industrial par-
ties that ESI is in regular contact with. We sent personalized
invitations to this group, followed by one reminder two weeks
later. We also sent the survey (and one reminder) to three mail-
ing lists: EMSIG (announcements@lists.artist-embedded.org), HPC
(hpc-announce@mcs.anl.gov), and Concurrency (concurrency@
listserver.tue.nl). Finally, we distributed an invitation on LinkedIn.
We applied snowball sampling by asking those invited to forward
the survey to others who might be interested.

Data Selection. We received 87 fully completed responses, among
several hundreds of started responses. Reasons to not complete the
survey could be the survey length, or the fact that we used snowball
sampling and social media, thereby targeting a broad audience. We
observed that some participants filled in the questionnaire up to
and including Part 3 on best practices, but did not continue with the
open questions regarding the challenges in Part 4. We decided to
include all responses where at least one of the questions regarding
the best practices for a specific focus area were answered, yielding
100 responses considered in the survey analysis.

8 VALIDATIONWITH THE ECOSYSTEM -
SURVEY RESULTS

This section presents the results of the survey in four subsections in
line with the survey sections. Table 1 summarizes the observations
that can be made from the survey. All observations are based on a
95% confidence level, except when explicitly mentioned otherwise.
When responses to specific questions are summarized, the number
of participants X that responded is given as (𝑛 = X).

8.1 Profiles
From the profiling questions, we use the one on the type of organi-
zation that a respondent is employed with to differentiate between
industry and academia.

Question 1. What type of organization do you work for? (n=100)

System development org. 49% 1st or 2nd tier supplier 5%
University 35% Applied research org. 4%
Consulting firm 6% Other 1%
A respondent belongs to the Industry profile (60 respondents)

if they indicate that their organization is a system development
organization, 1st or 2nd tier supplier, or consulting firm, and to the
Academia profile (35) if their organization is a university.

8.2 Focus Areas
We first present validation results for the focus areas. As explained
in Sec. 7, we differentiated questions about focus areas for practi-
tioners directly involved in SysPE and respondents only indirectly
involved. Question 2 (see graphic at the end of this section) sum-
marizes the aggregated answers to the survey questions checking
whether the focus areas are recognized in daily practice, resp., con-
sidered important.

Four out of five focus areas are recognized by a (statistically
significant) majority of the participants, meaning they answered
either very recognizable/important or recognizable/important. PA
is the most recognized area (81%), followed by PMA (71%), SSC
(68%), DSE (62%), and DDAD (56%). The latter result is not statisti-
cally significant though. So we conclude that the respondents are
undecided on DDAD. The observations on the validity of the focus
areas are summarized in Table 1 as FA1.

In an open question, we asked whether any focus areas are
considered missing. As already explained in Section 6, in part based
on responses to the survey, we conclude that methods and tools
should be a focus area for SysPE. The answers indicate that no other
areas are missing. Several respondents mention concrete items in
response to this question that fit within the identified best practices.

17



EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA van der Sanden, et al.

Focus areas - overall
FA1 PA, DSE, PMA, and SSC are focus areas that are recognized/considered important1 by the community; answers for DDAD

are inconclusive. The orthogonal TSM focus area on tool-supported methods was added. No other areas are missing.
FA2 PA and SSC receive sufficient attention; DSE should receive more attention.

Respondents are undecided about whether or not PMA and DDAD should receive more attention.
Focus areas - industry vs. academia

FA.DSE Industry respondents are inconclusive about the recognition of model-driven DSE in their daily practice, but
they indicate that model-driven DSE should receive more attention.

Academia indicates that DSE is important, but is inconclusive about whether or not it deserves more attention.
Best practices - overall

PA PA3, performance aspect models, and PA4, platform-based design, are recognized as best practices.
Responses for PA2, domain models, PA5, budget-based design, are inconclusive.
PA1, performance reference-architecture view, was added based on feedback (and hence not evaluated).

DSE DSE1 and 2, model-based prediction, model validation, are recognized as best practices.
DSE through the specific predict-the-past, explore-the-future (DSE3) and Y-chart (DSE4) methods is not recognized.

PMA All best practices are recognized as such, except for model checking (PMA5).
SSC SSC2, runtime optimization, is recognized as best practice; answers on the other two best practices are inconclusive.
DDAD DDAD1 (data collection), 2 (instrumentation), 3 (timing accuracy), and 5 (calibration/validation) are recognized;

responses for DDAD4 (storage/bandwidth), 6 (model learning) and 7 (combining data/knowledge) are inconclusive.
Best practices - industry vs. academia

DSE34 The predict-the-past, explore-the-future paradigm is not recognized by academia (with inconclusive industry responses);
the Y-chart is not recognized by industry (with inconclusive academic responses).

PMA1 Knowledge-driven modeling is recognized as best practice by industry, but not by academia (responses inconclusive).
SSC2 Runtime performance optimization is recognized by academia, whereas industry responses are inconclusive.
DDAD6 Model learning is not recognized as best practice by industry; it is significantly more often recognized by academia

(where academia recognizes it as best practice with 90% confidence).
1The wording ‘recognized’ corresponds to a (statistically significant) aggregated score of at least 50% ‘recognized’/‘very recognized’ answers in the corresponding survey
question; ‘important’ corresponds to an aggregated score of at least 50% ‘important’/‘very important’ answers; ’sufficient attention’ corresponds to an aggregated score of at least
50% ‘sufficient attention’/’too much attention’ answers’; negative wordings correspond to cases where the two negative answer categories in the respective question exceed 50%.

Table 1: Most important observations from the survey results.

Quite a number of responses indicate that other aspects of systems
(cost, correctness, quality, extensibility, dependability, security, and
privacy) are also relevant. This is in line with, for instance, best
practices PA2 and PA3 that state that performance models should
cover the relation to other system-level concerns.

We also asked whether the focus areas receive sufficient atten-
tion in the ecosystem, see Question 3 and observation FA2 in Ta-
ble 1. Two focus areas are considered to receive sufficient attention,
namely PA and SSC. Interestingly, DSE is considered to receive
insufficient attention. The respondents are undecided on PMA and
DDAD. DSE is considered to be in need for extra attention by 64%
of the respondents, followed by 47% for PMA, 42% for DDAD, 34%
for PA, and 25% for SSC.

The community is very divided about DDAD, both in terms
of recognition of the area and the need for extra attention. IC13,
emphasizing the importance of data, was added as an industrial
challenge based on the responses to the open questions in the survey
(see Sec. 8.4), further illustrating the division. In line with IC13 (and
SC11 on model learning and evolution), we believe that DDAD will
only gain in importance with the increasing availability of data, not
only in general for SE, but also specifically for MD-SysPE.

Given the observations summarized under FA1 and FA2, we
investigated whether the industrial and academic communities

differ in their views. When comparing academic and industrial
responses, we observe that 52% of the industry respondents does not
recognize MD-DSE in their daily work, whereas 48% does1. At the
same time, 68% of the industry respondents indicates that it receives
insufficient attention. A large majority of academic respondents
indicates MD-DSE is an important area (83%), whereas they are
inconclusive on whether or not it should receive more attention.
FA.DSE in Table 1 summarizes these observations. The overall
observation that MD-DSE deserves more attention is mainly driven
by industry.

Another observation from the profiled data is that PMA is consid-
ered important by academia (85%) and receives insufficient attention
(53%). Industry indicates that it is recognized in daily practice (64%)
and receives sufficient attention (54%). The differences between
academia and industry for PMA are not statistically significant
though. So we may conclude that the two profiles do not signifi-
cantly differ in their views on PMA. Also for the other three focus
areas, PA, SSC, and DDAD, the results for industry and academia do
not deviate (statistically significantly) from the overall observations
for those areas.

1For space reasons, we do not include separate figures for the profiles, but summarize
the most important findings in the text and in Table 1.

18



Model-Driven System-Performance Engineering for Cyber-Physical Systems EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA

Question 2. To what extent do you recognize [focus area] in the
daily practice of your company? / How important is [focus area] in
your work? (n=100)

0% 20% 40% 60% 80% 100%

Performance
Architecting (PA)

Model-driven DSE (DSE)

Performance modeling
and analysis (PMA)

Scheduling and
supervisory

control (SSC)
Data-driven analysis
and design (DDAD)

7%

8%

16%

31%

23%

22%

35%

45%

37%

40%

44%

38%

36%

25%

31%

24%

18%

very recognizable/important somewhat not cannot comment

Question 3. Do you think [focus area] gets the right level of atten-
tion (in your organization)? (n=100)

0% 20% 40% 60% 80% 100%

Performance
architecting

Model-driven DSE

Performance modeling
and analysis

Scheduling and
supervisory Control
Data-driven analysis

and design

11%

9%

58%

31%

48%

63%

44%

29%

55%

40%

21%

39%

9%

7%

abs. insuff. insuff. suff. too much cannot comment

8.3 Best Practices
In this subsection, we discuss the survey results for the best prac-
tices presented in Sec. 5. For each focus area, we asked the par-
ticipants whether or not they recognize the given best practices
as such. We also asked in open questions per focus area whether
any of the best practices is not considered industrially relevant. We
wanted to explicitly check whether any potentially non-recognized
best practices might be considered industrially not relevant. The
latter is a stronger statement than not recognizing a best practice.
Finally, we asked whether the participant sees any best practice not
mentioned. As a result of feedback we received through these open
questions, we added best practice PA1, stating that a reference archi-
tecture should have a performance view. Respondents commented,
for instance, that performance should be taken into account in the
system decomposition and in the software architecture. We did not
add any further best practices. As with the open question regarding
potentially missing focus areas, we also received several comments
about missing best practices that we consider part of the already
identified best practices. None of the identified best practices was
considered not industrially relevant by any significant number of
participants.

Performance Architecting. The results for PA are summarized
in Question 4. PA1, which was added based on feedback, was not
evaluated. From the other four best practices, PA3 and PA4 are
recognized, whereas the results for the other two best practices are
inconclusive. Entry PA in Table 1 summarizes these observations.

Question 4. Which best practices regarding performance architect-
ing do you recognize as such? (n=98)

0% 20% 40% 60% 80% 100%

(PA2) Domain models

(PA3) Performance
aspect models

(PA4) Platform-based design

(PA5) Budget-based design

45%

34%

31%

50%

55%

66%

69%

50%

Question 5. Which best practices regarding design-space explo-
ration do you recognize as such? (n=98)

0% 20% 40% 60% 80% 100%

(DSE1) Model-based
performance prediction

(DSE2) Model validation

(DSE3) Predict the past,
explore the future

(DSE4) Y-chart paradigm

14%

21%

59%

63%

85%

79%

41%

37%

Question 6. Which best practices regarding performance modeling
and analysis do you recognize as such? (n=100)

0% 20% 40% 60% 80% 100%

(PMA1) Knowledge-driven
modeling

(PMA2) Data-driven
performance modeling

(PMA3) Simulation

(PMA4) Analytical analysis

(PMA5) Model checking

38%

34%

13%

36%

60%

62%

66%

87%

64%

40%

Question 7. Which best practices regarding scheduling and super-
visory control do you recognize as such? (n=91)

0% 20% 40% 60% 80% 100%

(SSC1) Synthesis of sched-
ulers/supervisory controllers
(SSC2) Runtime performance

optimization
(SSC3) Performance

by construction

45%

33%

45%

55%

67%

55%

Question 8. Which best practices regarding data-driven analysis
do you recognize as such? (n=94)

0% 20% 40% 60% 80% 100%

(DDAD1) Performance-
data collection

(DDAD2) Light-weight
system instrumentation
(DDAD3) Ensure tim-
ing accuracy of data

(DDAD4) Consider storage
and bandwidth limitations

(DDAD5) Model cal-
ibration/validation

(DDAD6) Model learning

(DDAD7) Combined data-
/knowledge-driven design

34%

32%

38%

44%

38%

52%

52%

66%

68%

62%

56%

62%

48%

48%

recognized not recognized

19



EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA van der Sanden, et al.

We further analyze these results by looking at potential differ-
ences between industry and academia. Overall results for PA2 are
inconclusive. It was hypothesized by one respondent that domain
models (PA2) are mostly an academic practice, not appreciated by
industry. It was also mentioned that domain models are at the same
time relevant and not relevant and that creating domain models
is difficult. 58% of industry respondents recognizes PA2 as a best
practice, whereas only 46% of academia recognizes it. These differ-
ences are not statistically significant (with 95% confidence), but they
certainly do not indicate that domain modeling is not recognized by
industry. Also the overall response for PA5, budget-based design, is
inconclusive. As for PA2, PA5 is recognized more by industry (58%)
than by academia (39%). This difference is only significant with 90%
confidence though. Finally, for PA3 and PA4 (which are both overall
recognized), we see in both cases that the percentages of ‘recog-
nized’ answers are similar between industry and academia (e.g.,
67% for industry vs. 64% for academia recognizing PA3), but that
these percentages are statistically significant for industry with 60
respondents and not significant for academia with 33 respondents2.
This is a consequence of the relatively small number of academic
respondents. Since the results are in line with the overall conclu-
sions, we do not include them in Table 1 of the most important
observations from the survey data. We moreover do not elaborate
similar cases in the remainder.

Model-Driven Design-Space Exploration. Next, we summarize the
results for the MD-DSE best practices; see Question 5. Model-based
performance prediction (DSE1) and model validation (DSE2) cover
a wide variety of techniques and are recognized as best practices.
DSE3 and DSE4 correspond to specific methods using models for
DSE. DSE4 is not recognized as a best practice. DSE3 is not recog-
nized with 90% confidence (responses being inconclusive at 95%
confidence).

Participants comment both positively and negatively on the Y-
chart, mentioning for instance that it is not always clear how to
separate the application from the platform. Automation of DSE,
exploration of the predictable region of operation, and model trans-
formations are mentioned as relevant aspects that need attention.

When looking at industry and academia, we observe that the
predict-the-past, explore-the-future paradigm (DSE3) is not rec-
ognized by academia (71%) with industry being inconclusive (56%
not recognizing it). The Y-chart (DSE4) shows the opposite pattern,
with industry not recognizing it as best practice (73%) and responses
from academia being inconclusive (53% not recognizing it).

Performance Modeling and Analysis. All PMA best practices are
recognized as such, except for PMA5, model checking, which is
not recognized; see Question 6. Simulation is most recognized as
performance-analysis technique. Participants mention the flexibil-
ity and broad application domain as clear advantages. Regarding
analytical analysis, participants comment that it is less widely ap-
plicable than simulation. For model checking, multiple participants

2Although the data, see Sec. 8.1, has 35 respondents from academia, only 33 responded
to this questions. All presented results for industry and academia are based on the
respondents from those profiles that actually answered the question.

mention limitations regarding scalability to industrial systems. Per-
formance failure-mode analysis and sensitivity analysis are men-
tioned as important types of analysis. PMA should also consider
the specific system use case scenarios.

An interesting observation is that PMA1, knowledge-drivenmod-
eling, is recognized as best practice by industry (77%), whereas
responses from academia are inconclusive (37% recognizing PMA1
as a best practice). This difference between industry and academia
is significant. We did not ask for clarification why a practice is or
is not recognized, so the reasons for this difference would need
further investigation. The result may indicate that techniques being
developed by academia are not (yet) applied in practice, whereas
industry has the domain knowledge to apply already established
techniques.

Scheduling and Supervisory Control. For SSC, see Question 7,
SSC2, runtime performance optimization, is recognized as best
practice. Responses for the other two best practices are inconclusive.
This is in line with the current state of practice that models are not
yet driving the development process, as is required for SSC1 and
SSC3.

Participants mention in their responses that using standard OS
scheduling is an established practice. This is indeed true for software
tasks, but it does not extend to the full CPS scope. Moreover, also OS
schedulers may be configured through models and synthesis. Some
participants comment that performance by construction, SSC3, is
not realistic in practice. For complex CPS, realizing performance by
construction is indeed challenging. However, for certain aspects or
subsystems, it may be more easily realizable. A recent survey [2]
shows, for instance, that establishing performance by construction
is the second most common approach to ensuring that deadlines are
met in real-time systems, after testing and checking for overruns.

When comparing industry and academia, we observe that opti-
mizing performance at runtime is recognized by academia (79%)
whereas industry responses are inconclusive (59% recognizing SSC2
as a best practice). In combination with the observation that also the
other two best practices are inconclusive (also when considering
industry and academia in isolation), we may conclude that industry
lacks established best practices in this area.

Data-Driven Analysis and Design. For DDAD, see Question 8,
DDAD1, 2, 3, and 5, all related to data collection, are recognized as
best practices. Responses for DDAD4, taking storage and bandwidth
into account, are inconclusive. Industry recognizes DDAD4 as best
practice with 90% confidence and 61% positive responses. Academia
is only 47% positive (and hence inconclusive). The use of data in
modeling and design is a relatively recent development, captured
by DDAD6, model calibration/learning, and DDAD7, hybrid data-
/knowledge-driven design (including e.g. digital twinning). Model
learning is not recognized as a best practice by industry, with 37%
positive responses. Academia recognizes it as a best practice with
90% confidence and 66% positive responses. Two respondents com-
ment that machine learning is, in their opinion, overrated.

Overall, we may conclude that model-based best practices are
generally recognized as such, whereas practices closer towards
model-driven SysPE are not always recognized (yet). Scheduling
and supervisory control is lacking clearly established best practices.
Academia recognizes more recent developments more often as best

20



Model-Driven System-Performance Engineering for Cyber-Physical Systems EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA

practice than industry, but it sometimes does not recognize well-
established industrial best practices. We may conclude though that
the identified best practices represent the state of practice in MB-
and MD-SysPE quite well.

8.4 Challenges
In this final subsection, we summarize the responses to the open
questions about the future of performance engineering and the
challenges seen by the participants. In our analysis, we also in-
cluded challenges mentioned in the answers to the open questions
regarding focus areas and best practices. Based on these answers,
we added three additional industrial challenges, namely IC4, IC12,
and IC13, to the overview as presented in Sec. 3.

Several participants mention the challenge to resemble real use
cases as close as possible in modeling and analysis. We captured this
in challenge IC4. Considering specific answers given in this context,
it was mentioned that the impact of the human user interacting
with the system should be taken into account. It was also indicated
that the availability of customer data is still limited, and that in-
house modeling of use cases does not sufficiently resemble real
usage. Furthermore, in the open questions related to focus areas
and best practices, application-specific performance wasmentioned,
and that a domain model is not easy to define and verify since it
depends on the application domain and the environment it works in.
Techniques and methods from the DDAD focus area, in particular
model learning and hybrid data-/knowledge-driven modeling may
contribute to addressing these challenges.

Various participants also indicated the need to keep a good
overview of system performance across a product line, captured as
IC12. Participants mentioned that this becomes increasingly chal-
lenging with the increase in the number of system configurations
and options. The challenge relates on the one hand to modeling,
to make variation points explicit. On the other hand, it relates to
analysis, involving both generic trade-off analysis, to determine
when to stick to an established platform and when to deviate, and
performance analysis over multiple configurations.

Finally, the survey participants mention that techniques are
needed to allocate high-performance computations to a hetero-
geneous computing infrastructure and to analyze the impact of
data processing on system performance, covered by IC13. High-
performance computational tasks (e.g., image processing, digital
twinning) are more and more often an integral part of CPS. Vari-
ous challenges related to distributed heterogeneous systems were
mentioned, including how to partition the application, mapping
applications onto compute nodes, and how to analyze and ensure
performance. Participants also indicated the increased importance
of data, affecting the computational load, what platform is required,
and the overall system performance.

9 CONCLUSIONS
This paper positions the field of SysPE by presenting industrial
and scientific challenges, focus areas, and best practices. The pre-
sented views have been validated with the community through a
survey. Industrial state of practice in SysPE is mostly model-based.
A transition to model-driven SysPE is needed to cope with the ever
increasing complexity of today’s CPS. This transition requires a

joint effort from industry and academia. The presented challenges
and focus areas provide directions for further development.

The survey data is available via https://zenodo.org/record/
5146160. The survey is still open for anyone interested: https:
//survey.tno.nl/nmlqoidkyf. Additional data (if sufficient and mean-
ingful) will be made available through the above URL. It may also
be used for follow-up publications.

REFERENCES
[1] I. P. S. Ahuja and J. S. Khamba. 2008. Total Productive Maintenance: Literature

Review and Directions. International Journal of Quality & Reliability Management
25, 7 (2008), 709–756.

[2] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis. 2020. An Empirical
Survey-based Study into Industry Practice in Real-time Systems. In Proc. 2020
IEEE Real-Time Systems Symposium, RTSS’20. IEEE, 3–11.

[3] K. Altisen, G. Goßler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine. 1999. A Frame-
work for Scheduler Synthesis. In Proc. 20th IEEE Real-Time Systems Symposium,
RTSS’99. IEEE, 154–163.

[4] G. Behrmann, A. David, K. G. Larsen, H. Håkansson, P. Pettersson, W. Yi, and M.
Hendriks. 2006. Uppaal 4.0. In Proc. 3rd Int. Conf. on the Quantitative Evaluation
of Systems, QEST’06. IEEE CS Press, 125–126.

[5] R. Bellman. 1957. A Markovian Decision Process. Journal of Mathematics and
Mechanics 6, 5 (1957), 679–684.

[6] T. Bijlsma, B. van der Sanden, Y. Li, R. Janssen, and R. Tinsel. 2019. Decision
Support Methodology for Evolutionary Embedded System Design. In Proc. 2019
Int. Symposium on Systems Engineering, ISSE’19. IEEE.

[7] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, M. Sterna, and J. Weglarz. 2019.
Handbook on Scheduling: From Theory to Practice (second ed.). Springer.

[8] S. Bliudze, P. Katsaros, S. Bensalem, and M. Wirsing. 2021. On Methods and Tools
for Rigorous System Design. Software Tools for Technology Transfer (2021), 1–6.

[9] J. Bosch. 2016. Speed, Data, and Ecosystems – Excelling in a Software-Driven
World.

[10] M. Brambilla, J. Cabot, and M. Wimmer. 2017. Model-Driven Software Engineering
in Practice (second ed.). Morgan & Claypool.

[11] A. Bunte, B. Stein, and O. Niggemann. 2019. Model-Based Diagnosis for Cyber-
Physical Production Systems Based on Machine Learning and Residual-Based
Diagnosis Models. Proc. of the AAAI Conf. on Artificial Intelligence 33, 01 (2019),
2727–2735.

[12] P. Carreira, V. Amaral, and H. Vangheluwe (Eds.). 2020. Foundations of Multi-
Paradigm Modelling for Cyber-Physical Systems. Springer.

[13] S. R. Chhetri and M. A. A. Faruque. 2020. Data-Driven Modeling of Cyber-Physical
Systems using Side-Channel Analysis (first ed.). Springer.

[14] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H.t Veith. 2018. Model
Checking. MIT press.

[15] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole, and M. Bone. 2010. The
Concept of Reference Architectures. Systems Engineering 13, 1 (2010), 14–27.

[16] M. M. Cowing, M. E. Paté-Cornell, and P. W. Glynn. 2004. Dynamic Modeling of
the Tradeoff Between Productivity and Safety in Critical Engineering Systems.
Reliability Engineering & System Safety 86, 3 (2004), 269–284.

[17] J. B Dabney and T. L Harman. 2004.Mastering Simulink. Vol. 230. Pearson/Prentice
Hall, Upper Saddle River.

[18] B. de Schutter and T. van den Boom. 2008. Max-Plus Algebra and Max-Plus
Linear Discrete-Event Systems: An Introduction. In Proc. 9th Int. Workshop on
Discrete Event Systems, WODES’08. IEEE CS Press, 36–42.

[19] P. Derler, E. A. Lee, and A. Sangiovanni Vincentelli. 2012. Modeling Cy-
ber–Physical Systems. Proc. of the IEEE 100, 1 (2012), 13–28.

[20] D. Dubois, P. Hájek, and H. Prade. 2000. Knowledge-Driven versus Data-Driven
Logics. Journal of Logic, Language and Information 9, 1 (2000), 65–89.

[21] K. Falkner, C. Szabo, V. Chiprianov, G. Puddy, M. Rieckmann, D. Fraser, and
C. Aston. 2018. Model-Driven Performance Prediction of Systems of Systems.
Software & Systems Modeling 17 (2018), 415–441.

[22] S. Fischmeister. 2020. Mining Traces of Embedded Software Systems for Insights.
In Proc. of the ACM/SPEC Int. Conf. on Performance Engineering, ICPE’20. ACM.

[23] G. S. Fishman. 2013. Discrete-Event Simulation: Modeling, Programming, and
Analysis. Springer.

[24] K. Forsberg and H. Mooz. 1992. The Relationship of System Engineering to the
Project Cycle. Engineering Management Journal 4, 3 (1992), 36–43.

[25] M. Fowler. 2010. Domain-Specific Languages. Addison-Wesley Professional.
[26] H. J. M. Freriks, W. P. M. H. Heemels, G. Muller, and J. H. Sandee. 2006. On the

Systematic Use of Budget-Based Design. In Proc. 16th INCOSE Int. Symposium.
Wiley.

[27] S. Friedenthal, A. Moore, and R. Steiner. 2014. A Practical Guide to SysML: the
Systems Modeling Language. Morgan Kaufmann.

21



EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA van der Sanden, et al.

[28] M. R. Garey, R. L. Graham, and D. S. Johnson. 1978. Performance Guarantees for
Scheduling Algorithms. Operations Research 26, 1 (1978), 3–21.

[29] M. Gries. 2004. Methods for Evaluating and Covering the Design Space During
Early Design Development. Integration 38, 2 (2004), 131–183.

[30] D. Harel. 1987. Statecharts: A Visual Formalism For Complex Systems. Science of
Computer Programming 8, 3 (1987), 231–274.

[31] M. Heemels and G. Muller (Eds.). 2007. Boderc: Model-Based Design of High-Tech
Systems. Embedded Systems Institute.

[32] K. Henderson and A. Salado. 2021. Value and Benefits of Model-Based Systems
Engineering (MBSE): Evidence from the Literature. Systems Engineering 24, 1
(2021), 51–66.

[33] M. Hendriks, T. Basten, J. Verriet, M. Brassé, and L. Somers. 2016. A Blueprint for
System-Level Performance Modeling of Software-Intensive Embedded Systems.
Software Tools for Technology Transfer 18, 1 (2016), 21–40.

[34] M. Hendriks, M. Geilen, A. R. B. Behrouzian, T. Basten, H. Ara Alizadeh, and D.
Goswami. 2016. Checking Metric Temporal Logic with TRACE. In Proc. 16th Int.
Conf. on Application of Concurrency to System Design, ACSD’16. IEEE, 19–24.

[35] M. Hendriks, M. Geilen, K. Goossens, R. de Jong, and T. Basten. 2021. Interface
Modeling for Quality and Resource Management. Logical Methods in Computer
Science 17, 2 (2021), 19:1–19:34.

[36] M. Hendriks, J. Verriet, T. Basten, M. Brassé, R. Dankers, R. Laan, A. Lint, H.
Moneva, L. Somers, and M. Willekens. 2015. Performance Engineering for Indus-
trial Embedded Data-Processing Systems. In Proc. 16h Int. Conf. Product-Focused
Software Process Improvement, PROFES’15. Springer, 399–414.

[37] INCOSE. 2007. Systems Engineering Vision 2020. INCOSE Foundation.
[38] INCOSE. 2014. A World in Motion - Systems Engineering Vision 2025. INCOSE

Foundation.
[39] R. Jain. 1991. The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling. Wiley.
[40] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. 1997. An Approach

for Quantitative Analysis of Application-Specific Dataflow Architectures. In
Proc. IEEE Int. Conf. on Application-Specific Systems, Architectures and Processors,
ASAP’97. IEEE, 338–349.

[41] J. Lapalme, B. D. Theelen, N. Stoimenov, J. Voeten, L. Thiele, and E.M. Aboulhamid.
2009. Y-chart Based System Design: a Discussion on Approaches. In Nouvelles
approches pour la conception d’outils CAO pour le domaine des systems embarqués.
Université de Montreal, 23–56.

[42] M. Leucker and C. Schallhart. 2009. A Brief Account of Runtime Verification.
The Journal of Logic and Algebraic Programming 78, 5 (2009), 293–303.

[43] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson. 2018. Model-Based
Engineering in the Embedded Systems Domain: an Industrial Survey on the
State-of-Practice. Software & Systems Modeling 17 (2018), 91–113.

[44] M. W. Maier. 1998. Architecting Principles for Systems-of-Systems. Systems
Engineering 1, 4 (1998), 267–284.

[45] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and R. I. Davis. 2019.
A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems.
Comput. Surveys 52, 3 (2019), 1–38.

[46] S. Mitsch and A. Platzer. 2016. ModelPlex: Verified Runtime Validation of Verified
Cyber-Physical System Models. Formal Methods in System Design 49 (2016),
33–74.

[47] D. Mourtzis. 2020. Simulation in the Design and Operation of Manufacturing
Systems: State of the Art and new Trends. Int. Journal of Production Research 58,
7 (2020), 1927–1949.

[48] U. Odyurt, H. Meyer, A. D. Pimentel, E. Paradas, and I. Gonzalez Alonso. 2019.
Software Passports for Automated Performance Anomaly Detection of Cyber-
Physical Systems. In Proc. Embedded Computer Systems: Architectures, Modeling,
and Simulation. SAMOS’19. Springer, 255–268.

[49] V. V. Parappurath, J. P. M. Voeten, and K. C. Kotterink. 2013. Calibration Error
Bound Estimation in Performance Modeling. In 2013 Euromicro Conf. on Digital
System Design, DSD’13. IEEE, 97–102.

[50] A. D. Pimentel. 2017. Exploring Exploration: A Tutorial Introduction to Embedded
Systems Design Space Exploration. IEEE Design & Test 34, 1 (2017), 77–90.

[51] A. D. Pimentel, M. Thompson, S. Polstra, and C. Erbas. 2008. Calibration of
Abstract PerformanceModels for System-Level Design Space Exploration. Journal
of Signal Processing Systems 50, 2 (2008), 71–77.

[52] M. L. Pinedo. 2016. Scheduling - Theory, Algorithms, and Systems (fifth ed.).
Springer.

[53] K. Pruhs, J. Sgall, and E. Torng. 2004. Online Scheduling. In Handbook of
Scheduling: Algorithms, Models, and Performance Analysis. CRC Press, Chapter 15.

[54] R. Rai and C. K. Sahu. 2020. Driven by Data or Derived Through Physics? A
Review of Hybrid Physics Guided Machine Learning Techniques With Cyber-
Physical System (CPS) Focus. IEEE Access 8 (2020), 71050–71073.

[55] P. J. Ramadge andW.M.Wonham. 1987. Supervisory Control of a Class of Discrete
Event Processes. Journal on Control and Optimization 25, 1 (1987), 206–230.

[56] A. Sangiovanni-Vincentelli, L. Carloni, F. De Bernardinis, and M. Sgroi. 2004.
Benefits and Challenges for Platform-Based Design. In Proc. 41st Annual Design
Aut. Conf., DAC’04. ACM, 409–414.

[57] R. Schiffelers, Y. Luo, J. Mengerink, and M. van den Brand. 2018. Towards
Automated Analysis of Model-Driven Artifacts in Industry. In Proc. of the 6th
Int. Conf. on Model-Driven Eng. and Software Dev., MODELSWARD’18. SciTePress,
743–751.

[58] N. Shallcross, G. S. Parnell, E. Pohl, and E. Specking. 2020. Set-Based Design: The
State-of-Practice and Research Opportunities. Systems Engineering 23, 5 (2020),
557–578.

[59] A. K. Singh, P. Dziurzanski, H. R. Mendis, and L. S. Indrusiak. 2017. A Survey and
Comparative Study of Hard and Soft Real-Time Dynamic Resource Allocation
Strategies for Multi-/Many-Core Systems. Comput. Surveys 50, 2, Article 40
(2017).

[60] C. U. Smith. 1986. The Evolution of Software Performance Engineering: A Survey.
In Proc. of 1986 ACM Fall Joint Computer Conf., ACM’86. ACM, 778–783.

[61] C. U. Smith. 1990. Performance Engineering of Software Systems. Addison-Wesley.
[62] C. U. Smith. 2020. Software Performance Antipatterns in Cyber-Physical Systems.

In Proc. of the ACM/SPEC Int. Conf. on Performance Engineering, ICPE’20. ACM,
173–180.

[63] D. B. Stewart. 2002. Measuring Execution Time and Real-Time Performance. In
Proc. of the Embedded Systems Conf., ESC SF’02.

[64] R. Su, J. H. van Schuppen, and J. E. Rooda. 2011. The Synthesis of Time Optimal
Supervisors by using Heaps-of-Pieces. IEEE Trans. on Automatic Control 57, 1
(2011), 105–118.

[65] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui. 2018. Digital Twin-Driven
Product Design, Manufacturing and Service with Big Data. International Journal
of Advanced Manufacturing Technology 94 (2018), 3563–3576.

[66] F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee. 2019. Digital Twin in Industry:
State-of-the-Art. IEEE Trans. on Industrial Informatics 15, 4 (2019), 2405–2415.

[67] Y. C. Tay. 2018. Analytical Performance Modeling for Computer Systems (third ed.).
Morgan & Claypool.

[68] B.D. Theelen. 2004. Performance Modelling for System-Level Design. Ph.D. Disser-
tation. Eindhoven University of Technology.

[69] B. D. Theelen, O. Florescu, M. Geilen, J. Huang, P. H. A. van der Putten, and J.
Voeten. 2007. Software/Hardware Engineering with the Parallel Object-Oriented
Specification Language. In Proc. 5th ACM & IEEE Int. Conf. on Formal Methods
and Models for Co-Design, MEMOCODE’07. IEEE Computer Society, 139–148.

[70] F. W. Vaandrager. 2017. Model Learning. Commun. ACM 60, 2 (2017), 86–95.
[71] B. van der Sanden, J. Bastos, J. Voeten, M. Geilen, M. Reniers, T. Basten, J. Jacobs,

and R. Schiffelers. 2016. Compositional Specification of Functionality and Timing
of Manufacturing Systems. In Proc. Forum on specification & Design Languages,
FDL’16. IEEE.

[72] B. van der Sanden, Y. Blankenstein, R. Schiffelers, and J. Voeten. 2021. LSAT:
Specification andAnalysis of Product Logistics in FlexibleManufacturing Systems.
In Proc. 2021 IEEE 17th Int. Conf. on Aut. Sc. and Eng., CASE’21. IEEE.

[73] J. van Pinxten, U. Waqas, M. C. W. Geilen, T. Basten, and L. Somers. 2017. Online
Scheduling of 2-Re-entrant Flexible Manufacturing Systems. ACM Transactions
on Embedded Computing Systems 16, Article 160 (2017).

[74] M. Vierhauser, H. Marah, A. Garmendia, J. Cleland-Huang, and M.l Wimmer.
2021. Towards a Model-Integrated Runtime Monitoring Infrastructure for Cyber-
Physical Systems. In Proc. IEEE/ACM 43rd Int. Conf. on Software Engineering: New
Ideas and Emerging Results, ICSE-NIER’21. IEEE, 96–100.

[75] M. Voelter. 2014. DSL Engineering: Designing, Implementing and Using Domain-
Specific Languages. dslbook.org.

[76] J. Voeten. 2002. Performance Evaluation with Temporal Rewards. Performance
Evaluation 50, 2-3 (2002), 189–218.

[77] W. Wolf. 2010. High-Performance Embedded Computing: Architectures, Applica-
tions, and Methodologies. Elsevier.

[78] K. Wolter and P. Reinecke. 2010. Performance and Security Tradeoff. In Formal
Methods for Quantitative Aspects of Programming Languages, SFM’10. Springer,
135–167.

[79] L. D. Xu and L. Duan. 2019. Big Data for Cyber Physical Systems in Industry 4.0:
a Survey. Enterprise Information Systems 13, 2 (2019), 148–169.

[80] N. Yang, K. Aslam, R. Schiffelers, L. Lensink, D. Hendriks, L. Cleophas, and A.
Serebrenik. 2019. Improving Model Inference in Industry by Combining Active
and Passive Learning. In Proc. 2019 IEEE 26th Int. Conf. on Software Analysis,
Evolution and Reengineering, SANER’19. IEEE, 253–263.

[81] H. Zhang, Y. Shu, P. Cheng, and J. Chen. 2016. Privacy and Performance Trade-off
in Cyber-Physical Systems. IEEE Network 30, 2 (2016), 62–66.

22


