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Abstract. Masonry is a construction technique which typically reacts in
compression. Characterization of its material properties in compression is
thus of paramount importance. This especially counts for adobe bricks
because their material properties are still unknown to a large extent. This
traditional masonry, made of locally available soil and fibres, is spread in
areas currently involved in military conflicts, where also European forces
operate. Therefore, not only its static properties in compression, but even
more the dynamic strength is a relevant parameter. Laboratory
characterization of material properties still pose several challenges, among
which so-called size dependence is one of the most controversial topics. This
entails the possible variation of material properties values from tests on
specimens of different size and shape. Several factors may concur to its
determination and a well-founded theory does not exist yet. This counts for
statics and even more in dynamics. Addressing the properties in compression
of bricks at high strain rates is rare, namely no studies of size dependence
on masonry bricks in dynamic regimes are published. Lately, a series of
experimental campaigns were conducted by the authors at the Joint Research
Centre of the European Commission. In these campaigns, a series of
compression tests were performed on several types of adobe bricks.
Different soil mixtures were used to produce cylindrical samples of different
sizes. Compressive tests from 2e s to 10 s and 100 s were executed
using hydraulic machines as well as split Hopkinson bars. Next, the static as
well as the dynamic material properties as calculated from tests on
specimens of different sizes and material compositions have been
qualitatively and quantitatively compared and interpreted. In this paper, the
experimental program is presented, next the material properties in strength
and ductility as well as the dynamic increase factors are investigated.

1 Introduction

An increasing number of military operations is taking place in highly urbanized environments
located out of area (OoA-Out of Area Operations). In these contexts, battle fields are
displayed among houses and structures for civilian use. In many countries, these houses are
still not engineered, namely the material properties, manufacture process, building
technology have not been standardized yet. This especially counts for ancient masonry
technologies as adobe. Adobe connotes a building technique characterized by the use of
locally available soil to produce both bricks and mortar, possibly adding fibres to the soil
mixture to prevent shrinkage cracks during sun drying curing process [1]. Even the static
properties of adobe are largely unknown, and this especially counts when heterogeneity in
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the micro-structure of the masonry components increases adding fibres [2]. Furthermore,
production and construction processes are still delegated to local owners in the field, with the
consequence of the overall quality and building-applicability of the final product which
should be ensured by standard codes. Actually, some building codes devoted to adobe
already exist around the world. Only two of them addresses the topic of size dependence by
introducing aspect ratio dependent functions. However, these functions have not been
validated against the plethora of tests executed over the recent past years in literature, nor
account for the influence of shape and especially mixture composition on the static properties
of bricks and mortar. Not only the static properties, but especially the dynamic performance
of natural composite materials as adobe, counts. This is the case because adobe masonry
structures are largely spread in many areas of the world currently involved into military
operations [3]. These imply shooting attacks and close impact within wall breaching and
sniper operations [4]. The assessment of the dynamic material properties such as the dynamic
increase factor for adobe components is thus of paramount importance to develop engineering
and numerical models that simulate highly dynamic events. If the static properties of adobe
are still not completely addressed, experimental data on the dynamic performance are even
more rare [5]. This research aims to bridge the two knowledge gaps just presented. This paper
presents and interprets the results of a series of experimental campaigns aimed at testing the
static as well as the dynamic material properties of adobe specimens of different size, shape
and material composition. Cylindrical and prismatic samples were extracted from two brick
batches made of the same soil composition but with only one mixed using natural fibres.
Series of compressive tests were executed. Three different strain rates were applied, namely
static tests, and dynamic impact tests at strain rates of 3s™! and 100s™!. Results collected in
this paper are meant to help answer the following research questions for adobe: a) Influence
of shape, size and fibres on static unconfined strength and validation of existing standard; b)
Influence of size on the dynamic increase factors; c¢) Influence of fibres on the dynamic
increase factors.

2 The experimental campaign

A series of joint experimental campaigns including Delft University of Technology (TU
Delft), TNO — DSS (Defense, Safety and Protection), Dutch Ministry of Defence and the
Joint Research Centre of the European Commission, were carried out over the past years to
characterize the dynamic performance of adobe materials. In the following, materials used,
specimen sizes and geometry, emplaced setup and main results are resumed.

2.1 Materials and Specimens

Two types of adobe bricks (named A and B in the following) were selected for testing. They
resulted from the same soil but only one (Type B) of them contained substantial percentages
(17-18%bv) of randomly distributed natural fibres of wood and straw (Fig. 1). Preliminary
physical tests confirmed that both types of bricks approximately had the same water content
(~2.3-2.4%). Specimens of cylindrical and prismatic shapes were drilled from both brick
batches and rectified under the same laboratory conditions. Two cylindrical geometries
(named I and II in the following), were designed, with an aspect ratio of 0.5 and 1,
respectively. Prismatic samples (IIT) with square section and an aspect ratio of 2 were drilled
as well. In details, I: Cylindrical, Dxh (110x55mm), aspect ratio= 0.5; II: Cylindrical, Dxh
(40x40mm), aspect ratio= 1; III: Prismatic, bxt (45x90mm), aspect ratio= 2.
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Fig. 1. Soil granulometry and fibres for the mixture
2.2 Test setup

2.2.1 Static Tests at 3 104 s1

Static tests were performed using an MTS universal testing machine. Two adjustable
compression platens were used to correctly load the specimens in compression. Displacement
controlled tests at a constant velocity were executed. For each specimen geometry, the
velocity value of the platen was calibrated to achieve the same average strain rate. Strain rate
values were calculated by dividing velocity by specimen length. Average strain rates of about
310 s were obtained for all specimens. Displacement and forces during tests were recorded
and average stress-strain plots were derived normalizing each curve over the corresponding
cross section areas and heights. A camera was installed to acquire high resolution photo
sequences at 1 frames/s (Fig. 2).

Fig. 2. Static test setup

2.2.2 Dynamic Tests at 3 s

Dynamic tests were performed at two different strain rates, in the range corresponding to
impact and blast . Tests at an intermediate strain rate were performed using the same setup
and machine of Fig. 2, with two differences. Displacement controlled tests were performed
to generate average strain rates in the specimens of about 3 s™!. Normalized stress strain
relations and failure modes were recorded.

2.2.3 Dynamic Tests at 120 s

Dynamic test at approximately 100s™! of strain rate were carried out using a modified
Hopkinson bar at the Hop-Lab of JRC. The input and output bars of 40 mm diameter are
made of aluminium. The input pulse is generated through the pre-stressing and abrupt release
of a steel portion of the bar of 25 mm in diameter. Test setup is shown and machine scheme
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are sketched in Fig.3. For a detailed report of the dynamic test machine, the reader is referred
to [6]. In the tests, the incident bar applies a constant velocity of about 4200 mm/s to the
sample. For each test, specimen loading conditions and corresponding bar ends
displacements can be calculated by properly processing the strain signals recorded with a
chain of semiconductor strain gages applied to the bars. For this purpose, a sample-rate of 5
MHz was used and the data acquisition system GAGE Module A/D Express CSE8482-H2
with dedicated software was employed. For each test, a thin layer of vaseline was applied at
the interfaces between the bar end and the sample surfaces to minimize friction and maximise
plane-parallelism. Moreover, samples were prestressed up to 5% of the static strength for
clamping and horizontal positioning purposes. Time-synchronized high-resolution videos
were recorded at 50,000 frames/s using the Photron SA1.1 digital camera. Image resolution
is adequate to track failure patterns also in case of high velocity impacts.
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Fig. 3. Split Hokpinson Bar Test Setup

2.3 Test Program and Results

Static tests were executed on all specimen geometries and material types. Intermediate strain
rate tests were executed on the two cylindrical specimens and material types. Cylindrical
specimens of 40x40mm for both types were selected for the split Hopkinson bar tests. The
following Tab.1 presents the results related to the assessment of the compressive strength.
For each test series, the average value from at least 3 tests has been calculated.

Tab.1. Average values of compressive strength (in MPa) for each type and geometry tested at
different rates. Standard deviation is consistently in the order of 0.1-0.2

Rate | Static 357 120s"
Type

A 4.4 5.4 -
B-l 2.6 3.4 -
AL 2.6 3.1 4.8
B-II 1.4 1.7 2.3
A-IIT 3.0 . -
B-1I 13 2 -
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3 Analysis of Results

3.1 The influence of geometry on the static properties of adobe

Values of the unconfined compressive strength for both material compositions are calculated from the
three geometries tested. This is done using the aspect-ratio laws proposed for adobe in the Australian
and New Zealand codes for adobe. Usually, codes for adobe suggest tests on large specimens (>200mm)
with high slenderness (3-5), but also accept the usual standard slenderness for concrete elements of 2.
In addition, also the typical size dependence law used in testing standard for concrete elements was
used. Laws are shown in Fig.4 [7]-[9]. Corresponding values of the unconfined strengths are displayed
for all geometries and both types in Fig.5.
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Fig. 4. Aspect ratio correction factors according to different standard (HB, NZS, ASTM)

Mean stress-strain relationships and corresponding values of unconfined strengths using the HB laws
are also presented in Fig 6. From analysis, the HB aspect ratio laws seem to provide the closest size-
independent results for a slenderness above 1, whereas the ASTM standard provides size-independent
results up to a slenderness of 0.5. These correspond to the most conservative branches of the aspect
ratio laws, respectively. Heterogeneity in the mixture is interpreted to play a major role on the overall
material performance with respect to standardized concrete materials.
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Fig. 5. Unconfined strength values for different material compositions geometry using HB and ASTM
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Fig. 6. Stress strain laws for type A (plain adobe) of three geometries and unconfined strengths levels
according to HB aspect ratio laws

3.2 The influence of geometry on the dynamic properties of adobe

For the cylindrical geometry (I, II) in Tab.1, the mean values of the dynamic compressive strength of
both types of adobe specimens have been used to determine a dynamic increase factor for adobe
corresponding to strain rates of 3s™'. Values for the two types and geometries are shown in Tab.2. For
both types, the dynamic increase factors derived from the two values for the slenderness appear to be
similar. The DIF ranges between 1.2-1.3 for Type A and is about 1.2 for Type B. For both geometries,
the DIF is lower for Type B with respect to corresponding values of Type A. Further analysis follows
in Par. 3.3. In this paragraph, attention is paid to a common trend for both types, which corresponds to
slightly higher DIF values for a slenderness of 1 (II) against a slenderness of 0.5 (I). The ratio between
corresponding DIFs is equal to 1.1 for both types. This may be interpreted as the consequence of a
confinement plate effect on thick specimens which enhances the static strength of the material. In fact,
in statics, given a limited set of flaws inside the material, the most critically sized and oriented ones
undergo crack initiation and propagation. As these microcracks approach the vicinity of other
propagating ones, they may interact and coalesce into a macro crack which leads to loss of structural
integrity and failure at a macro-scale. If propagating flaws encounter stiffer areas, they have the time
to deviate around them bridging into macro-cracks and the fracture and stress path with minimum
energy demand is taken. This interpretation is consistent with the need for the factor size correction
functions depicted in Par. 3.1 to derive unconfined values of compressive strength.

Tab.2. Average values of the dynamic increase factor for the two slenderness

Type
DIF A-1 A-II B-1 B-1I
Rate 3s’! 1.23 1.32 1.17 1.21
[
st.(h/t=1)
pmmmm— dyn.(ht=1)
5 /" "-—-\__“"5t.(hlt=0.5]
2 i ':‘dryn‘{hil:()‘f:)
0.1 0.15 02 0.25

Strain [mm/mm]
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Fig. 7. Typical stress strain relationships in static (blue) and dynamic (red) for the two geometries of
Type A

3.3 The influence of fibres on the dynamic properties of adobe

Dynamic increase factors on 40x40mm cylindrical specimens corresponding to 120s! strain rates have
been calculated for both types of adobe. Average values of DIF functions including values in Par.3.2
are plotted for Type A and Type B in Fig. 8.The average DIF for Type A is about 1.84 at 120s™!, whereas
itis 1.71 for Type B. From the plot, it appears that fibre reinforced adobe always corresponds to lower
DIF functions.

—J—Type A

DIF

Strain rate [5'1]
Fig. 8. DIF functions for Type A and Type B

The lower sensitivity of strength to high strain rates exhibited by adobe samples containing fibres is
interpreted by linking principles of fracture mechanics to hypotheses on the specific heterogeneity level
of fiber enriched mixtures of adobe [10]. Given the failure processes depicted in Par. 3.2. in static
regimes, in dynamics, loading is characterized by a short time duration and high supply rates which
forces simultaneous cracks at multiple spots also through the stiffer areas of the material. As a result,
more diffuse systems of short and straight cracks initiated at multiple weak spots are often observed in
quasi brittle materials such as concrete, corresponding to higher values for compressive strength and
strain at peak strength. The theory of fracture mechanics hooks up the experimental evidence for adobe
given that the rate of enhancement of the dynamic material properties depends on the spatial
distributions of the micro-flaws inside the material, that is by the level of uniformity of a mixture. If
the number of micro-flaws increases, the probability of interaction increases also in case of dynamic
loading. It means that if density of initial flaws distribution is sufficiently high, the effect of loading
rate on the crack bridging processes will be limited and a stress path with a energy demand close to
statics can be observed also in the dynamic regime. This can explain the lower DIF value. This
interpretation is also consistent with the depicted trends experimentally derived in Sec. 2 of lower
strength values associated to bricks mixed with fibres in statics.

4 Conclusions

Compression tests in static and dynamic regimes have been performed on adobe specimens of different
geometries, shapes and material composition. From analysis of results, the following conclusions for
adobe are listed:

e  The compressive strength of adobe is geometry (size and shape) dependent. The static
compressive strength always increases with a lower slenderness. The lower envelope
corresponding to the aspect ratio functions of NZS and ASTM is recommended to be
used to calculate the unconfined compressive strength. It is interpreted that the geometry
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dependence is higher than for standard concrete elements because of the enhanced
heterogeneity at the micro-scale of the mixture.

e The compressive strength of adobe is rate dependent. DIF values at strain rates of 3s-1
for cylindrical specimens of 1 and 0.5 slenderness values are similar but slightly increase
for lower slenderness. This is interpreted as the consequence of a plate confinement effect
exerted in statics.

e  DIF values at strain rates ranging from 10-3 s-1 to 120 s-1 for cylindrical specimens with
slenderness 1 decrease with the introduction of fibres in the mixture. This is interpreted
as the result of an enhanced porosity determined by fibre introduction. Adding fibres in
the mixture enhances the heterogeneity of the material for adobe and fibres weaken
interparticle bonds in the matrix causing the presence of weak regions at a meso-scale.
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