

PRESENTATION OVERVIEW

POTENTIAL OF TORREFACTION FOR AGRICULTURAL RESIDUES

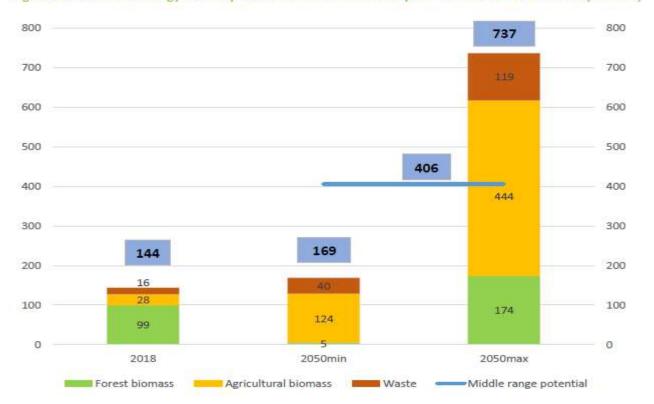
Torrefaction not a panacea, but has clear potential together with washing

- > Woody biomass under debate, agricultural residues largely unutilised
- Properties agricultural biomass vs. clean wood (relevant for thermochemical applications)
- > Torrefaction not a panacea, but
-) Experimental assessment
-) Economics
-) Summary conclusions

WOODY BIOMASS UNDER DEBATE

EU FIT-FOR-55 PACKAGE – REINFORCED CRITERIA FOR FORESTRY-BASED BIOENERGY

Sustainable bioenergy reinforced criteria in line with the EU Biodiversity Strategy will:


- . Prohibit sourcing biomass for energy production from primary forests, peatlands and wetlands
- . No support for forest biomass in electricity-only installations as of 2026
- Prohibit national financial incentives for using saw or veneer logs, stumps and roots for energy generation
- Require all biomass-based heat and power installations to comply with minimum greenhouse gas saving thresholds
- Apply the EU sustainability criteria to smaller heat and power installations (equal or above 5MW)

AGRICULTURAL RESIDUES

HUGE POTENTIAL, STILL LARGELY UNUTILISED

Figure 1 Gross inland energy consumption of biomass in 2018 and potential in 2050 for the EU28 (in Mtoe)

Source: Securing sustainable resource availability of biomass for energy applications in Europe; review of recent literature. Prof. Dr. André P.C. Faaij

AGRICULTURAL BIOMASS MORE "DIFFICULT"

COMPARED TO WOODY BIOMASS, FOR VARIOUS ENERGY APPLICATIONS

-) Lower density
- Inferior transport, handling and storage properties
 -) E.g., straw and empty fruit bunches
-) Higher moisture content
 - Moisture evaporation poses a severe energy penalty
-) Higher inorganics/ash content
- More problematic inorganics (higher levels of, e.g., chlorine, alkali metals (K, Na), sulphur and heavy metals)
 - Leading to, e.g., pollutant emissions, slagging, fouling, corrosion, catalyst poisoning, negative impact on ash utilisation
- > Torrefaction does a great job in increasing (energy) density and improving transport, handling and storage properties, but:
 - Wet processing (digestion, fermentation, hydrothermal processing) better for very wet biomass (typically >50 % moisture)
 -) Torrefaction has limited potential to mitigate problematic inorganics washing as additional unit operation may help out

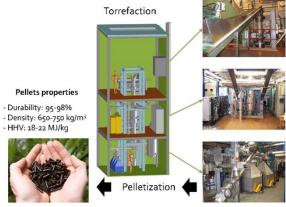
Parameter	Unit	EN Plus A1	IWPB- I2	Wood Pellets	Grass Raw	Reed Raw
Additives	wt%	0	< 3	none	none	none
Water	wt%	≤ 10	≤ 10	8.3	variable	variable
Bulk density	kg/m³	≥ 600	≥ 600	636	-	-
NCV	GJ/ton DM	≥ 16.5	≥ 16.5	18.6	16.7	17.9
Ash	wt% DM	≤ 0.7	≤ 1.5	0.3	4.4	2.3
Cl	wt% DM	≤ 0.020	≤ 0.05	0.012	0.470	0.227
К	mg/kg DM			380	13 000	4924

- Essential: optimize overall process layout, including minimizing fresh washing water consumption, washing water recycling, counter-current washing, dewatering after washing and finding a proper solution for the washing effluent
-) Torrefaction + pre-washing
 -) Better solubility, thus higher removal efficiencies
 - Dewatering more difficult / energy consuming
 - Preferable for relatively wet biomass
-) Torrefaction + post-washing
 -) (slightly) lower removal efficiencies
 - Easier dewatering due to hydrophobic nature after torrefaction
 -) Lower organic load in effluent
 - Preferable for relatively dry biomass

TNO STUDY TORREFACTION + WASHING

) Feedstocks considered:

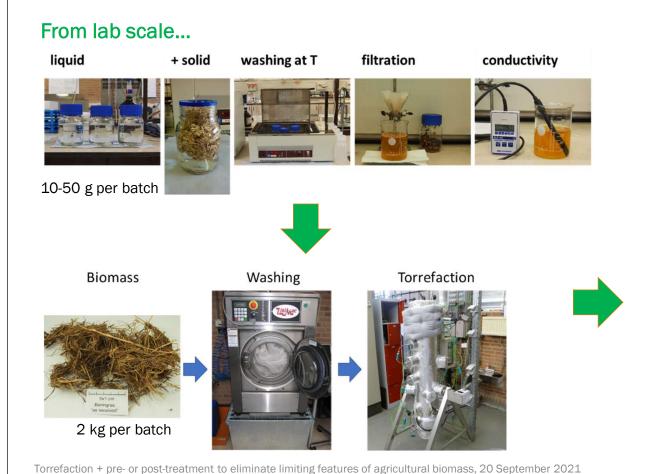
- Empty Fruit Bunches
-) Miscanthus
- Sun flower husk
-) Road side grass
-) Wheat straw
- Spruce bark
-) Tomato foliage



P. Abelha et al.: Low-grade biomass upgrading by washing and torrefaction – lab and pilot-scale results. 26th EUBCE, 14-17 May 2018, Copenhagen, Denmark. P. Abelha et al.: Combustion improvements up upgraded biomass by washing and torrefaction. https://doi.org/10.1016/j.fuel.2019.05.050
P. Abelha, J. Kiel: Techno-economic assessment of biomass upgrading by washing and torrefaction. https://doi.org/10.1016/j.biombioe.2020.105751

EXPERIMENTAL APPROACH (PREWASH AND POSTWASH)

To pilot-scale!



> Variables:

) Time

Liquid/Solid ratio (L/S)

Temperature

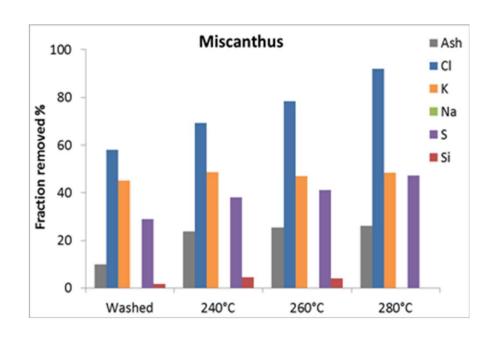
MASS AND ENERGY YIELD

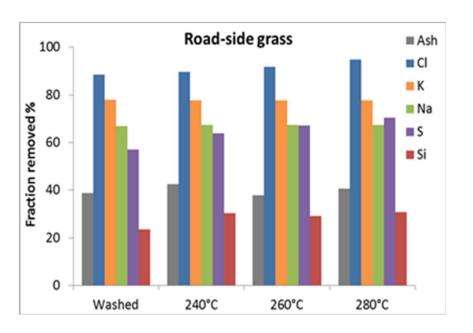
HHV (MJ/kg)

	(,)			
Pre-treatment	Grass	Straw	Miscanthus	Bark
Original	16,5	17,5	18,3	19,9
Washed	16,7	17,7	18,6	20,1
Washed+T240	18,1		19,7	
Washed+T260	18,3	19,2	19,5	21,5
Washed+T280	19,0		20,3	

)	Higher	heating	value
---	--------	---------	-------

-) Limited mass loss
-) High energy yield





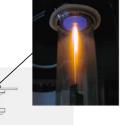
Pre-treatment	Grass	Straw	Miscanthus	Bark
Washed	81	92	93	95
Washed+T240	73	(=/)	85	7:
Washed+T260	66	78	79	82
Washed+T280	58	:: - ::	69	
			THE COME NO WORK	

	Energy yield (%)			
Pre-treatment	Grass	Straw	Miscanthus	Bark
Washed	82	93	95	96
Washed+T240	80	-	92	~
Washed+T260	73	86	84	88
Washed+T280	67		77	=

FRACTIONAL INORGANICS REMOVAL

-) Torrefaction has limited effect on CI
-) Torrefaction has no effect on K
-) Combined effect of washing and torrefaction:
 -) Removal of 90-95% CI, 50-80% K, 30-60% S and 30% P

LAB-SCALE COMBUSTION SIMULATOR


MIMIC PULVERSED-FUEL AND LIQUID-FUEL COMBUSTION CONDITIONS

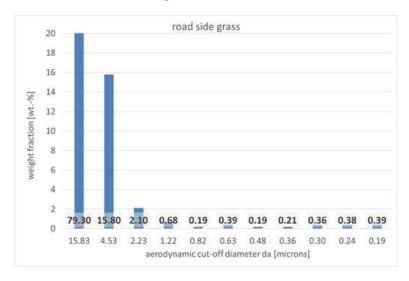
Pulverised fuel/entrained-flow reactor with integrated, premixed and multi-stage flat flame burner

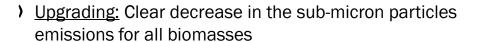
-) for solids and liquids
-) high particle heating rates
-) high flame/particle temperature
- realistic gas temperature / environment history
-) controllable, long particle residence time

Staged gas burner: high heating rate + proper gas atmosphere

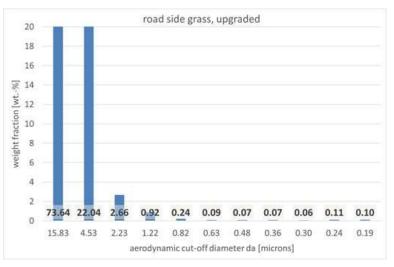
Particle sampling probe

Fouling probe

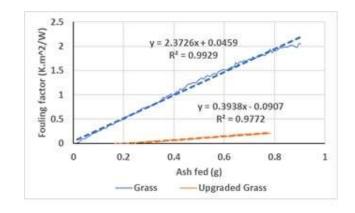

Special reactor design:
1-2s residence time
with only limited total
reactor length

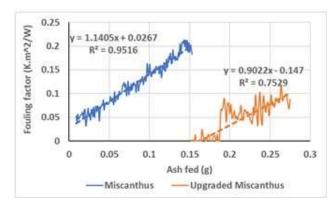


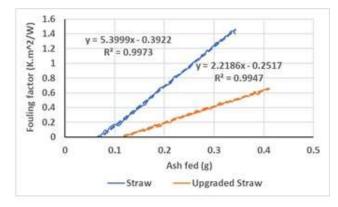
11

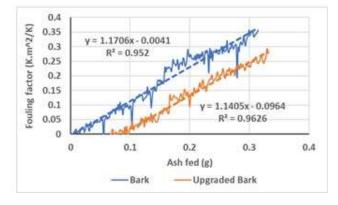

COMBUSTION PERFORMANCE - PARTICULATE EMISSIONS

Pilat Mark V cascade impactor

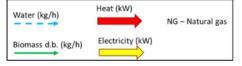

	Reduction in sub-micron particles after upgrading (% wt)
Wheat straw	66.8%
Miscanthus	78.3%
Spruce bark	44.4%
Road side grass	64.6%


COMBUSTION PERFORMANCE - FOULING PROPENSITY


Fouling probe

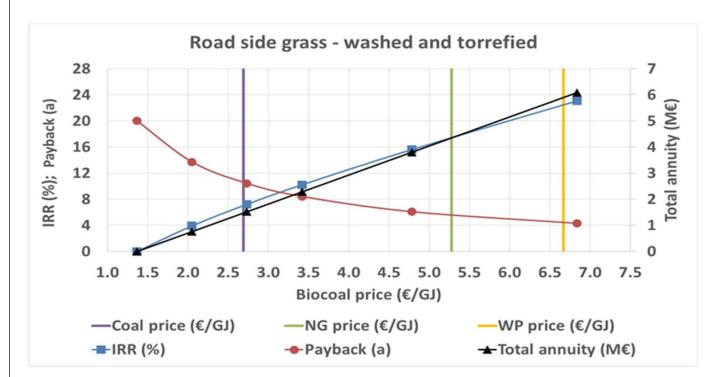


) <u>Upgrading:</u> Clear decrease in fouling of heat transfer surfaces for all biomasses, although for bark only small decrease


ROADSIDE GRASS PREWASH - MASS & ENERGY BALANCES

7 531 kg/h 172 469 kg/h **Biomass:** 15 000 kg/h 196 335 kg/h Solids 1814 kg/h Washer Digester 45 000 kg/h 2 715 kg/h 23 866 kg/h Water treat. Presser Biogas 901 kg/h 12 285 kg/h 28 665 kg/h Air 60 701 kg/h NG 597 kg/h Dryer Combustor 26 497 kg/h 2 168 kg/h 12 285 kg/h N₂ 983 kg/h Torrefier Torr. gas 3034 kg/h 2 168 kg/h N₂ 983 kg/h 9 251 kg/h Fines 925 kg/h Pelletizer 1 110 kg/h Final MY = 55.5 % Pellets: Final EY = 61.6 % 1 110 kg/h 8 326 kg/h Net thermal efficiency: 54.7 %

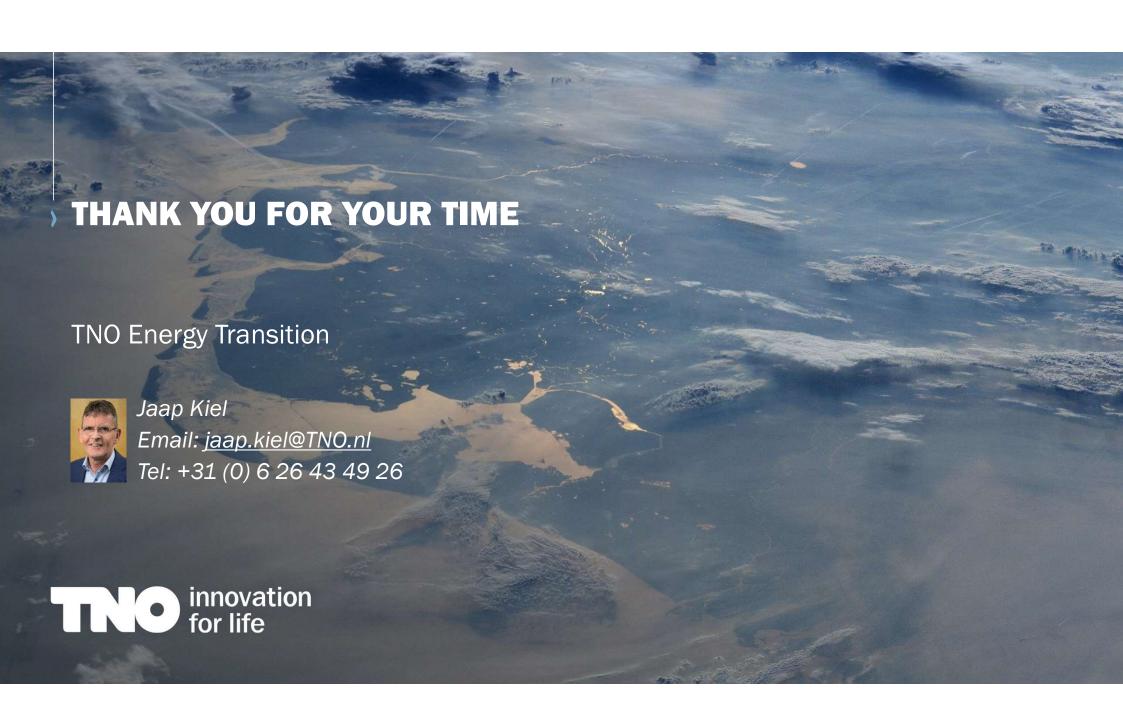
P. Abelha, J. Kiel: Techno-economic assessment of biomass upgrading by washing and torrefaction. https://doi.org/10.1016/j.biombioe.2020.105751


Assumptions

-) 120 kt/a dry biomass input
-) Upflow anaerobic digester
- Dedicated water treatment plant allowing wash water recycling
- Mechanical + thermal dewatering (to 15%)
- Also silage storage explored to overcome seasonality

Torrefaction + pre- or post-treatment to eliminate limiting features of agricultural biomass, 20 September 2021

ROADSIDE GRASS PREWASH - ECONOMICS


P. Abelha, J. Kiel: Techno-economic assessment of biomass upgrading by washing and torrefaction. https://doi.org/10.1016/j.biombioe.2020.105751

) In NL: At a plant size of 100-150 kt/a dry input and a negative gate fee of 25 €/t, biocoal from roadside grass can be offered at an attractive price (80 €/t or 4.8 €/GJ) compared to both wood pellets and coal prices, while still showing a good business case with an IRR of 15.6%.

SUMMARY CONCLUSIONS

- Agricultural biomass: huge potential, largely unutilised, for energy applications more "difficult" than woody biomass
- Yes to the component of the component
- Essential: optimize overall process layout (fresh washing water consumption, washing water recycling, counter-current washing, dewatering after washing and washing effluent processing)
-) Prewash preferable for relatively wet biomass, postwash for relatively dry biomass
- Attractive business cases appear feasible (but largely dependent on local conditions)

