
1.  Introduction
Mainly emitted by road traffic, thermal power plants and industrial activities and produced in the atmos-
phere by the oxidation of nitric oxide (NO), nitrogen dioxide (NO2) is one of the major air pollutants with 
adverse impact on health (Costa et al., 2014; Khaniabadi et al., 2017). It is partly contributing to the 400,000 
premature deaths attributed to air pollution in Europe in 2018 (EEA, 2020). NO2 is therefore one of the most 
regulated air quality pollutants, with a limit of 40 μg/m3 for the annual mean concentrations set both by the 
“2008/50/EC Directive on ambient air quality and cleaner air for Europe” and by the air quality guidelines 
of the World Health Organization (WHO). NO2 is also a precursor of tropospheric ozone and particulate 
matter including nitrates. Deposition of nitrogen compounds like nitrates leads to eutrophication of ecosys-
tems (Stevens et al., 2018). Therefore, NO2 is of great interest due to its important role in many atmospheric 
processes with strong implications for air quality, health, climate change, and ecosystems.

Due to the lack of independent constraints on large scale budgets, the quantification of nitrogen oxides 
(NOx = NO + NO2) emissions in bottom-up (BU) inventories is difficult. This quantification is particularly 
sensitive to emissions factors (to be applied to activity levels), which are still highly uncertain, with un-
certainties that can reach 50%–200% (Kuenen and Dore, 2019) and which can even be biased sometimes 
(as illustrated by the “DieselGate” Brand, 2016). The atmospheric monitoring of NOx emissions based on 
in-situ measurements is also challenging. Air quality networks provide measurements of NOx mixing ratios, 
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particular the road transport, public power, and industrial emissions.

Plain Language Summary  We evaluate anthropogenic and biogenic nitrogen oxides (NOx) 
emissions in Europe by analyzing nitrogen dioxide (NO2) 10-yr trends both from satellite observations and 
from simulations. A focus is made for the 30 most populated urban areas in Europe, particularly exposed 
to air pollution. The similarities and discrepancies between simulations and satellite observations indeed 
must be investigated. It is important particularly for policy implications as anthropogenic emissions are 
based on the official reported emissions form the basis for negotiation on emission reductions in the EU 
and are used to assess if countries meet their agreed emission ceilings.
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representative of the street scale to local scale levels, which are difficult to properly use to quantify emis-
sions at the city to regional scales.

Satellite observations of NO2 tropospheric columns are an effective proxy for NOx emissions in polluted 
areas (Lamsal et al., 2015; Li & Wang, 2019; Miyazaki et al., 2017; Silvern et al., 2019). They allow the study 
of long-term variations for various regions of the world (Lamsal et al., 2015; Miyazaki et al., 2017; Schneider 
et al., 2015; van der A et al., 2008). Space-based observations from the Global Ozone Monitoring Experiment 
GOME (Burrows et al., 1999) and GOME-2 (Munro et al., 2016), from the SCanning Imaging Absorption 
spectroMeter for Atmospheric CHartographY SCIAMACHY (Bovensmann et al., 1999; Burrows et al., 1995) 
and from the Ozone Monitoring Instrument OMI showed that there were reductions in NO2 levels since the 
late 1990 over Western Europe (Castellanos and Boersma, 2012; Curier et al., 2014; Georgoulias et al., 2019; 
Krotkov et al., 2016; Schneider et al., 2015; van der A et al., 2008). However, in 2017, 16 of the EU Mem-
ber States and four other reporting countries still recorded near ground NO2 concentrations whose annual 
mean was above the recommended limit of 40 μg/m3 at the air quality stations within large urban areas 
(EEA, 2019), where populations are particularly exposed.

The previously cited studies analyzed the trends in NO2 tropospheric vertical column density (TVCD) ob-
served by satellite observations over Europe. However, the causes of these trends (i.e., trends in meteorolo-
gy, atmospheric general composition, chemistry, emissions) are rarely investigated and few studies properly 
compared them to simulated concentrations based on chemistry-transport model (CTM; Curier et al., 2014). 
Such studies would be very useful since CTM simulations based on BU inventories can help determining 
the main processes controlling concentrations trends, and especially the impact of changes in surface emis-
sions. Our study presents the first comparison of simulated and observed NO2 TVCD trends over 10 years, 
at a rather high resolution (0.5° × 0.5°) over Europe, based on the latest emissions reported by countries. 
In the following, we use the regional model CHIMERE, which is a CTM widely used to monitor air quality 
(Blond et al., 2007; Cholakian et al., 2019; Ciarelli et al., 2019; Mailler et al., 2017; Menut et al., 2013; Menut, 
Bessagnet, Siour, et al., 2020; Terrenoire et al., 2015), and part of the seven state-of-the-art CTMs used in the 
operational ensemble of the Copernicus Atmosphere Monitoring Service (CAMS) regional services. In our 
approach, the emission input for the CHIMERE model is based on the latest country emission reporting to 
European Monitoring and Evaluation Program (EMEP)/Center on Emission Inventories Projection (CEIP) 
spatially and temporally disaggregated in the new TNO-GHGco-v2 inventory (Denier van der Gon, 2020). 
Compared with other UV-Vis instruments providing a long archive of NO2 observations, OMI has the high-
est spatial resolution and least degradation (Levelt et al., 2018; Schenkeveld et al., 2017). As a result, we 
use the OMI-QA4ECV-v1.1 NO2 TVCDs (Boersma et al., 2017, 2018) over the 10-year 2008–2017 period to 
confront the satellite-based trends in NO2 concentrations to those from CHIMERE CTM in order to evaluate 
the impact of the bottom-up anthropogenic and biogenic NOx emission trends, particularly over the 30 most 
populated urban areas in Europe (large cities and their suburbs).

2.  Data and Method
We use the regional CTM CHIMERE (Menut et al., 2013), driven by the PYVAR-CHIMERE system (For-
tems-Cheiney et al., 2019) to simulate NO2 TVCD corresponding to the satellite OMI-QA4ECV-v1.1 data 
(Boersma et al., 2017). Then we compute and compare the observed and simulated trends for the last 10-
year period including the last year reported by countries to EMEP/CEIP, from January 2008 to December 
2017.

2.1.  CHIMERE Set-Up

The CHIMERE reference simulation has been performed with the following set-up. CHIMERE is run over 
a 0.5° × 0.5° regular grid and 17 vertical layers, from the surface to 200 hPa, with 8 layers within the first 
two kilometers. The domain includes 101 (longitude) × 85 (latitude) grid-cells (15.25°W–35.75°E; 31.75–
74.25°N) and covers Europe (Figure 1). CHIMERE is driven by the European Center for Medium-Range 
Weather Forecasts (ECMWF) meteorological forecast (Owens & Hewson, 2018). The chemical scheme used 
in CHIMERE is MELCHIOR-2, with more than 100 reactions (CHIMERE, 2017; Lattuati, 1997), including 
24 for inorganic chemistry. Climatological values from the LMDZ-INCA global model (Szopa et al., 2008) 
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are used to prescribe concentrations at the lateral and top boundaries and the initial atmospheric compo-
sition in the domain. Considering the NO2 short lifetime, we do not consider its import from outside the 
domain: its boundary conditions are set to zero. Nevertheless, we take into account peroxyacetyl nitrate 
(PAN), the NOx reservoir, to transport NOx at the large scale accurately.

For anthropogenic NOx emissions between 2008 and 2017, we use the new TNO-GHGco-v2 gridded in-
ventory. This version is an update of the TNO inventory distributed in Kuenen et al., (2014) and in Super 
et al., (2020). This inventory is based on the last EMEP/CEIP official country reporting for air pollutants, 
done in 2019. It maps emissions at a 6 × 6 km2 horizontal resolution. Annual and national budgets are 
disaggregated in space based on proxies of the different sectors (Kuenen et al., 2014). Temporal disaggrega-
tion is based on temporal profiles provided per Gridded Nomenclature For Reporting (GNFR) sector code 
with typical month to month, weekday to week-end and diurnal variations. Following the Generation of 
European Emission Data for Episodes (GENEMIS) recommendations (Aumont et al., 2003; Kurtenbach 
et al., 2001), we speciated the TNO-GHGco-v2 NOx emissions as 90% of NO, 9.2% of NO2, and 0.8% of ni-
trous acid (HONO). The TNO-GHGco-v2 inventory has been aggregated at the 0.5° × 0.5° horizontal reso-
lution of the CHIMERE grid. Biogenic soil NO emissions are calculated from the MEGAN model (Guenther 
et al., 2006). Lightning NOx fluxes, which impact on NO2 concentrations is very small in Europe even in 
summer (Menut, Bessagnet, Mailler, et al., 2020), are not accounted for in this study. Fire emissions are also 
not accounted in our study. We assume they only slightly contribute to the NOx total emissions and to the 
10-year NO2 trends. The annual budgets for anthropogenic and biogenic emissions over our total domain 
are respectively 17,610 ktNO2 and 273 ktNO2 in 2008. The contribution of the anthropogenic emissions to 
the NOx total continental emissions in 2008 is shown in Figure S1.
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Figure 1.  Mean observed tropospheric columns by OMI-QA4ECV-v1.1 for the 10-year 2008–2017 period, in 1016 molec.
cm−2. The 30 urban areas are numbered from the most to the least populated according to MAW (2020) and are listed in 
Table S1. The three white boxes represent Western, Central and Eastern Europe.
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As the NO2 TVCD 10-year trends simulated by CHIMERE could be driven by anthropogenic and biogenic 
NOx emissions and by meteorology, different sensitivity tests have been performed to assess their impacts on 
the 10-year NO2 TVCD trends (Table 1). To assess the relative weight of meteorology on the simulated NO2 
TVCD trends, we performed the sensitivity test A keeping the anthropogenic emissions and the biogenic 
emissions constant at 2008 levels. To assess the relative weight of the biogenic emissions, we performed the 
sensitivity test B keeping the anthropogenic emissions constant at 2008 levels. However, Visser et al. (2019) 
found that the MEGAN model underestimates soil NOx emissions by a factor of 5–7, as it only contains 
natural soil NOx emissions and not agricultural enhanced emissions due to fertilization. We then performed 
the sensitivity test C, with MEGAN biogenic NOx emissions increased by a factor 5, to assess the impact 
of increased biogenic NOx emissions on TVCD long-term trends over Europe. It should be noted that this 
scaling up of the MEGAN pattern is a simplification: the agriculturally enhanced soil NOx emissions should 
be concentrated in agricultural hotspots.

2.2.  OMI-QA4ECV-v1.1 Observations

OMI, a near-UV/Visible nadir solar backscatter spectrometer, was launched onboard EOS Aura in July 
2004. It flies on a 705 km altitude sun-synchronous orbit that crosses the Equator at 13:40 LT. Our OMI-QA-
4ECV-v1.1 data selection follows the criteria of the data quality statement (Boersma et al., 2017). For this 
data set, we select data for which:

�– the processing error flag equals 0 for a pixel,
�– the solar zenith angle is lower than 80°,
�– the snow ice flag is lower than 10 or equal to 255,
�– �the ratio of tropospheric AMF over geometric AMF is higher than 0.2 to avoid situations in which the 

retrieval is based on very low (relative) tropospheric air mass factors,
�– the cloud fraction is lower than 0.25.

As the spatial resolution of the OMI data of 13 × 24 km2 at nadir is finer than that of the chosen CHIMERE 
model grid, the selected OMI TVCD are aggregated into “super-observations.” To make comparisons be-
tween simulations and satellite observations, the averaging kernels (AK) must be taken into account (Esk-
es & Boersma, 2003). In order to associate the super-observations to a real AK, these super-observations 
are taken as the observations (TVCD and AK) corresponding to the median of the OMI TVCD within the 
0.5° × 0.5° model grid-cell and within the CHIMERE physical time step of about 5/10 min.

The average of these super-observations of OMI-QA4ECV-v1.1 NO2 TVCD, binned at 0.5° resolution, over 
the 10-year 2008–2017 period in Europe are shown in Figure 1. The European domain is separated into 
three boxes representing Western, Central and Eastern Europe. It should be noted that countries of South-
ern Europe (Italy, Spain, and Portugal) are labeled “Western” hereafter. OMI shows wide patterns of strong 
NO2 values higher than 6 × 1015 molec.cm−2 over Western and Central Europe, particularly over south-
eastern UK, northeastern France, northern Italy, Benelux and Germany. It also shows isolated hotspots, 
with values often higher than 4  ×  1015 molec.cm−2, representative of populated urban areas (Schneider 
et al., 2015). For the following, we numbered the 30 most populated urban areas in our domain covering 
Europe (Figure 1 and Table S1) according to the Major Agglomerations of the World (MAW) website (www.
citypopulation.de, MAW, 2020).
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Name Objective of the simulation NOx anthropogenic emissions NO biogenic emissions

reference Baseline scenario TNO-GHGco-v2 MEGAN

A Sensitivity to meteorology TNO-GHGco-v2 constant at the 2008 levels MEGAN constant at the 2008 levels

B Sensitivity to biogenic emissions TNO-GHGco-v2 constant at the 2008 levels MEGAN

C Sensitivity to increased biogenic emissions TNO-GHGco-v2 MEGAN multiplied by 5

Table 1 
Description of the CHIMERE Simulations Performed in This Study

http://www.citypopulation.de
http://www.citypopulation.de


Geophysical Research Letters

2.3.  Time Series Analysis Method

We compute the monthly averages of the OMI-QA4ECV-v1.1 super-observations and of the correspond-
ing simulation with CHIMERE. Monthly biogenic NO and anthropogenic NOx emissions have also been 
computed. From these monthly fields, we calculate the deseasonalized monthly time series using the av-
erage-percentage method, as in Dufour et al. (2018). A climatological index is calculated over the 10-year 
period. It is then applied to the monthly time series to remove the seasonal component and obtain the 
deseasonalized time series. The Theil–Sen estimator (Sen,  1968) and the non-parametric Mann-Kendall 
test (Kendall, 1975) are used to estimate the linear trend. All the linear trends presented in this study are 
computed based on the deseasonalized time series. These trends are given in %/yr. The uncertainty on these 
trends corresponds to the 95% confidence interval and is also given in %/yr in the following. A trend is con-
sidered significant if the change in NO2 TVCD exceeds their uncertainty. In this study, this is equivalent to 
selecting the trends with a p value lower than 0.05.

3.  Results and Discussion
3.1.  A Strong NO2 Decrease Simulated by the CHIMERE Reference Over Western Europe

Over Western Europe, the CHIMERE reference simulated NO2 TVCDs show significant negative trends, up 
to −4%/yr (Figure 2). It can be seen that these significant negative trends mainly apply to large parts of the 
countries Portugal, Spain, UK, France, Italy, Belgium, and the Netherlands, thus suggesting that the NO2 
TVCDs in these countries located in our Western Europe domain have significantly decreased since 2008. 
The areas with significant negative trends in other European countries are much smaller.

The decrease of the NO2 TVCDs is mainly found over polluted areas defined as areas where annual an-
thropogenic NOx emissions are higher than 5ktNO2 in 2008 (Figure S1a)- and particularly over urban ag-
glomerations. The trends for the most populated urban areas in our domain shown in Figure 3 are indeed 
significantly negative for 26 urban areas out of 30. Over Western Europe, rural areas -defined as areas where 
annual anthropogenic NOx emissions do not exceed 5ktNO2 in 2008 (Figure S1a)- show significant trends 
but smaller than over polluted areas. Over Central and Eastern Europe, rural areas do not show significant 
trends.

3.2.  OMI Confirms the Drop in NO2 TVCDs Shown by CHIMERE Over Most of the Urban Areas 
in Western Europe

OMI TVCDs also show significant negative trends over Western Europe, mainly focused on polluted areas 
(Figure 2d). Zara et al., (2021) also found that the strongest trends in Europe occur for the most polluted 
regions. OMI confirms the drop in NO2 TVCDs simulated by CHIMERE over nine urban areas in West-
ern Europe: Madrid, Manchester, Birmingham, Barcelona, Paris, Brussels, Amsterdam, Milan and Rome 
(Figure 3a), demonstrating that the urban air quality in these agglomerations has been significantly im-
proved since 2008. In these nine urban areas, the range of trend estimates from OMI is similar to that from 
CHIMERE (e.g., −3.3 ± 2.0%/yr for OMI against −2.9 ± 2.0%/yr for CHIMERE for Paris, −3.8 ± 1.1%/yr for 
OMI against −3.3 ± 1.1%/yr for CHIMERE for Rome, Figure 3a). It is interesting to note that for the coastal 
cities London in UK, for Lisbon in Portugal, for Rotterdam in the Netherlands and for Naples in Italy, we 
get negative trends in the OMI data but that these trends are, however, not diagnosed as being significant 
(Figure 3a). Even though our super-observations are taken as the median of the OMI TVCD within the 
0.5° × 0.5° model grid-cell, they could be impacted by a problem of representativity as parts of the grid-cells 
are covered by the sea. This might explain the lack of significance in the analysis of the trends for these 
cities. Actually, significant negative trends were diagnosed with OMI oversampled data and ground stations 
over Rotterdam (Zara et al., 2021). Over Western Europe, it is also interesting to note that OMI does not 
confirm the drop in the NO2 TVCD columns over rural areas (Figure 2d).
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3.3.  OMI Disproves the Drop in NO2 TVCDs Shown by CHIMERE Over Most of the Urban Areas 
in Central and Eastern Europe

Simulated CHIMERE NO2 TVCDs present a significant negative trend for the most populated urban areas 
located in Central and Eastern Europe, except for the Ruhr area, Munich, Vienna and Stockholm (Fig-
ures 3b and Figure 3c). By contrast, in these regions, the OMI satellite observations show significant nega-
tive trends only over the Ruhr area (−2.9 ± 1.7%/yr), Frankfurt (−1.5 ± 1.3%/yr) and Kiev (−0.95 ± 0.7%/
yr). For the other urban areas located in Central and Eastern Europe, including many German urban areas 
(e.g., Cologne, Stuttgart, Munich and Berlin), OMI data show negative trends that are not significant (Fig-
ure 3b). Over Istanbul, as seen in Zara et al. (2021), OMI TVCDs show a significant positive trend whereas 
CHIMERE TVCDs show a negative one (+2.8 ± 2.0%/yr for OMI against −0.9 ± 0.8%/yr for CHIMERE). 
It is finally also interesting to note that the insignificant OMI NO2 TVCD trends over rural areas in Eastern 
Europe are consistent with the CHIMERE simulated TVCD trends. This is also consistent with the study of 
Krotkov et al. (2016) for the period 2005–2015.

3.4.  Questioning the Discrepancies Between OMI and CHIMERE NO2 TVCD Trends in Central 
and Eastern Europe Urban Areas: Impact of Biogenic Emissions and Uncertainties in the 
Emission Inventories

The sensitivity test A demonstrates the negligible influence of meteorology variations on the NO2 TVCD 
trends (Figure 2e), as already noticed by Castellanos and Boersma (2012) and by Krotkov et al. (2016). The 
lack of significant trends in the OMI-QA4ECV-v1.1 NO2 satellite observations over the in Central and East-
ern Europe urban areas (Figures 2d and Figure 3) therefore question:

�(a)	� the magnitude of the biogenic emissions, as the MEGAN module does not capture agriculturally en-
hanced soil NOx emissions by design (Guenther et al., 2006),

�(b)	� the emission reductions estimated for particular sectors over these regions by the TNO-GHGco-v2 in-
ventory, which is based on the last official declarations by countries.

3.4.1.  Questioning the Magnitude of the Biogenic Emissions

The biogenic emissions calculated by CHIMERE over Europe show significant positive trends over the 
2008–2017 period, up to +2%/yr (Figure 2b). This is relatively small compared to the trends of anthropogen-
ic NOx emissions, up to −10%/yr (Figure 2a). In addition, the relative contribution of biogenic emissions to 
total NOx emissions is small (Figure S1b). With the sensitivity test B, the NO2 TVCD trends are similar to 
those of the sensitivity test A, with small and insignificant trends almost everywhere in Europe (Figure 2f). 
In our reference simulation, the biogenic emissions thus only slightly contribute to the trend of NOx to-
tal emissions over Europe, even over rural areas. However, with higher biogenic emissions as estimated 
by Visser et al. (2019) in the sensitivity test C, the CHIMERE trends are dampened in many locations. It 
helps reconciling CHIMERE and OMI trends over Cologne, Hamburg and Berlin in Central Europe, where 
CHIMERE trends become insignificant (Figure 3b). It also helps reconciling CHIMERE and OMI trends 
over rural areas (Figure 2g), confirming the importance of accounting for non-anthropogenic emissions to 
assess TVCD long-term trends (Silvern et al., 2019). Nevertheless, as the CHIMERE trends remain similar, 
this test with increased NOx biogenic emissions does not reconcile CHIMERE and OMI over coastal cities in 
Western Europe (e.g., Lisbon, London, Rotterdam, and Naples, Figure 3a) and over urban areas in Eastern 
Europe (e.g., Athens, Bucharest, and St-Petersburg, Figure 3c).
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Figure 2.  Ten-year trends calculated from monthly deseasonalized time series of NOx (a) TNO-GHGco-v2 anthropogenic emissions and (b) biogenic emissions 
calculated from the MEGAN model. 10-year trends calculated from monthly deseasonalized time series of NO2 TVCD (c) simulated by the CHIMERE reference 
simulation, (d) observed by OMI-QA4ECV-v1.1, (e) simulated by CHIMERE with biogenic and anthropogenic emissions constant at their 2008 levels in the 
sensitivity test A, (f) simulated by CHIMERE with anthropogenic emissions constant at their 2008 levels in the sensitivity test B and (g) simulated by CHIMERE 
with biogenic emissions increased by a factor 5 in the sensitivity test C, for the period 2008–2017. Pixels with significant trend are shown with a cross symbol. 
Units are %/yr. Note that the scale for the emission trends in (a) and (b) are different from the other figures. TVCD, tropospheric vertical column density.
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Figure 3.  Ten-year trends of NO2 TVCD simulated by the CHIMERE reference (in purple), by CHIMERE with the 
sensitivity test C (in blue) and observed by OMI-QA4ECV-v1.1 (in green), for the 30 most populated urban areas in our 
domain shown from west to east in (a) Western, (b) Central, and (c) Eastern Europe. Significant trends are shown in 
dark color with their corresponding uncertainties. Units are %/yr. TVCD, tropospheric vertical column density.
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3.4.2.  Questioning the Anthropogenic Emission Reductions

Figure S2 presents the contribution of six sectors to the trends in total anthropogenic NOx emissions in the 
TNO-GHGco-v2 inventory, from 2008 to 2017. The contribution per sector (i) has been calculated as:

   
 


10yr trend sectoral emissions) x (sectoral emissions in 2008

contribution
10yr trend total emissions) x (total emissions in 2008

i i
i� (1)

where 10-year trend sectoral i and 10-year trend total emissions are the trends in sector i emissions and in 
total emissions over 2008–2017, respectively; and sectoral i emission 2008 and total emissions 2008 are the 
annual emissions in 2008 for sector i and for total emissions, respectively.

Note that a positive contribution means that the sectoral emissions are contributing to the either positive 
or negative trend in total NOx emissions. A negative contribution indicates that the sign of the trend in the 
sectoral emissions is opposite to the trend in total NOx emissions. Road transport diesel (RTD) emissions 
(Figure S2b) contribute the most to the negative trends in anthropogenic NOx emissions (Figure S2a). With 
lower NOx emissions than RTD but a higher negative trend of its emissions, the Road transport Gasoline 
(RTG) emissions also strongly contribute (Figure S2c). Industrial (Figure S2d), public power (Figure S2e) 
and residential emissions (Figure S2f) can contribute to the negative trends in anthropogenic NOx emis-
sions. For example, the contribution of the energy sector is of about 55% in Budapest. Contributions of 
emissions from other sectors, such as shipping (Figure S2g) to the trend in anthropogenic NOx emissions 
are small.

Different studies found that the emissions factors used in inventories for Road Transport Diesel (RTD) 
emissions and their long-term trends compared poorly with the real world (Beevers et al., 2012; EEA, 2016; 
ICCT, 2014). In the TNO-GHGco-v2 inventory, this issue is partly accounted as they use « real-driving con-
ditions » RTD emissions from the EMEP/EEA Guidebook (Ntziachristos & Samaras, 2019), based on the 
Emisia COPERT data set (https://www.emisia.com/utilities/copert-data/). They use the Emisia data set 
mainly to spatially distribute the emissions. However, the total emissions by country are taken from the 
official reported data. These are often based on Emisia/COPERT data but it could differ by country. RTD 
emissions contribute more to the trend in total NOx emissions (Figure S2b) over Central and Eastern Eu-
rope than over Western Europe. For example, the contribution of RTD emissions to the trend in total NOx 
emissions is of 70% for Bucharest against 35% for London. It could partly explain the discrepancies between 
OMI-QA4ECV-v1.1 and CHIMERE over these parts of Europe.

It is also interesting to note that emissions from the public power and industry sectors increase since 2008 
in the TNO-GHGco-v2 inventory for some urban areas located in Central and Eastern Europe. For exam-
ple, industrial emissions have increased in Stuttgart and in Frankfurt from 2008 to 2017. Emissions from 
the energy sector have increased over Hamburg, Stuttgart, Frankfurt, Munich and Warsaw urban areas 
(Figure S2). The increase in Hamburg is due to the commissioning of coal-fired power station of Moor-
burg-Hamburg in 2015. The increase in Stuttgart is also due to electricity production from coal. Negative 
contributions to the trends in total NOx emissions from residential (Figure S2f) and road transport gasoline 
emissions (Figure S2c) are also estimated over Warsaw and Bucharest. An under-estimation of the trends 
associated with these anthropogenic activities could explain the discrepancies between OMI-QA4ECV-v1.1 
and CHIMERE trends over these urban regions.

Finally, contributions from other sectors such as shipping could be underestimated. The trends in NO2 
emissions from shipping prior to 2014 are uncertain because activity data derived from the messages broad-
cast by vessel’s Automatic Identification Systems (AIS) data (IMO, 2000; Jalkanen et al., 2009) were not yet 
used to estimate the emissions. These emissions and their trends may influence especially coastal cities. 
This could explain the discrepancies between OMI-QA4ECV-v1.1 and CHIMERE particularly over Lisbon, 
London, Rotterdam, and Naples.
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4.  Conclusions
The anthropogenic emissions based on the official reported emissions form the basis for negotiation on 
emission reductions in the EU and are used to assess if countries meet their agreed emission ceilings (EU 
Directive 2016/2284). An inventory based on these reported emissions is used as input for CHIMERE CTM 
to simulate NO2 TVCDs, which are then comparable to OMI data. Over urban areas in Western Europe, 
OMI confirms the drop of the simulated CHIMERE NO2 TVCD columns, based on the latest country emis-
sion reporting. Over Eastern Europe, our results question emission reductions estimated for particular sec-
tors such as road transport, public power and industrial emissions: this decrease may be less than official 
reported NOx emissions suggest. Increasing the biogenic emissions provided as input of CHIMERE rec-
onciles the simulated NO2 TVCDs and OMI data over urban areas in Central Europe and over rural areas. 
This confirms the importance of biogenic emissions to assess NO2 long-term trends. The discrepancies 
between our CHIMERE simulation and the OMI observations should be further investigated because of the 
policy implications. Further work should be done to quantify diffuse and partly natural NOx sources (soil 
emissions over agricultural areas, lightning, fires and the ubiquitous NO2 background). The TROPOspheric 
Monitoring Instrument (TROPOMI) on board the Copernicus Sentinel-5 Precursor (S5P) satellite currently 
measures NO2 TVCDs at an unprecedented spatial resolution (3.5 × 5.5 km2 since August 6, 2019), which 
will improve the atmospheric monitoring of emissions over urban areas, offering the prospect of a more 
precise estimate of NO2 trends over the current decade and making it an important tool for studying urban 
air pollution.
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