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Abstract: The performance of military tasks is often exacerbated by additional load carriage, leading
to increased physical demand. Previous studies showed that load carriage may lead to increased
risk of developing musculoskeletal injuries, a reduction in task speed and mobility, and overall
performance degradation. However, these studies were limited to a non-ambulatory setting, and the
underlying causes of performance degradation remain unclear. To obtain insights into the underlying
mechanisms of reduced physical performance during load-carrying military activities, this study
proposes a combination of IMUs and musculoskeletal modeling. Motion data of military subjects
was captured using an Xsens suit during the performance of an agility run under three different
load-carrying conditions (no load, 16 kg, and 31 kg). The physical performance of one subject was
assessed by means of inertial motion-capture driven musculoskeletal analysis. Our results showed
that increased load carriage led to an increase in metabolic power and energy, changes in muscle
parameters, a significant increase in completion time and heart rate, and changes in kinematic
parameters. Despite the exploratory nature of this study, the proposed approach seems promising
to obtain insight into the underlying mechanisms that result in performance degradation during
load-carrying military activities.

Keywords: inertial sensors; Xsens; musculoskeletal modeling; AnyBody; military; kinematics; energy
expenditure; muscle parameters

1. Introduction

Soldiers are often involved in various physically demanding tasks, performed under
adverse circumstances during military operations. Load carriage is an important com-
ponent thereof. During training or mission deployment, soldiers wear bulky and heavy
personal protective clothing (PPC) (e.g., body armor and helmet), combat specific and
personal protective equipment (PPE) (e.g., weapon systems and communication devices),
and provisions. Over the years, the weight of these loads has only increased by the rapidly
available new technologies that aim to enhance protection, firepower, and communication
of soldiers [1]. These additional external loads complicate these operations even more and
may lead to serious consequences. Examples are increased energy expenditure, fatigue, and
obstruction of physical performance, but also the inability to perform a task. Heavy loads
reduce mobility and speed [2], making the soldiers more susceptible to enemy threats [3,4].
Additionally, exposure to these heavy loads often lead to overload and musculoskeletal
injuries among soldiers, causing reduced work capacity and combat readiness [5].

To better understand the impact on the soldier’s physical performance by typical
military loads, the most research has focused on measuring obstacle course completion
time for various loading conditions [2,6–9] and generally, in the context of body worn load,
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the reported reduction in physical performance is approximately 1.5% for every kilogram
of carried mass [10]. However, these empirical methods do not provide any insight into the
underlying mechanisms of performance degradation. The analysis of kinematic parameters,
joint loading, and metabolic costs are important to comprehend the full effect of carried
load on military performance. Examples of altered body movements during load are an
increase in trunk movement in the sagittal plane [11–17] associated with an increase in the
craniovertebral angle [13] and a decrease in the position of the center of mass (CoM) [11].
Next to this, physical loading was found to change the range of motion of the ankle, knee,
and hip angle [11–13,17–20]. In addition to the kinematic consequences, increases in knee,
hip, and ankle moments were found [11,17,19,20], but also increases in ground and joint
reaction forces [8,14,20], muscle activities, and muscle burdening [11,13,16,20].

Other physiological loading metrics also increase, such as heart rate [19,21–23] or
energy expenditure (i.e., metabolic costs) [1,8,14,19,20,23,24] that are associated with in-
creased external loads. The reliable estimation of energy expenditure is important, since
predictions or guidelines rely on this parameter. For example, body core temperature and
sweat rating are important parameters that are used to prescribe work–rest regimes to
prevent heat strokes and these calculations rely on energy expenditure of the undertaken ac-
tivities [25]. Additionally, energy expenditure is used to calculate the maximum acceptable
work duration [26], which can be used for planning of load carriage tasks and/or managing
personnel undertaking these tasks. For example, it would be valuable to know how much
energy a series of tasks during a mission would cost in order to manage personnel, pacing,
or nutrition strategies.

Unfortunately, the available tools to assess these performance metrics are crude or
require a specific laboratory setting, i.e., optical motion-capture systems, that are impractical
for military activities. To overcome these shortcomings, we propose a combination of an
inertial measurement unit (IMU) system and musculoskeletal modeling as a convenient and
ambulatory means to study physical performance in military activities. Musculoskeletal
models have already proven their added value with regard to human movement research in
several disciplines, such as sports, ergonomics, product design in industry, and for clinical
purposes [27–30]. To our knowledge, only Lenton et al. [31–33] used musculoskeletal
modeling to determine the effects of load carriage on military performance. However, their
study was limited to the use of an optical motion-capture system and force plates, which
are impractical for field evaluations.

The primary goal of this explorative study is to determine whether the combination
of an IMU system and musculoskeletal modeling can provide additional insights into the
underlying mechanisms of performance degradation indued by physical loading in military
activities. This can help in determining the limitations of physical performance and to
identify useful relationships between several aspects of load carriage, which are of interest
to, e.g., mission planning, development of training regimes, and personnel management.

We anticipated that the model would provide detailed and quantitative data on the
underlying mechanisms of physical performance during simulated load-carrying tasks.
Our working hypothesis was that increased load carriage leads to altered body-level and
muscle-level physical performance during military activities. Specifically, we hypothesized
that increased load leads to movement alterations, including a speed decrease, and to
changes in muscle force levels, resulting in increased energy expenditure.

2. Materials and Methods
2.1. Subjects

Data of ten subjects were collected during an experiment (age = 24.2 ± 2.7 years, body
weight = 93.2 ± 8.5 kg, body height = 188.9 ± 5.9 cm). All subjects had an operational
function as military at the moment of the experiment. The inclusion criteria were: male
gender, age 18–30 years, no reported physical or mental health issues, and experience with
military training (specifically, obstacle course) or deployment. Subjects were informed that
their participation was voluntary, and they could quit the experiment at any time. At the
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start of the experiment, subjects gave written consent. The study was approved by the
internal ethical review board of TNO and registered under number 2019-094.

2.2. Measurement Setup

The experiment consisted of the performance of an agility run with different loading
conditions. The agility run is an obstacle of the military obstacle course as developed in the
Load Effects Assessment Program (LEAP) (SOLIID-LEAP, Soesterberg, The Netherlands).
The LEAP obstacle course is an instrumented operationally realistic combat mobility
course and comprises ten sequential timed mobility tasks. These tasks were designed to
simulate the most common or most challenging physical tasks encountered during military
tactical operations and are used to assess operationally relevant mobility and physical
performance [34,35].

The agility run represents a run through a complex terrain. The set-up consists of a
32.5 m zig-zag course with five flags and five (low) hurdles, demonstrated in Figure 1a.
The subjects were instructed to use maximum speed to go from the start to the finish
following the course of the flags, while jumping over the hurdle obstacles (Figure 1b). To
maintain consistency in the performance, subjects needed to choose a strategy to perform
the agility run: they were instructed to start running with the same leg all tests, to jump
over the obstacles the same way all tests, and to make the cut around the flags the same
way all tests. Each participant practiced their strategy five times while wearing 15.6 kg of
extra load, which was considered to be enough to diminish a learning effect during the
experiment [36].
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Figure 1. (a) Overview of the agility run with five flags and five (low) hurdles. The starting line is on
the right side of the image and the finishing line on the left side. (b) Subject is jumping over one of
the hurdle obstacles.

To realize different loading conditions, a custom build agility suit was used. This
suit enables alterations of the individual effects of PPC/E weight, bulk, and stiffness. In
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this experiment, only the effect of weight was investigated, which requires the use of
the vest to add high density mass pads of 5.2 kg each. The mass pads were attached
to the chest and back, resembling a tactical vest or double pack, a common way of load
carriage in military [1]. Additionally, the trousers of the agility suit were worn to protect
the participant and equipment, but no mass was attached there. The agility suit is shown
in Figure 2.

Table 1. Specifications of the external load segment for the two loaded conditions (M1 and M2).

Measure M1 M2

Weight on chest (m) (kg) 5.2 15.6
Weight on back (m) (kg) 10.4 15.6

Width (x) (m) 0.31 0.31
Height (y) (m) 0.30 0.30

Thickness on chest (z) (m) 0.0125 0.0375
Thickness on back (z) (m) 0.0250 0.0375
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Figure 2. The agility suit worn during the experiment. (a) Subject is wearing the vest and pair of
trousers. (b) High density mass pads of 5.2 kg each can be added to investigate the effect of weight.
(c) The mass pads are attached to the vest. The load is divided on the front and back of the subject
(details are given in Table 1).

During the experiment, completion time of the agility run was registered with a
handheld stopwatch. Additionally, heart rate was measured with a Polar H10 sensor chest
strap (Polar Electro, Kempele, Finland) during the agility run and a rest period of two
minutes afterwards. Full-body kinematics were recorded with an Xsens suit consisting
of 17 inertial measurements units (IMUs) (Xsens MVN Link, Xsens Technologies B.V.,
Enschede, The Netherlands). With use of the affiliated software, MVN Studio 2019.2.1,
the human movement during the performance of the agility run was recorded in real-
time with a sample frequency of 240 Hz. Anthropometric data were measured with a
segmometer and entered into the software. These data are used by the software to scale
the body segments based on an anthropometric model to obtain a subject-specific model.
Additionally, body weight was measured. Prior to the measurements, sensor calibration
was performed according to the instructions of Xsens (N-pose and walk protocol).

Motion capture data were used as input for the musculoskeletal model (see Section 2.4).
Prior to using the data as input, the Xsens data were HD reprocessed in MVN Studio.
Thereafter, the files were manually synchronized by finding the start and end of the
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movement in the recordings, to save only the parts of the agility run, and exported as
BVH files.

2.3. Measurement Protocol

Three different loading conditions were defined:

• no extra mass (M0): boots and sport clothes (~2.27 kg [36]) + Xsens suit + agility suit
(both suits together were 3.1 kg) + 0 kg extra mass;

• light extra mass (M1): M0 + 15.6 kg extra mass (5.2 kg on the front, 10.4 kg on the
back);

• heavy extra mass (M2): M0 + 31.2 kg extra mass (15.6 kg on the front, 15.6 kg on
the back).

Each condition was performed three times, which resulted in a total of nine tests
for each subject. The order was randomized to reduce the influence of fatigue on the
performance. In between the tests, subjects needed to take two minutes rest on a chair. Prior
to the experiment, subjects were instructed to warm up following given instructions [37].

The experiment continued over two days, with five subjects each day. The experiment
was set up indoors at the Scheickbarracks (LEAP—SOLIID, Soesterberg, The Netherlands).
Before the experiment, subjects recieved extensive instructions about the experiment.

2.4. Musculoskeletal Modeling Environment

A musculoskeletal model was developed in the AnyBody Modeling System v. 7.2.3
(AnyBody Technology A/S, Aalborg, Denmark). The BVH_Xsens model of the AnyBody
Managed Model Repository (AMMR) v. 2.2.3 was used as base model. This full-body
model allows kinematic input in the form of inertial motion-capture data. The model also
provides ground-reaction force (GRF) prediction capabilities that allow the analysis of
inverse dynamic models based on recorded motion without GRF force measurement [38,39].

2.4.1. Model Adaptations and Settings

The base model was adapted to incorporate the external load. Two additional seg-
ments were created representing the worn mass; one rigidly attached to the chest and the
other to the back of the thorax segment (Figure 3). These two segments were assigned
a mass, equal to the weight of the actual worn masses (Table 1), and the three principal
moments of inertia, based on the moment of inertia of a uniform rectangular plate.
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2.4.2. Musculoskeletal Simulations

To determine the effect of external loading on energy expenditure and muscle param-
eters, musculoskeletal simulations were run using the kinematic datasets of each of the
three repetitions of both base (M0) and adapted models (M1, M2), resulting in a total of
nine simulations. These simulations were only run for one subject due to the complexity of
the analysis.

Each simulation consisted of two steps: an inverse kinematic and an inverse dynamic
analysis. In the inverse kinematic analysis, virtual marker positions were derived from the
Xsens stick-figure model and were used (1) to scale the body segment dimensions and (2)
as target for a marker-tracking motion-optimization analysis. The resulting optimized joint
kinematics and body segment dimensions were stored for the subsequent inverse dynamic
analysis. In this last step, joint kinematics were input to a muscle-actuated inverse dynamic
model that solved for muscle forces, and joint- and ground-reaction loads. Additional
results of this analysis were the instantaneous metabolic power (Pmet) and the time-integral
thereof, i.e., metabolic energy expenditure throughout the agility run (Emet). For simplicity,
only the lower-limb muscles contributed to the metabolic power estimation.

2.5. Data Analysis

All data were pseudonymized before analysis. Data analysis was performed with
Matlab R2019b (The MathWorks, Inc., Natick, MA, USA). Results on completion time and
heart rate were analyzed for all ten subjects. Energy expenditure, muscle parameters, and
kinematics parameters were analyzed for only one subject.

2.5.1. Muscle Parameters

The effect of external load on muscle parameters of the gluteus maximus muscle and
vastus lateralis muscle was investigated. The parameters for the left and right leg were
averaged. Using the simple metabolic energy model [40] and the equation for power, the
relation between energy expenditure and these parameters is given by:

Pmet = η ·Pm = η·Fm·
.
Lm (1)

where η is an efficiency coefficient, which is 0.25 for concentric contractions and −1.2
for eccentric contractions, Pm is mechanical power, Fm is muscle force, and

.
Lm is muscle

contraction velocity.

2.5.2. Kinematic Parameters

Movement alterations as consequence of the added load were investigated for the
pelvis:trunk angle in the sagittal plane (flexion/extension) (θtrunk) and the vertical position
of the trunk CoM (yCoM). The trunk angle in the sagittal plane was defined as the rotation
around the z-axis between the anatomical frames of the pelvis and the thorax segments,
which is visualized in Figure 4. The range of motion (RoM) of the trunk angle in the sagittal
plane and vertical displacement (VD) of the CoM were calculated:

RoMtrunk = max(θtrunk)− min(θtrunk) (2)

VDCoM = max(yCoM)− min(yCoM) (3)
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2.5.3. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics 26 (IBM Inc., Armonk,
NY, USA). A p-value equal to or less than 0.05 was considered significant, unless stated
differently. Completion time and heart rate data were checked for normality with the
Shapiro–Wilk test. Differences between conditions for the several outcome measures
were identified with a repeated measures ANOVA test, followed by post hoc tests using
Bonferroni correction to account for multiple testing bias. In case of non-normality and for
energy expenditure, muscle, and kinematic parameters, differences were identified with
a non-parametric Friedman’s ANOVA test for K-related samples, followed by Wilcoxon
signed rank test as post hoc test.

3. Results

Motion capture data were successfully recorded with the IMU system and recon-
structed in the musculoskeletal modeling environment (see Supplementary Video S1).
Table 2 presents the results of ten subjects for completion time and heart rate. The re-
sults for energy expenditure, muscle and kinematic parameters are shown in Table 3 for
one subject.

Table 2. Completion time and heart rate for ten subjects (n = 10), presented as mean ± SD in the case of normal distribution
(†) or median + range in the case of non-normal distribution, ANOVA test results, and differences between loading
conditions. The asterisks indicate significant differences between the conditions based on post hoc test results: * p < 0.01,
** p < 0.001. Significant results are in bold.

Metric M0 M1 M2 p M1 rel. M0 M2 rel. M1 M2 rel. M0

CT [s] 11.78 ± 0.46 † 12.32 ± 0.46 † 13.08 ± 0.68 † <0.000 0.665 (5.6%) ** 0.700 (5.6%) * 1.37 (12%) **

HR [bpm] 120 + 55 122 + 59 128 + 53 <0.000 2 (1.3%) 7 (5.3%) * 8 (6.7%) *

CT = completion time; HR = heart rate; rel. = relative to.
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Table 3. Energy expenditure, muscle parameters, and kinematic parameters for three loading conditions of one subject
(n = 1), presented as median + range, ANOVA test results (significant results are in bold), and the differences between
loading ‘conditions.

Metric M0 M1 M2 p M1 rel. M0 M2 rel. M1 M2 rel. M0

Energy expenditure

Pmet [W kg−1] 35.8 + 2.61 39.0 + 0.41 40.0 + 1.78 =0.050 3.24 (9.1%) 1.05 (2.7%) 4.29 (12%)

Emet [J kg−1] 551 + 21.7 589 + 41.8 668 + 5.71 =0.050 38.7 (7.0%) 78.3 (13%) 117 (21%)

Muscle parameters of gluteus maximus muscle

Pmet [W kg−1] 0.184 + 0.0747 0.291 + 0.0488 0.319 + 0.0391 >0.050 0.107 (58%) 0.0282 (9.7%) 0.135 (73%)

Emet [J kg−1] 40.9 + 1.10 48.9 + 1.41 55.8 + 3.44 =0.050 8.05 (20%) 6.93 (14%) 15.0 (37%)

Fm [N] 124 + 6.90 154 + 7.12 183 + 6.86 =0.050 29.7 (24%) 29.3 (19%) 59.0 (48%)
.
Lm [cm s−1] −0.288 + 0.130 −0.770 + 0.294 −0.989 + 0.158 =0.050 −0.482 (168%) −0.219 (28%) −0.701 (244%)

Muscle parameters of vastus lateralis muscle

Pmet [W kg−1] 0.575 + 0.0416 0.582 + 0.126 0.622 + 0.0399 >0.050 0.0073 (1.3%) 0.0399 (6.9%) 0.0472 (8.2%)

Emet [J kg−1] 41.8 + 4.03 44.7 + 3.08 48.9 + 0.751 =0.050 2.87 (6.9%) 4.22 (9.4%) 7.09 (17%)

Fm [N] 316 + 18.9 365 + 71.7 397 + 5.88 =0.050 48.9 (16%) 32.0 (8.8%) 81.0 (26%)
.
Lm [cm s−1] 0.113 + 0.515 0.127 + 1.13 0.958 + 0.205 >0.050 0.0141 (12%) 0.830 (652%) 0.845 (745%)

Kinematic parameters

θtrunk [deg] 9.04 + 0.377 8.58 + 1.01 7.79 + 1.45 >0.050 −0.464 (−5.1%) −0.788 (−9.2%) −1.25 (−14%)

ROMtrunk [deg] 37.9 + 2.82 29.0 + 11.5 28.4 + 2.84 >0.050 −8.82 (−23%) −0.663 (−2.3%) −9.48 (−25%)

yCoM [cm] 101 + 1.24 99.2 + 0.66 99.4 + 0.110 >0.050 −1.42 (−1.4%) 0.230 (0.23%) −1.19 (−1.2%)

VDCoM [cm] 49.1 + 2.40 46.7 + 4.44 44.5 + 1.84 >0.050 −2.42 (−4.9%) −2.15 (−4.6%) −4.57 (−9.3%)

Pmet = metabolic power; Emet = metabolic energy; Fm = muscle force;
.
Lm = muscle contraction velocity; θtrunk = trunk angle in the sagittal

plane; RoMtrunk = trunk range of motion in the sagittal plane; yCoM = vertical position of CoM (center of mass); VDCoM = vertical
displacement of CoM; rel. = relative to.

3.1. Completion Time and Heart Rate

Completion time was found to increase significantly with additional loads (ANOVA,
p < 0.000). Figure 5 depicts the median completion times over three repetitions per condi-
tion for ten subjects, which varied between 11.78 s (M0), 12.32 s (M1), and 13.08 s (M2).
Post hoc tests revealed that the differences between all conditions were significant.
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Heart rate during the agility run and two minutes rest afterwards was found to be
significantly affected by the load (ANOVA, p < 0.000) (Figure 6). The post hoc test revealed
that median heart rate differed significantly between M0–M2 and M1–M2, with a difference
of 8 and 7 bpm, respectively. For all subjects, the highest heart rate values were measured
after completion of the agility run.
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3.2. Energy Expenditure

The course of the metabolic power during the agility run for the first repetition
of each condition is shown in Figure 7a. Similar patterns in metabolic power were ob-
served between the three conditions, in particular during the marked jumps. These jumps
were characterized by a peak in metabolic power just before and at the start of the jump
(Figure 7b).
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Figure 7. Course of the metabolic power for subject 8. (a) Metabolic power normalized to body
weight during the agility run. Data from M01, M11, and M21 are shown. The jumps over the hurdles
during the run are marked. A part of the agility run of M01, denoted with the red rectangular, is
zoomed in on in (b). Specific movements during the agility run are marked.

Median metabolic power normalized to body weight varied between 35.8 W kg−1 (M0),
39.0 W kg−1 (M1), and 40.0 W kg−1 (M2) (Figure 8a). Metabolic energy increased from
551 J kg−1 for M0 to 589 J kg−1 for M1 and 668 J kg−1 for M2 (Figure 8b). Both parameters
were significantly affected by the load (ANOVA, p = 0.050). However, post hoc tests did
not reveal any significant difference between the conditions.
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3.3. Muscle Parameters

Metabolic power, metabolic energy, and muscle force of the gluteus maximus muscle
were found to increase with additional load, while muscle velocity decreased (Figure 9).
ANOVA test results showed that metabolic energy, muscle force, and muscle velocity were
significantly affected by the load, but post hoc tests did not reveal significant differences
between the conditions.
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tests did not reveal any significant difference between the conditions. 

 

Figure 9. Muscle parameters of the gluteus maximus muscle of subject 8 for three repetitions per
condition. Median values are displayed. (a) Metabolic power normalized to body weight, (b)
metabolic energy normalized to body weight, (c) muscle force, and (d) muscle velocity.

For all four parameters of the vastus lateralis muscle, an increase with additional
loads could be seen (Figure 10). Only metabolic energy and muscle force were found to be
significantly affected by the load based on ANOVA test results, but again, post hoc tests
did not reveal any significant difference between the conditions.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 17 
 

 

3.3. Muscle Parameters 
Metabolic power, metabolic energy, and muscle force of the gluteus maximus muscle 

were found to increase with additional load, while muscle velocity decreased (Figure 9). 
ANOVA test results showed that metabolic energy, muscle force, and muscle velocity 
were significantly affected by the load, but post hoc tests did not reveal significant differ-
ences between the conditions. 

 
Figure 9. Muscle parameters of the gluteus maximus muscle of subject 8 for three repetitions per 
condition. Median values are displayed. (a) Metabolic power normalized to body weight, (b) meta-
bolic energy normalized to body weight, (c) muscle force, and (d) muscle velocity. 

For all four parameters of the vastus lateralis muscle, an increase with additional 
loads could be seen (Figure 10). Only metabolic energy and muscle force were found to 
be significantly affected by the load based on ANOVA test results, but again, post hoc 
tests did not reveal any significant difference between the conditions. 

 

Figure 10. Muscle parameters of the vastus lateralis muscle of subject 8 for three repetitions per con-
dition. Median values are displayed. (a) Metabolic power normalized to body weight, (b) metabolic
energy normalized to body weight, (c) muscle force, and (d) muscle velocity.



Sensors 2021, 21, 5588 12 of 17

3.4. Kinematic Parameters

Additionally, the trunk angle and RoM in the sagittal plane decreased with additional
loads worn, as well as the vertical position and displacement of the CoM (Figure 11).
However, these parameters were not significantly affected by the load.
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4. Discussions

The presented method of applying IMUs in combination with musculoskeletal mod-
eling allows for a comprehensive analysis of the effect of carried load on the physical
performance during a military obstacle course. With this approach, the functional perfor-
mance degradation (i.e., completion time) as a result of load carriage can be decomposed
in kinematic alterations, together with muscle specific aspects and metabolic costs. The
exploratory results of this study illustrate how an increase in carried load leads to changes
in movements and, consequently, leads to altered muscle activation and an increase in
metabolic costs. Similarly, the completion time of the agility run increased with added load,
which is in agreement with our hypothesis.

Energy expenditure did not increase equally between M0–M1 and M1–M2, while
load was increased equally. These findings imply that there does not exist a proportional
relationship between load carriage and energy expenditure, which was supported by the
finding of Looney et al. [41].

Muscle force and muscle contraction velocity are the main muscle parameters that de-
fine metabolic power, as indicated by Equation 1. The gluteus maximus muscle and vastus
lateralis muscle both showed an increase in muscle force between M0–M1 and M1–M2,
while muscle contraction velocity decreased for the gluteus maximus muscle between all
conditions and increased for the vastus lateralis muscle. A possible explanation is that more
force is required from all muscles to be able to carry the increased load, which consequently
requires more energy from the body. To use its energy efficiently, the human body will
react to this increased energy demand by changing its movements and muscle activation
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accordingly. Therefore, muscle contraction velocity may increase for some muscles when
load is increasing, while other muscles will decrease their contraction velocity.

The time to complete the obstacle increased significantly with added loads, with an
increase of 5.6% between M0–M1 and equally between M1–M2. These results suggest a
proportional relationship between load carriage and completion time. Hence, the weight
of external load negatively affects functional performance expressed as completion time.
These findings were in agreement with our hypothesis and are extensively described in the
literature; Vitali et al. [7] showed comparable alterations in completion time. They found
a decrease of 0.51% in inverse completion time per kg added load, compared to a 0.36%
increase in completion time per kg added load found in this study. Mitchell et al. [36]
performed a study with a similar agility run as used in this study and showed higher
completion times of 14.75 s on average with a loading condition comparable to our M0
condition, which is 2.99 s slower than our finding. This difference can be explained by the
fact that their subjects performed the agility run as part of the full obstacle course, while
our subjects only performed the agility run. Therefore, fatigue could be a reason for their
longer completion times.

An increase in metabolic power suggests an increase in internal load, which is defined
as the relative biological stressors imposed on a human body during physical exertion [42].
One of the objective measures of internal load is heart rate, because it is highly correlated
with oxygen consumption during continuous work, which is directly related to energy
expenditure [25]. Our results support the hypothesis of increased internal load during
load carriage, as significant increases in heart rate were found with added external load.
Although several studies showed a linear relationship between load carriage and heart
rate [19,22], this conclusion cannot be drawn from our results. An explanation for this could
be that oxygen consumption, and with that heart rate, is only directly related to energy
expenditure for aerobic activities that require continuous work. However, an agility run is
a short, intense activity, which requires the use of the anaerobic pathway. This pathway
requires less oxygen consumption and therefore heart rate increases less. Additionally,
changes in heart rate are only visible after a certain time with respect to the start of an
activity, which was also indicated by the fact that maximum heart rate values were reached
after completion of the agility run. Another noteworthy point is that heart rate levels might
not have been decreased to resting levels in the short rest periods (two minutes) that we
applied in the experimental protocol.

The results of this study show a decrease in trunk angle and RoM in the sagittal plane
with added loads. This is in contrast to the results described in the literature [11,13–16],
which showed that, for increased load, subjects tend to lean further forward to counter-
balance the effect of added load and maintain stability. However, most of those studies
investigated the effect of carrying the load solely on the back, while we distributed the load
over the chest and back. Only Park et al. [16] also investigated the effect of load distribution
over the chest and back. In agreement with our results, they showed a decrease in trunk
movement in the sagittal plane. This probably allowed the subjects to better maintain their
stability and reduce vertical oscillations. Next to the decrease in trunk angle, a decrease
in vertical position of the CoM was also found in this study. This was in accordance with
previous studies [11,14], although they investigated the effect of load carriage using a back-
pack and explained this by the greater forward lean of the pelvis. Because the subjects in
this study had the weight distributed over the chest and back, they probably compensated
this extra load by bending more at the knees or hips, while keeping their upper body as
straight as possible, again to reduce vertical oscillations.

As mentioned before, we aimed to showcase the possibilities of the presented method
with some preliminary results. To that end, we made some decisions and assumptions
which we would like to point out. First of all, many studies have investigated the accuracy
and reliability of metabolic power estimations using muscle energy models [40,43–51].
Four of these models are implemented in the AMMR v. 2.2.3.: the simple mathematic
model described by Margaria [40], two models developed by Umberger (2003 [43] and
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2010 [44]), and the model developed by Bhargava [45]. The simple model describes the
energy conversion from the mechanical domain to the metabolic domain using an efficiency
coefficient. Both the Umberger models and the Bhargava model make use of the Hill-type
model for muscle contraction [52] and the first law of thermodynamics. Where the Bhargava
model is developed based on frog data, the Umberger models are based on human data.
Studies that evaluated these models have not yet found enough evidence to favor one of
these models over the others [53,54]. Therefore, in this study, we used the simple metabolic
energy model.

Secondly, the amount of force a muscle can deliver is dependent on the muscle strength
(i.e., maximal isometric force). In this study, muscle strength is scaled uniformly based
on body weight. This may not reflect the actual distribution in the military subject. On
the other hand, muscle strength is expected to decrease over time during intense activities
due to muscle fatigue [55], especially during repeated or sustained muscle contraction [56].
Muscle fatigue is, for instance, related to motor unit activation patterns and muscle fiber
contractile properties [56]. Because musculoskeletal fatigue limits are considered one of
the aspects of a soldier readiness score, and fatigue limits are often expressed in terms
of energy expenditure rates [57], future modeling studies estimating energy expenditure
should also incorporate the influence of muscle fatigue.

Thirdly, data on completion time and heart rate were analyzed for ten subjects, and
both ANOVA and post hoc test results showed significant changes between the conditions.
However, the other data were only analyzed for one subject. Although ANOVA test results
showed significant changes due to the increased loading for some of the parameters, the
post hoc test results showed no significant changes which may be the result of the limited
number of participants in the analysis of metabolic costs.

Future studies should include more participants and focus on validation of the out-
come parameters. A previous study demonstrated the use of IMUs in a military context by
validating it against a gold standard optical motion capture system [58]. The validity of
ground reaction force prediction and musculoskeletal model-based inverse dynamic analy-
sis using IMUs were previously validated for walking activities by Karatsidis et al. [59,60]
and for sports-related movements by Skals et al. [61]. Future research is needed to validate
the combined use of IMUs and musculoskeletal modeling in a military context, including
validation of the energy expenditure, for example, by using indirect calorimetry in aerobic
activities. Additionally, the measurement of physiological parameters, such as lactate and
heart rate variability (HRV), can help further understand the metabolic and stress load
during load carriage [62,63].

Furthermore, other activities and different terrains should be investigated in future
studies to get better insights of military performance during a broad range of tasks and
situations [64]. The method presented in this study can be directly used for several walking
and running activities. However, for some activities (e.g., crawling or climbing over a wall)
the method will have to be expanded because, for these activities, the body will not only
interact with the floor/environment via the feet but also with other parts of the body (e.g.,
hands and knees). In those cases, the ground reaction force prediction will not be sufficient.

The possibilities offered by IMUs in combination with musculoskeletal modeling may,
in future research, extend to the study of joint loadings. Previous research has pointed out
the burden of injuries related to physical loading [1,65], which indicates the importance
of further investigation into the effects on the musculoskeletal system. The results can
indicate what muscle to train and help in optimizing training schedules to prevent injuries.
Additionally, quantification of joint loading and muscle activation is useful for the selection
or design of equipment (e.g., exoskeletons) to support military personnel during their
activities. Ultimately, the proposed method helps to answer questions related to optimal
and efficient load carriage during military deployment and the imposed requirements of
the individual soldier.

In conclusion, this study shows that the combined use of IMUs and musculoskeletal
modeling provides more insight into the underlying mechanisms and the changes in the
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musculoskeletal system during physical loading. Contrary to previous research, kinematic
parameters could be determined in an ambulatory setting, which makes it possible to use
this tool in military practice. The results showed that, with increased loading, completion
time and heart rate significantly increase. Additionally, changes in energy expenditure,
muscle parameters, and kinematic parameters were found. This study is a first step
towards better monitoring of physical performance during the challenging circumstances
that military encounter in their work.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21165588/s1, Video S1: Physical performance analysis by means of inertial motion-capture
driven musculoskeletal analysis.
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