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Abstract

The influence maximization problem (IMP) as classically formulated is based on the strong

assumption that “chosen” nodes always adopt the new product. In this paper we propose a

new influence maximization problem, referred to as the “Link-based Influence Maximization

Problem” (LIM), which differs from IMP in that the decision variable of the spreader has

changed from choosing an optimal seed to selecting an optimal node to influence in order to

maximize the spread. Based on our proof that LIM is NP-hard with a monotonic increasing

and submodular target function, we propose a greedy algorithm, GLIM, for optimizing LIM

and use numerical simulation to explore the performance in terms of spread and computa-

tion time in different network types. The results indicate that the performance of LIM varies

across network types. We illustrate LIM by applying it in the context of a Dutch national

health promotion program for prevention of youth obesity within a network of Dutch schools.

GLIM is seen to outperform the other methods in all network types at the cost of a higher

computation time. These results suggests that GLIM may be utilized to increase the effec-

tiveness of health promotion programs.

Introduction

The importance of (cost)effective community-based health promotion programs has become

increasingly relevant as the world’s health care system and our society have become stressed by

a significant increase in the global level of lifestyle related health problems. In the WHO Euro-

pean Region, noncommunicable diseases (NCDs), such as cancers, cardiovascular diseases,

chronic obstructive pulmonary diseases and diabetes, are the leading cause of death, disease

and disability [1]. One of the major risk factors for NCDs is overweight or obesity, an increas-

ing proportion of children and adults are currently living with [2]. Because budgets in the pub-

lic health domain are limited, the need for cost-effective health promotion programs is high

and alternative approaches to improve the effectiveness of these programs are crucial. Compu-

tational methods developed in other fields, such as economics and sociology, can provide new
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approaches for systematic and in-depth understanding of alternative maximization of influ-

ence on incorporating a healthy lifestyle.

Community-based interventions are promising for health promotion and disease preven-

tion but so far their potential is not fully realized [3]. It has been shown that health behavior

can be influenced through social networks [4, 5]. Therefore, health promotion programs may

be more effective if they are targeting the full network instead of only those observed. One

could use the topological structure of the network to target the most effective interventions, as

Christakis and Fowler [4] suggested. The main aspect of an intervention is the content of the

intervention. However, also the amount of participation of the intervention is crucial, hope-

fully leading to more effective and lasting behavioral change.

The participation rate depends on the structure of the network in terms of clustering and

the strength of ties [5, 6] and on where in the network the participation starts; Van der Leij [7]

argues that policymakers could design social networks to influence the spread. Here we focus

on how a network can be used to maximize the participation of either ‘individuals’, ‘institu-

tions’ or ‘communities’ and the relationships between these participants in health promotion

programs.

Current literature

Social contagion and diffusion models. How behavior and information spreads through

social contacts (social contagion) has been the focus of research for decades [6, 8–10]. Adop-

tion of a product can be simulated using diffusion models resembling social contagion. In dif-

fusion models it is assumed that the diffusion of the product starts at a certain node in the

network, called the seed. In the independent cascade (IC) model, one assumes a probabilistic

model in which a freshly activated node has a particular probability of activating any of its

neighbours. This stochastic character handles the uncertainty regarding which people will

decide to participate. In the threshold model, one assumes that every node has a certain influ-

ence on its neighbours. If a sufficient number of neighbours already participate, it will partici-

pate as well. Granovetter [11] introduced this model based on several examples, which all rely

on the cooperative nature of people. It was found that people are more willing to participate if

more of their neighbours already participate. This mechanism can be attributed to the product

being either more effective, or more reliable or less risky. Multiple variations of these models

have been proposed to capture different dynamics, such as the weighted cascade model, the

general threshold model and the linear threshold model with colours [12].

The influence maximization problem. Domingos and Richardson [13] first addressed

the problem of maximizing the diffusion of a product to as many people as possible as a funda-

mental algorithmic problem, called the influence maximization problem (IMP). In this prob-

lem it is assumed that a immutable social network exists, consisting of nodes and edges, while

some external party wishes to market a product in this social network. The external party aims

to sell its product to as many people as possible in the network, but they are restricted by a

budget: it can introduce the product only to a limited number, k, of nodes, that will serve as

the seeds of the diffusion process. The optimization problem in the IMP is then: to which k
nodes should you introduce the product in order to maximize the spread of the product?

Kempe, Kleinberg and Tardos [14] further formalized the IMP and evaluated the properties

of the spread as a function of the seeds, denoted by σ(�). They showed that the IMP is a nonde-

terministic polynomial time (NP)-hard problem. Since IMP is an NP-hard problem, there

exists no algorithm that can find the optimal k nodes within polynomial time.

A commonly-used method to provide close-to-optimal solutions in NP-hard problems is

the greedy algorithm. The greedy algorithm iteratively selects nodes until the budget of k

PLOS ONE Link-based influence maximization in networks of health promotion professionals

PLOS ONE | https://doi.org/10.1371/journal.pone.0256604 August 25, 2021 2 / 21

https://doi.org/10.1371/journal.pone.0256604


nodes is satisfied. Within each iteration the greedy algorithm chooses the node that gives the

best improvement of the target function. The greedy algorithm is known to perform well only

under specific circumstances. Nemhauser, Wolsey and Fisher [15] showed that the solution

provided by a greedy algorithm performs within (1 − 1/e)� 0.63 of the optimal solution, if the

target function is submodular. Submodularity of a set function refers to the property of dimin-

ishing returns, i.e. that the difference in the increase in the target function made by adding an

element to the set decreases when the size of the input set increases.

Kempe, Kleinberg and Tardos [14] showed that the target function of IMP, i.e. the spread

as a function of the chosen seeds, is both submodular and monotonically increasing under the

independent cascade model. They stated that σ(�) is not necessarily submodular in the linear

threshold model if the thresholds are assumed to be fixed [14]. They showed that the IMP tar-

get function of spread σ(�) is submodular and monotonically increasing in the linear threshold

model under a uniform [0, 1] random threshold distribution. They then propose a greedy algo-

rithm to optimize IMP in both the independent cascade model and the linear threshold model.

Influence estimation algorithms and optimization algorithms. Since the greedy algo-

rithm as proposed by Kempe, Kleinberg and Tardos [14] uses the increase in influence σ(�) to

choose nodes, the influence must be calculated for each potential node to use this algorithm.

There are several methods of estimating the influence. Kempe, Kleinberg and Tardos [14] esti-

mated the influence by using Monte Carlo (MC) simulations. Chen, Yuan and Zhang [16]

showed that influence computation in threshold models is #P-hard in general graphs. Addi-

tionally, they derived a closed-form equation for calculating the estimated spread. However,

since counting the number of simple paths is #P-hard, this calculation is computationally not

scalable to larger networks, for which it becomes infeasible. They show that computing the

influence in directed acyclic graphs (DAG) can be performed in linear time.

The recent literature focuses on finding efficient algorithms to estimate the spread and effi-

cient optimization algorithms, and have led to, among other, the following results and adjusted

optimization algorithms under the linear threshold model. It was observed that the influence

of nodes quickly diminishes during diffusion in linear threshold models in many real-world

networks [16, 17]. Lu et al. [18] devises the IMT algorithm that uses this characteristic to esti-

mate the influence accurately and further provides an optimization algorithm. Goyal, Lu and

Lakshmanan [17] developed the algorithm SIMPATH which efficiently estimates influence

and optimizes the spread. Other efficient optimization algorithms are CELF++ [19] and

LDAG [16]. Recent advances using the Reverse Influence Sampling (RIS) framework have led

to nearly optimal optimization times in the IMP [20–22].

Unsuitability IMP

Our main motivation lies in optimizing the spread of a health promotion program. The setting

of a health promotion program may differ from that of social networks in which product adop-

tion takes place. Health promotion programs are often implemented in institutions and

require investment. We argue that the influence maximization problem as originally proposed

does not align with the premise of optimizing the spread of a health promotion program for

the following two reasons.

First, in the classical IMP one assumes that if a new seed is chosen, this seed will be activated

with complete certainty. Participation in health promotion programs often involves time

investment and active commitment, besides financial investment. Therefore, it is highly

unlikely that every chosen node will participate in the setting of health promotion programs.

We denote this shortcoming as the persuasion problem.
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Second, the classical IMP optimizes the spread from a different perspective than the spread-

ers of health promotion programs. The classic IMP optimizes from the perspective of an exter-

nal party: a company that is not part of the social network chooses starting points from which

their product diffuses. In contrast, in health promotion networks the initiator of the program

is often part of the network itself and tries to convince his peers to participate, labeled as the

perspective problem. This discrepancy has two consequences. The first consequence is that

since the initiator of the health promotion program is part of the network, there may already

be some connections through which he or she influence peers, while the external party in the

classic IMP does not have any influence before optimization. The second consequence is that

in the classical IMP the external party has no influence on the structure of the network. On the

other hand, the initiator of a health promotion program can influence the structure of the net-

work by making new connections. We next argue how a link-based approach solves these two

problems.

Link-based influence maximization problem

We propose a new optimization problem for the maximization of spread of health promotion

programs using an alternative target function that solves the persuasion and perspective prob-

lem as follows. The shortcomings of IMP are addressed by changing the decision variable of

the optimization problem from choosing an optimal seed to selecting an optimal node to influ-

ence, which can be considered as creating a new link or connection to that particular node.

Accordingly, we refer to this problem as the “Link-based Influence Maximization Problem”

(LIM).

Creating new links to nodes solves the persuasion problem, because it creates paths to influ-

ence nodes, but does not assume certain participation of the nodes connected to. Furthermore,

creating new links is a decision that can only be taken from the perspective of the health pro-

motion program spreader, thus solving the perspective problem. Making new connections

requires time investment, but time is limited. The restriction in time is analogous to a budget

of k connections that can be made. In short, LIM centers around the question: to which k
nodes does the spreader need to connect to maximize the spread?

The aim of this paper is to explore the characteristics of LIM. We limit ourselves to the

framework of the linear threshold diffusion model for a number of reasons. First, health pro-

motion programs typically require investment and require cooperation to be effective. Second,

Centola [6] showed that people were more likely to adopt new behavior when they received

social reinforcement. Third, the linear threshold model is based on endorsement through the

network and is thus suitable for the premise of LIM. Future research is needed to explore the

characteristics of LIM under different diffusion models.

Note that in practice creating links to new nodes, requires a personal effort and is mostly

done within a comprehensible network, thus we assume that the networks in which LIM is

applied are relatively small in contrast to the networks typically used in IMP and viral market-

ing, i.e. less than 500 nodes. Since we assume that LIM is applied in small networks, problems

related to scalability and efficiency are less of an issue here. We therefore emphasize LIM as a

conceptually new optimization problem, focusing on its characteristics and optimization per-

formance here rather than on computing time For computing time considerations in the IMP

context, see, e.g. [20–22]. We show that optimizing LIM could be utilized to increase the effec-

tiveness of health promotion programs.

The remaining part of this paper is organized as follows. In Section “Link-based Influence

Maximization” we focus on the characteristics of LIM in comparison to the classic IMP and

show that LIM provides a different solution. We prove that the target function of LIM is
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submodular and monotonically increasing under the linear threshold model. Using these theo-

retical results, in Section “Performance of optimization algorithms applied to LIM” we propose

a greedy algorithm based on influence estimation called GLIM, and compare the performance

of GLIM to other optimization strategies using heuristics commonly used in social network

analysis, and subsequently explore the performance of the greedy algorithm in different net-

work types. In Section “Application: Dutch health promotion program” we apply the algo-

rithm to a Dutch health promotion program in a network of public institutions of a single

municipality in the Netherlands. Section “Discussion” discusses our results and concludes.

Link-based influence maximization

The aim of influence maximization is to select nodes to influence, such that the spread of a

product in a network of nodes is maximized given a cost constraint on the maximum number

of nodes to select. The shortcoming of the classic IMP is the assumption that selected nodes

will always adopt the offered product. We believe that a more realistic assumption is that

selected nodes will only adopt the offered product with some node-specific probability. We

assume that this probability depends on the relative influence of the spreader on the target

node compared to the influence on the targeted node of other nodes in the network. We refer

to the resulting optimization problem as LIM: the Link-based Influence Maximization Prob-

lem. The motivation for the name is that the action of the spreader trying to influence a node,

can be viewed as creating a new (weighted) link between the two.

LIM deviates from the classical IMP on three points. First, in LIM, the decision variable is

choosing the nodes, to which new links are made. Second, the spreader of the product is the

seed of the diffusion, meaning that the seed of the diffusion process is fixed and the seed-node

is the decision taker in optimizing the target function of total spread. Third, adding new edges

to a target node affects the relative influence of other nodes to the target node.

In this chapter, we will formally introduce LIM and demonstrate by a simple example that

it leads to a different optimal solution than the standard IMP. We point out that the optimiza-

tion problem corresponding to LIM is NP-hard. However, we are able to prove that the set

function corresponding to LIM is monotone and submodular and therefore, we may use a

greedy algorithm to approximate the optimal solution.

Formal definition of LIM

Consider a weighted directed graph G = (V, E, w) in which V is the set of nodes, E is the set of

edges and w is a weight function. We allow for G to contain cycles. The weight function w
assigns a positive weight w(e) 2 (0,1) to each edge e 2 E. The weight function models the

influence that nodes have on each other. As we are interested in the relative (incoming) influ-

ence, we will normalize the incoming weights to sum up to 1. More precisely, we define for

edge (u, v) from node u to node v:

wnððu; vÞÞ ¼
wððu; vÞÞ

P
x2N inðvÞ

wððx; vÞÞ
; ð1Þ

in which N inðvÞ denotes the in-neighborhood of v, N inðvÞ ¼ fx 2 V : ðx; vÞ 2 Eg. Note that

the denominator in (1) is nonzero, because the weight w(e) is positive for all edges e 2 theseto-
fedgesE. With slight abuse of notation, we will write w(u, v) instead of w((u, v)) from now on.

The framework of the linear threshold model is as follows. At the beginning of the diffusion

process each node v chooses a threshold θ(v) from some continuous threshold distribution μ.

The threshold distribution attains values between [0, 1] and a common choice is the uniform

distribution on [0, 1]. The diffusion process can then be described recursively, as follows. Let
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At be the set of nodes that are activated at time t = 0, 1, 2, . . . as a result of the linear threshold

process. In addition, define the boolean functions zt: V! {0, 1}, for t = 0, 1, 2, . . ., by setting

zt(v) = 1 if node v has been activated at iteration t or before, and zt(v) = 0 if not. The relation

between At and zt is given by At = {v: zt(v) = 1}. At time t = 0 the initial seed (or spreader) s is

activated, i.e., A0 = {s}. At each step t = 1, 2, 3, . . . new nodes can be activated. At every time

step each node v evaluates if the weighted fraction of activated neighbours crosses the thresh-

old. So zt(v) = 1 if the inequality

X

u2N inðvÞ

zt� 1ðuÞ � wnðu; vÞ � yðvÞ ð2Þ

is satisfied. The diffusion process continues until a time t� for which zt�(v) = zt�−1(v) for all v 2
V or, equivalenty, At� = At�−1. The total influence, or spread σ, is defined as the expected num-

ber of activated nodes at the end of the diffusion process, where the expectation is taken over

the threshold distribution μ.

In LIM, the spreader is assumed to be a single node s 2 V. The initial action in the optimiza-

tion process underlying the link-based influence maximization problem is to select a set S con-

sisting of k nodes v1, . . ., vk,:(s, vi) =2 E for which to add the edge (s, vi) to E. After selecting

node vi the weight function is updated such that w(s, vi)> 0, decreasing the relative influence

of other nodes x 2 N inðviÞ on vi (an example of the addition of edges and its effect on the rela-

tive weight of other edges is shown in Fig 1).

The spread is a function of the chosen k nodes v1, . . ., vk only. We denote the corresponding

set function of spread by s : 2V ! N. LIM can now be formulated as follows: given an integer

k, which set of k nodes {v1, . . ., vk} maximize the spread σ({v1, . . ., vk})?
Finding the set S of cardinality k for which σ(S) is maximized is an NP-hard optimization

problem, because it is a special case of the Hitting Set problem. Since LIM is an NP-hard prob-

lem, the optimal solution cannot be found within polynomial time. Nemhauser, Wolsey and

Fisher [15] showed that greedy algorithms have an optimization guarantee in monotone

Fig 1. LIM: An example of how the addition of edges affects the network structure and weights of other edges. The circles represent nodes, in

which the green circle is the spreader. The arrows represent edges and the numbers next to the arrows are the respective normalized weights. The

striped and the red striped arrows depict new edges. A: Graph G. B: G + edge (s, 3). C: G + edge (s, 1). D: G + edges (s, 1), (s, 3).

https://doi.org/10.1371/journal.pone.0256604.g001
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submodular set functions, it provides a solution that gives a result at least (1 − 1/e) times the

optimum in which e is the base of the natural logarithm. In subsection Monotonicity and Sub-

modularity of the spread in LIM, we will prove that σ is a monotone submodular set function.

Then, we may approximate the optimal solution to LIM by a greedy algorithm. In Section Per-

formance of optimization algorithms applied to LIM, we propose a greedy algorithm similar to

the algorithm proposed by Kempe, Kleinberg and Tardos [14]. We will now show that opti-

mizing LIM provides different solutions than the classic IMP.

To show that LIM and IMP result in different solutions, we include a simple example. Con-

sider the graph of 5 nodes, {s, 1, 2, 3, 4} as depicted in Fig 2. The weights of all edges are identi-

cal, say equal to 1, so that the normalised weights are the reciprocal of the target node’s in

degree, wnðevÞ ¼ 1=din
v . Now, if we set the budget constraint to 1 node, IMP will select node 1

to target, while LIM will select node 3 to target, see Appendix S1 Appendix for the computa-

tions. IMP selects node 1 because node 1 has the largest influence on the entire network and

because IMP assumes that the target node is always convinced (the persuasion problem). How-

ever, node 1 is also influenced by many other nodes, so in reality it might be more difficult to

convince node 1 to join the program in the first place. On the other hand, node 3 also has a rel-

atively large influence on the network, whilst the influence of other nodes on node 3 is limited.

Therefore, we believe that node 3 might be more easily convinced to join the program. Hence,

under LIM targeting node 3 would contribute more to the adaption of the program by the net-

work than targeting node 1. Furthermore, the calculation shows that the expected increase in

spread after targeting nodes under LIM is lower than under the classic IMP, for all nodes.

Fig 2. Example network. The circles represent nodes, in which the green circle is the spreader. The arrows represent

edges.

https://doi.org/10.1371/journal.pone.0256604.g002
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Monotonicity and submodularity of the spread in LIM

In this subsection, we will prove that the set function of spread σ is a monotone submodular

set function. It amounts to proving two properties, (A) monotonicity and (B) submodularity:

A. For any S� V and any x 2 V, (s, x) =2 E: σ(S [ {x})� σ(S).

B. For any S� V and any two x, y 2 V, (s, x), (s, y) =2 E:

σ(S [ {x}) − σ(S)� σ(S [ {x, y}) − σ(S [ {y}).

Before we present the proof of the two properties, we introduce some additional notation

which is required to keep track of the changes made to E and to wn when edges of the form (s,
v) (where s 2 V is the spreader and seed, and v is another node in V) are added. From now on,

G, E and wn will only be used to denote the graph with the initial set of edges (i.e., before links

are added) and the corresponding normalized weight function, respectively. Then, for a

selected subset S� V, we define

ES≔E [
[

v2S

fðs; vÞg:

The updated weight function wS is the extension of w from E to ES, assigning positive value

to new edges, i.e. wS(e) = w(e) for e 2 E and wS(s, v)> 0 for v 2 S. Finally, we define wS
nðu; vÞ

for (u, v) 2 ES by

wS
nðu; vÞ ¼

wSðu; vÞ
P

x2N S
in
wSðx; vÞ

;

in which N S
inðvÞ ¼ fx 2 V : ðx; vÞ 2 ESg is the in-neighborhood of a node v considering the

extended set of edges ES. The resulting weighted directed graph is denoted by GS = (V, ES, wS).

The spread, resulting from adding edges, is the expected number of activated nodes at the

end of the diffusion process in the new graph, where the expectation is taken over the thresh-

old distribution μ, as a function of the chosen k nodes v1, . . ., vk only:

sðSÞ ¼ E½jAt� j j GS; s;m�:

We are now ready to prove the monotonicity of the set function σ.

Theorem 1. The spread σ is a monotone set function under the assumption that the threshold
distribution is the uniform distribution on [0, 1].

Proof. Consider a positively weighted directed graph G = (V, E, w) with a spreader node s 2
V. Let S� V be a subset of V and let x 2 V. We will show that σ(S [ {x}) − σ(S)� 0.

Chen, Yuan and Zhang [16] proved the following identity under the assumption that the

threshold distribution is the uniform distribution on [0, 1]:

sðSÞ ¼ E½jSt� j j G; s; m� ¼
X

p2PS
s

Y

e2p

wS
nðeÞ: ð3Þ

In this equation, PS
s is the set of all simple paths in GS = (V, ES, wS) that start in node s.

When node x 2 V is added to the set S, two things change in the computation of σ. First, the

set PS[fxg
s contains new paths that are not in PS

s (i.e., starting with edge (s, x)), so we sum over a

larger set. Second, for all paths p 2 PS
s that already hit x at some point, say, e = (u, x) 2 π for

some u 2 V, the relative influence of that node u on x decreases as a result of the assigned
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weight to edge w(s, x)> 0. The normalized weight changes as follows:

wS[fxg
n ðu; xÞ ¼

wðu; xÞ
P

v2N S[fxg
in ðxÞwðv; xÞ

¼
wðu; xÞ

wðs; xÞ þ
P

v2N S
inðxÞ

wðv; xÞ

¼

P
v2N S

in
ðxÞwðv; xÞ

wðs; xÞ þ
P

v2N S
inðxÞ

wðv; xÞ
� wS

nðu; xÞ:

ð4Þ

We note that the contribution to σ of paths in PS
s that do not hit x will not change after add-

ing edge (s, x) to ES. Hence, it follows that the difference σ(S [ {x}) − σ(S) equals

sðS [ fxgÞ � sðSÞ ¼
X

p2PS[fxg
s;x

Y

e2p

wS[fxg
n ðeÞ �

X

p2PS
s;x

Y

e2p

wS
nðeÞ; ð5Þ

in which PS
s;x � PS

s is the set of paths in GS starting at s and hitting x at some point. In general,

we will write PS
a;b for the set of paths in GS starting at node a and hitting node b at some point.

Moreover, we will write �P S
a;b for the set of paths in GS starting at a and ending at b. Now, to

evaluate the right-hand side of Eq (5), the idea is to split the contribution to σ of a path in PS
s;x

into the part before hitting x and the part starting at x. We then aggregate the contributions to

σ of the paths before hitting x that can be concatenated with the path starting at x. When aggre-

gating, we should be careful, as GS may contain cycles. We then show that the contributions of

the paths hitting x increase when (s, x) is added to ES.
We formalize the idea as follows. Consider the set PS

x of paths in GS that start at node x. We

will assume, without loss of generality, that N S
inðsÞ ¼ ;. That assumption guarantees that paths

in PS
x do not hit spreader node s. For any path r 2 PS

x, define the output of ρ as follows:

US≔ ðrÞ
Y

e2r

wS
nðeÞ: ð6Þ

We will explicitly include the empty path ; in PS
x and use the convention that an empty

product equals 1, i.e., US(;) = 1. Next, define the set of all paths preceding r 2 PS
x in PS

s as

AS
xðrÞ≔ f� 2 �P S

s;x : �r 2 PS
s;xg; ð7Þ

in which ϕρ denotes the concatenation of paths ϕ and ρ. Then, for r 2 PS
x, define the input of

ρ as

ISðrÞ≔
X

�2AS
xðrÞ

Y

e2�

wS
nðeÞ: ð8Þ

Note that for some r 2 PS
x, the set AS

xðrÞmight be empty. In that case, we use the conven-

tion that an empty sum equals 0, i.e., IS(ρ) = 0 in that case (observe that it does not necessarily

happen for the empty path ;, as AS
xð;Þ ¼

�P S
s;x). In addition, note that an upper bound on IS(ρ)

is the probability that x is activated under the assumed linear threshold model in graph GS

after activating node s, which is at most 1. It follows from the fact that this probability equals
P

�2 �PS
s;x

Q
e2�w

S
nðeÞ [14], and the fact that AS

xðrÞ �
�P S

s;x. In particular, it implies that IS(ρ)� 1

for any r 2 PS
x.
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With the above notation introduced, it directly follows that

X

p2PS
s;x

Y

e2p

wS
nðeÞ ¼

Y

r2PS
x

X

�2AS
x

Y

e2�r

wS
nðeÞ

0

@

1

A ¼
Y

r2PS
x

ISðrÞUSðrÞ: ð9Þ

A similar expression holds for the first summation on the right-hand side of Eq (5). To

compare the resulting expressions, we first note that PS[fxg
x ¼ PS

x. Moreover, for each r 2 PS
x,

it holds that US[{x}(ρ) = US(ρ). Furthermore, for any path r 2 PS
x, the set AS[{x}(ρ) is equal to

the set AS(ρ) [ {hs, xi}. Using Eq (4), it follows that

IS[fxgðrÞ � ISðrÞ ¼ wS[fxg
n ðs; xÞ þ

X

�2ASðrÞ

Y

e2�

wS[fxg
n ðeÞ � ISðrÞ

¼
wðs; xÞ

wðs; xÞ þ
P

v2N S
inðxÞ

wðv; xÞ
þ

P
v2N S

inðxÞ
wðv; xÞ

wðs; xÞ þ
P

v2N S
inðxÞ

wðv; xÞ
� ISðrÞ � ISðrÞ

¼ wS[fxg
n ðs; xÞð1 � ISðrÞÞ:

ð10Þ

The conclusion is that

sðS [ fxgÞ � sðSÞ ¼ wS[fxg
n ðs; xÞ �

X

r2PS
x

ð1 � ISðrÞÞ � USðrÞ;
ð11Þ

which is nonnegative because IS(ρ)� 1. This concludes the proof.

We will now prove that the set function σ is submodular as well.

Theorem 2. The spread σ is a submodular set function under the assumption that the thresh-
old distribution is the uniform distribution on [0, 1].

Proof. Consider a positively weighted directed graph G = (V, E, w) with a spreader node s 2
V. Let S� V be a subset of V and let x, y 2 V. We will show that

sðS [ fxgÞ � sðSÞ � sðS [ fx; ygÞ � sðS [ fygÞ:

Assume, without loss of generality, that N S
inðsÞ ¼ ;. Then, PS[fyg

x ¼ PS
x and PS[fx;yg

x ¼ PS
x.

To compute σ(S [ {x, y}) − σ(S [ {y}), we use Eq (11), the fact that PS[fyg
x ¼ PS

x and the fact

that wS[fx;yg
n ðs; xÞ ¼ wS[fxg

n ðs; xÞ:

sðS [ fx; ygÞ � sðS [ fygÞ ¼ wS[fxg
n ðs; xÞ �

X

r2PS
x

ð1 � IS[fygðrÞÞ � US[fygðrÞ:
ð12Þ

We compare σ(S [ {x}) − σ(S) with σ(S [ {x, y}) − σ(S [ {y}) by comparing the expressions

on the right-hand sides of Eqs (11) and (12) term by term. To that end, we let r 2 PS
x and we

distinguish three cases.

In the first case, we assume that y 2 ρ. Then, there exists a unique u 2 V, u 6¼ s, such that (u,

y) 2 ρ. From Eq (4) it then follows that wS[fyg
n ðu; yÞ < wS

nðu; yÞ, which implies US[{y}(ρ) <

US(ρ). Moreover, y 2 ρ implies that y =2 ϕ for all ϕ 2 AS[{y}(ρ), and hence IS[{y}(ρ) = IS(ρ). Thus,

we obtain the inequality (1 − IS[{y}(ρ)) � US[{y}(ρ)< (1 − IS(ρ))�US(ρ).

In the second case, we assume that y =2 ρ and y =2 ϕ for all ϕ 2 AS[{y}(ρ). The first assumption

implies that US[{y}(ρ) = US(ρ) and the second assumption implies that IS[{y}(ρ) = IS(ρ). Hence,

we obtain (1 − IS[{y}(ρ)) � US[{y}(ρ) = (1 − IS(ρ)) � US(ρ).
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In the third case, we assume that y =2 ρ, but that there exists at least one path ϕ 2 AS[{y}(ρ)

that contains y. The assumption y =2 ρ implies that US[{y}(ρ) = US(ρ). To compare IS[{y}(ρ) with

IS(ρ), we observe that we only need to consider the paths in AS[{y}(ρ) that contain y. For those

paths, we will split the corresponding terms in IS[{y}(ρ) and IS(ρ) into the part before y and the

part between y and x. To that end, recall that �P S
a;b is the set of paths in GS from node a to node

b. For any two paths x 2 �P S
y;x and r 2 PS

x we define the set

BS
y;xðx; rÞfz 2

�P S
s;y : zx 2 AS

xðrÞg: ð13Þ

If ξρ is not a simple path, we obtain BS
y;xðx; rÞ ¼ ;. It follows that

IS[fygðrÞ � ISðrÞ ¼
X

�2AS[fyg
x ðrÞ

Y

e2�

wS[fyg
n ðeÞ �

X

�2AS
xðrÞ

Y

e2�

wS
nðeÞ

¼
X

x2 �P S[fyg
y;x

X

z2BS[fygy;x ðx;rÞ

Y

e2zx

wS[fyg
n ðeÞ �

X

x2 �P S
y;x

X

z2BSy;xðx;rÞ

Y

e2zx

wS
nðeÞ:

ð14Þ

The set �P S[fyg
y;x equals �P S

y;x as noted before. The set BS[fyg
y;x ðx; rÞ equals BS

y;xðx; rÞ [ fhs; yig.
Then, similar to Eq (10), it holds for any x 2 �P S

y;x that
X

z2BS[fygy;x ðx;rÞ

Y

e2zx

wS[fyg
n ðeÞ �

X

z2BSy;xðx;rÞ

Y

e2zx

wS
nðeÞ ¼ wS[fyg

n ðs; yÞ � ð1 � JSðx; rÞÞ � USðxÞ;
ð15Þ

in which JSðx; rÞ ¼
P

z2BSy;xðx;rÞ

Q
e2zw

S
nðeÞ, where the product only runs over edges in z but

not over those in ξ. It is clear that JS(ξ, ρ)� IS(ξ), which in turn is bounded from above by 1,

as we noted in the proof of Theorem 1. The implication is that IS[{y}(ρ) − IS(ρ)� 0 and thus

1 − IS[{y}(ρ)� 1 − IS(ρ). We conclude that (1 − IS[{y}(ρ)) � US[{y}(ρ)� (1 − IS(ρ)) � US(ρ).

We have shown that each term in the summation in Eq (12) is bounded from above by the

corresponding term in the summation in Eq (11). This concludes the proof.

We have now proved that the target function of LIM is both monotonic increasing and sub-

modular. Therefore as noted before, a greedy algorithm attains the optimization guarantee. In

the next section we propose a greedy algorithm that optimizes LIM based on the estimated

influence and compare it to other optimization algorithms.

Performance of optimization algorithms applied to LIM

In Section “Link-based Influence Maximization”, we noted that LIM is a NP-hard problem

and has a monotonically increasing submodular target function. Therefore, we propose a

greedy algorithm to provide k links to maximize the total spread, denoted as GLIM. First, we

will elaborate on GLIM. In the next subsection, we explore the performance of GLIM in com-

parison to alternative optimization strategies for LIM using basic network measures. The per-

formance is measured in the resulting improvement in spread and in computation time. The

performance of all optimization strategies will be explored in different network types, to iden-

tify in which network types using GLIM is most advantageous. Note that we will not compare

optimizing LIM to IMP, as they are conceptually different optimization problems leading to

distinct diffusion mechanics.

The algorithm we propose, GLIM, is similar to the algorithm proposed by Kempe, Klein-

berg and Tardos [14]. The goal of the algorithm is to select a set of nodes S of size k to which

seed s can connect to, to optimize the total spread. Nodes are added to set S iteratively by

selecting the node that gives the highest estimated spread when connected to. The algorithm is

shown in Table 1.
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We estimate the potential increase in spread by including the edge in the network and sub-

sequently estimating the spread with Monte Carlo (MC) simulation. Estimation spread using

MC simulation works as follows: For a number of simulations, every simulation run thresholds

θ are drawn from a random uniform [0, 1] distribution and then diffusion is simulated follow-

ing the linear threshold model, as described in section Formal definition of LIM, until no fur-

ther nodes can be activated. The spread is then the fraction of nodes that are activated at the

end of the simulation run. The total spread is estimated by the average of spread over all simu-

lations. For each node 1000 simulations are performed. A greedy algorithm using MC simula-

tion has been known to be inefficient and is not scalable to larger networks. However, since we

assume that LIM is applied in small networks, scalability poses no problem and GLIM can be

used.

Comparison of GLIM to other optimization algorithms

In sociology, degree and centrality-based measures are commonly used to measure the impor-

tance of nodes in networks [23]. Thus using these measures in optimization strategies is an

obvious choice. Furthermore, the advantage of network measures is that the computation time

is considerably lower than estimating the influence using with MC simulation in every itera-

tion of the algorithm. In the particular case of LIM, we want to maximize spread, so we are

interested in the influence that a node has on other nodes. Therefore, we compare GLIM,

which is based on the influence estimation, to optimization algorithms based on the measures

outdegree and right eigenvector centrality.

Alternative optimization algorithms. The optimization algorithms based on the network

measures are also greedy algorithms. Instead of choosing the edge with the highest resulting

estimated spread, we choose the edge connecting to the node with respectively the highest out-

degree or right eigenvector centrality. The outdegree of a node is not affected by adding the

edge connecting to it, so no recalculation is necessary during the algorithm. The eigenvector

centrality does change after including edges, therefore, the eigenvector centrality will be

updated after each iteration. The process of adding edges is repeated until the budget is satis-

fied or until there are no more edges available. Finally, all methods are compared to a baseline

obtained by random edge selection.

Table 1. GLIM: Greedy algorithm for edge selection in LIM.

0: input: weighted directed graph G = (V, E, w), seed s and budget k
1: Let S ¼ ⌀ is the set of new nodes to connect to and IL¼ ⌀ the list of total influences of seed s when connected

to node v
2: Let Vs be the list of nodes v for which edges (s, v) not in E
3: while |S| < k or Vs ¼ ⌀ do:

4: for each node v in Vs:

5: use MC to estimate σ(S [ v)

6: end for

7: construct IL = {σ(S [ v1), . . ., σ(S [vn)}

8: select v� = argmax (IL)

9: S = S [ v�, ES = ES [ (s, v�), Vs = Vsnv�

10: update wS, with wðu; v�Þ ¼ 1=din
v� 8u 2 N v�

11: end while

12: return S

https://doi.org/10.1371/journal.pone.0256604.t001
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Network types. The structure of a network has a direct influence on the diffusion process.

The quality of solutions given by GLIM may differ for various network structures. Targeting

the optimal nodes in one network structure may result in a larger improvements in spread

than in other network structures. Identifying the network types in which GLIM is more effi-

cient than other optimization algorithms and in which types not is relevant for potential

implementation. Therefore, we evaluate the performance of GLIM in comparison to the out-

degree and eigenvector centrality algorithms in various network types.

Network generators are algorithms that create artificial networks. We have selected six

types of network generators that create networks with contrasting characteristics to test the

performance. We evaluate directed/bidirected networks, networks with higher/lower connec-

tivity, networks incorporating preferential attachment or a combination of these characteris-

tics. Preferential attachment refers to the process in which new nodes are more likely to

connect to nodes that already have more connections. Three types of directed graph generators

described by Krapivsky and Redner [24, 25] are evaluated: Growing network (GN), growing

network with redirecting (GNR) and growing network with copying (GNC). These generators

all produce directed acyclic graphs (DAG), in which the GN network has the lowest connectiv-

ity and the GNC network the highest. In the GNR method, one must specify the probability of

redirecting; in this paper p = 0.3 is arbitrarily chosen. A directed graph incorporating preferen-

tial attachment is introduced by Hansen and Jaworski [26–28]. In this paper a generalized ver-

sion of this model, the random-k out graph [29] is used to evaluate the properties of the link-

based influence maximization problem and to evaluate the performance of the proposed opti-

mization algorithm. The random-k out graph produces directed graphs in with all nodes have

k outgoing edges. Cycles can exist in this graph type.

The final network types we will evaluate are bidirectional networks. We consider two types:

1. tree networks with a power law (PL) degree distribution and 2. the Barabasi-Albert (BA) net-

work, which is formed under preferential attachment [30]. Both network generator types pro-

duce undirected graphs. These are converted to directed graphs with bidirectional edges. In

the Barabasi-Albert algorithm, networks are created by iteratively adding nodes that connect

to a set amount of already existing nodes. One must specify the number of edges that every

incoming node gets, m. In this paper this number is arbitrarily chosen as m = 5. A downside of

evaluating a bidirectional network is that the number of simple paths increases dramatically,

affecting also the computation time of the spread.

All tested networks consist of 50 nodes. We have chosen for the size of 50 nodes, because

LIM is designed for health promotion programs and we assume that the networks in which

LIM is applied are relatively small (<500 nodes). Example visualizations of all evaluated net-

works can be found in S1 Fig. The optimization takes place under an arbitrarily chosen fixed

budget of k = 15. All weights of edges w(ev) are given value 1 and are normalized as 1/din. The

heuristics are compared on estimated influence during optimization and on computation

time. All experiments are conducted on a 2016 MacBook Pro with 2.9 GHz Intel Core 5 with

16GB memory.

Performance results of the algorithms

The simulation results of the performance of the algorithm are shown in Fig 3. The random

edge selection results serve as a baseline.

In all three directed acyclic graphs, GN, GNR and the GNC, GLIM outperforms the other

heuristics. In the random k = 5 out network GLIM clearly outperforms the eigenvector and

outdegree heuristics, while the eigenvector and outdegree heuristic perform only slightly better

than random edge selection. Fig 3E shows the performance in the PL tree network. Notice that
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the network measures performed worse than the baseline random edge selection. Additionally,

GLIM only slightly outperforms the baseline, implying that in this network structure the dif-

ference in increase between the optimal edge and a random edge is small. In Fig 3F the perfor-

mance of the heuristics in the BA network is shown. GLIM outperforms the other heuristics,

however the difference is not substantial.

Fig 3. Performance of optimization algorithms in six different network types. On the x-axis the amount of selected edges is shown

and on the y-axis the fraction of activated nodes. Network types are A: GN network. B: GNR network p = 0.3. C: GNC network. D:

Random k = 5 network with 50 nodes. E: PL tree network. F: BA network m = 5. Legend: Solid red line: GLIM. Yellow dashed line:

optimization using eigen vector centrality. Green dash-dotted line: optimization using outdegree. Blue dotted line: random edge

selection.

https://doi.org/10.1371/journal.pone.0256604.g003
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The total spread resulting from optimizing LIM is different over the various network types.

Targeting 15 nodes in the bidirectional networks of the PL tree and the BA network results in

increases of the total influence to respectively 45% and 27.5% of the nodes, while targeting 15

nodes random-k = 5 out network leads to a total spread of approximately 70%. These results

imply that the expected increase in spread and that the quality of the solution offered by GLIM

are dependent on the network structure.

Table 2 shows the optimization time of the different heuristics in different network struc-

tures. The computation time of GLIM is considerably larger than the computation time of the

alternative optimization strategies in all network types. In networks with higher connectivity

estimating the spread with MC simulation is more demanding, increasing the optimization

time. GLIM has significantly larger computation times in networks with high connectivity

than in networks with low connectivity.

The results show that GLIM outperforms the alternative optimization algorithms in all net-

work structures at the cost of higher computation times. Additionally, the results show that the

performance of GLIM differs in different network structures. In bidirectional graphs (the PL

tree and BA networks) GLIM only slightly outperforms random edge selection, while in

directed graphs (the GN, GNR, GNC and random k out networks) it clearly offers advantages.

Application: Dutch health promotion program

The link-based influence maximization problem (LIM) is developed for the specific case of

maximizing the spread of health promotion programs. In this section we will apply LIM on a

Dutch health promotion program and will compare the performance of GLIM algorithm in

comparison to alternative optimization strategies on real data, to evaluate whether applying

GLIM could help in formulating strategies. The performance of the algorithms is evaluated

with the same methods as described in section Performance of optimization algorithms

applied to LIM.

Preventing obesity among children

Jongeren Op Gezond Gewicht (JOGG), translated as Children At Healthy Weight, is a Dutch

national health promotion program that addresses overweight in children [31]. This program

collaborates with municipalities to influence the environment of children aiming for a healthy

lifestyle. To achieve behavioral change, JOGG reaches out to organizations in the proximity of

children, such as schools and sport clubs, that can participate in the program. The schools and

sport clubs form a network or organizations within the municipality. Then a local JOGG direc-

tor is appointed, who is responsible for spreading the program, in this case the seed of the dif-

fusion process. The JOGG director aims to maximize the participation of local organizations

in the JOGG program in the municipality by approaching these organizations. This method

corresponds with LIM: maximizing the spread by making new connections within an existing

Table 2. Computation time (sec) in different network types under budget k = 15.

Network type

Random k = 5 out BA m = 5 PL tree GN GNR p = 0.3 GNC

Greedy 2955.40 2528.76 752.72 679.65 734.16 1904.78

Max degree 69.75 74.86 22.76 16.71 16.67 57.99

Eigenvector centrality 68.76 73.42 22.19 17.15 17.51 55.90

All simulations are done on networks of 50 nodes and the optimization constraint is k = 15 edges.

https://doi.org/10.1371/journal.pone.0256604.t002
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network. Optimizing LIM in a local network of objective organizations may help in creating

strategies for JOGG.

Data of JOGG

To evaluate the performance of GLIM in comparison to the alternative optimization algo-

rithms in the setting of JOGG, we use network data from public organizations within a single

municipality in the Netherlands. Target organizations operate in different sectors: education,

sports, health and nutrition. Data was acquired from Statistics Netherlands. However, there is

only limited data available on local networks in the Netherlands. Dienst Uitvoering Onderwijs

(DUO), the Dutch government institution responsible for education, provided data that show

the organizational relationships in education, such as relationships between holdings and

subsidiaries and relationships between municipalities and educational organizations. Unfortu-

nately, this data does not include collaborations, such as schools that organize events together.

The DUO data only reflects the educational side of the public sector and does not include

health or sports organizations which play a significant role in the spread of health promotion

programs. In this paper the data from DUO of relations between education organizations in

one anonymous municipality in the Netherlands is used as an example network and as a refer-

ence to evaluate the performance of the optimization algorithm, which will be referred to as

the education network. Due to privacy legislation, we may not disclose the name of the munic-

ipality. Fig 4 provides a visualization of the network.

We evaluate the simulated performance of GLIM in comparison to the alternative optimi-

zation algorithms based on the heuristics outdegree and right eigenvector centrality as

described in as described Section Performance of optimization algorithms applied to LIM. A

random seed is chosen and the spread will be optimized under the arbitrary budget of 15.

Results in JOGG

The performance of the different optimization algorithms are shown in Fig 5. The random

edge selection functions as a baseline. Clearly, the proposed greedy algorithm based on influ-

ence estimation outperforms the eigenvector and outdegree heuristics. The eigenvector cen-

trality and outdegree heuristics perform significantly better than the random baseline in the

education network.

Fig 4. Example education network of an anonymous municipality. The red dots represent nodes and the black lines

represent edges.

https://doi.org/10.1371/journal.pone.0256604.g004
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The results regarding computation time are shown in Table 3. The computation time of

random-k = 5 out network are shown in comparison. The computation time is considerably

larger in the bigger education network of 250 nodes than in the network of 50 nodes. This

implies that the proposed greedy algorithm is not scalable to larger networks.

GLIM outperforms the alternative optimization algorithms at the cost of higher

computation times. Therefore, we believe that GLIM may help in formulating strategies for

JOGG. The computation time of the algorithm is considerably larger in the larger network,

so the advantage of GLIM may be more pronounced in smaller networks than in larger

networks.

Discussion

In this paper we propose a new influence optimization problem, the Link-based Influence

Maximization Problem (LIM). The motivation for the name is that the action of the spreader

Fig 5. Performance of optimization algorithms in an network of education organizations of ± 250 nodes. On the

x-axis the amount of selected edges is shown and on the y-axis the fraction of activated nodes. Legend: Solid red line:

GLIM. Yellow dashed line: optimization using eigen vector centrality. Green dash-dotted line: optimization using

outdegree. Blue dotted line: random edge selection.

https://doi.org/10.1371/journal.pone.0256604.g005

Table 3. Computation time of the different heuristics in a generated network and in the Education network.

Network size

Random k = 5 out 50 nodes Education network ± 250 nodes

Greedy 2955.40 sec 42157.3 sec

Max degree 69.75 sec 175.6 sec

Eigenvector centrality 68.76 sec 180.3 sec

The optimization is done in both networks under a constraint of k = 15 edges.

https://doi.org/10.1371/journal.pone.0256604.t003
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trying to influence a node, can be viewed as creating a new (weighted) link between the two.

We show that LIM has a monotonically increasing, submodular target function, allowing the

use of a greedy algorithm for optimization. We explore the characteristics of LIM in the spe-

cific framework of health promotion programs. Several assumptions are made to provide theo-

retical proofs and to explore the global effectiveness.

First, in this paper we concentrate on the argument that the classic IMP is not suitable for

maximizing spread in health promotion programs, due to the persuasion problem and the per-

spective problem as explained in the introduction. However, the unsuitability of IMP may

extend to a more general premise. In reality, the persuasion assumption that an external party

can choose a seed that adopts the product with absolute certainty is likely to be violated in

many circumstances. Any product that cannot be provided free of charge, but instead requires

some investment from the receiving party, might not be adopted with absolute certainty. The

application of LIM can therefore be extended to any premise in which IMP is too “optimistic”.

A concrete example in which LIM could be applied is: a new startup that aims to sell its prod-

uct. The owners do not have funds for advertisements or for donating their product for free,

but intend to use their personal network to spread the use of its product. LIM could help in

finding which relations they should build to help spread the use of the product more realisti-

cally than IMP.

Second, in this paper we assume the linear threshold model is most applicable in the case of

health promotion programs and show theoretical and simulation results only under this diffu-

sion model. However, the linear threshold model may not be the most suitable diffusion

model for all applications. For example the independent cascade model may be more applica-

ble for word of mouth advertisement. It is not clear if the characteristics of monotonicity and

submodularity hold under other diffusion models. Furthermore, the effectiveness of optimiz-

ing LIM may be different when using other diffusion models. Future research is needed to

explore the characteristics of LIM in other diffusion models.

Third, we assume that the cost of every new link is equal. In reality this assumption may be

violated, since it may be easier to connect with one person than to another. A logical extension

of LIM may consist of including a cost function in the LIM greedy algorithm. Some cost func-

tions that could be considered are: cost proportionate to distance, cost relative to the con-

nected of nodes or cost corresponding to hierarchy. However, in this paper we use the

submodularity of the LIM target function to provide an approximation guarantee. This

approximation guarantee may not hold under cost functions. Future research is needed to

explore the use of cost functions.

Fourth, all theoretical proofs in this paper require the assumption that the threshold distri-

bution of the linear threshold random process follows a uniform distribution. It may be inter-

esting to explore the characteristics of LIM under other threshold distributions.

This paper gives a first proposition of LIM. We propose to optimize LIM by using a greedy

algorithm based on estimated influence, GLIM. Here we use Monte Carlo simulation to esti-

mate the influence. This method is not scalable to larger networks. In the recent literature

many fast influence estimation and influence optimization algorithms have been described for

IMP. Some of these methods may be used to develop more efficient optimization algorithms

for LIM,for instance by using Reverse Influence Sampling [20–22].

Finally, in this paper we show by example that LIM provides different results than IMP. We

analyzed the performance of GLIM within different network types, but we did not evaluate the

topological characteristics of the nodes provided by GLIM in detail. It may be interesting to

further evaluate the (differences in) results provided by LIM and IMP from both a perfor-

mance and topological perspective.
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Conclusion

Due to rising health care costs, the need for cost-effective health promotion programs is high

and alternative approaches to improve of these programs are crucial. In this paper, we propose

an innovative computational approach to improve the effectiveness of health promotion pro-

grams. We argue that the classic Influence Maximization Problem (IMP) is unsuitable for

modeling the maximization of spread in health promotion programs, due to the persuasion

problem and the perspective problem. We propose a “Link-based Influence Maximization

Problem” (LIM) by changing the decision variable of the spreader from choosing an optimal

seed to selecting an optimal node to influence.

A greedy algorithm based on estimated influence, GLIM, for optimizing LIM was devel-

oped. We compare GLIM to alternative greedy algorithms using common network measures

outdegree and right eigenvector centrality in different network types and in real data of a

Dutch health promotion program, to identify in which network structures GLIM has potential

use. We show that the quality of optimization strategies depends heavily on the network struc-

ture. The gain in total spread is substantially higher in unidirectional networks than in bidirec-

tional networks. Finally, we show that GLIM outperforms the alternative algorithms in all

simulations and network types and always results in the highest estimated total spread at the

cost of a higher computation time. Therefore, we believe that applying GLIM may help in for-

mulating strategies for maximizing the spread of health promotion programs and other cir-

cumstances in which IMP is unsuitable with the aim to improve the (cost)effectiveness.
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S1 Appendix Example IMP vs LIM
This is an example of the greedy algorithm in IMP versus LIM. Here, we show the 

exact calculations used to arrive at the conclusions shown in section Formal definition of 
LIM. Consider the graph of 5 nodes, {s, 1, 2, 3, 4} as depicted in Fig 6. We will perform 
the greedy algorithm as described in section Performance of optimization algorithms 
applied to LIM, but instead of using Monte Carlo simulation we will use exact spread 
calculation using the closed formula as given by Chen, Yuan and Zhang [1], σ(·) for
µ = unif[0, 1]:

σ(·) =
∑
π∈P

∏
e∈π

wn(e)

By definition the path only containing s has weight 1. In the LIM the σ(·) is influenced
in two ways: 1. The amount of simple paths change, 2. the weights change. In this
example we assume the case where all incoming edges are weighted equally and then
normalized.

Fig 6. Example network The circles represent nodes, in which the green circle is the
spreader. The arrows represent edges.



First we will show the selection procedure in the classic IMP.

σ(∅) =
∑
π∈P

∏
e∈π

w(e) = 1

σ({1}) = 1 + 1 + 1 + 1 + 1 ∗ 0.5 + 0.5 = 5

σ({2}) = 1 + 1 + 1/3 + 1/3 ∗ 0.5 + 1/3 ∗ 0.5 = 3

σ({3}) = 1 + 1 + 1/3 + 1/3 ∗ 1 + 1/3 ∗ 0.5 + 0.5 + 0.5 ∗ 1/3 + 0.5 ∗ 1/3 ∗ 1 = 3.5

σ({4}) = 1 + 1 + 1/3 + 1/3 ∗ 1 + 1/3 ∗ 1 = 3

The greedy algorithm will select node 1.

Now we will show the selection procedure in LIM:

σ(∅) =
∑
π∈P

∏
e∈π

w(e) = 1

σ({1}) = 1 + 1/4 + 1/4 ∗ 1 + 1/4 ∗ 1 + 1/4 ∗ 1 ∗ 0.5 + 1/4 ∗ 0.5 = 2

σ({2}) = 1 + 0.5 + 0.5 ∗ 1/3 + 0.5 ∗ 1/3 ∗ 1 + 0.5 ∗ 1/3 ∗ 1 ∗ 0.5 + 0.5 ∗ 1/3 ∗ 0.5 = 2

σ({3}) = 1 + 0.5 + 0.5 ∗ 1/3 + 0.5 ∗ 1/3 ∗ 1 + 0.5 ∗ 1/3 ∗ 0.5 + 0.5 ∗ 0.5

+ 0.5 ∗ 0.5 ∗ 1/3 + 0.5 ∗ 0.5 ∗ 1/3 ∗ 1 = 2
1

3

σ({4}) = 1 + 1/3 + 1/3 ∗ 1/3 + 1/3 ∗ 1/3 ∗ 1 + 1/3 ∗ 1/3 ∗ 1 = 1
2

3

The highest spread is gained from choosing node 3.
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