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Abstract

The increased complexity of modern sociotechnical systems (STS) necessitates the

need for a manageable representation of their attributes, to augment our under-

standing and enable the development of ways through which we can increase their

effectiveness, efficiency, and safety. Although many of the methodologies devel-

oped in the Human Factors domain map and investigate system properties and

network structures, the inclusion of the temporal dimension in the analysis of STS

remains limited. In this paper we present how modeling and visualization of STS can

be augmented with the incorporation of temporal interaction analysis techniques

that enable a micro‐level, fine‐grained analysis of data. We provide an overview of

temporal analysis techniques by breaking down their main function, requirements,

types of research questions they can address, and the visualization properties they

offer, attempting to enhance their use in system analysis. This overview can assist

researchers in selecting an analysis technique, enabling the incorporation of tem-

porality in STS analysis, and helping towards the design of improved and safer

systems and interventions.

K E YWORD S

dynamical systems, interaction patterns, micro‐level analysis, Sociotechnical systems, temporal
analysis

1 | INTRODUCTION

Sociotechnical systems (STS), referring to systems comprised of hu-

man and technological agents, figure prominently in risk assessment,

system design, and safety research. STS vary in complexity, as they

incorporate a large set of parameters including human agents, tech-

nologies, their tasks and goals, as well as their direct work space,

broader work environment and organizational influences (Olsen,

2007). The increased complexity of modern STS necessitates the

need for a manageable representation of their attributes, to augment

our understanding and enable the development of ways through

which we can increase their effectiveness, efficiency, and safety.

Early developed methodologies of STS analysis, such as Techni-

que for Human Error Rate Prediction (THERP; Swain & Guttmann,

1983) or Technique for the Retrospective and Predictive Analysis of

Cognitive Errors (TRACEr; Shorrock & Kirwan, 2002) follow a re-

ductionistic analysis approach. That is, they attempt to understand a

system by investigating and aggregating information on the system's
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individual parts (Stanton, 2013; Waterson et al., 2015). However,

such approaches do not consider the principle of bottom‐up emer-

gence that governs complex systems, which occurs as a system's

components interact with each other, self‐organizing in response to

various individual‐ and team‐level inputs, as well as environmental

changes. This self‐organization leads to the development of new or

reformulated properties and processes, which are not directly visible

from the mere aggregation of the system's parts or through the linear

association between parts’ inputs and system's outputs (Gorman,

2014; Gorman et al., 2019). Rather, they can only be understood

through the direct study of the simultaneous inter‐system interac-

tions and environmental changes as they unfold.

Although many of the methods developed in Human Factors aim

to map and understand the roots of failure in these systems (see

Stanton et al., 2013), they tend to assume homogeneity over time

and across agents and their interactions (Leenders et al., 2016).

However, systems continuously reorganize and restructure (Arrow

et al., 2004; Woods et al., 2010), and changes in subsystems mutually

influence each other. Due to this continuous change, the predictive

power of static human factors methods is limited, indicating a

shortage in methodologies that can predict system behavior (Salmon

et al., 2020). If we want to broaden the scope of STS research from

focusing on the mere roots or outcomes of failure to what char-

acterizes a system as being able to avert danger or recover quickly

after turmoil, we need the incorporation of analysis techniques that

can consider its moment‐by‐moment operation.

Several micro‐level processes, referring to immediate human‐

human and human‐machine interaction processes that continuously

change as systems function, have been found to influence the

emergence and stability of system structures. For example, the

complexity of behavioral interaction patterns continuously changes

to better fit situational demands (Gorman et al., 2019; Lei et al.,

2016), whereas communication patterns develop into flatter and

more decentralized structures as task complexity increases (Barth

et al., 2015). Tracking micro‐level processes as they unfold can help

us discover otherwise undetectable patterns of interaction, social

norms, or relationships that emerge and develop as systems function

and self‐organize. Through researching and modeling interaction

processes, temporal models of analysis can offer insights into the

design of stronger and more adaptable systems that can prevent or

maneuver away from failure, and help in further informing the design

of sub‐systems or even multilayer STS. For instance, the efficiency of

a system is reflected in the time taken for it to reorganize its structure

in response to task demands (Gorman et al., 2019). By modeling the

moments and duration of structure reorganization, one can locate the

best opportunities for intervention, and inform better system train-

ing. Such insights may also reflect on the redesign of higher levels

that encompass a lower‐level system, such as hospital policies

changing to meet the demands of healthcare teams.

It is therefore important for researchers to be able to incorporate

micro‐level temporal analyses in their studies, as well as to under-

stand the added possibilities offered by using them in STS research.

The goals of this article are to (a) outline the added possibilities

offered by incorporating temporal interaction analysis techniques in

STS research, and (b) aid the understanding and differentiation be-

tween temporal techniques based on their function, requirements,

and application possibilities they offer.

To address these goals, the following section discusses the dif-

ferent levels of STS analysis offered by current systems ergonomics

methods, aiming to convince the reader on the importance of using

micro‐level temporal analysis models in aiding and expanding STS

research. The section after that presents an overview of temporal

methods and how one can choose between them, to be used as a

toolbox by researchers interested in pursuing the endeavor of in-

corporating them in their analysis. We end by a summary and con-

clusions, as well as some directions for future research.

2 | CURRENT CHALLENGES WITH STS
METHODS

The premise of STS analysis is that social and technical systems in-

teract and are built within an organizational design promoting optimal

cooperation, productivity, satisfaction, and safety (Clegg, 2000;

Eason, 2014). Within the domain of Human Factors alone, over 200

methods have been developed to foster the investigation of complex

STS (Stanton et al., 2013), and that of similarly complex processes

associated with such systems, such as Distributed Cognition (Stanton,

2013), Shared Mental Models (Cannon‐Bowers et al., 1993), Inter-

activeTeam Cognition (Cooke et al., 2013), or Resilience (Hollnagel &

Sundström, 2006). Each method takes a distinct approach to STS

analysis and error conceptualization, with a diverse level of focus that

targets the analysis of different aspects and system elements. De-

pending on the unit of analysis, some methods take a “micro‐level”

approach, thus researching individual attributes and immediate

human‐human and human‐machine interaction, whereas others focus

on a “meso‐level” of analysis, emphasizing the whole system com-

prising individuals, teams, and organizations. Models may also take a

“macro‐level” approach, incorporating the investigation of multi-

layered systems (Grote et al., 2014; Hendrick & Kleiner, 2002). A

short introduction to the central focus and challenges of each level is

warranted, starting off at the highest level of analysis and ending at

the lowest, micro‐level of analysis, which comprises the level of focus

of our temporal interaction analysis techniques. We end this section

with a discussion of how these temporal techniques differ from other

micro‐level ones, and their added value over and above static

approaches.

2.1 | Macro‐level methods

Macro‐level methods comprise the highest level of system analysis,

and take a complex multilayered system approach. Methods at the

macro‐level view the system as part of a larger network of organi-

zations, industries, and other regulatory bodies, whose interrelations

comprise a multilayered system, representing and guiding operation
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of each system layer. The principal unit of analysis is the organization.

Macro‐level approaches are frequently used in accident analysis,

spotting “soft spots” across the multilevels that comprise multi-

layered systems, and informing redesign processes. For example,

System Theoretic Accident Model and Processes System‐Theoretic

(STAMP; Leveson, 2004) models how safety constraints are applied

and distributed across the system's hierarchical levels, which span

from team to organizational and governmental structures. It treats

accidents as the result of poor interaction between the components

of the system and the lack of successfully applying safety constraints

developed to prevent from failure. Macro‐level approaches have

offered valuable insights on potential failures and hazards in

multilayered systems compared to more traditional approaches

(Underwood & Waterson, 2014). Still, they take a more homogenous

approach to accident causation, aggregating the information available

on system functioning without considering the temporal fluctuations

in processes within each multisystem component.

2.2 | Meso‐level methods

Meso‐level methods take a more granular approach to system ana-

lysis, considering the immediate environment within which humans

and machines interact, as well as the broader system and organization

that comprise them. The primary unit of analysis in this level are

teams and networks within an organization, thus taking a narrower,

more scrutinizing view to system analysis than macro‐level processes.

Meso‐level practices have also been defined as focusing on the in-

teraction between micro‐level processes (immediate human–human

or human–machine interaction) and macro‐level phenomena

(interaction across systems). It should be noted, however, that the

differences between a meso‐ and macro‐level analysis are not always

as clear, and experts have judged several methodologies as being

representative of both analysis levels depending on the focus of

each investigation (for details, see, Foster et al., 2020). Examples

of methods that are used for meso‐level analysis are Event Analysis

of Systemic Teamwork (EAST; Stanton, 2013; Stanton et al., 2008),

and Functional Resonance Analysis Method (FRAM; Hollnagel &

Goteman, 2004; Hollnagel, 2012). EAST is a descriptive method that

maps three layers of STS. The social layer, including relations

between agents (human, technical, organizational), the task layer,

representing the relations between the tasks that are performed

within an STS, and the information layer, including the topics that are

covered and exchanged between agents when they perform tasks.

EAST captures and interconnects these layers in a holistic STS

visualization, and has been used to model various complex system

processes such as Distributed Cognition within a system (Stanton,

2013). On the other hand, FRAM is a representation of functional,

rather than structural, interactions within the system. After describ-

ing the essential system functions, it considers their variability,

and defines and monitors their resonance based on the functions’

interdependencies. These and other meso‐level methods approach a

more granular process of system analysis compared to macro‐level

methods, through an analysis across different phases or tasks.

However, the association between different system layers depends

on aggregation of system processes, without considering how these

processes unfold through time or how one process may influence

another.

2.3 | Micro‐level methods

Micro‐level methods comprise the lowest level of analysis, and

focus on the interaction between humans and their immediate

surrounding environment. Analyses at this level focus on human to

human interaction, such as verbal communication between team

members, or human to machine interaction, such as behaviors or

movements of humans during interaction with an interface or a

chatbot. The principal unit of analysis is the individual. Commonly

used micro‐level analysis methods are related to Cognitive Task

Analysis, such as the Critical Decision Method (Klein et al., 1989)

and Applied Cognitive Task Analysis (Militello et al., 1997),

or Team Assessment Methods such as Team Task Analysis

(Arthur et al., 2005; Bowers et al., 1994). Micro‐level methods

also entail communication analysis, and are considered suitable for

task and system representation.

Several micro‐level processes, as short or abrupt as interruptions

or silences, have been found to influence the emergence or stability

of system structures (Koudenburg et al., 2017). However, many

communication analysis techniques and methods at a micro‐level

have been disregarded by scholars for their inability to capture the

context of operation within which they occur (Waterson et al., 2015).

It is important to mention here, that even though this statement

holds true when referring to mere frequentist analyses and ag-

gregation of interaction processes, temporal communication analysis

models (described in detail in the next section) are closely tied to

context.

The events analysed with temporal models are indisputably tied

to their temporal occurrence, enabling the consideration of the

context within which they occur (including the spatiotemporal en-

vironment of occurrence, as well as the sequences of events that

have preceded or follow any given event in a time series). In other

words, the temporal timestamp of each event and interaction ana-

lysed enables the identification and association to contextual phases

at which a particular interaction occurs. Temporal micro‐level ana-

lyses can help assess human‐human or human‐machine interactions

and inform system design, for example by capturing the complexity in

the interaction processes of feedback loops in control systems made

of multiple human‐machine systems. Capturing complexity is im-

portant in creating efficient control systems, considering that a

controller should not be more complex than the system it needs to

control (Law of Requisite Variety; Ashby, 1956). Also, in their work,

Lavelle et al. (2020) argue that only through the temporal sequential

analysis of interaction patterns one can understand that adaptability

has taken place, as it is a great means of detecting change in team-

work (defined as how team members collaborate or coordinate their

DAVID ET AL. | 37



actions) that can be mapped onto contextual change (e.g., change in

task or system composition).

The majority of methods at a macro‐, meso‐, or micro‐level that

are not tied to time share four features that deprive them of the

ability to fully grasp the dynamic nature of STS systems. These re-

volve around the aggregation and linearisation, as well as separation

and description of measurements when studying STS (Knight et al.,

2016). Aggregation and linearisation of otherwise dynamic constructs

across time, assumes that the system under the time of investigation

does not change, or does not change in a sufficiently meaningful way,

and that all processes develop in an equally dynamic and predictable

way. However, assuming homogeneity over time and across system

components impedes the investigation of change that occurs as

emergent states develop (Leenders et al., 2016).

Separating the constructs we aim to investigate, or trying to describe,

in a qualitative manner, what unfolds over time, leads to information loss

regarding the processes that actually take place as systems function. We

do not mean to say here that such approaches are not important. On the

contrary, qualitative methods have offered great insights on team de-

velopment and have directed the construction of leading influential the-

ories and concepts such as Leadership, Situation Awareness, and Decision

Making. For example, by using Team Task Analysis to study leader iden-

tification and its effects on performance during emergencies in the OR,

researchers have obtained insights on the importance of leadership dur-

ing emergencies (Price et al., 2012). However, it provides the illusion of

studying the dynamic process of team leadership formation without ac-

tually considering how the context and processes through which leader

identification unfolds may hinder or improve OR performance. We

therefore argue that even though relatively abstract concepts such as

leadership or decision making provide a conceptual framework to guide

research, actual insights on the structure underlying these processes offer

a more precise diagnosis of system functioning, failure, and opportunities

for improvement.

Micro‐level temporal techniques can assist in this endeavor. For

example, insights from temporal analysis techniques, either on “how”

teams communicate or “when” change in communication occurs, can

be used to inform interventions such as the design of guided de-

briefing processes or the development of ad hoc reflection processes

(e.g., Schmutz & Eppich, 2017). Other insights, like the development

and maintenance of closed‐loop communication structures during

emergencies (e.g., Van den Oever & Schraagen, 2021) can be used to

inform simulation based team trainings to promote close‐loop com-

munication (e.g., Fransen et al., 2017). Design of interventions that

are well‐informed with regard to system changes and to the timing of

these changes is crucial to the development of more effective, effi-

cient and safe STS.

To our knowledge, the use of insights that stem from these

techniques for intervention and system design remains scarce so far.

In the section below we outline the micro‐level techniques that can

be used to explore temporal processes and provide insights that can

ultimately inform system design and functioning. These techniques

thus offer an opportunity to Human Factors’ researchers to enhance

their range and breadth of system investigation.

3 | USING MICRO‐LEVEL TEMPORAL
ANALYSIS TECHNIQUES TO INVESTIGATE
SYSTEMS

To promote the incorporation of temporal interaction models into

existing ergonomics STS methodologies, we begin by (a) describing

the main theoretical underpinnings that these techniques share, and

(b) providing an overview of the techniques with their main function,

requirements, and associated types of research questions they can

address.

3.1 | Theoretical underpinnings of micro‐level
temporal analysis

The theoretical basis of temporal analysis techniques stem from

complexity science, which revolves around developing new ways for

studying regularities, and reducing the complexity of the world

around us to manageable and predictable components (Phelan,

2001). It follows the premise that complexity arises from a simple set

of “generative rules” that determine how agents within a system

behave and interact over time. Each theory stemming from com-

plexity science summons fundamental dogmata underlying system

functioning that can assist in the development of analysis techniques

capable of capturing system properties. Temporal models are mostly

based on complex adaptive systems theory and nonlinear dynamical

systems theory, while they are also closely tied to network systems

theory.

The central tenets of these theories are that systems are char-

acterized by components that exhibit nonlinear, sometimes chaotic

relationships (Ramos‐Villagrasa et al., 2018). That is, any action of one

component can generate different results based on the state of all

components at any given point in time, the input they receive, and

the context of the interaction. Systems show a certain degree of

variability, constantly moving across different states. This movement

and constant change forms dynamic trajectories from state to state

that are characterized by self‐organization and emergence, making

them difficult to predict (Meinecke et al., 2019). Nonlinear dynamical

systems further posits that systems include fractals, that is patterns at

higher system levels that show self‐similarity in their structure with

patterns at lower levels, and have a top‐down effect on shaping

and constraining lower‐order interactions (Mandelbrot, 1983).

Additionally, the concepts of law of requisite variety (Ashby, 1956)

and local‐global congruence (Gorman et al., 2017) are important

theoretical underpinnings of system theories. The former, also

mentioned earlier, pinpoints how complexity of interactions within a

system should not exceed the complexity of the system itself,

and the latter highlights how local variability (i.e., variability in

micro‐interactions) is a reflection of global stability (i.e., system

functioning on a larger timescale).

The concept of temporality is directly tied to all aforementioned

tenets, defining systems as adaptive networks of interchanging

components with complex and dynamic relationships. To understand
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the dynamic interaction of systems, researchers should be able to

thoroughly study and incorporate temporality in their studies.

Bartunek and Woodman (2015) distinguish among five dimensions of

temporality characterizing how processes and activities may develop

and unfold. These dimensions are Sequence, Rhythm, Pacing, Poly-

phony, and Timing, and can help differentiate across different re-

search foci and develop research questions tied to the concept

of time.

3.1.1 | Sequence

Sequence refers to the temporal ordering of events and how these

unravel within different stages of a performance episode. The dura-

tion of these stages, and the location of events within a sequence are

important to consider.

3.1.2 | Rhythm

Rhythm concerns repetitions of cycles, including periods of stability

and periods of change. Rhythm may be defined by long periods of

disorder followed by short periods of stability (“focused” rhythm), or

short periods of disorder followed by long periods of stability

(“punctuated” rhythm). It may also be equally distributed between

stability and disorder (“regular” rhythm) or be continuously altering

between the two (“temporally switching”).

3.1.3 | Pacing

Pacing refers to the speed at which activities occur. Speed may be

studied on the overall performance episode under investigation, or

during important stages within a performance episode. Speed is

considered especially important during a stage at which reorganiza-

tion is necessary due to environmental influences, as initiating change

fast helps avert inertia.

3.1.4 | Polyphony

Polyphony refers to structural aligning and overlap of activities, or

influence of one activity on concealing, replacing, or amplifying

another.

3.1.5 | Timing

Timing may refer to: (a) possibilities for action that may appear si-

multaneously; (b) the alternative between acting or processing in-

formation that becomes available; (c) “timing norms” formally or

informally set by organizations, forming periodic change of events

either due to abrupt environmental changes, or regardless of the

surrounding environment (set clockwork changes); (d) “windows of

opportunity” that represent the most appropriate time to act or infer

change.

The temporal micro‐level interaction techniques listed in the

following section provide a means of studying these temporality di-

mensions. Temporality dimensions can and have been used to dif-

ferentiate between research perspectives and research questions

related to dynamic systems (Bartunek & Woodman, 2015; McComb

& Kennedy, 2020). We therefore use them to differentiate between

the application possibilities of these analysis techniques.

3.2 | Overview of temporal interaction analysis
techniques

The techniques that we discuss are extracted from recent reviews of

temporal team modeling, reviewing techniques with theoretical un-

derpinnings on complexity and network systems theory (Herndon &

Lewis, 2015; Klonek et al., 2019; Lehmann‐Willenbrock & Allen,

2018), complex adaptive systems (McComb & Kennedy, 2020), and

nonlinear dynamical systems (Ramos‐Villagrasa et al., 2018). Inclusion

criteria entailed: (1) techniques focusing on micro‐level analysis of

immediate individual‐to‐individual (or individual‐to‐machine) inter-

action, which (2) consider the (spatio‐)temporal stamp of each in-

teraction, and which (3) search for complex patterns in interaction.

Excluded were techniques that cannot capture high complexity in

interaction patterns, but rather follow a more high‐level approach to

interaction analysis (e.g., growth curve modeling; Collins et al., 2016).

The final list of techniques discussed consists of: Lag‐based

sequential analysis, T‐pattern analysis, Relational event modeling,

Recurrence analysis, Phase space analysis, Entropy, and Hurst

Exponent. The list of temporal techniques is not exhaustive, but

rather a representative synopsis to ease and promote their in-

corporation in STS analysis.

We aim to provide researchers with a checklist to choose which

technique is suitable for their analysis. This checklist is based on four

main attributes: (i) the function of each technique, (ii) their require-

ments, (iii) the types of research questions they can answer, and (iv)

the data visualization options they offer. These attributes are sum-

marized in Table 1 for each technique, and discussed in more detail

below. Examples of findings from previous research are also included

under each technique, to illustrate possible results one can get from

the analysis, and stimulate researchers to think of possible ways

through which interventions, training designs, or system structures

can be developed or incorporated in STS. Appendix A includes a table

of available software and availability that can further assist in

choosing and carrying out these analyses (Table A1).

3.3 | Lag sequential analysis (LSA)

LSA (Bakeman & Quera, 2011; Quera, 2018) can be used to de-

termine whether a certain event is followed by another one
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significantly more or less often than expected. The definition and

coding of “event” derives from either theoretical or practical stand-

points, and can be a verbal or nonverbal data point, spanning from

single‐word utterances or simple gestures, to more complicated be-

haviors or meaningful utterances (e.g., phrases, sentences, general

description of behaviors or situations).

The requirements of LSA are, first, the development of codes (nominal

variables) reflecting different events or behaviors that occur in the per-

formance episode. Depending on the theoretical needs of the research,

these codes may differ in nature, spanning from simple communication

behaviors, to more theoretical complex behaviors such as behaviors

related to implicit or explicit coordination patterns (Kolbe et al., 2014).

A review of communication coding schemes by Brauner et al. (2018)

presents various types of such coding schemes. Although LSA is mostly

applied to communication structures, codes may also reflect actions on

physical or technological interfaces.

A second important requirement of LSA is the timestamp of each

coded event, that can be of either ordinal (only order of events

known) or interval (exact time at which each event occurred) nature.

The timestamps of the events are needed in order for the events to

be coupled under dyadic patterns of sequential events. Based on its

timestamp, an event is defined as “criterion event,” referring to the

first occurring event in the sequence, or as “target event,” referring to

one directly following the former. The relation between criterion and

target events is assessed at specific serial positions called “lags”; that

is, transition points from one event to the next. They can be more or

less complicated, spanning from first‐order transitions assessing one

event directly followed by the next (Lag 1), or more complicated

sequences assessing second‐order transitions with one event fol-

lowed by the second‐to‐next (Lag 2), and so on (see Figure 1 for

illustration). Multiple lags can also be tested to identify significant,

nonrandom chains of events. LSA requires that the patterns of in-

terest (dyadic combinations of different criterion and target events)

are specified.

The types of research questions that can be answered with

LSA can help examine different dimensions of temporality, for

example by focusing on exploring how patterns of interest evolve

through interaction (sequence), modeling patterns that are pre-

sent during a phase or across different phases (polyphony), or

comparing patterns of interest across systems or situations

(timing). An interesting example of the use of LSA in healthcare

teams is the work of Kolbe et al. (2014) who found that the order

of events (relating to implicit and explicit coordination behaviors)

are related to performance, with higher performance teams

showing significantly more behaviors of implicit coordination

patterns (behaviors that facilitate action) followed by behaviors

of explicit coordination patterns (behaviors coordinating joint

actions) as compared to lower performing teams. These findings

are valuable to understanding how self‐organization unfolds in

successful systems, and inform design of interventions that can

help in the promotion of such processes.

Even though LSA offers valuable insights on the temporal un-

folding of communication between agents in a system, one practicalT
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limitation is its boundary concerning the complexity of sequences

analysed. LSA is limited to the analysis of dyadic utterances that are

immediately adjacent to one another (lag 1), or other sequential pairs

(lag 2, 3, and so on), thus limiting researchers from capturing and

understanding more complex patterns of interaction between dif-

ferent agents that may span longer sequences of utterances.

3.4 | T‐pattern analysis

T‐pattern analysis was developed to detect recurring sequences of

temporal patterns of behavior, called T‐patterns, which would be

undetectable without the implementation of necessary algorithmic

principles (Magnusson, 2000, 2018). A T‐pattern is comprised of a

criterion and a target event, and is characterized as a T‐pattern if it

falls within a time‐dependent “critical interval.” This critical interval

defines the longest possible time‐interval within which a criterion is

followed by a target more often than expected by chance, and is

determined by two aspects: self‐similarity and transition symmetry.

Self‐similarity refers to the hierarchical nature of these patterns,

where, based on the timing at which communication utterances oc-

cur, simple patterns can be merged into larger ones, higher in the

hierarchy, with which they share parts of their structure. Transition

symmetry refers to similarity between patterns at different locations

in time and space, creating a sequential presentation of utterances,

that are of fixed order and nonrandom temporal spacing. Based on

these aspects, the software THEME, developed for the identification

of T‐patterns, can detect if smaller patterns (ab) are part of larger

patterns (abcd).

The requirements of T‐pattern analysis entail a process of coding

events similar to LSA. These codes are referred to as “event‐types”

and may be simple or complex communication data (a word or sen-

tence of specific meaning), or may also reflect more contextual or

machine‐related activities (e.g., specific actions taken with an inter-

face). Each event‐type has a beginning (and optionally an end) that

can be modeled into THEME. All event types should have a time-

stamp of interval scale, spanning from a few milliseconds to days

(Magnusson, 2018). Depending on the needs of the research, more

parameters can be entered inTHEME, such as the actor who initiated

each coded action.

F IGURE 1 Example illustrations of temporal interaction analysis techniques. Examples of: (a) Lags in lag‐sequential analysis: events a, b, and c,
combined using different Lags (1, 2); in Lag 1, event a is coupled with its directly adjacent event b; in Lag 2, event a is coupled with the second‐to‐next
event c. (b) T‐Pattern analysis: events at different time intervals (top line), broken into separate complex patterns depending on their temporal proximity
(Magnusson, 2000). (c) Relational events in relational event modeling: inertia, triadic closure, and preferential attachment. Dots represent actors, arrows
represent direction of action, straight line indicates future action, dashed line indicates prior action. For more examples see (Schecter et al., 2018).
(d) Recurrence plot (Gorman et al., 2019). (e) State Space Grid (Meinecke et al., 2019). (f) Simplified illustration of windowed entropy: entropy unraveling
over a time series
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T‐pattern analysis has been used to study various different types

of human and animal behaviors (for a review on applications of

T‐pattern analysis see Casarrubea et al., 2015). Research questions

related to rhythm, sequence, or timing can be explored through this

analysis. For example, one can use T‐pattern analysis to compare

pattern complexity across systems or situations (timing). Research

employing T‐pattern analysis suggests that higher‐performing crews

show less complex, shorter and fewer patterns when responding to a

crisis than lower performing teams (Stachowski et al., 2009). Also,

team effectiveness has been associated to patterns that are more

stable in complexity during early phases of swift‐starting (Zijlstra

et al., 2012). These are examples of how T‐pattern analysis can help

spot the “right” moment and way for change to occur in the behavior

of a system, informing the design of system structures that can assist

in the manifestation of such processes.

It is important to mention that T‐system analysis is a bottom‐up

approach tailored toward the detection and analysis of patterns, rather

than concerned with the relations between recurrent entities as LSA

does, adding the advantage of exploratory research to detect patterns

that have not yet been discussed in theoretical constructs. The advantage

of using this method of pattern detection and mapping is its unbiased

exploratory approach. Even though theory on communication can offer

indications on which patterns are expected in the data, it can omit other

patterns that are nonetheless important in indicating core structures in

communication (Magnusson, 2000). Despite its possibility to assist,

T‐pattern analysis mayyield Type 1 errors of exploratory analyses.

3.5 | Relational event modeling

Relational event modeling is based on the premise that the re-

lationship of the actors within a network is based on their series of

relational events (Butts, 2008; Butts & Marcum, 2017). Any relational

event (e) consists of a sender s(e), a receiver r(e) and a timestamp t(e).

By modeling all relational events as they unfold over time, one can

capture a long sequence of events (E), comprising the entire inter-

action process.

Relational event modeling has three main requirements, starting

with a coding process of labeling the actors of a performance episode

and their function as senders or receivers during each action.1 The

inclusion of each action's timestamp is also necessary. The timestamp

can be of interval or ordinal nature, although in the latter case fidelity

is lost with regard to the rate at which actions occur (Butts, 2008).

The third requirement is constructing Sequential Structural Sig-

natures (SSSs), referring to predefined relational event structures that

examine various actor‐based relationships. They are used to statis-

tically assess the likelihood of a relational event to occur based on

preceding relational events. R packages such as relevent (Butts, 2008)

or informR (Marcum & Butts, 2015) include already constructed SSSs

that reflect a wide range of social processes, such as the persistence

or order of action, the exchanges of information within triads of

actors, or conversational dynamics and preferential attachment

(Butts & Marcum, 2017). Different models can be built, incorporating

isolated or combined SSSs. By assessing the goodness‐of‐fit of each

model, one can capture social processes that best explain the data

set. SSSs, and the ability to combine these under different models,

enable the application of relational event modeling in various social

contexts of different theoretical base. For a tutorial on its application

see Butts and Marcum (2017).

Relational event modeling can be used to answer research ques-

tions related to exploring the effect of different social processes on a

system's structure. Researchers can model the sequences of events

that best explain a data set (sequence), or compare sequences of

events across systems or situations (timing). For example, the social

process of inertia, characterized by a higher likelihood for an actor's

past contact to remain their future contact, has been associated with

higher stability and coordination in routine situations (Schecter et al.,

2018), but also with poor teamwork during emergency flight situa-

tions (David & Schraagen, 2018) and critical situations in pediatric

cardiac surgery (Van den Oever & Schraagen, 2021) Further, Rela-

tional event modeling is one of the few processes that can assess

polyphony within a data set; that is, researchers are able to in-

vestigate how the structural patterns of activities within a system can

affect the presence of these or other activities in the future. Hier-

archical extensions of relational event modeling (e.g., see, DuBois

et al., 2013) further enable pooling across multiple information se-

quences, an attribute useful for investigation of different groups or

investigation of covariates within these groups.

3.6 | Recurrence analysis

Recurrence analysis is usually used to assess whether interval data

points within a nonlinear time series are recurrent or random

(Webber & Zbilut, 1994). Such data points may, for example, be

physiological measures of brainwave activity or heart rate (Strang

et al., 2014). While such an analysis refers to data points of regular

time intervals, variations of the recurrence analysis can also be ap-

plied to discrete interaction sequences of ordinal spacing, to identify

deterministic sequences of patterned events in a performance epi-

sode (Gorman et al., 2012, 2019). For a discrete recurrence analysis,

requirements include a set of codes representing events or actions,

with each code associated with a number. Each code should have a

temporal timestamp indicating its beginning and ending. For every

second that the event occurred in the performance episode, the re-

spective event number is plotted on the recurrence plot. For ex-

ample, to assess speech patterns, each agent in a system can be

represented by a different number, and each speech activity can be

modeled on the recurrence plot using the agent's number for as long

as the agent speaks, followed by the next speaking activity, and so

on. For a recurrent analysis, determining a window size (windowed

recurrence analysis) enables a higher temporal‐resolution of analysis,

enabling recurrent patterns to be researched more thoroughly within

1Variations of REM may incorporate the weight of actions (Brandes et al., 2009) or different

types of receivers (Vu et al., 2015) in the coding process.
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each window and compared from window to window. Window size is

determined by the number of data points that each window includes.

Small window sizes focus on small‐scale recurrences and yield higher

time‐resolution patterns, while long size windows focus on long‐scale

recurrences and yield lower time‐resolution patterns. A window size

should reflect the pacing of system interaction changes, and so

the concept of event pacing (defined earlier as the speed at which

activities occur) is an important consideration when determining

window sizes.

Recurrence analysis has its basis on the recurrence plot, which

represents a matrix of a time series, in which repetition of a pattern is

marked black on the plot, and sequences of repetitive patterns for

diagonals that can be detected directly on it. The recurrence plot is a

symmetrical matrix plotting the time series of length N (N ×N),

meaning that the diagonal running through the middle (bottom left to

upper right corner in Figure 1) is blackened as a reflection of the time

series being plotted against itself. Its symmetric nature is also the

reason why the same patterns are reflected on the upper left and

bottom right part of the plot. Various quantifications of the recur-

rence plot can be used to assist in its interpretation and further

analysis. For example, determinism (%DET) is a metric that calculates

the percentage of formed diagonals. Based on DET, a time‐series is

considered completely deterministic when a sequence of events (e.g.,

A‐B‐C) always repeats (in which case we have a homogenous plot of

DET = 100). Lower DET values represent higher percentage of ran-

dom sequences and lower percentage of deterministic ones. Other

metrics are linemax (LMAX), a measure of stability quantifying the

length of the longest diagonal in the plot, or entropy (discussed

in Section 3.8). For more quantification metrics see Webber and

Zbilut (2005).

Recurrence analysis can be used to assess a variety of research

questions both within and across different time‐series, on social

phenomena such as speech activity. One can explore the complexity

of recurrent structures in turn taking, model the cycles of pattern

repetition within a time series, or compare the recurrence of events

across different time series. In combination with other quantification

measures, other research questions can also be addressed. For ex-

ample, Gorman et al. (2019) modeled a turn‐taking time series of who

was talking at each second of a performance episode on an recur-

rence plot, and used %DET to determine communication re-

organization in response to perturbations. Results indicated that

coordination of reorganization process is a cognitive skill that differs

between experienced and novice teams, and can be measured and

tracked. For a review on recurrence analysis and examples in team

research see Knight et al. (2016).

3.7 | Phase space analysis

Phase space analysis includes plotting a system's state space to un-

derstand the structural characteristics of a time series (Hollenstein,

2007). As a system functions, it presents some kind of variability,

which means that it moves through different states that comprise a

state space. A system's state space includes attractors, defined as

states that reoccur more often, and repellors, states reoccurring less

often. The movement from one state to another creates a traceable

path trajectory. A system also presents phase transitions, when it

moves out of its usual trajectory, presenting new dynamics before

stabilizing on a new phase (e.g., team presenting new patterns when a

membership changes). Phase space analysis can be plotted on a state

space grid, which visualizes the trajectory of the system and provides

various quantifications for the content and structure of the trajectory

(Meinecke et al., 2019).

Requirements for a phase space analysis are the definition of at

least two categorical variables (i.e., dimensions) that characterize

the state space. The variables plotted on the x and y axis may

be different depending on the aim of the research. For example, the

system's agents can be plotted on the x axis and the various actions

or events on the y axis. It is important that the variables are pre-

sented at the same point in time, as each cell of the grid assumes a

simultaneous coexistence of the two variables. Therefore, relative

nominal codes representing events, actions, agents or other vari-

ables of interest within a time series need to be coded. An ordinal or

interval timestamp should accompany each variable, ensuring the

proper association between the two in the state space grid. Similar

to Recurrence analysis, window size can also be determined, and

different quantifications can be used for the interpretation of the

state space grid in terms of content or structure of the trajectories,

such total cell transitions (number of visits from one cell to another),

or entropy.

Phase space analysis can help address research questions related

to exploring group norms within a times series, or comparing group

norms across time‐series. For example, one can explore how actors

move across states (rhythm), or research the appearance of pattern

sequences by modeling the trajectory of a system from state to state

(sequence). One can also compare trajectories across different time

series (timing), thus gaining insights on how different teams exhibit

transitioning across states.

3.8 | Entropy

Entropy provides a means of detecting randomness, or uncertainty

within a time series (Pincus et al., 1991). Entropy is expressed in bits

and different systems have different amounts of entropy depending

on the number of possible states in each system, that is, log2(x),

where x is the number of possible states (Stevens, 2012). An increase

in entropy reflects a higher level of disorder in data points (and thus

in the system's behavior), marking a sequence as more irregular.

Sliding windowed entropy can capture how a system moves from

state to state by detecting regularities in sequences within each

window. Within nonlinear dynamical systems theory, entropy is

considered to be generated by the system as this changes its beha-

vior over a time series. Based on the coded event, that being defined

as a verbal or physiological behavior, peaks in entropy may indicate

phase or other state transitions. By applying smoothing in siding
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windowed entropy, the robustness of peaks increases (see, Wiltshire

et al., 2018). An example of how entropy can be modeled is provided

in Figure 1. Entropy needs at least 1000 data values for a robust

analysis to be carried out.

Requirements for estimating entropy are similar to the require-

ments of recurrence analysis (coding, number associated to each

code, specification of window size). The research questions addressed

with entropy are related to modeling phase transitions within a time

series, or comparing transitions across many time series. The con-

straints of a system begin collapse when a system goes through a

phase transition, showing higher entropy (Kugler & Turvey, 1987;

Wiltshire et al., 2018). Entropy can also be used to compare regula-

rities across different time series. For example, mapping entropy

peaks onto performance episodes involving environmental changes

(transitioning from task to task) reveals the underlying system

structures that lead to higher system effectiveness, and can also be

associated to cognitive stability and flexibility (Stevens, 2012).

3.9 | Hurst exponent

Hurst exponent (H), is a measure of autocorrelation and fractality in a

time series (DePetrillo et al., 1999). It ranges on an arbitrary scale of

0–1, and reflects the extent to which points in a time series are

correlated to each other. An H = 0.5 indicates a random time‐series

where points are not correlated to one another. H > 0.5 indicates a

persistent process of positive correlations between points, where an

upward moving point is followed by another upward moving point

and usually interpreted as the tendency of systems to show auto-

correlation or corrective behavior. H < 0.5 reflects an anti‐persistent

process, where points are negatively correlated, meaning that one

point moving upward is more likely to be followed by a downward

one. The main requirement for estimating H is a data set of interval

datapoints in a time series. Different methods exist for its estimation,

such as rescaled range (R/S) analysis, or variance time analysis (for

details on the estimation methods see Kirichenko et al., 2018). An

example application of Hurst exponent on team coordination using a

continuous time series of electroencephalography signals can be

found in Likens et al. (2014). For application on ordinal communica-

tion data see Gorman and Cooke (2010). The research questions that

H exponent can address relate to the extent of self‐similarity across a

time series of different hierarchical levels, as well as in modeling or

compare fractality across different levels.

Studying STS, especially in closed settings where recording is

possible, such as aviation cockpits or surgical rooms, offers the

opportunity for gathering the fine‐grained data required for these

analyses, such as full transcripts from black boxes or voyage data

recorder, or physiological data using sociometric badges (Kim et al.,

2012). Even in STS of organizational units with less monitoring, video

or audio‐based measurements enable the continuous procurement of

team dynamics as these unfold within a performance event.

Most analysis techniques so far require transcribing and manually

coding communication before analysis, although some attempts are

being made at incorporating the automatic attainment of meaningful

information on team measures through machine learning (e.g., Bonito &

Keyton, 2018). Coding can be performed at different levels of granu-

larity, depending on the aim of the research, the data available and the

detail associated with that data, as well as the methodological tools at

hand. For example, one may focus on micro‐behaviors based on coding

of single seconds within a time series, such as silences or laughter,

whereas others may instead code macro‐behaviors that span over

several minutes or hours. The coding process and guidelines for such

analyses is outside the scope of this study. For a review on existing

coding schemes see Brauner et al. (2018), and for guidelines focused on

developing new coding schemes see Waller and Kaplan (2018).

To perform the analyses, specialized software has been developed

for some, while statistical R packages are also readily available for appli-

cation. Use of specialized software increases the validity of the analyses in

terms of meeting the assumptions they dictate (Connor et al., 2009).

Generic software for coding and analysis such as Observer‐XT (Noldus

et al., 2000), Interact (Mangold, 2020), or CAT (Klonek et al., 2020) can

also lead to high quality analysis by easing the coding process and

prompting the attention of researchers to specific decisions that need to

be made regarding the analysis they choose. A full list of software is

included in the appendix.

4 | SUMMARY AND CONCLUSIONS

The purpose of the present paper was to promote the incorporation

of temporal interaction analysis techniques in sociotechnical systems

research. It is clear that different ergonomics methods may be

applied to different levels of analysis within a system's hierarchy,

focusing on processes from immediate interaction, to higher, macro‐

level processes that occur across multilayered systems. However, the

methods used for the analysis of complex systems often take a static

approach to system operation. We argue that studying dimensions of

temporality at a micro‐level of analysis can further assist and deepen

our understanding of STS systems by revealing temporal interaction

patterns that would otherwise remain undetectable. The thorough

investigation opportunities offered by such techniques can help un-

derstand and predict system behavior.

We presented an overview of various temporal interaction

analysis techniques derived from complexity science, complex

adaptive systems and nonlinear dynamical systems theory, and cre-

ated a table of properties that can ease their inclusion in STS re-

search. These techniques aim to increase the fidelity of research with

respect to the exact processes that make‐up relationships between

agents, functions, and the development and change of system

boundaries over time. Within the techniques presented, it is im-

portant to understand how investigation is not necessarily limited to

conversational variables, but can also be applied to any type of or-

dinal or continuous data, such as human‐interface interaction beha-

viors, physiological measures, or psychological states (Gorman et al.,

2019) that can help in the identification of important processes and

states and how these change over time.
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4.1 | Limitations and future directions

The current review does not constitute an exhaustive list of

temporal techniques, but rather a representative synopsis of

those included in existing reviews from learning and team com-

munication science (Herndon & Lewis, 2015; Klonek et al., 2019;

Lehmann‐Willenbrock & Allen, 2018), complex adaptive systems

(McComb & Kennedy, 2020), and nonlinear dynamical systems

(Ramos‐Villagrasa et al., 2018), and which do not suffer from

limitations associated with linear approaches assuming homo-

geneity of data (Connor et al., 2009; Leenders et al., 2016). It is

possible that other techniques from disciplines such as computer

science can also account as suitable temporal interaction analysis

techniques. Attempts to bridge social and computer sciences

have already been made (see, Lehmann‐Willenbrock et al., 2017),

and future research should consider to what extent the analysis

of temporality and complex interaction patterns is included in

such techniques.

Further, the toolbox of techniques provided in the current

article is descriptive and explanatory in nature. The main concepts

of each technique are portrayed with some examples that can

assist in guiding their application in complex systems. Future re-

search on the actual application and exploration of these techni-

ques can improve our understanding of the extent to which they

complement other methods and analyses. More specifically, these

techniques are very useful in explaining “when” or “how” systems

change, but provide a challenge to the interpretation of the results

in terms of “what” or “why” processes change the way that they do.

For a holistic understanding of a system and the creation of an all‐

inclusive intervention, the combination of micro‐level temporal

techniques with other methodologies can ease the holistic inter-

pretation of results yielded from the analysis. A combination with

techniques and methodologies that investigate “what” or “why”

aspects in more detail can assist in the design and implementation

of interventions rooted on exact beneficial or destructive pro-

cesses that emerge as systems function.

We therefore propose that the temporal techniques discussed

need not necessarily be applied in isolation, but can also be combined

with other models higher in the hierarchy. Some methodologies al-

ready attempt to combine a meso‐level of analysis, focusing on the

interaction of different system layers, with a micro‐level temporal

investigation of interaction changes across these system layers. One

example is the layered dynamics approach (Gorman et al., 2019).

Another useful and insightful approach that combines different levels

of analysis is many model thinking, and involves using multiple dif-

ferent models to research the same system or complex problem.

Many model thinking is a leading example of how combining ap-

proaches of different foci and detail can help build better systems

(Page, 2016).

For instance, Salmon and Read (2019) applied many models

thinking, combining meso and macro level approaches. They included

Cognitive Work Analysis, EAST, AcciMaps, STAMP, and a computa-

tional model of systems dynamics to investigate the issue of road

trauma. Insights from each model were combined to develop a hol-

istic cluster of strategies that can be used to prevent road trauma. In

the many model thinking analysis, AcciMaps were used to analyse the

problem, followed by an break‐down of the system using STAMP and

CWA, the analysis of behaviors within specific scenarios with EAST,

and ending with a design of interventions informed by the findings,

which was modeled using systems dynamics. In their discussion,

Salmon et al. pointed out how a micro‐level approach, absent in their

analysis, could be implemented within the investigation to further

inform intervention design. We encourage the future application of a

many model thinking to a complex STS problem, combining higher‐

level methods with those mapping moment‐by‐moment interaction

processes. Such an application will enable a detailed investigation of

how findings with varied degrees of detail, and their implications on

intervention design for complex STS are complemented and enriched.

In conclusion, the application of the temporal interaction analysis

techniques presented in this article, either in isolation or as com-

plementary to other methods, enables a thorough analysis of how

processes emerge and fluctuate as systems develop and self‐

organize. These techniques can be used to enhance and broaden the

expansion and applicability of Human Factors research across dif-

ferent domains and complex systems.
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APPENDIX A

TABLE A1 Software and visualizations for each analysis technique

Analysis technique Software and R packages Availability

Lag sequential analysis GSEQ (specialized software) Free at: https://www.mangold-international.com/en/products/software/gseq

T‐pattern analysis THEME (specialized software) Free educational software, or Paid licence of full access to features www.
patternvision.com

Relational event modeling Relevent informR (R packages) Free at: http://CRAN.R-project.org/package=relevent http://CRAN.R-project.org/

package=informR

Recurrence analysis nonlinearTseries (R package) Free at: https://github.com/constantino-garcia/nonlinearTseries/issues

Phase space analysis GridWare (specialized software) Paid licence http://statespacegrids.org/

Entropy nonlinearTseries (R package) Free at: https://github.com/constantino-garcia/nonlinearTseries/issues

Hurst Exponent liftLRD (R package) Free at: https://CRAN.R-project.org/package=liftLRD
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