
computers

Article

Indoor–Outdoor Detection in Mobile Networks Using
Quantum Machine Learning Approaches

Frank Phillipson * , Robert S. Wezeman and Irina Chiscop

����������
�������

Citation: Phillipson, F.; Wezeman,

R.S.; Chiscop, I. Indoor–Outdoor

Detection in Mobile Networks Using

Quantum Machine Learning

Approaches. Computers 2021, 10, 71.

https://doi.org/10.3390/

computers10060071

Academic Editor: Paolo Bellavista

Received: 19 April 2021

Accepted: 20 May 2021

Published: 26 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Cyber Security and Robustness, The Netherlands Organisation for Applied Scientific Research,
96800 The Hague, The Netherlands; robert.wezeman@tno.nl (R.S.W.); irina.chiscop@tno.nl (I.C.)
* Correspondence: frank.phillipson@tno.nl; Tel.: +31-8886-67232

Abstract: Communication networks are managed more and more by using artificial intelligence.
Anomaly detection, network monitoring and user behaviour are areas where machine learning offers
advantages over more traditional methods. However, computer power is increasingly becoming
a limiting factor in machine learning tasks. The rise of quantum computers may be helpful here,
especially where machine learning is one of the areas where quantum computers are expected to
bring an advantage. This paper proposes and evaluates three approaches for using quantum machine
learning for a specific task in mobile networks: indoor–outdoor detection. Where current quantum
computers are still limited in scale, we show the potential the approaches have when larger systems
become available.

Keywords: quantum machine learning; mobile devices; indoor–outdoor detection; hybrid quantum–
classical; variational quantum classifier; quantum classification; quantum SVM

1. Introduction

Fast and accurate detecting of the physical location of a mobile device and its user is
crucial for many new smart services in the current mobile networks. This information can
be used by mobile operators to optimise their network to provide better (perceived) quality
to their customers. It helps, for example, in detecting low-coverage areas and improving
indoor coverage. Additionally, the functionality of location-based services can be enhanced
when the operator can better predict the position of the mobile user. Machine learning is
an important candidate to provide this information. Machine learning-based models then
learn to classify the environment the mobile device is in. This could be a simple indoor
or outdoor classification, however, a more complex classification is also possible where a
distinction is made between, e.g., offices, shops, transportation and residential areas. The
overview paper of [1] shows the huge variety in techniques: K-nearest neighbour, random
forest, decision tree, logistic regression, support vector machine, naive Bayes and neural
networks (NNs). If we look at the combination of the techniques in combination with the
used data, we can give the following overview:

• Random forest and AdaBoost classifiers that use mobile device sensor data to classify
the environment [2];

• Support vector machine (SVM) and deep learning (DL) techniques used in combina-
tion with a hybrid semi-supervised learning system to identify the indoor–outdoor
environment using large and real collected 3rd Generation Partnership Project (3GPP)
signal measurements [3];

• Deep learning, based on radio signals, time-related features and mobility indicators
for a more complex environment classification, with multiple environments in [4].

• Ensemble learning schemes [5];
• Semi-supervised learning algorithm [6];
• Ensemble model based on stacking and filtering the detection results with a hidden

Markov model [7].

Computers 2021, 10, 71. https://doi.org/10.3390/computers10060071 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-4580-7521
https://www.mdpi.com/article/10.3390/computers10060071?type=check_update&version=1
https://doi.org/10.3390/computers10060071
https://doi.org/10.3390/computers10060071
https://doi.org/10.3390/computers10060071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10060071
https://www.mdpi.com/journal/computers

Computers 2021, 10, 71 2 of 17

For all these machine learning approaches, computing power is very important. More
computing power leads to better results. In addition, the amount of available data is
growing, which requires even more computing power. The end of Moore’s law for classical
computing is approaching [8], however, a new paradigm is approaching rapidly: quantum
computing. Quantum computers make use of quantum mechanical phenomena, such as
superposition and entanglement, to perform operations on data. Superposition means
that the system can be described by a linear combination of distinct quantum states.
Entanglement means that measuring the state of a qubit is always correlated to the state of
the qubit it is entangled with.

The quantum devices that are expected in the near feature to realise the first step in
this demand for computing power are the so-called NISQ devices: noisy intermediate-scale
quantum, involving a limited number of qubits that are not yet error-corrected nor noise-
free. Machine learning is a prominent candidate to be among the first applications on these
NISQ devices [9–12]. For a recent overview of quantum machine learning approaches,
the reader is referred to Abohashima et al. [13]. One of the main benefits of quantum
computers is the potential improvement in computational speed. Depending on the type
of problem and algorithm, quantum algorithms can have a polynomial or exponential
speed-up compared to classical algorithms. Biamonte et al. [14] indicate what the ex-
pected gain will be. For Bayesian inference [15], online perceptron [16] and reinforcement
learning [9,17], quadratic speedup is expected. An exponential speed-up is expected for
principal component analysis (PCA) [18], SVM [19] and least square fitting [20], compared
to their classical counterparts.

There are, however, also other relevant benefits in the near future [10]. Quantum
computers could possibly learn from less data, deal with more complex structures or could
be better in coping with noisy data. In short, the three main benefits of quantum machine
learning are (interpretation based on [21]):

• Improvements in run time: obtaining faster results;
• Learning capacity improvements: increase in the capacity of associative or content-

addressable memories;
• Learning efficiency improvements: less training information or simpler models needed

to produce the same results or more complex relations can be learned from the
same data.

The exponential speed is mainly delivered by the use of the HHL [22] algorithm
as part of the solution. This algorithm solves a system of linear equations very quickly.
However, it is known that the fact that the data has to be encoded into the quantum state
and that the output is in a quantum state will require a lot of effort to overcome. The
author of [23] warns about the assumptions made by those quantum algorithms:

• They assume preloaded databases in quantum states, for example, using quantum
RAM (QRAM);

• They assume data to be ‘relatively uniform’, meaning no big differences in value;
• They produce a quantum state as output, meaning this has to be translated efficiently

to a meaningful result.

All are non-trivial to solve without losing the expected exponential gain.
In summary, we can say that machine learning is important for providing location

information to mobile operators and that machine learning is an important application area
for quantum computing, despite its current limitations. In this paper, we connect these two
worlds by proposing quantum machine learning for indoor–outdoor classification. The
main research question is ‘how can quantum computing, in the short term, support the
demand for computing power that is needed by machine learning approaches in mobile
networks?’. To the best of our knowledge, we are the first to propose the use of quantum
machine learning in this area. Three approaches for quantum machine learning for this
supervised machine learning problem are presented and evaluated on the current hardware.
It is meant as starting point for further research. The growth of the number of qubits in

Computers 2021, 10, 71 3 of 17

the coming years will make real added value of quantum computers, quantum advantage,
within reach in the next 5–10 years.

In the rest of this paper, first, a short introduction to quantum computing is provided in
Section 2. Next, in Section 3, the data that were used in the analysis are generated. For this, a
simple theoretical propagation model is used. Based on these data, three quantum machine
learning approaches are presented and executed in Section 4: a hybrid quantum variational
classifier, a quantum distance-based classifier and a quantum annealing-based support
vector machine. The last section contains conclusions and some ideas for further research.

2. Quantum Computing

Quantum computers use quantum mechanical phenomena to execute calculations.
The main phenomena were introduced in the previous section, superposition and entangle-
ment. Quantum computers are still in their early phase, and many years of development
will follow. However, some early versions will be available for applications in the coming
years. These devices are called NISQ devices. The next generation, which is expected to out-
perform everyday computers, will follow within ten years, leading to breakthroughs in, e.g.,
AI and pharma. Many parties are working on quantum computers, e.g., D-Wave, Google,
Rigetti, IonQ, Intel, IBM and QuTech, and are developing qubits based on various technolo-
gies [24]. The current generation of quantum computers is still limited in size. In parallel,
we work on the software stack and algorithms for those devices. Two main paradigms in
quantum computing can be distinguished, gate-based computers and quantum annealers.
We will go into more detail about these paradigms in the next two sections.

2.1. Gate-Based Quantum Computing

In gate-based quantum computers, operations, which are also named gates, are used
to manipulate the values of specific qubits. We introduced superposition earlier, where
the qubit is a combination of the states, classically indicated as 0 and 1. This state can be
denoted by |ψ〉, which is defined by

|ψ〉 = α|0〉+ β|1〉, (1)

where α and β are complex numbers. Measuring the state of the qubit, we get either the
state |0〉 or the state |1〉. The probability that we observe each of these states is expressed
by |α|2 and |β|2, respectively, adding up to 1. Note that any state can be parameterised by
three real-valued parameters θ ∈ [0, π] and φ, γ ∈ [0, 2π]:

|ψ〉 = eiγ
(

cos
(

θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉
)

. (2)

Now gates can be applied on these prepared qubits, meaning that a rotation on the
Bloch sphere (Figure 1) is executed. Using a gate on multiple qubits simultaneously is also
possible. It is not possible to show this on the Bloch sphere any longer. An example of
such a multi-qubit gate is the controlled NOT (CNOT) gate. This gate acts on two qubits,
applying a Pauli-X gate to the target qubit if and only if the control qubit is in the |1〉 state.

Now, a quantum algorithm is a set of gates acting on qubits in a specific order. This
order is visualised in a quantum circuit, and an example can be found in Figure 2. The
circuit should be designed such that the resulting quantum state is useful and provides the
answer to a certain problem. Note that the outcome is probabilistic, and some algorithms
will ask for a number of repetitions to translate the quantum state answer to an answer that
can be used for further, conventional computing. Of course, the main goal of a quantum
algorithm developer is to design an algorithm that outperforms the classical counterpart
of the algorithm in terms of complexity. Famous examples of such algorithms are Shor’s
and Grover’s. Shor’s algorithm [25] is a polynomial-time quantum computer algorithm for
integer factorisation, which is expected to break certain types of cryptography. Grover’s
algorithm [26] finds with high probability the unique input to a black box function with a

Computers 2021, 10, 71 4 of 17

domain of size N, only demanding O(
√

N) function calls, whereas the classical algorithm
requires O(N) function calls. The paper of [23] warns about some details of the proposed
quantum algorithms. The data encoding phase and translating the quantum state outcome
could even nullify the gained speed-up.

Figure 1. Bloch sphere.

|0〉 H X

|0〉 Ry(θ1) Ry(θ2)

Figure 2. Amplitude encoding: two-qubit circuit for data encoding of two normalised two-
dimensional data points.

In most machine learning applications, data encoding is the first step in the algorithm.
In Figure 2, a small example is shown of a quantum circuit, which we will use in the next
sections of this paper, to encode two data points in two qubits.

A quantum circuit starts at the left side. Each line in the circuit represents a qubit,
meaning we have two qubits in this example. Each cube represents a gate operation. In
Figure 2, on the first qubit, we first apply a Hadamard gate. This gate brings the qubit into
a superposition state as explained earlier. Then a controlled rotation is used to encode the
two data points xi = (xi0, xi1) for i = 0, 1 in the amplitudes of the second qubit. Here, the
angles of the rotations θi are chosen such that αi = xi0 and βi = xi1. The initial state is now
rotated to the desired state given by

|0〉|0〉 → 1√
2

(
|0〉|x1〉+ |1〉|x2〉

)
. (3)

Here, the first qubit acts as a counter, while the two features of the data point are
encoded in the second qubit. Alternatively, using just two qubits, it is also possible to
encode a single data point with four features.

To translate the circuit into the physical layout of the specific quantum computer,
quantum programming languages can be used, such as QASM, PyQuil, QCL and Q#.
These quantum programming languages only focus on a part of the quantum software
stack [27], whilst tools for other layers are also in development.

Computers 2021, 10, 71 5 of 17

2.2. Annealing-Based Quantum Computing

The second paradigm in quantum computing is quantum annealing. Quantum anneal-
ing started with the work of Kadowaki and Nishimori [28]. The main idea here is to create
an equal superposition over all possible states. Then a problem-specific magnetic field is
turned on, causing the qubits to interact with each other. Now, the qubits move towards
the state with the lowest energy. The most advanced implementation of this paradigm is
the D-Wave quantum annealer.

The main input of the D-Wave quantum annealer is an Ising Hamiltonian or its binary
equivalent, the QUBO formulation. The quadratic unconstrained binary optimisation
(QUBO) problem [29] is expressed by the optimisation problem:

QUBO: min
x∈{0,1}n

xtQx, (4)

where x ∈ {0, 1}n are the decision variables and Q is a n× n coefficient matrix. QUBO
problems belong to the class of NP-hard problems. For a large number of combinatorial
optimisation problems, the QUBO representation is known [29,30]. Many constrained
integer programming problems can easily be transformed into a QUBO representation.

To solve the problem that is formulated by the QUBO, it has to be embedded on the
hardware. Each variable is translated into one or more (a chain of) qubits. The two most
recent machines that are offered by D-Wave, via their LEAP environment, are the D-Wave
2000Q and the D-Wave Advantage. The D-Wave 2000Q has around 2000 qubits in a Chimera
architecture, where each qubit is connected with at most six other qubits. The D-Wave
Advantage, active since 2020, has more that 5000 qubits in the Pegasus architecture, having
a connectivity of at most 15. However, while the number of qubits and their connectivity
have grown considerably, they are still of limited size. This means that often the problem
can not be embedded on the chip and has to be decomposed. D-Wave offers the possibility
to control that process, but also offers built-in routines. The first decomposition algorithm
introduced by D-Wave was qbsolv [31], which gave the possibility to solve larger-scale
problems on the QPU. The new decomposition approaches D-Wave offers are D-Wave
Hybrid and the Hybrid Solver Service, offering more flexibility.

3. Generating Data

The main case for this paper is indoor–outdoor detection. For the calculations, a
dataset is generated. The proposed case is in the Universal Mobile Telecommunications
System (UMTS) network. The data contain two features for the machine learning step: the
received power level of the active connection and the received pilot signal to interference
ratio. We use the simplified model from [32] and add extra loss to emulate the indoor
environment, based on a simplified propagation model. The propagation model is:

PR =
PT

L(d)βΓ
, (5)

or in logaritmic (dB) terms:

PdB
R = PdB

T − L(d)dB − βdB − ΓdB, (6)

where

• PR: Received power level,
• PT : Transmitted power level,
• L(d): Path loss/Attenuation,
• β: Slow fading/Shadowing,
• Γ: Fast fading/Multipath effects.

The level of the slow-faded power (β) fluctuates with a log-normal distribution around
the received mean power. If the linear valued β is log-normally distributed, then the loga-

Computers 2021, 10, 71 6 of 17

rithmic valued βdB = 100.1β is normally distributed and expressed in dB, with parameters
(µ, σ), where µ = 0. Now, for a user at a certain location x receiving the signal from cell ci,
neglecting the fast fading effect, we obtain (again in dB):

PdB
R,i(x) = PdB

T,i − LdB
i (x)− βdB

i , (7)

which is the first feature. Now we can define the second feature, the signal-to-interference
ratio SIR [33,34] of cell ci at the base station, having M interfering transmitters, as

SIRi(x) =
PT,iLi(x)βi

∑M
j=1,j 6=i PT,jLj(x)β j

, (8)

SIRdB
i (x) = 10 log10 SIRi(x). (9)

Using this model, we generated 300 data points, using PdB
T,i − LdB

i (x) = 90 dBm,
σ = 8 dB, M = 4 and an additional path loss for indoor settings of 15 dB. As data prepara-
tion, we scaled the data to the [0, 1] interval and inverted the SIR axis. The original data
are shown in Figure 3, and the prepared data in Figure 4.

Figure 3. Original generated data points. Red dots are the outdoor measurements, blue dots are the
indoor measurements.

Figure 4. Prepared artificial data points. Red dots are the outdoor measurements, blue dots are the
indoor measurements.

Computers 2021, 10, 71 7 of 17

4. Quantum Machine Learning Approaches

Three quantum machine learning algorithms, classifiers, are presented in this section.
The first and the second algorithm are directed to the gate-based computer. The third
approach is directed to the quantum annealer. For each of the approaches, we will explain
whether real hardware or (conventional) emulators are used.

For each of the classifiers, we calculate the basic indicators Accuracy, Precision, Recall
and F1-score on a validation data set as our key performance indicators. Accuracy (Acc) is
the fraction of samples that have been classified correctly, Precision (Pr) is the proportion of
correct positive identifications over all positive identifications, Recall (Rc) is the proportion
of correct positive identifications over all actual positives:

Acc =
tp + tn

tp + tn + f p + f n
, Pr =

tp
tp + f p

, Rc =
tp

tp + f n
,

where tp is the number of true positives, f p is the number of false positives, tn is the
number of true negatives and f n is the number of false negatives. The F1-score is a way of
combining the precision and recall of the model, and it is defined as the harmonic mean of
the model’s precision and recall:

F1 =
tp

tp + 1
2 (f p + f n)

.

For the variational classifier and the SVM, we also look at the objective function that
is being optimised in these cases.

4.1. Quantum Variational Classifier

The first approach we present is a variational classifier, where we used the implemen-
tation by pennylane.ai (https://pennylane.ai/qml/demos/tutorial_variational_classifier.
html, accessed on 10 May 2021), inspired by [35]. The basic idea in these approaches is that
a circuit is built using gates that perform rotations. Those rotations are comparable with
the weight in a classical neural network and have to be learned. The goal then is to find
those angles which result in output that best fits the expected output.

The input to the circuit is encoded using amplitude encoding in the qubits. The state
preparation step for this was discussed earlier. On the values based on the state preparation,
the model circuit is applied and a single qubit is measured to obtain the output. This is the
general 3-step approach: 1. state preparation, 2. model circuit, 3. measurement. We now
look in some more detail at the model circuit. This part works like a black box routine that
executes the inference step of the machine learning algorithm on a small-scale quantum
computer. Each layer consists of a generic single qubit gate rotating on all angles for each
qubit and a controlled gate. Training of the angle parameters per qubit and layer is done
by a classical gradient method. The data are already rescaled and are now also padded to
have four features and then normalised (see Figure 5). Working on the positive subspace
makes encoding of the data into the qubits much easier, as proposed in [36]. The used cost
function is the standard square loss that measures the distance between the target labels
and model predictions. An example of a 2-layer model circuit, including the data encoding,
is shown in Figure 6, where ROT(φ, ω, ψ) = Rz(ψ)Ry(ω)Rz(φ). Note that only one single
data point with four features is encoded. This is different from the example in Section 2.1
where we gave an example of encoding two data points with two features. The required
number of qubits in this model only depends on the number of features and not the size of
the data set.

https://pennylane.ai/qml/demos/tutorial_variational_classifier.html
https://pennylane.ai/qml/demos/tutorial_variational_classifier.html

Computers 2021, 10, 71 8 of 17

Figure 5. Padded and normalised data. Red dots are the outdoor measurements, blue dots are the
indoor measurements.

DATA ENCODING 2-LAYER MODEL CIRCUIT

Ry(θ1) X X ROT(φ1, ω1, ψ1) ROT(φ3, ω3, ψ3)

Ry(θ2) Ry(θ3) ROT(φ2, ω2, ψ2) ROT(φ4, ω4, ψ4)

Figure 6. A 2-layer model circuit.

Thus far, we have presented a model for a generic layer, however, more simplified
versions of this model can in certain cases also result in a satisfactory classification. For
example, by considering only Ry(ω) rotations instead of a generic rotation. On the other
hand, in the case where more qubits are available, the model can also be made more
complex by duplicating the data encoding in multiple qubits, as shown in Figure 7 for a
single-layer model.

DATA ENCODING (2X) 1-LAYER MODEL CIRCUIT

Ry(θ1) X X ROT(φ1, ω1, ψ1)

Ry(θ2) Ry(θ3) ROT(φ2, ω2, ψ2)

Ry(θ1) X X ROT(φ3, ω3, ψ3)

Ry(θ2) Ry(θ3) ROT(φ4, ω4, ψ4)

Figure 7. A single-layer model circuit.

Encoding the data multiple times in the circuit can lead to faster training times and
better predictions. The best choice of the variational circuit has conflicting considerations.
On one hand, one tries to keep the circuit as simple as possible. This is especially important
for implementations on real hardware where, due to noise, more errors occur when the
circuit contains more gates. Furthermore, this lowers the number of parameters that need
to be optimised and hence will result in faster training iterations. On the other hand, the
model needs to be complex enough, such that it is able to express and classify the data to
the degree that is desired. The best choice of the variational circuit depends, among other
things, on the data and the available hardware and is still being actively researched.

For our data, we obtained the best results when using a 3-layer model on a quantum
computer simulator. We implemented this using Python and a simple state simulator of

Computers 2021, 10, 71 9 of 17

qubit-based quantum circuit architectures [37], combined with a gradient-descent opti-
mizer with Nesterov momentum [38], as offered by Pennylane. We compare a 2-qubit
implementation to a 4-qubit implementation where we encode the same data point twice
as described above. Nowadays, many quantum hardware providers, for example, IBM [39]
or QuTech [40], offer free access to hardware back-ends with these numbers of qubits. The
reason why we still opted to go with a simulating approach is because of the long training
time when working using a real quantum device. The long training time is not caused by
the circuit execution time, in fact, this often takes not much longer than milliseconds. It is,
however, the queuing time, the time it takes for a circuit to be scheduled and run, which,
when many users are active, can easily take multiple minutes and hence makes using a real
device for our purposes infeasible. Furthermore, the choice of using a simulator allows us
to make our layer models more complex.

We use 75% of the data points as training data and the remaining 25% as a validation
set. In Figure 8, the cost objective function is shown as a function of the iterations which are
being made by the classical gradient solver. It can be seen that the 4-qubit implementation,
although having twice as many parameters that need to be optimised, requires fewer
iterations before finding its loss plateau. Furthermore, the loss plateau for the 4-qubit
solution appears to be lower than for the 2-qubit model. In Figures 9 and 10, the decision
regions after 350 iterations are shown for both models. We note that in both cases, all
validation data points are assigned the correct label, and hence all performance indicators
equal 1, see Table 1.

Figure 8. Objective function variational classifier.

Figure 9. Resulting assignments of the variational classifiers: 2-qubit model.

Computers 2021, 10, 71 10 of 17

Figure 10. Resulting assignments of the variational classifiers: 4-qubit model.

Table 1. Overview of performance indicators after 350 optimisation iterations.

N Model Cost Function F1 Acc Pr Rc

225 2-qubit 0.4167 1 1 1 1
4-qubit 0.3329 1 1 1 1

This approach has two main benefits according to [35]. Firstly, storing the parame-
ters for later use is possible, while the hybrid classical–quantum approach stores these
parameters classically, making them available outside the coherence time of the qubits.
Secondly, this approach works well on a small quantum computer even for a large number
of features and in the absence of strong error correction. An example in [35] shows that an
eight-qubit model uses 100 parameters to classify inputs of 28 = 256 dimensions, which is
much more compact than a conventional feed-forward neural network.

4.2. Quantum Distance-Based Classifier

The second approach we present is a classification algorithm. Here, data points are
classified based on their distance to the training data. The algorithm takes as input M
training data points xi ∈ RN with binary labels yi ∈ {−1, 1}. The goal of the algorithm is to
assign a label ỹ to a new data point x̃. Classification is based on the classification function

ỹ = sgn

(
M−1

∑
m=0

ym

[
1− 1

4M
|x̃− xm|2

])
. (10)

This method requires an additional preprocessing step to get the data in the required
format. To be able to process the data by the qubits, they have to lie on a unit sphere. The
implementation is explained in detail in [41]. The quantum algorithm can be implemented
using 2 · (log2(F) + log2(N) + 1) qubits, where N is the number of training data points
and F is the number of features of the data. In Figure 11, the resulting assignments are
shown for N = 256 and F = 2, which can be implemented on a quantum device using
20 qubits. In this figure, the projection on the unit sphere has been reverted before being
plotted. Due to this projection on the unit sphere, it can be seen that classification of a data
point depends only on the angle between the different features.

Computers 2021, 10, 71 11 of 17

Figure 11. Resulting assignments of the distance-based classifier with 256 training data points and
44 validation points.

This approach is especially powerful if the initial quantum state is given, for instance,
as a result from a quantum process or using a quantum RAM, as was also proposed by [42].
In that case, the complexity is constantO(1), independent of the number of features and the
number of data points. If the quantum state has to be generated explicitly, the complexity
is O(NF). Due to the probabilistic nature of quantum computing, the obtained result is
probabilistic and multiple evaluations of the quantum state are required. The results are
shown in Table 2.

Table 2. Overview of performance indicators for the validation data set for the distance-based
classification trained on 256 data points.

N F1 Acc Pr Rc

256 1 1 1 1

4.3. Quantum Annealing-Based SVM

The third approach is a quantum implementation of so-called kernel-based support
vector machines (SVMs). SVMs are supervised machine learning algorithms for classifica-
tion and regression problems. Willsch et al. proposed an approach to implement SVMs
on a quantum annealer [43]. We use this approach and show the performance on the
newest releases of the D-Wave quantum annealers. The approach involves the SVM being
translated to a QUBO formulation. We assume a labelled dataset, containing N data points
(xn, yn), where xn is a feature vector and yn ∈ {−1, 1} is the corresponding label. A first
step is to formulate the SVM as a quadratic problem:

minimise

(
1
2

N

∑
n=1

N

∑
m=1

αnαmynymk(xn, xm)−∑
n

αn

)
, (11)

subject to 0 ≤ αn ≤ C ∀n = 1, ..., N, (12)
N

∑
n=1

αnyn = 0, (13)

where αn is a coefficient, C a regularisation parameter and k(·, ·) the kernel function. A
commonly used kernel is the Gaussian kernel k(xn, xm) = e−γ||xn−xm ||2 , using a hyperpa-
rameter γ > 0. The coefficients define a decision boundary that separates the vector space
into two regions, corresponding to the predicted class labels. To translate this quadratic

Computers 2021, 10, 71 12 of 17

programming formulation to a QUBO formulation, there are two main steps. First, the
α-values have to be translated to binary input, using the encoding:

αn =
K−1

∑
k=0

BkaKn+k (14)

with aKn+k ∈ {0, 1} binary variables, K being the number of binary variables to encode αn
and B being the base used for the encoding, usually B = 2 or B = 10. More details about
the choice for K can be found in [43]. The second step is to translate the constraints to the
objective function, using a penalty factor ξ for a quadratic penalty. The resulting objective
function then becomes:

1
2 ∑

n,m,k,j
aKn+k aKm+j B

k+jynymk(xn, xm)−∑
n,k

BkaKn+k + ξ
(
∑
n,k

BkaKn+k yn
)2. (15)

If we want to solve this QUBO using the D-Wave hardware, the first approach is to
directly embed this problem on the quantum chip. However, D-Wave also offers ready-to-
use alternatives to solve the QUBO conventionally using simulated annealing. In this way,
the problem does not have to be decomposed and can be calculated directly as a benchmark
of using the QPU. In this implementation we also use cases where the ratio between the
training data and the validation set equals 75/25. We use the parameters K = 2, B = 2,
C = 3, ξ = 5 and γ = 16. Starting with the simulated annealing solver, we get the results
as shown in Figure 12.

Figure 12. Resulting assignments of the simulated annealing-based SVM, 225 datapoints.

Using the QPU, we are restricted by the size of the current architecture, namely
2000 qubits in a Chimera architecture or the 5000 qubits in the latest Pegasus architecture.
Pegasus qubits have a degree of 15, i.e., they are externally coupled to 15 different qubits.
When the problem is embedded onto the qubit structure, the number of available qubits
and the limitations lead to problems. In most cases, it is not possible to find a correct
embedding. Problem decomposition techniques can help to cut the problem into pieces,
where each piece is solved separately and then combined back together. However, this is at
the expense of the quality of the solution.

First, we investigate what the biggest problem is that can be embedded on each
of the available machines, without using decomposition techniques. For the Chimera
architecture, this means using 25 data points for learning and 8 for validation. For the
Pegasus architecture, this means 70 data points for learning and 23 for validation. The
QPU uses less than 10 ms of annealing time for solving this problem. The results for
these problems can be found in Figures 13 and 14. For reference, the result from the

Computers 2021, 10, 71 13 of 17

simulated annealing approach for the same data and the same parameters is also presented
in Figures 15 and 16.

Figure 13. Resulting assignments of the quantum annealing-based SVM, 25 datapoints.

Figure 14. Resulting assignments of the quantum annealing-based SVM, 70 datapoints.

Figure 15. Resulting assignments of the simulated annealing-based SVM, 25 datapoints.

Computers 2021, 10, 71 14 of 17

Figure 16. Resulting assignments of the simulated annealing-based SVM, 70 datapoints.

If we do want to use decomposition techniques, the D-Wave system employs built-in
routines to decompose the problem into smaller sub-problems that are sent to the QPU, and
in the end reconstructs the complete solution vector from all sub-sample solutions. Here,
we use D-Wave’s Hybrid Solver, which implements state-of-the-art classical algorithms
with intelligent allocation of the QPU to parts of the problem where it benefits most, i.e.,
the sampler uses the energy impact as the criterion for the selection of variables. These
solvers are designed to accommodate even very large problems. This means that most
parameters of the embedding are set automatically. By default, samples are iterated over
four parallel solvers. The top branch implements a classical Tabu Search that runs on the
entire problem until interrupted by another branch completing. The other three branches
use different decomposers to sample out parts of the current sample set and send it to
different samplers. HQPU acts as a black box solver and the specific part of the problem
which gets embedded on the QPU is unknown. The hybrid solver can solve the problem
using 225 data points and 75 validation points, and is faster than simulated annealing, with
approximately the same result (see Figure 17).

Figure 17. Resulting assignments of the Hybrid Solver-based SVM, 225 data points.

We show the results using the performance indicators Accuracy, F1-score, Precision
and Recall as our KPIs again. Lastly, we present the energy of every solution, which
is the score generated by the objective function in Equation (15). To give some idea
about the optimal values, we also use the commercially available solver LocalSolver
(www.localsolver.com, accessed on 10 May 2021), to solve both the original problem
expressed by Equations (11)–(14) and the QUBO problem expressed by Equation (15). For
all problems, a solution is found quickly, however, after 60 s, optimality gaps of 40–99% still

www.localsolver.com

Computers 2021, 10, 71 15 of 17

remain. To make the comparison somewhat fair, we also give the Hybrid Solver one minute
of calculation time, Simulated Annealing 4000 reads (resulting in one minute of calculation
time) and the QPU 4000 reads as well (around 80 ms of calculation time). The scores for the
three cases, using 25, 70 and 225 data points for training, are depicted in Table 3. We see
that for almost all cases, the performance is good, all validation data points are labelled
correctly. Only in the N = 75 case is there one point that is not labelled correctly in the case
of the simulated annealing and the direct use of the QPU. The Hybrid Solver does label
this point correctly. The main difference is found in the energy level, meaning the objective
value. The best solution for all cases is found by LocalSolver, solving the original problem.
The Hybrid Solver is the best performing approach of all quantum (inspired) approaches
in all cases. The direct implementation on the QPU performs worst, which can be seen in
the heat maps, where the direct QPU solution has a large area where the score is equal to
one. LocalSolver also has problems solving the QUBO problem, probably due to the lack of
structure of the problem.

Table 3. Overview of results.

N Solver Energy F1 Acc Pr Rc

25 SA −4.70 1 1 1 1
HQPU −4.83 1 1 1 1
QPU 14.79 1 1 1 1

LocalSolver—QUBO −3.26
LocalSolver—original −6.09

70 SA −5.59 0.95 0.96 1 0.9
HQPU −6.28 1 1 1 1
QPU 270.04 0.95 0.96 1 0.9

LocalSolver—QUBO −5.34
LocalSolver—original −9.14

225 SA −6.65 1 1 1 1
HQPU −7.53 1 1 1 1

LocalSolver—QUBO −9.38
LocalSolver—original −14.68

5. Conclusions

Communication networks are managed more and more by using artificial intelligence.
Anomaly detection, network monitoring and user behaviour are areas where machine
learning offer advantages over more traditional methods. However, increasingly, comput-
ing power is a limited factor in machine learning tasks. For mobile network operators, it is
becoming more and more important to be able to classify the location of mobile devices, to
enhance network performance and to offer location-based services. The rise of quantum
computers might bring the next step needed here. In particular, machine learning is seen as
a promising task for the first generation of quantum computers. In this paper, we proposed
three machine learning approaches for indoor–outdoor classification. These techniques are
expected to be useful on the near-term hardware.

The first approach is a quantum variational classifier. This approach only uses a small
number of qubits and is able to manage a larger number of data points. The expected
gain here is not the calculation time. The compactness of the formulation will be of added
value, which will lead to more efficient learning of a model with multiple features. Next,
we compared a 2-qubit implementation to a 4-qubit implementation. We showed that the
4-qubit implementation, although having twice as many parameters that needed to be
optimised, required fewer iterations before finding its loss plateau.

The quantum distance-based classifier brings the complexity back to O(1), inde-
pendent of the number of features and the number of data points. However, the data

Computers 2021, 10, 71 16 of 17

management is a big problem at this moment. The number of qubits needed to store big
data input and the time it takes to encode the data are still under scientific investigation.

The quantum annealing-based SVM is the most straightforward implementation of a
conventional approach. Using the Hybrid Solver gave us the possibility to solve bigger
problems than in the case where a direct implementation on the chip was realised. The
expectation here is that the solution will scale better than conventional approaches when
the underlying hardware grows.

For further research, we are interested in how well the methods perform on more
messy, imbalanced datasets and in some indications of the performance on full-size data
sets. Lastly, we are interested in the level of convergence of the quantum variational
classifier for more generic data sets.

Author Contributions: Conceptualization, F.P., R.S.W. and I.C.; methodology, F.P.; software, R.S.W.
and I.C.; validation, F.P.; writing—original draft preparation, F.P. and R.S.W.; writing—review and
editing, I.C.; visualization, R.S.W.; supervision, F.P.; project administration, F.P.; funding acquisition,
F.P.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Authors can confirm that all relevant data are included in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, W.; Chang, Q.; Li, Q.; Shi, Z.; Chen, W. Indoor-outdoor detection using a smart phone sensor. Sensors 2016, 16, 1563.

[CrossRef] [PubMed]
2. Esmaeili Kelishomi, A.; Garmabaki, A.; Bahaghighat, M.; Dong, J. Mobile user indoor-outdoor detection through physical daily

activities. Sensors 2019, 19, 511. [CrossRef]
3. Saffar, I.; Morel, M.L.A.; Singh, K.D.; Viho, C. Machine Learning with partially labeled Data for Indoor Outdoor Detection. In

Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA,
11–14 January 2019; pp. 1–8.

4. Saffar, I.; Morel, M.L.A.; Amara, M.; Singh, K.D.; Viho, C. Mobile User Environment Detection using Deep Learning based
Multi-Output Classification. In Proceedings of the 2019 12th IFIP Wireless and Mobile Networking Conference (WMNC), Paris,
France, 11–13 September 2019; pp. 16–23.

5. Zhang, L.; Ni, Q.; Zhai, M.; Moreno, J.; Briso, C. An ensemble learning scheme for indoor-Outdoor classification based on KPIs of
LTE network. IEEE Access 2019, 7, 63057–63065. [CrossRef]

6. Bejarano-Luque, J.L.; Toril, M.; Fernandez-Navarro, M.; Acedo-Hernández, R.; Luna-Ramírez, S. A Data-Driven Algorithm for
Indoor/Outdoor Detection Based on Connection Traces in a LTE Network. IEEE Access 2019, 7, 65877–65888. [CrossRef]

7. Zhu, Y.; Luo, H.; Wang, Q.; Zhao, F.; Ning, B.; Ke, Q.; Zhang, C. A fast indoor/outdoor transition detection algorithm based on
machine learning. Sensors 2019, 19, 786. [CrossRef]

8. Leiserson, C.E.; Thompson, N.C.; Emer, J.S.; Kuszmaul, B.C.; Lampson, B.W.; Sanchez, D.; Schardl, T.B. There’s plenty of room at
the Top: What will drive computer performance after Moore’s law? Science 2020, 368, eaam9744. [CrossRef]

9. Dunjko, V.; Taylor, J.M.; Briegel, H.J. Quantum-enhanced machine learning. Phys. Rev. Lett. 2016, 117, 130501. [CrossRef]
[PubMed]

10. Neumann, N.M.P.; Phillipson, F.; Versluis, R. Machine learning in the quantum era. Digit. Welt 2019, 3, 24–29. [CrossRef]
11. Phillipson, F. Quantum Machine Learning: Benefits and Practical Examples. In Proceedings of the International Workshop on

QuANtum SoftWare Engineering & pRogramming (QANSWER), Talavera de la Reina, Spain, 11–12 February 2020; pp. 51–56.
12. Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2015, 56, 172–185.

[CrossRef]
13. Abohashima, Z.; Elhosen, M.; Houssein, E.H.; Mohamed, W.M. Classification with Quantum Machine Learning: A Survey. arXiv

2020, arXiv:2006.12270.
14. Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202.

[CrossRef] [PubMed]
15. Low, G.H.; Yoder, T.J.; Chuang, I.L. Quantum inference on Bayesian networks. Phys. Rev. A 2014, 89, 062315. [CrossRef]
16. Kapoor, A.; Wiebe, N.; Svore, K. Quantum perceptron models. In Proceedings of the 30th International Conference on Neural

Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 3999–4007.

http://doi.org/10.3390/s16101563
http://www.ncbi.nlm.nih.gov/pubmed/27669252
http://dx.doi.org/10.3390/s19030511
http://dx.doi.org/10.1109/ACCESS.2019.2914451
http://dx.doi.org/10.1109/ACCESS.2019.2917592
http://dx.doi.org/10.3390/s19040786
http://dx.doi.org/10.1126/science.aam9744
http://dx.doi.org/10.1103/PhysRevLett.117.130501
http://www.ncbi.nlm.nih.gov/pubmed/27715099
http://dx.doi.org/10.1007/s42354-019-0164-0
http://dx.doi.org/10.1080/00107514.2014.964942
http://dx.doi.org/10.1038/nature23474
http://www.ncbi.nlm.nih.gov/pubmed/28905917
http://dx.doi.org/10.1103/PhysRevA.89.062315

Computers 2021, 10, 71 17 of 17

17. Neumann, N.M.P.; de Heer, P.B.U.L.; Chiscop, I.; Phillipson, F. Multi-agent reinforcement learning using simulated quantum
annealing. In Proceedings of the International Conference on Computational Science, Amsterdam, The Netherlands, 3–5 June
2020; Springer: Cham, Switzerland, 2020; pp. 562–575.

18. Lloyd, S.; Mohseni, M.; Rebentrost, P. Quantum principal component analysis. Nat. Phys. 2014, 10, 631–633. [CrossRef]
19. Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014,

113, 130503. [CrossRef] [PubMed]
20. Wiebe, N.; Braun, D.; Lloyd, S. Quantum algorithm for data fitting. Phys. Rev. Lett. 2012, 109, 050505. [CrossRef] [PubMed]
21. Dunjko, V.; Briegel, H.J. Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Rep. Prog.

Phys. 2018, 81, 074001.
22. Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 2009, 103, 150502.

[CrossRef]
23. Aaronson, S. Read the fine print. Nat. Phys. 2015, 11, 291–293. [CrossRef]
24. Resch, S.; Karpuzcu, U.R. Quantum computing: An overview across the system stack. arXiv 2019, arXiv:1905.07240.
25. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999,

41, 303–332. [CrossRef]
26. Grover, L.K. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing (STOC ’96), Philadephia, PA, USA, 22–24 May 1996; Association for Computing Machinery:
New York, NY, USA, 1996; pp. 212–219. [CrossRef]

27. van den Brink, R.F.; Phillipson, F.; Neumann, N.M.P. Vision on Next Level Quantum Software Tooling. In Proceedings of the
Tenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking, Venice, Italy,
5–9 May 2019.

28. Kadowaki, T.; Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 1998, 58, 5355. [CrossRef]
29. Glover, F.; Kochenberger, G.; Du, Y. A tutorial on formulating and using qubo models. arXiv 2018, arXiv:1811.11538.
30. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2014, 2, 5. [CrossRef]
31. Booth, M.; Reinhardt, S.P.; Roy, A. Partitioning Optimization Problems for Hybrid Classical/Quantum Execution; Technical Report;

D-Wave Systems: Burnaby, BC, Canada, 2017.
32. Erdbrink, R. Analysis of UMTS Cell Assignment Probabilities. Master’s Thesis, VU University Amsterdam, Amsterdam, The

Netherlands, 2005.
33. Haenggi, M.; Andrews, J.G.; Baccelli, F.; Dousse, O.; Franceschetti, M. Stochastic geometry and random graphs for the analysis

and design of wireless networks. IEEE J. Sel. Areas Commun. 2009, 27, 1029–1046. [CrossRef]
34. Tsalaile, T.; Sameni, R.; Sanei, S.; Jutten, C.; Chambers, J. Sequential blind source extraction for quasi-periodic signals with

time-varying period. IEEE Trans. Biomed. Eng. 2008, 56, 646–655. [CrossRef]
35. Schuld, M.; Bocharov, A.; Svore, K.M.; Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 2020, 101, 032308. [CrossRef]
36. Schuld, M. Supervised Learning with Quantum Computers; Springer: Cham, Switzerland, 2018.
37. PennyLane Simulator. Available online: https://pennylane.readthedocs.io/en/stable/code/api/pennylane.device.html#

pennylane.device (accessed on 10 May 2021).
38. Gradient-Descent Optimizer with Nesterov Momentum. Available online: https://pennylane.readthedocs.io/en/stable/code/

api/pennylane.NesterovMomentumOptimizer.htmlm (accessed on 10 May 2021).
39. IBM Quantum Computing. Available online: www.ibm.com/quantum-computing/ (accessed on 10 May 2021).
40. QuTech Quantum Inpire. Available online: www.quantum-inspire.com (accessed on 10 May 2021).
41. Wezeman, R.; Neumann, N.; Phillipson, F. Distance-based classifier on the Quantum Inspire. Digit. Welt 2020, 4, 85–91. [CrossRef]
42. Schuld, M.; Fingerhuth, M.; Petruccione, F. Implementing a distance-based classifier with a quantum interference circuit. EPL

(Europhys. Lett.) 2017, 119, 60002. [CrossRef]
43. Willsch, D.; Willsch, M.; De Raedt, H.; Michielsen, K. Support vector machines on the D-Wave quantum annealer. Comput. Phys.

Commun. 2020, 248, 107006. [CrossRef]

http://dx.doi.org/10.1038/nphys3029
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://www.ncbi.nlm.nih.gov/pubmed/25302877
http://dx.doi.org/10.1103/PhysRevLett.109.050505
http://www.ncbi.nlm.nih.gov/pubmed/23006156
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1038/nphys3272
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1103/PhysRevE.58.5355
http://dx.doi.org/10.3389/fphy.2014.00005
http://dx.doi.org/10.1109/JSAC.2009.090902
http://dx.doi.org/10.1109/TBME.2008.2002141
http://dx.doi.org/10.1103/PhysRevA.101.032308
https://pennylane.readthedocs.io/en/stable/code/api/pennylane.device.html#pennylane.device
https://pennylane.readthedocs.io/en/stable/code/api/pennylane.device.html#pennylane.device
https://pennylane.readthedocs.io/en/stable/code/api/pennylane.NesterovMomentumOptimizer.htmlm
https://pennylane.readthedocs.io/en/stable/code/api/pennylane.NesterovMomentumOptimizer.htmlm
www.ibm.com/quantum-computing/
www.quantum-inspire.com
http://dx.doi.org/10.1007/s42354-019-0240-5
http://dx.doi.org/10.1209/0295-5075/119/60002
http://dx.doi.org/10.1016/j.cpc.2019.107006

	Introduction
	Quantum Computing
	Gate-Based Quantum Computing
	Annealing-Based Quantum Computing

	Generating Data
	Quantum Machine Learning Approaches
	Quantum Variational Classifier
	Quantum Distance-Based Classifier
	Quantum Annealing-Based SVM

	Conclusions
	References

