
TECHNOMETRICS

https://doi.org/./..

Constructing Two-Level Designs by Concatenation of Strength- Orthogonal Arrays

Alan R. Vazqueza,b, Peter Goosa,b, and Eric D. Schoenb,c

aDepartment of Engineering Management, University of Antwerp, Antwerp, Belgium; bDepartment of Biosystems, KU Leuven, Leuven, Belgium;
cTNO, Zeist, The Netherlands

ARTICLE HISTORY
Received October 
Revised April 

KEYWORDS
Even-odd design;
Generalized aberration; Local
search; Second-order
saturated; Two-factor
interaction; Variable
neighborhood search

ABSTRACT
Two-level orthogonal arrays of N runs, k factors, and a strength of 3 provide suitable fractional factorial
designs in situations where many of the main effects are expected to be active, as well as some two-
factor interactions. If they consist of N/2 mirror image pairs, these designs are fold-over designs. They are
called even and provide at most N/2− 1 degrees of freedom to estimate interactions. For k < N/3 fac-
tors, there exist strength-3 designs that are not fold-over designs. They are called even-odd designs and
they provide many more degrees of freedom to estimate interactions. For N ≤ 48, attractive even-odd
designs can be extracted from complete catalogs of strength-3 orthogonal arrays. However, for larger run
sizes, no complete catalogs exist. To construct even-odd designs with N > 48, we develop an algorithm
for an optimal concatenation of strength-3 designs involving N/2 runs. Our approach involves column per-
mutations of one of the concatenated designs, as well as sign switches of the elements of one or more
columns of that design. We illustrate the potential of the algorithm by generating two-level even-odd
designs with 64 and 128 runs involving up to 33 factors, because this allows a comparison with benchmark
designs from the literature. With a few exceptions, our even-odd designs outperform or are competitive
with the benchmark designs in terms of the aliasing of two-factor interactions and in terms of the available
degreesof freedomtoestimate two-factor interactions. Supplementarymaterials for the article are available
online.

1. Introduction

Two-level screening designs can be used as experimental plans
to identify, from a list of potentially influential factors, those
that are indeed influential; seeMee, Schoen, and Edwards (2017)
for a recent review of these designs. Many two-level screen-
ing designs currently in use involve orthogonal arrays (OAs).
Denoting the two levels for each factor by −1 and +1, these
OAs have main effect contrast vectors that are level-balanced
and orthogonal to each other.

This article is motivated by two practical experiments involv-
ingmany runs and factors thatwere conducted using anOA.The
first one is an enzyme stability experiment conducted at TNO,
Zeist, The Netherlands. To improve the stability of an enzyme
in a watery solution at room temperature, 17 possible additives
were considered. The experiment actually carried out had 64
runs. The second experiment involves a sensitivity analysis of
a simulation model for a software process (Houston et al. 2001),
and used a design with 30 factors and 64 runs. In this article, we
propose a method to construct high-quality designs for these
two experiments. The method is suitable for constructing large
two-level OAs involving many runs and factors in general. We
revisit the enzyme stability experiment and the software pro-
cess simulation experiment after introducing and evaluating our
method.

OAs of strength t are such that all 2t level combinations of any
set of t factors occur equally often (Hedayat, Sloane, and Stufken
1999). Consequently, an OA of strength t has a run size that is a

CONTACT Alan R. Vazquez alan.vazquezalcocer@kuleuven.be
Supplementary materials for this article are available online. Please go to http://www.tandfonline.com/r/TECH.

multiple of 2t . A strength of 2 implies thatmain effect (ME) con-
trast vectors are orthogonal to each other but not to two-factor
interaction (2FI) contrast vectors. This featuremaymake it hard
to find out whether it is the main effect of one of the factors or
the interaction of two other factors that causes a change in the
responses. On the positive side, the run sizes of strength-2 OAs
can be small. For example, the smallest 17-factor strength-2 OA
involves 20 runs; a 20-run 17-factor design that minimizes the
aliasing between the MEs and the 2FIs can be found in Sun, Li,
and Ye (2008). The smallest 30-factor strength-2 OA involves 32
runs. Textbooks such asMee (2009) andWu andHamada (2009)
provide suitable design options for this case.

OAs of strength 3 allow themain effects to be estimated inde-
pendently from the 2FIs. They are attractive options whenever
several 2FIs are suspected to be active, but they have larger run
sizes. For 17 and 30 factors, the smallest strength-3 OAs have 40
and 64 runs, respectively. In general, for anN-run k-factorOAof
strength 3,N ≥ 2k. Butler (2004, 2007) showed that all strength-
3 OAs for which k ≥ N/3 must be even designs, which are also
called fold-over designs (Cheng, Mee, and Yee 2008). In these
designs, half of the runs are mirror images of the other half, in
the sense that the signs of the factor levels are switched. A weak-
ness of even designs is that they provide atmostN/2− 1 degrees
of freedom for estimating 2FIs. For k < N/3 factors, there may
be strength-3 designs that cannot be constructed by folding over.
These designs, called even-odd designs, generally provide many
more degrees of freedom for estimating 2FIs. Therefore, they

2019, VOL. 61, NO. 2, 219–232

© 2019 American Statistical Association and the American Society for Quality

https://doi.org/10.1080/00401706.2018.1473798
mailto:alan.vazquezalcocer@kuleuven.be
http://www.tandfonline.com/r/TECH

are attractive to experimenters who want to estimate a substan-
tial number of interactions along with the main effects. Because
their run sizeN should be larger than 3k, even-odd designsmust
have at least 56 and 96 runs for experiments with 17 and 30 fac-
tors, respectively.

Complete catalogs exist for two-level strength-3 OAs with
up to 48 runs (Schoen, Eendebak, and Nguyen 2010). Based on
these catalogs, Schoen andMee (2012) showed that, for run sizes
of 32, 40, and 48, even-odd designs exist for up to 10, 10, and
14 factors, respectively. One way to obtain even-odd k-factor
strength-3 designs for which the number of runs is larger than
48 is to concatenate two different strength-3 designs involving
N/2 runs and k− 1 factors, which we call parent designs. Sub-
sequently, a factor whose level equals +1 for the first N/2 runs
and −1 for the last N/2 runs can be added to the concatenated
design. Strength-3 designs constructed in this way have run sizes
that are multiples of 16. This approach can thus be used to con-
struct even-odd 64-run and 128-run designs based on existing
strength-3 designs with 32 and 64 runs, respectively.

Several authors have constructed even-odd designs using
variants of the above general approach. Li and Lin (2003), Li,
Lin, and Ye (2003), and Cheng, Mee, and Yee (2008) concate-
nated two copies of a single parent design and subsequently
switched the signs of all elements in one or more select columns
of the second copy to improve the properties of the concatenated
design. Their approach involves a complete enumeration of all
possible selections of columns in which to switch the signs of
the elements. Li and Lin (2016) suggested to also permute the
columns of the second parent design before switching the signs
in the selected columns. As a result, this approach also involves
an enumeration of column permutations. In any case, the end
product of the approaches of Li and Lin (2003), Li, Lin, and Ye
(2003), Cheng, Mee, and Yee (2008), and Li and Lin (2016) is
a concatenation of a parent design with another design that is
isomorphic to that parent design (two OAs are said to be iso-
morphic if one array can be obtained from the other by permut-
ing rows or columns, and switching the signs of the elements
in one or more columns). There are two problems with these
approaches. First, it may not be optimal to concatenate two iso-
morphic designs. Second, for strength-3 designs with run sizes
larger than 48, the numbers of factors may be too large to allow
for a complete enumeration of all possible sign switches and/or
all column permutations. For example, for 17 factors, there are
131,072 possible sets of columns inwhich to switch the signs and
3.55687× 1014 possible column permutations.

The first contribution of this article is to develop an efficient
algorithmic procedure to construct even-odd designs by con-
catenating two strength-3 parent designs, whichmay ormay not
be isomorphic. At present, our algorithmic approach requires
designs of the same run size and strength, but it can easily be
adapted to concatenate designs of different strengths and run
sizes.

The second contribution of this article is to generate new
two-level concatenated designs with 64 and 128 runs and up
to 33 factors, for instance, for the 17-factor enzyme stability
experiment and the 30-factor software process simulation
experiment. We compare the newly generated designs with the
best designs from the literature. In addition to the benchmark
designs of Li and Lin (2016), our comparisons involve the
regular 64-run designs reported in Chen, Sun, and Wu (1993),

the 17-factor 64-run design from Cheng, Mee, and Yee (2008),
the regular 128-run designs reported in Block and Mee (2005)
and Xu (2009), the 64- and 128-run designs constructed by Xu
andWong (2007) using quaternary linear codes, and the 64-run
designs generated from projections of the folded-over 32-run
Hadamard matrix given by the Paley construction. To our
knowledge, our study of the projections from this folded-over
32-run Hadamard matrix is new to the literature. Most of our
new designs outperform or are competitive with the best known
designs in the literature in terms of the aliasing of two-factor
interactions and in terms of the degrees of freedom they provide
to estimate two-factor interactions.

The rest of this article is organized as follows. Section 2
presents classification criteria for strength-3 designs. Section
3 describes our algorithmic approach for concatenating two
strength-3 parent designs. Section 4 compares the new designs
with 64 and 128 runs with the benchmark designs from the
literature. We return to the motivating examples in Section 5,
and conclude with a discussion and some suggestions for future
research in Section 6.

2. Classification of Strength-3 Designs

Orthogonal two-level designs of strength 3 are most commonly
evaluated in terms of their G-aberration and generalized res-
olution (Deng and Tang 1999), their G2-aberration (Tang and
Deng 1999), and the rank of the matrix consisting of the 2FI
contrast vectors (Cheng, Mee, and Yee 2008). We briefly review
all of these criteria.

All but the last of the criteria are based on the Js-
characteristics of s-factor interaction contrast vectors. When
coding the two levels of each factor as −1 and +1, any s-factor
interaction contrast vector involves the elements −1 or +1. Its
Js-characteristic is the absolute value of the sum of the vector’s
elements. For strength-3 OAs, any J2- or J3-characteristic is zero.
Deng and Tang (1999) showed that the J4-characteristics of N-
run two-level strength-3 OAs necessarily equal N − 16q, where
q is a nonnegative integer. A four-factor interaction contrast vec-
tor can be calculated as the product of two two-factor inter-
action contrast vectors. Therefore, whenever a J4-characteristic
of N occurs in an N-run design, this implies that three pairs
of two-factor interactions are completely aliased. Whenever J4-
characteristics of zero occur in a design, this implies that certain
pairs of two-factor interactions are not aliased at all. Interme-
diate J4-characteristic values imply partially aliased two-factor
interactions. The maximum J4 value for a given strength-3
design determines its generalized resolution. More specifically,
the generalized resolution equals 5−max(J4)/N for a strength-
3 design. So, a large maximum J4-characteristic implies a small
generalized resolution. Ideally, the generalized resolution of a
design is large.

The frequencies of the Js-characteristics calculated for all s-
factor interaction contrast vectors are generally collected in a
vector Fs. For strength-3 designs, the entries of the F4 vector
are the frequencies of the J4-characteristic values N, N − 16,
N − 32, etc. The frequency of the zero value is usually omitted.
The concatenated vector (F4, F5, F6, . . . , Fk) is the confounding
frequency vector (CFV) of a strength-3 k-factor design. Ide-
ally, the leftmost elements of the CFV are small, because this

A. R. VAZQUEZ, P. GOOS, AND E. D. SCHOEN220

means that there is little severe aliasing between the low-order
interactions.

To determine the G-aberration of a k-factor design, all avail-
able designs are sorted according to the entries of the CFV
(F4, F5, F6, . . . , Fk), from left to right. The G-aberration of the
design is its ranking after the sorting procedure, and a mini-
mum G-aberration design has the best of the rankings. In this
article, we restrict our attention to the F4 vector, because this
vector quantifies the most serious aliasing in strength-3 designs,
namely, the aliasing among the 2FIs.

Like the G-aberration, the G2-aberration is determined by
sorting all available designs according to a vector. The vec-
tor used for the G2-aberration is called the generalized word
length pattern (GWLP), (B1,B2, . . . ,Bk), where Bi is the sum
of the squared Ji-characteristics divided byN2. A minimum G2-
aberration design has the best of the rankings after sorting all
available designs according to the entries of the GWLP from
left to right. For strength-3OAs,B1 = B2 = B3 = 0, andB4 > 0.
The Bi values are called generalized word counts. The most
important of these is B4, because it quantifies the aliasing among
the 2FIs. Ideally, it is small.

Finally, strength-3OAs permit the estimation of the intercept
and all the main effects simultaneously. The rank of the 2FI con-
trast matrix quantifies the number of degrees of freedom avail-
able for estimating two-factor interactions (Cheng,Mee, andYee
2008). In the rest of this article, we use the term “degrees of free-
dom for two-factor interactions” to refer to this criterion.

3. Algorithmic Construction of Even-Odd Designs

In this section, we first describe the principles to concatenate
two orthogonal arrays of strength 3. Next, we propose two inter-
connected algorithms to find an optimal permutation of the
columns of one of the two parent designs, and the best subset of
columns for sign switching. Our first algorithm is called the col-
umn change (CC) algorithm. It is a local search algorithmmak-
ing small structured changes to one of the parent designs. The
CC algorithm is embedded in a variable neighborhood search
(VNS) algorithm that investigates increasingly diverse new ver-
sions of that parent design. The complete algorithm, called the
CC/VNS algorithm, reduces the number of evaluations needed
to test column permutations and subsets of columns in which to
switch the signs. We conclude this section with an evaluation of
the CC/VNS algorithm and with a study concerning the choice
of parent designs.

3.1 Concatenation Principles

Our CC/VNS algorithm concatenates two strength-3 orthog-
onal arrays, Du and Dl , which both have N/2 runs and a
given number of factors, say m. Adding the column z =
[1TN/2,−1TN/2]

T to the concatenated m-factor design generated
by our algorithm results in an N-run strength-3 design D with
k = m+ 1 factors. We call the added column the indicator
factor, because it identifies the two original OAs. The m 2FIs
involving this factor are all orthogonal to the 2FIs of the orig-
inal factors. As a result, the B4 value and the F4 vector of a con-
catenated design are not affected by adding the indicator factor.

Since a strength-3 orthogonal array with N/2 runs can accom-
modate at mostN/4 factors, the concatenated design hasN runs
and involves at most k = N/4+ 1 factors, including the indi-
cator factor. In this respect, our approach is similar to that of
Cheng, Mee, and Yee (2008). We refer to Du, Dl , and D as the
upper design, the lower design, and the concatenated design,
respectively. We call Du and Dl parent designs.

The first step in the construction process is the selection of
two strength-3 parent designswithN/2 runs. The parent designs
may or may not be isomorphic. One of the parent designs serves
as the upper design Du, while the other becomes the lower
design Dl . Which of the two parent designs is the upper and
the lower design does not impact the quality of the resulting
concatenated design. Next, we permute the columns of Dl and
switch the signs of the elements in a certain number of columns
of Dl , so as to improve the concatenated design in terms of a
desired criterion. We refer to the lower design produced after
switching the signs in a subset of its columns and applying a col-
umn permutation as a plan for Dl .

Whenever m ≥ N/6, the N/2-run strength-3 parent designs
for our procedure must be even. Since sign switches and col-
umn permutations in the parent designs do not change their
even nature, m-factor concatenated designs are also even when
m ≥ N/6. A parent design provides at most N/4− 1 degrees of
freedom for 2FIs. Therefore,m-factor concatenated designs pro-
vide atmost 2(N/4− 1) = N/2− 2 degrees of freedom for 2FIs.
Concatenated even designs become even-odd only after adding
the indicator factor. Them 2FIs involving this factor can be esti-
mated independently from all other 2FIs. Hence, the maximum
number of degrees of freedom for 2FIs is N/2− 2+m when
m ≥ N/6.

Concatenated designs with added indicator factors become
second-order saturated (SOS, Cheng, Mee, and Yee 2008) if the
number of main effects, m+ 1, plus the number of degrees
of freedom for 2FIs equals N − 1. That can happen only if
N/2− 2+m = N − 1− (m+ 1), or m = N/4. Therefore, the
concatenation of even designs with m < N/4 does not lead to
an SOS design, while the concatenation of even designs with
m = N/4 may or may not lead to an SOS design.

The total number of plans that can be obtained for a lower
design Dl by permuting its columns and switching signs in
sets of columns is m!× 2m. Evaluating all possible plans is
computationally infeasible when m ≥ 10. Rather than com-
pletely enumerating all plans for the lower design, our con-
catenation procedure uses the column change (CC) algorithm
embedded within a variable neighborhood search (VNS) algo-
rithm.

Our CC/VNS algorithm improves the concatenated design
either in terms of the F4 vector or in terms of the B4 value. By
optimizing the F4 vector, the CC/VNS algorithm also automat-
ically maximizes the generalized resolution of the concatenated
design.

3.2 Column Change Algorithm

Algorithm 1 shows our CC algorithm, which is a local search
algorithm (Michalewicz and Fogel 2004) that evaluates changes
to the current plan for the lower parent design in terms of the
B4 value or the F4 vector. We developed fast update procedures

TECHNOMETRICS 221

for the B4 value and the F4 vector, so that the evaluation of the
B4 value and the F4 vector can be done without computing the
2FI contrast matrix from scratch for every change applied by
the algorithm. A detailed account of our update procedures is
given in Section A of the supplementary materials. Algorithm 1
requires twom-factor designs with N/2 runs as inputs.

The algorithm starts by switching the signs in the leftmost
column of the current plan for the lower designDl and evaluates
the resulting concatenated design. If the change does not yield
an improvement, the algorithm starts evaluating swaps between
the leftmost column and the columns to its right; see lines 11–
19 in Algorithm 1. Two types of swaps are performed. The first
swap involves the unmodified columns 1 and j, while the second
swap involves the original column 1 and the sign-reversed col-
umn j. As soon as these modifications to the lower design result
in an improvement of the concatenated design in terms of the
B4 value or the F4 vector, the improved design replaces the orig-
inal and the algorithm shifts its attention to the second column.
First, it switches the signs in column 2 of the current plan for the
lower designDl and evaluates the resulting concatenated design.
If the sign switch does not yield a better concatenated design, the
algorithm evaluates swaps between column 2 and the columns
to its right. This process is repeated for each of the columns in
the current plan for the lower designDl , and it endswith an eval-
uation of the concatenated design resulting from a sign switch of
columnm of the current plan for Dl .

Each time a sign switch of a certain column i or a swap of
it with one of the (possibly sign-reversed) columns to its right
results in an improved concatenated design, the algorithm con-
tinues its operations on this newly obtained improved design.
The algorithm therefore uses a first-improvement optimization
strategy. The algorithm makes several passes through all the
columns and stops when no better plan can be found for the
lower designDl . The output of Algorithm 1 is an improved plan
D�

l of the original lower parent design Dl .

3.3 Variable Neighborhood Search Algorithm

Variable neighborhood search or VNS is a metaheuristic intro-
duced by Hansen and Mladenović (2001) as an improvement
over local search algorithms for combinatorial optimization. A
weakness of a local search algorithm is that it may get stuck in a
locally optimal solution instead of a global optimum because it
does not examine all possible changes to the existing solution.
VNS attempts to overcome this weakness by systematically
exploring more than one neighborhood structure. A neigh-
borhood structure is defined by a type of change that can be
made to a given solution s. Each allowable change is called a
move. All solutions s′ that can be reached by one move are said
to be in the neighborhood N(s) of s. The rationale for using
more than one neighborhood is that a solution which is a local
optimum with respect to one neighborhood is not necessarily a
local optimum with respect to another neighborhood. For this
reason, escaping from a locally optimal solution can be done by
changing the neighborhood structure. Unlike many other
metaheuristics, VNS is simple to implement and requires
few, and sometimes even no tuning parameters. Moreover,
Hansen, Mladenović, and Moreno Pérez (2008) showed

Algorithm 1: Pseudocode of the CC algorithm.
Input: Du and Dl

1 D�
l ← Dl

2 Set i← 1
3 repeat
4 for i = 1, . . . ,m do
5 Construct plan D′l by switching signs in column i of

D�
l .

6 if concatenated design (Du,D′l) is better than
(Du,D�

l) then
7 D�

l ← D′l
8 else
9 Set j← i+ 1

10 Set no_improvement ← True
11 while j ≤ m and no_improvement do
12 Construct plan D+l by swapping columns i

and j of D�
l .

13 Construct plan D−l by switching the signs in
column j of D�

l and swapping the resulting
column with column i.

14 Evaluate the concatenated designs (Du,D+l)

and (Du,D−l).
15 Set D′l to be the best of the plans D

+
l and D−l .

If both concatenated designs are equally good,
select at random.

16 if concatenated design (Du,D′l) is better than
(Du,D�

l) then
17 D�

l ← D′l
18 no_improvement ← False

19 j← j + 1

20 until no change in D�
l ;

Output: Improved plan D�
l

that the VNS framework is very general and can be eas-
ily extended to integrate features from tabu search (Glover
and Laguna 1997), simulating annealing (Eglese 1990),
and other local search algorithms. VNS has been suc-
cessfully applied to a wide variety of optimization prob-
lems such as vehicle routing (Kytöjoki et al. 2007), project
scheduling (Fleszar and Hindi 2004), automatic discovery
of theorems (Caporossi and Hansen 2004), graph coloring
(Avanthay, Hertz, and Zufferey 2003), and synthesis of radar
polyphase codes (Mladenović et al. 2003).

On various occasions, VNS has also been used to construct
experimental designs. For instance, Garroi, Goos, and Sörensen
(2009) proposed a VNS algorithm to compute D-optimal run
orders for response surface designs in the presence of serial cor-
relation. More recently, Sartono, Goos, and Schoen (2015) and
Syafitri, Sartono, and Goos (2015) used VNS to construct frac-
tional factorial split-plot designs and optimalmixture designs in
the presence of ingredient availability constraints, respectively.

Our CC/VNS algorithm performs systematic changes to the
lower parent design Dl so as to minimize the F4 vector or
the B4 value of the concatenated design. It involves two main
components: (i) four neighborhood structures to create neigh-
boring plans from the current best plan of Dl and (ii) the CC

A. R. VAZQUEZ, P. GOOS, AND E. D. SCHOEN222

Table . Neighborhood structures of the CC/VNS algorithm.

Ni Size Description

N1 O(m) Switch signs of any column
N2 O(m2) Swap any two columns
N3 O(m2) Switch signs of any two columns
N4 O(m3) Choose any subset of three columns, move the first two

columns one position to the right and move the third
column to position 

algorithm described in Section 3.2 to improve these neighbor-
ing plans. Two plans A and B of the lower design are said to be
neighboring plans if A ∈ Ni(B) or B ∈ Ni(A) for a neighbor-
hood structure Ni. Because of the two main components of our
CC/VNS algorithm, it belongs to the general class of VNS algo-
rithms in which a local search algorithm is used to improve the
neighboring solutions created by the neighborhood structures
(Hansen, Mladenović, and Moreno Pérez 2008).

The four neighborhood structures used by ourCC/VNS algo-
rithm are listed in Table 1 and start by modifying one, two,
two and three columns, respectively. As a result, the four neigh-
borhoods explore increasingly diverse plans for the lower par-
ent design Dl . Table 1 shows that the size of the first neighbor-
hood structure increases linearly with the number of factors m
of the parent designs. For this reason, the size of this neighbor-
hood structure, N1, is denoted by O(m). The sizes of the sec-
ond and third neighborhood structures, N2 and N3, increase
according to a second-order polynomial in m, which is why
these sizes are denoted by O(m2). The size of the last neighbor-
hood,N4, increases according to a cubic polynomial inm, which
is denoted by O(m3).

The outline of our CC/VNS algorithm is shown in Algo-
rithm 2. The input to the algorithm is an upper parent design
Du and a lower parent design Dl . The algorithm begins by gen-
erating a starting plan for Dl in three steps; see lines 1 and 2
of Algorithm 2. First, the signs of all elements in r randomly
selected columns of Dl are switched, where r is a random inte-
ger between 0 andm. Second, the columns of the resulting plan
are randomly permuted. Third, the resulting plan is optimized
by the CC algorithm described in Section 3.2.

After the starting plan of the lower design Dl has been gen-
erated, the CC/VNS algorithm continues by exploring the first
neighborhood structure (N1) of the starting plan. To this end, it
randomly selects a plan from the neighborhood and applies the
CC algorithm to it, to attempt to find a better plan for the lower
parent design. If a better plan is indeed found, theCC/VNS algo-
rithm continues by exploring the first neighborhood structure of
the newly obtained improved plan. If the CC algorithm does not
produce a better plan, a second plan is selected from the first
neighborhood structure of the starting plan and an attempt is
made to improve it using the CC algorithm. The exploration
of the first neighborhood structure of a given plan continues
until all plans it contains have been optimized by means of
the CC algorithm. If this does not yield any better plan than
the current best one, the algorithm starts exploring the second
neighborhood structure (N2), in the same fashion. As soon as
the exploration of the second neighborhood structure results in
an improved plan, the CC/VNS algorithm returns to the first
neighborhood structure and explores that first neighborhood

Algorithm 2: Pseudocode of the CC/VNS algorithm.
Input: Du and Dl

1 Rl ← Random plan for Dl
2 Generate starting plan D∗l using the CC algorithm and Du
and Rl as input.

3 Set i← 1
4 while i ≤ 4 do
5 Set improvement ← False
6 repeat
7 Randomly select a plan Sl from Ni(D∗l).
8 Generate an improved plan D′l using the CC

algorithm and Du and Sl as input.
9 if concatenated design (Du,D′l) is better than

(Du,D∗l) then
10 D∗l ← D′l
11 improvement ← True
12 i← 0

13 until no unexplored plans left in Ni(D∗l) or
improvement ;

14 i← i+ 1
Output: concatenated design (Du,D∗l)

structure of the improved plan. If the exploration of the second
neighborhood structure does not produce any improved plan,
the third neighborhood structure (N3) is explored, and, if that
does not lead to any improved plan, the fourth neighborhood
structure (N4) is explored. The process is repeated until no fur-
ther improvement can be reached. In the course of the optimiza-
tion, each neighborhood structure involves high-quality neigh-
bors of the current best plan for the lower parent design, which
has a positive impact on the performance of our CC/VNS algo-
rithm.

Finally, to increase the likelihood of finding a globally opti-
mal plan for the lower parent design, the CC/VNS algorithm is
repeated a number of times, each time starting from a randomly
generated plan for the lower parent design. This multi-start pro-
cedure in the algorithmic construction is common to virtually
all design construction algorithms in the literature. Eventually,
the overall best plan found for the lower parent design over all
iterations is reported.

A Matlab implementation of the CC/VNS algorithm is
included in the supplementary materials of this article. Matlab
allows parallel computations to decrease the calculation time.
For specific parent designs, we present a comprehensive evalu-
ation of the neighborhood structures of the CC/VNS algorithm
and the computing times in supplementary Section B. A key
result fromour evaluation is that each of the four neighborhoods
of the CC/VNS algorithm contributes significantly to the quality
of the concatenated designs generated.

3.4 Performance of the CC/VNS Algorithm

In this section, we first evaluate the performance of our CC/VNS
algorithm to generate the best 32- and 64-run concatenated
designs with up to 11 factors from strength-3 regular designs
with 16 and 32 runs. To this end, we compare our concatenated
designs to those obtained by Li and Lin (2016). Next, we assess

TECHNOMETRICS 223

the performance of our algorithm to generate the best 128-run
concatenated designs with up to 30 factors from regular and
nonregular designs of strength 3 with 64 runs.

.. ComparisonWith a Benchmark Approach
Wefirst evaluate the potential of our CC/VNS algorithm by test-
ing whether it is able to match or even improve the results of Li
and Lin (2016, LL16), with the strength-3 parent designs they
used. LL16 constructed 32-run designs with up to 9 factors and
64-run designs with up to 12 factors by concatenating regular
resolution IV 2m−p designs with 16 runs and up to 8 factors and
regular resolution IV 2m−p designs with 32 runs and up to 11
factors, respectively. They used the same design as upper parent
designDu and as lower parent designDl and searched for a plan
for Dl that sequentially minimizes the CFV of the concatenated
design. For this reason, we now focus on theminimization of the
F4 vector, which is the most important component of the CFV
for strength-3 designs. LL16 showed that, when the same reg-
ular 2m−p design is used as upper and lower parent design, the
number of computations required to evaluate all possible sign
switches of columns can be reduced from 2m to 2p. For parent
designs with up to 9 factors, they evaluated allm!× 2p possible
plans for Dl . Evaluating all m! column permutations for parent
designs with more than nine factors was computationally infea-
sible. For this reason, for 10 factors or more, they used a large
number of randomly chosen permutations instead of all possi-
ble permutations. They ran their enumeration program for 10-
and 11-factor parent designs for 168 hr and reported the best
results found. They did not report the computing times for the
complete enumeration of concatenated designs based on parent
designs with up to 9 factors.

The results of 1000 iterations of the CC/VNS algorithm
applied to the cases of LL16 are shown inTable 2. The computing
times for the 6-, 7-, and 8-factor designs were less than a second

Table . Results produced by the CC/VNS algorithm for - and -run
concatenated designs constructed from regular resolution IV designs. The
labels of the parent designs are those used by Chen, Sun, and Wu (). Fmax

4
represents the frequency of the largest values of the J4-characteristics. The number
of plans evaluated to find the optimal F4 vector is expressed as a percentage of the
total number of possible plans averaged over  iterations.

N Parent Fmax
4 Percentage of iterations Percentage of plans

 -.   .
-.   .
-.   .

 -.  . .
-.   .
-.   .
-.   .
-.   .
-.   .
-.   .
-.   .
-.   .
-.   .
-.   .
-.   .
-.   .
-.   .
-.   .
-.  . .
-.   .
-.  . .

per iteration on a standard CPU (Intel(R) Core(TM) i7 proces-
sor, 2.8 GHz, 8 GB). For 9 factors or more, the computing times
ranged from 1 to 6 sec per iteration.

The first column of the table shows the run sizeN of the con-
catenated design. The second column shows the parent designs
used for the concatenation in the form m-p.z, where m is the
number of factors, p is the number of generators of the design,
and z is the ranking of the design according to the aberration
criterion (Chen, Sun, andWu 1993). The third column presents
the frequencies Fmax

4 of the largest values of the J4-characteristics
of the concatenated designs. The largest J4-characteristic equals
16 for the best 32-run designs we found and 32 for the best 64-
run designs, except for the designs constructed from the parent
designs 7-2.1 and 7-2.2. These parent designs resulted in 64-run
designs in which all J4-characteristics equal zero. As a result, all
designs we found have a generalized resolution of at least 4.5.
None of the 32-run designs we obtained have J4-characteristics
of 32, so that there is no complete aliasing between 2FIs. For all
64-run designs we obtained, F4(64, 48, 16) = (0, 0, 0), mean-
ing that J4-characteristics of 64, 48, and 16 do not occur. So,
there is also no complete aliasing between 2FIs in the 64-run
designs. The F4 vectors of the best designs we obtained coin-
cide with those found by LL16, except for the 11-factor 64-run
design based on parent design 11-6.2. The design produced by
our CC/VNS algorithm outperforms the benchmark design of
LL16, for which F4(32) = 46. For our design, F4(32) = 44. So,
in our design, there is less aliasing between the 2FIs.

The fourth column of Table 2 shows the percentage of iter-
ations during which the CC/VNS algorithm was able to find
the best F4 vector. For all but three of the cases in Table 2,
this percentage equals 100. In other words, the CC/VNS algo-
rithm generally obtained the best possible concatenated design
at each iteration. For the parent designs 7-2.1, 10-5.4, and 11-
6.2, the percentages were 88.1, 96.8, and 65.9, respectively. These
large percentages imply that it is almost certain that 10 iter-
ations of the CC/VNS algorithm suffice to find the best con-
catenated design. As a matter of fact, even for the worst case
in Table 2, the probability to obtain the best design at least
once in 10 iterations is 1− (1− 0.659)10 ≈ 1. Remarkably, in
each iteration where the CC/VNS algorithm failed to find the
best design with F4(32) = 44 for this case, it produced LL16’s
design with F4(32) = 46. This shows that, even when the algo-
rithm fails to find the best design, it produces a high-quality
alternative.

Column 5 of Table 2 shows the number of plans for the lower
parent design Dl explored by the algorithm, relative to m!× 2p
and expressed as a percentage. In all but one case, less than
40% of the total number of plans are evaluated by the CC/VNS
algorithm. The exception is parent design 6-2.1, for which the
CC/VNS algorithm evaluated 34% more plans than a complete
enumeration would (6!× 22 = 2880). However, in each itera-
tion of the CC/VNS algorithm, the CC algorithm provided a
starting plan with an optimal F4 vector. Constructing this plan
only required 2.35% of the total number of evaluations. The
additional computations are due to the CC/VNS algorithm’s vis-
its to the four neighborhood structures, to confirm the excellent
quality of the starting solution produced by the CC algorithm.

Our comparison with the benchmark approach and the com-
prehensive evaluation of the CC/VNS algorithm in Section B

A. R. VAZQUEZ, P. GOOS, AND E. D. SCHOEN224

of the supplementary materials allows us to conclude that our
CC/VNS algorithm creates high-quality concatenated designs
using a considerably smaller computing effort than that needed
by LL16.

.. Performance for -Run Designs
We also tested the potential of the CC/VNS algorithm by con-
structing 128-run designs involving 10, 15, 20, 25, and 30 fac-
tors from 64-run parents. We obtained suitable 10-, 15-, 20-,
25-, and 30-factor parent designs from the complete collection of
regular 64-run resolution IV 2m−p designs (Chen, Sun, and Wu
1993), the collection of nonregular designs based on quaternary
linear codes (QLC) found by Xu and Wong (2007), and the 64-
run designs generated from projections of the folded-over 32-
run Hadamard matrix given by the Paley construction (Sloane
1999).

Supplementary Section B shows our detailed results for 100
iterations of the CC/VNS procedure, for the case where we opti-
mized the B4 value of the concatenated designs as well as for the
case where we optimized the F4 vector. When optimizing the B4
value of designs with up to 20 factors, the best design was found
in 65% or more of the iterations of the CC/VNS algorithm. The
cases with 25 and 30 factors were clearly more challenging, as
the success rate dropped to values as low as 6% and 13% for these
cases. When optimizing the F4 vector, the success rates are even
lower than that, because optimizing the F4 vector is harder than
optimizing the B4 value. The small probability of identifying the
best concatenated design is not amajor problem, because, when-
ever it fails to find the best design, the CC/VNS algorithm still
produces a high-quality concatenated design with the same gen-
eralized resolution as the best one and with a B4 value and an F4
vector that are only slightly worse than those of the best con-
catenated design. From our results, we concluded that 10 itera-
tions will generally suffice to find a high-quality 128-run design.
In the event there are no more than 20 factors, that design will
most likely be the best.

For all cases studied here, only a very small proportion (gen-
erally much smaller than 1%) of all possible plans for the lower
parent design Dl are evaluated by the CC/VNS algorithm when
constructing the concatenated design. The computing times for
optimizing the B4 value ranged from 1 to 709 sec for one iter-
ation of the algorithm. For optimizing the F4 vector, the com-
puting times varied from 2 to 904 sec per iteration, for up to 20
factors. For 25 and 30 factors, the computing times went up to
3.3 hr.

3.5 Choice of Parent Designs

To investigate how the quality of concatenated designs depends
on the choice of the parent designs, we constructed 64- and 128-
run concatenated designs with parent designs that differ in G-
or G2-aberration. The parent designs we used here to construct
64-run designs were selected from the complete catalog of 32-
run strength-3 designs (Schoen, Eendebak, and Nguyen 2010)
with 8, 10, 12, 14, and 16 factors, while the parent designs
we used to construct 128-run designs were selected from the
complete catalog of regular 64-run resolution IV 2m−p designs
(Chen, Sun, and Wu 1993) with 16, 18, and 20 factors. In this

section, we discuss the results for concatenated designs with 10
factors and 64 runs, as well as those for concatenated designs
with 16 factors and 128 runs. Results for all other cases follow
the same pattern and allow for the same conclusions.

The complete catalog of 32-run designs with 10 factors
includes 32 designs. Their B4 values range from 10 to 18 and
the frequencies of the J4-characteristics of 32 range from 1 to
18. The complete catalog of 64-run regular designs with 16
factors includes 48 designs. Their B4 values and, equivalently,
the frequencies of the J4-characteristics of 64 range from 43 to
105. From each of these two catalogs, we selected a set of five
parent designs to construct F4-optimized concatenated designs
and a set of five parent designs for B4-optimized concatenated
designs. For B4-optimized concatenated designs, the selected
parent designs were the best and worst designs according to the
G2-aberration criterion and those corresponding to the first, sec-
ond, and third quartiles in that ranking. For minimizing the F4
value, we selected the designs in a similar fashion based on the
G-aberration criterion. We concatenated all 15 possible pairs
of the five selected parent designs, including pairs of the same
designs.

Table 3 shows the results for 100 iterations of the CC/VNS
algorithm when the objective is to minimize the B4 value. The
table shows that the smallest B4 values in the 64- and 128-run
concatenated designs result from concatenating two copies of
the minimum G2-aberration designs. Concatenating minimum
G2-aberration designs with any of the four other designs results
in larger B4 values for the concatenated designs. Table 3 also
shows that using bad 32- and 64-run designs in terms of the
G2-aberration criterion, such as the worst design (W) and
the design corresponding with the third quartile (Q3) of the
G2-aberration ranking, generally results in 64- and 128-run
designs with the largest B4 values. It is interesting to mention
though that the 64-run concatenated design constructed from
the 32-run parent designs B and Q2 has a better B4 value than
the concatenated design constructed from the parent designs B
and Q1, even though design Q2 has a worse G2-aberration than
design Q1. This implies that the G2-aberration ranking of the

Table . B4 values for the B4-optimized concatenated designs with  and  runs.
The symbols B, Q1 , Q2 , Q3 , andW correspond to the best ranked design, the designs
corresponding to the first, second, and third quartiles, and theworst ranked design,
respectively, in terms of G2-aberration.

(a)  factors and  runs

Parents B Q1 Q2 Q3 W

B 
Q1 . 
Q2 . . 
Q3 . . . .
W  .  . .

(b)  factors and  runs

Parents B Q1 Q2 Q3 W

B 
Q1 . 
Q2  . 
Q3  .  
W . . . . 

TECHNOMETRICS 225

Table . Frequencies of J4-characteristics of  and  for the F4-optimized con-
catenated designs with  and  runs, respectively. The symbols B, Q1 , Q2 , Q3 ,
andW correspond to the best ranked design, the designs corresponding to the first,
second, and third quartiles, and the worst ranked design, respectively, in terms of
G-aberration.

(a)  factors and  runs

Parents B Q1 Q2 Q3 W

B 
Q1  
Q2   
Q3    
W     

(b)  factors and  runs

Parents B Q1 Q2 Q3 W

B 
Q1  
Q2   
Q3    
W     

parent designs does not necessarily agree with the ranking of
the resulting concatenated designs in terms of the B4 value.

Table 4 shows the results for 100 iterations of the CC/VNS
algorithm when the objective is to minimize the F4 vector. The
conclusions that can be drawn from that table are similar to
those for the B4-optimized concatenation. That is, better parent
designs in terms of the F4 vector lead to better F4 vectors for the
concatenated designs. For instance, the table shows that concate-
nating two copies of the best parent design with 32 runs leads
to a 64-run concatenated design without any J4-characteristic of
32 and a generalized resolution as large as 4.75. For the 128-run
design case, concatenating two copies of the best 64-run regular
design leads to a much lower frequency of the J4-characteristics
of 64 than concatenating any other pair of selected parents.

The specific cases discussed here as well as ourmore compre-
hensive study of the relation between the quality of concatenated
designs and the choice of the parent designs permit the follow-
ing conclusion: Concatenating the best parent designs in terms
of the G- and G2-aberration generally leads to the best concate-
nated designs in terms of the F4 vector and B4 value, respectively,
within the class of designs that can be obtained by concatenating
strength-3 designs. For this reason, when constructing concate-
nated designs using our CC/VNS algorithm, we recommend to
use the best parent designs available in terms of the desired opti-
mization criterion.

4. Results

Encouraged by the test results, we used the CC/VNS algorithm
to generate two-level even-odd designs for run sizes 64 and
128, based on the best parent designs available with 32 and 64
runs, respectively. A detailed description of the parent designs
is included in supplementary Section C. Tables showing the sign
switches and permutations in the lower parent design alongwith
the full F4 vectors of the concatenated designs are presented in
supplementary Section D. In the present section, we discuss the
most important features of the concatenated designs and com-
pare them with benchmark designs from the literature.

For each combination of number of runs and number of fac-
tors, we considered several pairs of attractive parent designs.We

concatenated each pair of attractive parent designs to investi-
gate which pair gives rise to the best concatenated design. For
each given pair of parent designs, we used 40 iterations of the
CC/VNS algorithm when the objective was to minimize the B4
value and 10 iterations when the objective was to sequentially
minimize the F4 vector. We used a larger number of iterations
when minimizing the B4 value because calculating the B4 value
is computationally less demanding than calculating the F4 vec-
tor, especially when the number of factors exceeds 20 (see sup-
plementary Section A). After running the CC/VNS algorithm,
we constructed our final k-factor design by adding the indicator
factor to the resulting m-factor concatenated design. Section D
of the supplementary materials shows that nine of our best
66 concatenated designs are constructed from different, noniso-
morphic parent designs. In all other cases, the upper and lower
parent designs were isomorphic.

4.1 64 Runs

Table 5 shows the B4 value, the generalized resolution (GR), the
frequency of the largest J4-characteristic (Fmax

4), and the degrees
of freedom for two-factor interactions (df) of 48 64-run designs
involving 9–17 factors. It should be pointed out that comparing
the Fmax

4 values of two designs only make sense if they have the
sameGR value and thus the samemaximum J4-characteristic. In
that case, the design with the smaller Fmax

4 value has the better
F4 vector of the two.

The tabulated results are for the best concatenated designs the
CC/VNS algorithm produced in terms of the F4 vector (denoted
by CC/F4) and in terms of the B4 value (denoted by CC/B4).
The parent designs we used as inputs were the best designs from
the enumeration of Schoen, Eendebak, and Nguyen (2010); see
supplementary Section C. The table also includes the following
benchmark designs:

� The regular designs listed by Chen, Sun, and Wu (1993).
The designs included in the table have the smallest possible
B4 value and, subject to this, the largest number of degrees
of freedom for 2FIs. Therefore, they are either minimum
aberration designs (denoted byMA) or alternative designs
with a larger number of degrees of freedom for 2FIs than
the MA design (denoted by EST).

� The QLC designs of Xu and Wong (2007). We denote the
QLC design with the best B4 value as QLC/B4 and the
design with the best F4 vector as QLC/F4. We use the label
QLC whenever there is a single design that is best in terms
of the B4 value and in terms of the F4 vector.

� The 17-factor design of Cheng, Mee, and Yee (2008),
denoted by CMY.

� The best projections of the folded-over 32-run Paley
matrix.

The third column of Table 5 shows whether the designs
are admissible (Sun, Wu, and Chen 1997), meaning that they
are not dominated by another design when considering the
B4 value, the generalized resolution, the F4 vector, and the
degrees of freedom for 2FIs. A design that is dominated by
another design is called inadmissible. For example, the 9-factor
MA design has the same B4 value as the CC/B4 design, but
its GR value and number of degrees of freedom for 2FIs are
lower (note that the Fmax

4 value for the MA design should not

A. R. VAZQUEZ, P. GOOS, AND E. D. SCHOEN226

Table . -run designs involving – factors. B4 values rounded to nearest integer. CC/B: design by CC/VNS under B4 optimization; CC/F: design by CC/VNS under F4
optimization; MA: regular minimum aberration design; EST: regular design with same B4 value as MA design, but larger number of degrees of freedom for FIs; QLC: design
based on quaternary linear codewith best B4 value and F4 vector; QLC/B: QLC design with best B4 value; QLC/F: QLC design with best F4 vector; CMY: design from Cheng,
Mee, and Yee (); P: projection of folded-over -run Paley matrix; a : design permits estimation of all FIs; s : SOS design.

k Construction Admissible B4 GR Fmax
4 df k Construction Admissible B4 GR Fmax

4 df

 CC/Ba Yes  .    CC/B No  .  
MA No     EST No    
QLCa No  .   QLCs Yes  .  
P No  .   P Yes  .  

CC/Fa Yes  .   CC/F Yes  .  
 CC/Ba Yes  .    CC/B Yes  .  

MA No     MA Yes    
QLC No  .   QLC No    
P No  .   P Yes  .  

CC/F No  .   CC/F Yes  .  
 CC/B Yes  .    CC/B Yes    

MA No     MA Yes    
QLC No  .   QLC/B No    
P No  .   QLC/F No    

CC/F Yes  .   P Yes  .  
 CC/B Yes  .   CC/F Yes  .  

MA Yes      CC/Bs Yes    
QLC Yes  .   CMYs No    
P Yes  .   MA Yes    

CC/F Yes  .   QLC/B Yes    
 CC/B Yes  .   QLC/F No    

ESTs Yes     P Yes  .  
QLC Yes  .   CC/Fs Yes  .  
P Yes  .  

CC/F Yes  .  

be compared to that of the CC/B4 design, because the GR
value and thus also the maximum J4-characteristic are differ-
ent for the two designs). Therefore, the 9-factor MA design is
inadmissible.

Overall, 31 of the 48 64-run designs under comparison are
admissible. Table 5 shows that all but two of the designs pro-
duced by the CC/VNS algorithm are admissible. The 10-factor
CC/F4 design is inadmissible because it is dominated by the
CC/B4 design, while the 14-factor CC/B4 design is inadmis-
sible because it is dominated by the QLC design. There are
seven inadmissible QLC designs, all of which are dominated by
the CC/B4 designs. Three regular MA designs are inadmissible
as they are dominated by the CC/B4 design, and one regular
EST design is inadmissible because it is dominated by the QLC
design. The 9-, 10-, and 11-factor designs based on the folded-
over Paley matrix are dominated by the CC/F4 designs. Finally,
the 17-factor CMY design is dominated by the CC/B4 design.

Using the folded-over 32-run Paley matrix always results in
the largest generalized resolution of 4.75, but, for 9, 10, and 11
factors, the CC/B4 and/or the CC/F4 design have the same gen-
eralized resolution, a better F4 vector, and a larger number of
degrees of freedom for 2FIs. For larger numbers of factors, the
CC/VNS algorithm does not produce designs with that large a
generalized resolution, because the CC/VNS algorithm involves
strength-3 parent designs and the folded-over Paley matrix is
essentially a concatenation of two strength-2 designs.

For 9 and 10 factors, the B4 values we obtained are the mini-
mum values possible (Xu 2005). For 12–14 and 17 factors, the
B4 values of the designs produced by the CC/VNS algorithm
are larger than those of the QLC designs and/or those of the
regular MA or EST designs. This might imply that we did not
use the best possible input designs for the CC/VNS algorithm.
However, it is impossible to split the 64-run QLC designs with
12–14 and 17 factors into two strength-3 designs, so that these

designs cannot be constructed by concatenating two strength-3
32-run designs. Likewise, it is not possible to split the regular
resolution IV designs with 12, 13, 15, 16, and 17 factors into two
strength-3 32-run designs. Therefore, the fact that the CC/VNS
algorithm did not produce designs with lower B4 values should
not be viewed as a weakness of the algorithm, but as a conse-
quence of our focus on concatenating strength-3 designs.

The column labeled df in Table 5 shows that the CC/VNS
algorithm produces designs with 9–11 and 15–17 factors that
provide at least as many degrees of freedom for 2FIs as the best
benchmark designs. For 12–14 factors, the numbers of degrees
of freedom for 2FIs of the CC/B4 and CC/F4 designs are smaller
than those of the regular designs and theQLCdesigns. However,
the numbers of degrees of freedom for 2FIs of the concatenated
designs with 12–14 factors are the maximum numbers obtain-
able by concatenating even parent designs; see Section 3.1. As
there are no even-odd strength-3 parent designs with 32 runs
andmore than 10 factors, it is not possible to construct concate-
nated designswith larger numbers of degrees of freedom for 2FIs
for these cases when using strength-3 designs as parent designs.

Table 5 also identifies designs with which all 2FIs are
estimable as well as SOS designs. The CC/VNS algorithm pro-
duced 9- and 10-factor designs which allow all 2FIs to be esti-
mated. Our 17-factor designs, the 17-factor design of Cheng,
Mee, and Yee (2008), the 13-factor regular resolution IV design,
and the 14-factor QLC design of Xu and Wong (2007) are SOS
designs. The 13- and 14-factor SOS designs cannot be con-
structed by concatenating two strength-3 designs.

4.2 128-Run Designs

The parent designs we used for the CC/B4 designs with 128 runs
were the 64-run regular minimum aberration designs (Chen,
Sun, and Wu 1993), the 64-run QLC designs (Xu and Wong

TECHNOMETRICS 227

2007), and our own 64-run designs that minimize the B4 value.
For the 128-run concatenated designs that optimize the F4
vector, the parent designs we used were the best projections of
the folded-over 32-run Paley matrix and the 64-run concate-
nated designs produced by the CC/VNS algorithm. A detailed
report of the best 128-run designs we obtained and their par-
ent designs is given in Sections C and D of the supplementary
materials.

.. – Factors
It is known that strength-4 128-run designs exist with up to 15
factors; see Hedayat, Sloane, and Stufken (1999) for the con-
struction of the 15-factor design. These designs necessarily con-
sist of two concatenated strength-3 64-run designs augmented
with an indicator factor. Therefore, provided the right strength-3
64-run parent designs are used as input, the CC/VNS algorithm
should be able to construct strength-4 128-run designs. This
proved to be the case for our CC/B4 designs with 10–15 factors
and our CC/F4 designs with 10 and 11 factors constructed using
QLC and CC/B4 parent designs with 64 runs. For 12–15 factors,
our CC/F4 designs only have a resolution of 4.75. The parents of
these strength-3 designs are the best projections of the folded-
over 32-run Paley matrix and our CC/F4 designs with 64 runs.

Supplementary Section E provides a comprehensive discus-
sion of the strength-4 designs. It compares the 10- and 11-factor
regular resolution V designs, the QLC designs involving 10–15
factors and the minimum G-aberration designs we identified
based on the complete catalog of 128-run strength-4 OAs pro-
duced by Schoen, Eendebak, and Nguyen (2010). To the best
of our knowledge, we are the first to identify the minimum G-
aberration 128-run designs of strength 4.

.. – Factors
Table 6, which has the same format as Table 5, shows the main
results for designs with 16–33 factors. The table includes our
own concatenated designs as well as the following benchmark
designs:

� The regular designs listed by Xu (2009). The designs we
used as benchmarks have the smallest possible B4 value
and, subject to this, the largest number of degrees of
freedom for 2FIs. Therefore, they are either MA or EST
designs.

� The QLC designs of Xu and Wong (2007).
Table 6 includes 84 designs, 19 of which are inadmissible.

Seven of the 36 designs produced by the CC/VNS algorithm are
inadmissible. The 16-factor CC/B4 design is dominated by the
QLC/F4 design. The CC/B4 designs involving 17, 22–24, 26, and
27 factors are dominated by the correspondingQLC/B4 designs.
The regular (MA or EST) designs for 16, 17, 20, 21, and 22 fac-
tors are dominated by the corresponding QLC/B4 designs and
the 26-, 27-, and 28-factor regular designs are dominated by the
corresponding QLC designs. Four QLC designs are inadmissi-
ble: the QLC/B4 designs for 29 and 30 factors are dominated by
theMA designs, while the QLC/F4 designs for 21 and 30 factors
are dominated by the CC/B4 designs. The table further suggests
that the QLC/F4 design with 30 factors is also dominated by the
CC/F4 design, but this is due to the rounding of the B4 value to
the nearest integer.

All CC/F4 designs outperform all benchmark designs as well
as the CC/B4 designs in terms of generalized resolution. There-
fore, all CC/F4 designs are admissible. Except for the 12-factor
case, the best parent designs for the CC/F4 designs are the
64-run designs generated from projections of the folded-over

Table . -run designs involving – factors. B4 values rounded to nearest integer. CC/B: design by CC/VNS under B4 optimization; CC/F: design by CC/VNS under F4
optimization; MA: regular minimum aberration design; EST: regular design with same B4 value as MA design, but larger number of degrees of freedom for FIs; QLC: design
based on quaternary linear code with best B4 value and F4 vector; QLC/B: QLC design with best B4 value; QLC/F: QLC design with best F4 vector;

s : SOS design.

k Construction Admissible B4 GR Fmax
4 df k Construction Admissible B4 GR Fmax

4 df k Construction Admissible B4 GR Fmax
4 df

 CC/B No      CC/B No      CC/B Yes    
MA No     MA No     MAs Yes    

QLC/B Yes     QLC/B Yes     QLC/B No    
QLC/F Yes  .   QLC/F Yes     QLC/F Yes    
CC/F Yes  .   CC/F Yes  .   CC/F Yes  .  

 CC/B No      CC/B No      CC/B Yes    
EST No     MA Yes     MA Yes    

QLC/B Yes     QLC Yes     QLC/B No    
QLC/F Yes  .   CC/F Yes  .   QLC/F No    
CC/F Yes  .    CC/B No     CC/F Yes  .  

 CC/B Yes     EST Yes      CC/B Yes    
EST Yes     QLC Yes     MA Yes    

QLC/B Yes     CC/F Yes  .   QLC/B Yes    
QLC/F Yes  .    CC/B Yes     QLC/F Yes    
CC/F Yes  .   MAs Yes     CC/F Yes  .  

 CC/B Yes     QLC Yes      CC/B Yes    
MA Yes     CC/F Yes  .   MA Yes    

QLC/B Yes      CC/B No     QLC/B Yes    
QLC/F Yes  .   MA No     QLC/F Yes    
CC/F Yes  .   QLC Yes     CC/F Yes  .  

 CC/B Yes     CC/F Yes  .    CC/Bs Yes    
MA No      CC/B No     MA Yes    

QLC/B Yes     MA No     QLC/B Yes    
QLC/F Yes     QLC Yes     QLC/F Yes    
CC/F Yes  .   CC/F Yes  .   CC/Fs Yes  .  

 CC/Bs Yes      CC/B Yes    
MA No     MA No    

QLC/B Yes     QLCs Yes    
QLC/F No     CC/F Yes  .  
CC/F Yes  .  

A. R. VAZQUEZ, P. GOOS, AND E. D. SCHOEN228

32-run Paley matrix. So, all but one of the CC/F4 designs are
constructed from a Paley-based design. If we denote the num-
ber of factors from that parent design by m, then we can verify
in the column labeled df in Table 6 that the degrees of freedom
for 2FIs is 2× 31+m for each CC/F4 design.

The fact that our CC/B4 designs involving 16, 17, 22–24, 26,
and 27 factors are inadmissible is not due to a bad choice of
strength-3 parent designs. To reach this conclusion, we veri-
fied that none of the 128-run QLC designs can be split in two
64-run strength-3 designs according to one of their factors.
Therefore, the 128-run k-factor QLC designs, say, cannot be
constructed by concatenating two strength-3 designs with k− 1
factors and adding the indicator factor. If it were possible to con-
struct k-factor 128-run QLC designs by concatenating two 64-
run strength-3 parents, then these parents should also involve k
factors. Now, 64-run strength-3 parent designs involving 22 fac-
tors or more are necessarily even designs. Since concatenating
two even designs results in a design that is even too, the QLC
designs for 22 factors or more, which are even-odd, cannot be
constructed by concatenating two strength-3 designs. For the
16- and 17-factor cases, even-odd parent designs do exist. If a
construction by concatenation of the strength-3 QLC designs
were possible, we should be able to extend the 16- and 17-factor
designs with an extra factor that indicates the parent designs,
and the extended designs should also have a strength of 3. We
tried to extend the 16-factor and 17-factor designs using the
algorithm of Schoen, Eendebak, and Nguyen (2010), but it did
not produce an extension in 6 hr of computing time, while it
normally takes less than a second to extend similar designs with
64 runs. For this reason, we conjecture that the 128-run QLC
designs with 16 and 17 factors cannot be constructed by con-
catenating strength-3 designs. So, the reason why many of our
CC/B4 designs are inadmissible is that we restrict ourselves to
strength-3 parent designs and not that the CC/VNS algorithm
performs poorly.

Table 6 shows that we were able to find designs with 18, 20,
21, and 30–33 factors which provide more degrees of freedom
for 2FIs than the benchmark designs. The two 33-factor designs
we obtained and one of our 21-factor designs are SOS designs.
The same goes for the 28-factor design of Xu and Wong (2007)
and the regular resolution IV designs with 25 and 29 factors.

The CC/VNS algorithm enabled us to add 11 admissible
CC/B4 designs and 18 admissible CC/F4 designs to the litera-
ture on 128-rundesigns.We also found that certain designs from
the literature are inadmissible when considering the generalized
resolution, the B4 value, the F4 vector, and the degrees of free-
dom for 2FIs.

5. Practical Examples

We now return to the enzyme stability experiment and the soft-
ware process simulation experiment that motivated this article.
For each of the two experiments, we explore several 64- and 128-
run design options.

5.1 The Enzyme Stability Experiment

The goal of the enzyme stability experiment was to improve
the stability of an enzyme in a watery solution at room

temperature. There were 17 experimental factors, which indi-
cated the presence or absence of 17 possible additives. The
experiment involved small test tubes with the enzyme and the
additives. The tubes were stored at room temperature for 8
weeks, and sampled at the start of the study and after 15, 30, and
60 days to check enzyme activity. A total of 64 combinations of
the stabilizer was practically feasible, so that a 64-run designwas
used.

Table 7 shows 11 design options for the enzyme stability
experiment. Designs with 64 runs available in the literature were
the regular 64-run MA designs (Chen, Sun, and Wu 1993), the
QLC designs (Xu and Wong 2007), and the 17-factor design of
Cheng, Mee, and Yee (2008), denoted as CMY in the table. We
were reluctant to use the designs from the literature because they
have 28 or more J4-characteristics of 64, so that many pairs of
2FIs are completely aliased. Via an ad hoc procedure, we derived
design X, which has only three J4-characteristics of 64. Its com-
plete F4 vector is F4(64, 48, 32, 16) = (3, 6, 125, 625). So all the
64-run designs from the literature as well as design X have a gen-
eralized resolution of 4.DesignXwas the one eventually used for
the experiment.

Table 7 includes three 64-run candidate designs for the
enzyme stability experiment from our work for the present arti-
cle: the CC/B4 design, the CC/F4 design, and a design obtained
by folding over the 32-run Paley matrix (design P in the table).
It turns out that the 64-run CC/F4 design dominates design
X, so that the ad hoc design actually used is inadmissible. The
CMY design is also inadmissible because it is dominated by our
CC/B4 design. In hindsight, we should perhaps have opted for
the design obtained by folding over the 32-run Paley matrix,
because of its large generalized resolution and the implication
that the maximum J4-characteristic value is only 16 for that
design. The Paley-based design provides 31 degrees of free-
dom for estimating 2FIs. This number compares rather poorly
with the designs from the literature and with the CC/VNS
designs. However, for the enzyme stability case, substantially
fewer important interactions than 31 were expected, so that 31
degrees of freedom for estimating 2FIs would have been amply
sufficient.

When discussing supersaturated designs, Marley andWoods
(2010) argued that the degrees of freedom available for model
selection should be at least half the number of eligible terms.
As the strength-3 designs studied here are supersaturated for
the 2FIs, heeding the advice of these authors in an unrestricted
search for 2FIs (i.e., without imposing heredity) would require
at least

(17
2

)
/2 = 68 degrees of freedom for the 2FIs. Obviously,

Table . Design options for the -factor enzyme stability experiment.

N Design B4 GR Fmax
4 df

 X    
CMY    
MA    

QLC/B    
QLC/F    
CC/B    
CC/F  .  
P  .  

 QLC/B    
QLC/F  .  
CC/F  .  

TECHNOMETRICS 229

64-run experiments are not large enough to provide this num-
ber of degrees of freedom. For this reason, we also study sev-
eral admissible 128-run options that are compatible with the
advice of Marley and Woods (2010). These design options are
shown in the last three lines of Table 7. As minimizing the cor-
relations among the 2FI contrast vectors reduces the ambigu-
ity in the interpretation of the results, we prefer the 128-run
CC/F4 design, despite the fact that it has the smallest number
of degrees of freedom for estimating 2FIs of the three 128-run
design options. By construction, the 128-run CC/F4 design has
an indicator factor whose interactions with the 16 other factors
can be estimated independently. As the total number of degrees
of freedom for estimating interactions is 78 for that design, this
leaves 62 degrees of freedom for the remaining 120 2FIs. This is
compatible with the advice of Marley and Woods (2010).

5.2 The Software Process Simulation Experiment

The secondmotivating experiment is discussed inHouston et al.
(2001) and is concerned with a sensitivity analysis of a simula-
tion model for a software process. One of the designs used had
30 factors and 64 runs. Houston et al. (2001) mentioned that it
was a regular design constructed using statistical software, but
they do not provide any further details. Given that complete cat-
alogs of regular 64-run designs of strength 3 have been avail-
able since 1993 (Chen, Sun, andWu 1993), theymight have used
the 64-run 30-factorminimum aberration design. Table 8 shows
the properties of that option, along with those of an alternative
based on the folded-over 32-runPaleymatrix and several admis-
sible 128-run options.

Both 64-run design options listed for the software pro-
cess simulation experiment are constructed by folding-over a
strength-2 design. Both designs provide 31 degrees of freedom
for estimating 2FIs and have a B4 value of 945. However, theMA
design is inadmissible because its GR value is smaller than that
of the Paley-based design. So, the latter design is a better alterna-
tive for the software process simulation experiment. Given that
there are 435 2FIs when 30 factors are studied, it is impossible
to analyze the interactions without imposing restrictions such as
strong heredity, which implies that a 2FI should be considered
for inclusion in the fitted model only if both of its parent MEs
are active. One option is to conduct the analysis of the MEs and
the 2FIs in two successive steps, and to impose strong heredity
restrictions in the second step (Miller and Sitter 2001). The anal-
ysis would be compatible with the advice of Marley and Woods
(2010) if the number of active MEs turns out to be at most 11.

Table 8 also lists three admissible design options with 128
runs. The number of degrees of freedom for estimating 2FIs of
these designs is more than twice as large as that for the listed

Table . Design options for the -factor software process simulation experiment.

N Design B4 GR Fmax
4 df

 MA    
P  . , 

 CC/B    
MA    
CC/F  .  

64-run options. Therefore, under strong heredity, model selec-
tion based on the 128-run designs would be compatible with the
advice of Marley andWoods (2010) if the number of active MEs
identified in the first step turned to be at most 19 (8 more than
for the 64-run design options). Among the 128-run designs in
Table 8, we would prefer CC/F4 design because it minimizes the
correlations between pairs of 2FIs contrast vectors and because
it has the largest number of degrees of freedom for estimating
2FIs.

6. Discussion

In this article, we introduced the CC/VNS algorithm to opti-
mize the concatenation of two strength-3 orthogonal arrays. The
algorithm employs sign switches and column permutations to
minimize the aliasing among the two-factor interactions in the
concatenated design. Using the CC/VNS algorithm, we gener-
ated two-level even-odd designs with 64 and 128 runs and up to
33 factors. Sixteen out of the 18 newly generated 64-run designs
and 29 out of the 36 newly generated 128-run designs were
admissible in terms of the aliasing of two-factor interactions
and in terms of the degrees of freedom for estimating two-factor
interactions when compared with benchmark designs from the
literature.

All but one of our 64-run designs have a smallerG-aberration
than the designs of Chen, Sun, and Wu (1993), Block and Mee
(2005), Xu and Wong (2007), and Xu (2009). We obtained
the best 64-run designs in terms of the generalized resolution
fromprojections from the folded-over 32-runHadamardmatrix
given by the Paley construction. However, a drawback of these
designs is that they are even. Therefore, they provide at most 31
degrees of freedom for estimating two-factor interactions. The
even-odd 64-run designs we obtained by sequentially minimiz-
ing the F4 vector for 9–11 factors have a betterG-aberration than
those based on the folded-over Paley matrix.

The 128-run designs we obtained by sequentiallyminimizing
the F4 vector for 16–33 factors have a better generalized resolu-
tion than all alternative designs available from the literature. We
recommend the use of these designs when the experimenter’s
interest is in minimizing the correlation between pairs of two-
factor interaction contrast vectors.

The indicator factor withN/2 positive ones andN/2 negative
ones causes even concatenated designs, produced by concate-
nating two even parent designs, to become even-odd, and, for
k = N/4+ 1 factors, to be second-order saturated. When based
on even-odd parent designs, concatenated designs can be even-
odd without the inclusion of the indicator factor. Even-odd and
SOS designs are attractive for estimating models including all
the main effects and a considerable number of two-factor inter-
actions. Alternative nonorthogonal designs to estimate inter-
actions can be found in Li and Nachtsheim (2000), Smucker,
del Castillo, and Rosenberg (2011), Smucker, del Castillo, and
Rosenberg (2012), and Smucker and Drew (2015).

Selection strategies for models with main effects and interac-
tions can be found in Draguljić et al. (2014), for instance. Alter-
natively, one might conduct a two-stage analysis similar to the
one proposed by Miller and Sitter (2001). In the first stage of
their proposed analysis, the active main effects are identified,

A. R. VAZQUEZ, P. GOOS, AND E. D. SCHOEN230

while, in the second stage, only two-factor interactions obey-
ing effect heredity are studied. An interesting subject for further
research is to improve this approach by taking into account the
independence of the two-factor interactions involving the indi-
cator factor in our concatenated designs.

The indicator factor can also be used as a blocking factor
to arrange the concatenated design in two blocks of size N/2.
This blocking factor is orthogonal to the main effects and to
all second-order interactions of the remaining factors. Thus, the
upper parent designDu and the optimal plan for the lower parent
designDl can be run on two different days or machines, offering
more flexibility for the experimentation.

If the concatenated design is made up from nonisomorphic
parent designs, we recommend to run the parent design with
the smallest B4 value first, or the one with the best F4 vec-
tor, or the largest number of degrees of freedom for estimat-
ing interactions, depending on the interest of the experimenter.
There are four cases inwhich our 64-run designs are constructed
from nonisomorphic parent designs and five cases in which our
128-run designs are constructed from nonisomorphic parents.
Details are given in supplementary Section D.

Finally, the CC/VNS algorithm may be able to improve on
the designs with 64 and 128 runs of Xu and Wong (2007)
in terms of G2-aberration, by concatenating strength-2 parent
designs instead of strength-3 parent designs. The main chal-
lenge here is to identify the ideal strength-2 parent designs. This
would be an interesting topic for future research. Since our algo-
rithmic approach is very general, it would also be interesting
to investigate the concatenation of orthogonal arrays of differ-
ent strengths and even different sizes. In addition, the parent
designs considered could include nonorthogonal arrays, multi-
level arrays, or mixed-level arrays.

SupplementaryMaterials

Supplementary sections.pdf Objective functions and fast
update methods; algorithm performance evaluation; parent
designs; concatenated designs; 128-run designs of strength 4.
Programs.zip Matlab implementation of the CC/VNS
algorithm.

Acknowledgments
The authors thank the editor, the associate editor and the referees for their
valuable comments.

Funding

The research that led to this article was financially supported by the Flemish
Fund for Scientific Research FWO.

References

Avanthay, C., Hertz, A., and Zufferey, N. (2003), “AVariable Neighborhood
Search for Graph Coloring,” European Journal of Operational Research,
151, 379–388. [

Block, R. M., and Mee, R. W. (2005), “Resolution IV Designs With 128
Runs,” Journal of Quality Technology, 37, 282–293. [2]

Butler, N. A. (2004), “Minimum G2-Aberration Properties of Two-Level
Foldover Designs,” Statistics & Probability Letters, 67, 121–132. []

Butler, N. A. (2007), “Results for Two-Level Fractional Factorial Designs of
Resolution IV or More,” Journal of Statistical Planning and Inference,
137, 317–323. []

Caporossi, G., and Hansen, P. (2004), “Variable Neighborhood Search for
Extremal Graphs. 5. Three Ways to Automate Finding Conjectures,”
Discrete Mathematics, 276, 81–94. []

Chen, J., Sun, D. X., andWu, C. F. J. (1993), “A Catalogue of Two-Level and
Three-Level Fractional Factorial Designs With Small Runs,” Interna-
tional Statistical Review, 61, 131–145. [, ,]

Cheng, C.-S., Mee, R. W., and Yee, O. (2008), “Second Order Saturated
Orthogonal Arrays of Strength Three,” Statistica Sinica, 18, 105–119.
[, , , ,]

Deng, L.-Y., and Tang, B. (1999), “Generalized Resolution and Minimum
Aberration Criteria for Plackett-Burman and Other Nonregular Facto-
rial Designs,” Statistica Sinica, 9, 1071–1082. []

Draguljić, D., Woods, D. C., Dean, A. M., Lewis, S. M., and Vine, A.-J. E.
(2014), “Screening Strategies in the Presence of Interactions,” Techno-
metrics, 56, 1–28. []

Eglese, R. (1990), “Simulated Annealing: A Tool for Operational Research,”
European Journal of Operational Research, 46, 271–281. []

Fleszar, K., and Hindi, K. S. (2004), “Solving the Resource-Constrained
Project Scheduling Problem by a Variable Neighbourhood Search,”
European Journal of Operational Research, 155, 402–413. []

Garroi, J.-J., Goos, P., and Sörensen, K. (2009), “A Variable-Neighbourhood
Search Algorithm for Finding Optimal Run Orders in the Presence of
Serial Correlation,” Journal of Statistical Planning and Inference, 139,
30–44. []

Glover, F., and Laguna, M. (1997), Tabu Search, New York: Springer. []
Hansen, P., and Mladenović, N. (2001), “Variable Neighborhood Search:

Principles andApplications,”European Journal of Operational Research,
130, 449–467. []

Hansen, P., Mladenović, N., and Moreno Pérez, J. A. (2008), “Variable
Neighbourhood Search: Methods and Applications,” 4OR, 6, 319–360.
[]

Hedayat, A., Sloane, N., and Stufken, J. (1999), Orthogonal Arrays: Theory
and Applications, New York: Springer. [,]

Houston, D. X., Ferreira, S., Collofello, J. S., Montgomery, D. C., Mackulak,
G. T., and Shunk, D. L. (2001), “Behavioral Characterization: Finding
and Using the Influential Factors in Software Process SimulationMod-
els,” The Journal of Systems and Software, 59, 259–270. [,]

Kytöjoki, J., Nuortio, T., Bräysy, O., and Gendreau, M. (2007), “An Effi-
cient Variable Neighborhood Search Heuristic for Very Large Scale
Vehicle Routing Problems,” Computers and Operations Research, 34,
2743–2757. []

Li,W., and Lin, D. K. J. (2003), “Optimal Foldover Plans for Two-Level Frac-
tional Factorial Designs,” Technometrics, 45, 142–149. []

——— (2016), “A Note on Foldover of 2k−p Designs With Column Permu-
tations,” Technometrics, 58, 508–512. [, ,]

Li, W., Lin, D. K. J., and Ye, K. Q. (2003), “Optimal Foldover Plans for Two-
Level Nonregular Orthogonal Designs,” Technometrics, 45, 347–351.
[]

Li,W., andNachtsheim, C. (2000), “Model-Robust Factorial Designs,”Tech-
nometrics, 42, 345–352. []

Marley, C. J., and Woods, D. C. (2010), “A Comparison of Design and
Model Selection Methods for Supersaturated Experiments,” Computa-
tional Statistics and Data Analysis, 54, 3158–3167. []

Mee, R. (2009), A Comprehensive Guide to Factorial Two-Level Experimen-
tation, New York: Springer. []

Mee, R. W., Schoen, E. D., and Edwards, D. J. (2017), “Selecting an Orthog-
onal or Non-Orthogonal Two-Level Design for Screening,” Technomet-
rics, 59, 305–318. []

Michalewicz, Z., and Fogel, D. (2004), How to Solve It: Modern Heuristics,
New York: Springer. []

Miller, A., and Sitter, R. R. (2001), “Using the Folded-Over 12-RunPlackett-
Burman Design to Consider Interactions,” Technometrics, 43, 44–55.
[]

Mladenović, N., Petrović, J., Kovačević-Vujčić, V., and Čangalović, M.
(2003), “Solving Spread SpectrumRadar Polyphase CodeDesign Prob-
lem by Tabu Search and Variable Neighbourhood Search,” European
Journal of Operational Research, 151, 389–399. [

TECHNOMETRICS 231

222]

222]

222

222

222

222
222

222

222

222

219

219

219

219

219

219

219

230

230

229,230

230

230

230

220 225,227 229,230

220 221 227 229

20,

221

220

220 223 224

220

228

220

Sartono, B., Goos, P., and Schoen, E. (2015), “Constructing General
Orthogonal Fractional Factorial Split-Plot Designs,” Technometrics, 57,
488–502. []

Schoen, E. D., Eendebak, P. T., and Nguyen, M. V. M. (2010), “Complete
Enumeration of Pure-Level andMixed-LevelOrthogonal Arrays,” Jour-
nal of Combinatorial Designs, 18, 123–140. [

Schoen, E. D., and Mee, R. W. (2012), “Two-Level Designs of Strength 3
and Up to 48 Runs,” Journal of the Royal Statistical Society, Series C, 61,
163–174. []

Sloane, N. J. A. (1999), “A Library of Hadamard Matrices,” available at
http://www.neilsloane.com/Hadamard/ []

Smucker, B., del Castillo, E., and Rosenberg, J. (2011), “Exchange Algo-
rithms for ConstructingModel-Robust Experimental Designs,” Journal
of Quality Technology, 43, 28–42. [

Smucker, B., del Castillo, E., and Rosenberg, J. (2012), “Model-Robust Two-
Level Designs Using Coordinate Exchange Algorithms and a Maximin
Criterion,” Technometrics, 54, 367–375. []

Smucker, B., and Drew, N. (2015), “Approximate Model Spaces for Model-
Robust Experiment Design,” Technometrics, 57, 54–63. []

Sun, D. X., Li, W., and Ye, K. Q. (2008), “Algorithmic Construction of Cata-
logs of Non-Isomorphic Two-Level Orthogonal Designs for Economic
Run Sizes,” Statistics and Application, 6, 144–158. []

Sun, D. X., Wu, C. F. J., and Chen, Y. (1997), “Optimal Blocking Schemes
for 2n and 2n−p Designs,” Technometrics, 39, 298–307. []

Syafitri, U. D., Sartono, B., and Goos, P. (2015), “I-Optimal Design of
Mixture Experiments in the Presence of Ingredient Availability Con-
straints,” Journal of Quality Technology, 47, 220–234. []

Tang, B., and Deng, L.-Y. (1999), “MinimumG2-Aberration for Nonregular
Fractional Factorial Designs,” The Annals of Statistics, 27, 1914–1926.
[]

Wu, C. F. J., andHamada,M. S. (2009), Experiments: Planning, Analysis, and
Optimization, New York: Wiley. []

Xu, H. (2005), “Some Nonregular Designs From the Nordstrom-Robinson
Code and Their Statistical Properties,” Biometrika, 92, 385–397. []

——— (2009), “Algorithmic Construction of Efficient Fractional Factorial
Designs With Large Run Sizes,” Technometrics, 51, 262–277. [,]

Xu, H., and Wong, A. (2007), “Two-Level Nonregular Designs From Qua-
ternary Linear Codes,” Statistica Sinica, 17, 1191–1213. [, , ,

, ,]

A. R. VAZQUEZ, P. GOOS, AND E. D. SCHOEN232

219

219

2 2

222

220,225,226,228,229]

2

222

220

226

227

220 230

220 225 227
229 230 231

230

230

230]

225

http://www.neilsloane.com/Hadamard/

Supplementary sections to

Constructing Two-Level Designs by Concatenation of
Strength-3 Orthogonal Arrays

Alan R. Vazquez1, Peter Goos1, 2, and Eric D. Schoen1, 3

1University of Antwerp, Belgium
2University of Leuven, Belgium

3TNO, Zeist, Netherlands

April 30, 2018

This document includes the following sections.

A Objective functions and fast update methods

B Algorithm performance evaluation

C Parent designs

D Concatenated designs

E 128-run designs of strength 4

A Objective functions and fast update methods

The CC/VNS algorithm either optimizes the B4 value or the F4 vector of the concatenated

design. The objective functions of the algorithm are derived from the B4 value and the

F4 vector, but, for computational reasons, they are not the same. The objective function

values must be evaluated after each change in the lower parent design. This section provides

a detailed discussion of the way in which we evaluate the objective function at a low

computational cost.

1

A.1 B4 optimization

The direct calculation of B4 in a k-factor design D with N runs and coded levels −1

and 1 requires the evaluation of all k!/ [4!(k − 4)!] four-factor interaction contrast vectors.

A computationally cheaper alternative was proposed by Butler (2003). He expressed the

similarity of the runs in D with the matrix T = DDT , and he showed that, for any

orthogonal array, M4 = 24B4 + k(3k − 2), where M4 = N−2
∑N

i=1

∑N
j=1 T

4
ij is the fourth

moment of T . Clearly, minimizing M4 is equivalent to minimizing B4.

Let Du and Dl be two two-level orthogonal arrays with n runs, m factors, and coded

levels −1 and 1. Consider the concatenated design D of dimension N ×m, where N = 2n.

We define the n × n matrices A = DuD
T
u , B = Dl D

T
l , and C = DuD

T
l . The similarity

matrix T of the concatenated design D can then be partitioned as

T =

 A C

CT B

 .
Therefore, we can compute the fourth moment M4 of design D as

M4 = N−2

(
n∑

i=1

n∑
j=1

A4
ij +

n∑
i=1

n∑
j=1

B4
ij + 2

n∑
i=1

n∑
j=1

C4
ij

)
. (1)

It is easy to show that the sum of all the elements A4
ij and B4

ij is invariant to sign-

reversals of columns, column permutations, and row permutations in Du and Dl. As a

result, minimizing the M4 value of the concatenated design D is equivalent to minimizing

the sum of the elements C4
ij in (1). For this reason, the CC/VNS algorithm minimizes the

following objective function to improve the B4 value of the concatenated design:

b(D) =
n∑

i=1

n∑
j=1

C4
ij.

We further reduce the computations required as follows. We first note that the calcula-

tion of b(D) implies a matrix multiplication of an n×m matrix Du and an m× n matrix

DT
l . The number of computations required by this operation is [2m− 1]n2. So, every time

the algorithm sign switches a column or swaps two columns in Dl, recalculating the matrix

2

DuD
T
l from scratch requires [2m− 1]n2 calculations to get the resulting objective value.

A computationally cheaper approach is to change only the elements in C that correspond

to the columns of Dl involved in a sign switch or swap.

Denote the columns of Du and Dl as ui and vi, respectively, i = 1, . . . ,m. The matrix

C can be expressed as a sum of matrices,

C = u1 v
T
1 + · · · + umv

T
m,

where ui v
T
i is a matrix of dimension n × n. The matrix ui v

T
i is the contribution of the

column ui in Du and the column vi in Dl to C. This contribution is independent of the

other columns in the parent designs. Thus, each time we sign switch or swap two columns

in Dl, we just need to change their contributions and update the matrix C. The update

formulas for C are as follows:

• Sign switch the column vi: Update matrix C to C ′ = C − 2 ui v
T
i , where C ′ is the

updated matrix. That is, subtract the contribution of the current column vi and add

the contribution of the new column −vi. Note that the contribution of −vi is −ui vTi .

This procedure requires 2n2 +n calculations: n multiplications to compute −2 ui , n2

multiplications to compute −2 ui v
T
i , and n2 summations to add the result to matrix

C.

• Swap columns vi and vj: Update matrix C as C ′ = C−(ui v
T
i +uj v

T
j)+(ui v

T
j +uj v

T
i).

That is, remove the contribution of columns ui and vj in their current positions from

C and add their new contribution due to their new positions in the lower design. Note

that this procedure requires 8n2+2n calculations: 2n multiplications to compute −ui
and −uj , 4n2 multiplications to compute −ui vTi ,−uj vTj , ui vTj and uj v

T
i , and 4n2

summations to add the results to matrix C.

The number of calculations required by the updating formulas for matrix C is clearly

smaller than the matrix multiplication DuD
T
l when m > 5. More importantly, the number

of calculations required by the updating formulas does not depend on the numbers of

factors in the concatenated design. As a specific example, for two parent designs with 32

runs and 10 factors, the number of calculations required for a complete update of C when

3

making a change in Dl is 19,456; the number of calculations required by the quick updating

procedure is 2,080 for a sign switch of a column, and 8,256 for a swap between two columns.

The difference between the number of calculations increases with the number of factors.

Although the number of calculations saved by either updating formula suggests that both

should be included in the implementation of our CC algorithm, the Matlab implementation

only includes the updating formula for a sign switch. A computing time study (not shown)

revealed that the updating formula for a swap of two columns requires the same or slightly

more time than just changing the positions of the two columns and calculating matrix C

from scratch. This is probably due to computer memory allocation.

A.2 F 4 optimization

Let the F4 vector of a strength-3 design be F4 = (e0, e1, . . . , er), where ek denotes the

frequency of the J4-characteristics that equal N − 16k > 0 (Deng and Tang, 1999). Also,

note that the run sizes of concatenated strength-3 designs are multiples of 16, so that

r = N/16 − 1. We define the objective function, f(D), as a linear combination of the

elements of F4, that is

f(D) = M0e0 + · · · +Mrer.

To mimic the G-aberration criterion, we ensure that M0 >> · · · >> Mr. More specifi-

cally, we use Mi = 105(r−i), where i = 0, 1, . . . , r.

In Matlab, the F4 vector can be efficiently generated by using the two-factor interaction

contrast matrix to calculate the J4-characteristics. Let X and Y be the two-factor inter-

action contrast matrices for designs Du and Dl, respectively. Without losing generality, let

the columns of the matrix X (Y) be formed as the element-wise products ci � cj, where ci

is the i-th column of Du (Dl), i = 1, . . . ,m− 1 and j = i+ 1, . . . ,m. Then, the two-factor

interaction contrast matrix of the concatenated design can be constructed as

Z =
[
XT , Y T

]T
.

4

Now, consider the matrix

W = ZTZ = XTX + Y TY. (2)

It is easy to show that each of the J4-characteristics of the concatenated design D occurs

in W six times. In Matlab, this procedure is far more efficient than computing the J4-

characteristics one by one using loop-based operations. Note that the CC/VNS algorithm

performs changes to the lower design only. Therefore, we just need to compute matrix

Y TY and add it to the constant matrix XTX. We can further improve the computing time

by changing only the J4-characteristics of columns involved in a change. We explain this

below for a sign switch in a column of Dl.

Consider a column of D, dr =
[
uTr , v

T
r

]T
, where ur and vr are the rth columns of Du

and Dl, respectively. Let E and G be two submatrices of Z such that the columns of E

include all interactions involving dr and G contains the rest of the interactions. Then, the

matrix U = ETG contains only the J4-characteristics that involve column dr and each of

them appears three times. Note that we can express matrices E and G as

E =
[
ET

u , E
T
l

]T
and G =

[
GT

u , G
T
l

]T
,

where Eu and Gu are submatrices of X and El and Gl are submatrices of Y . Then, we can

write matrix U as

U = ET
uGu + ET

l Gl. (3)

From this expression, it is easy to see that the J4-characteristics of the modified column

d′r =
[
uTi ,−vTi

]T
can be obtained by multiplying matrix ET

l Gl in (3) by −1. For this

reason, to compute the change in the F4 vector of the concatenated design due to a sign

switch of column vr in Dl, we only need to remove the J4-characteristics corresponding to

column dr, and add the J4-characteristics corresponding to d′r.

If the columns vi and vj of Dl are to be swapped, we update Y by computing the

element-wise product of column vi � vj with each of the columns in matrix Y that involve

vi or vj.

5

B Algorithm performance evaluation

We implemented the CC/VNS algorithm in Matlab. In this section, we evaluate its per-

formance for improving concatenated designs. We evaluate the impact of the two main

components of our algorithm, the column change algorithm and the neighborhood struc-

tures of the VNS, on the B4 value and the F4 vector of the concatenated designs. We test

our algorithm using five design cases involving three different run sizes and numbers of fac-

tors. Reported computing times relate to a standard CPU (Intel(R) Core(TM i7 processor,

2.8 GHz, 8 GB)).

B.1 Design cases

Table 1 shows the five design cases we used to evaluate the CC/VNS algorithm. The

concatenated designs differ in run size, number of factors, and parent designs. All parent

designs minimize the G2-aberration criterion. The first instance, OA64One, requires the

construction of a 64-run design with 16 factors by concatenating two different 16-factor

32-run parent designs that do not minimize the G-aberration criterion. The second in-

stance, OA64Two, requires the construction of a 64-run design with 16 factors from two

different 16-factor 32-run parent designs that both minimize the G-aberration criterion.

The third instance, OA80, requires the construction of an 80-run concatenated design with

20 factors from different parent designs that both have minimum G-aberration. For the

fourth instance, OA96One, we consider a 96-run concatenated design with 24 factors that is

constructed by concatenating two 48-run OAs with different F4 vectors. The last instance,

OA96Two, is based on two identical minimum G-aberration 48-run OAs.

Table 2 shows the computing times required for 10 optimizations performed by the

CC/VNS algorithm. For each of the cases in Table 1, Table 2 gives the averages and

standard deviations of the computing times for the two objective functions minimized.

Each optimization started with a random permutation of the lower design’s columns and

a random sign switch in these columns.

Clearly, it takes much more computing time to minimize the F4 objective function than

to minimize B4. For the 96-run design cases with m = 24 factors, on average, more than

one hour is needed for a single optimization. To construct designs that optimize the F4

6

Table 1: Design cases used to evaluate the performance of the CC/VNS algorithm. The
upper (Du) and lower (Dl) parent designs have N/2 runs, m factors, a generalized resolution
R and an F4 vector as indicated. A dash as an element of the F4 vector means that the
corresponding J4-characteristic does not exist. The concatenated designs have N runs and
m factors. Labels of the parent designs come from the enumeration of Schoen et al. (2010).

Du Dl

Case N m Label R F4(48, 32, 24, 16, 8) B4 Label R F4(48, 32, 24, 16, 8) B4

OA64One 64 16 2 4 (−, 76, 0, 256, 0) 140 3 4 (−, 44, 0, 384, 0) 140
OA64Two 64 16 4 4 (−, 28, 0, 448, 0) 140 5 4 (−, 28, 0, 448, 0) 140

OA80 80 20 2 4.4 (−, 0, 285, 0, 4560) 285 3 4.4 (−, 0, 285, 0, 4560) 285
OA96One 96 24 2 4 (66, 0, 0, 3960, 0) 506 60 4.67 (0, 0, 0, 4554, 0) 506
OA96Two 96 24 60 4.67 (0, 0, 0, 4554, 0) 506 60 4.67 (0, 0, 0, 4554, 0) 506

Table 2: Computing times for 10 optimizations performed by the CC/VNS algorithm.
Average time ± standard deviation in seconds.

Instance B4 F4

OA64One 4 ± 1.18 93.1 ± 17.2
OA64Two 3.6 ± 0.86 89.4 ± 23.4

OA80 19.1 ± 5.38 816.8 ± 268.8
OA96One 80.1 ± 14.98 4275 ± 1582.3
OA96Two 78.11 ± 11.95 3733 ± 1186.8

vector with run sizes N > 96 and m > 24, we have to restrict the size of the neighborhood

N4 to be 24!/ [3!(24 − 3)!] = 2024, the size of N4 when m = 24, to keep the computing

times for one iteration within 4 hours.

B.2 CC algorithm

The column change part of the CC/VNS algorithm is an algorithm in its own right. In this

section, we demonstrate the effectiveness of the CC algorithm to minimize the B4 value or

the F4 vector of the concatenated design. For each of the design cases listed in Table 1, we

generate 1,000 random starting plans of the lower parent design and optimize the B4 value

or the F4 vector of the concatenated designs with the CC algorithm only. We compare the

results with 1,000 concatenated designs obtained from a random search. Each design is the

overall best of 10,000 randomly generated, concatenated designs.

7

Figure 1 presents box plots for the B4 values of the concatenated designs found by either

strategy. There are separate panels in the figure for each of the design cases. We display the

medians as dots in all box plots in this document. Figure 1a is concerned with OA64One.

Here, the medians of the B4 values for the random search and the CC algorithm both equal

65.5. For the CC algorithm, the median coincides with the upper quartile so that few of

the B4 values produced by that algorithm exceed the median. For the random search, the

median coincides with the lower quartile, so that most of the B4 values produced by the

random search will be larger than the median. This shows that we are better off by using

the CC algorithm than by conducting a random search.

The case of OA64Two is illustrated in Figure 1b. Here, the median B4 value provided

by the CC algorithm is smaller than the median B4 value of the random search. Finally,

for the larger cases, Figures 1c−1e clearly show that the majority of the B4 values obtained

by the CC algorithm are smaller than those obtained by the random search. We conclude

that the CC algorithm outperforms a random search, and that the improvement over the

random search increases with the size of the design.

To evaluate the F4 optimization, we check the generalized resolution as well as the f(D)

values of the concatenated designs. Figure 2 shows the distribution of the generalized

resolutions of the concatenated designs from the random search and the CC algorithm.

Figure 2a shows that, for the OA64One case, the CC algorithm produces substantially

more designs with a generalized resolution of 4.5 than the random search. The fact that

this resolution is reached in only 10% of the runs of the algorithm suggests that at least

10 restarts of the CC algorithm are needed for an optimal result with the stand alone

CC algorithm. Regarding the OA64two case, Figure 2b shows that the CC algorithm and

the random search resulted in the same number of concatenated designs with generalized

resolution 4.25 and with generalized resolution 4.5. For the 80-run case, Figure 2c shows

that the CC algorithm only produced concatenated designs with a generalized resolution of

4.6, while the random search generated 85 designs with a generalized resolution of 4.4. For

the OA96One case, the CC algorithm created 105 concatenated designs with a generalized

resolution of 4.5, whereas the random search produced only designs with a generalized

resolution of 4.33; see Figure 2d. Finally, all concatenated designs for the OA96Two case

8

had a resolution of 4.67, regardless of whether the CC algorithm or the random search was

used. For this reason, Figure 2 does not include a separate panel for the OA96Two case.

We now turn to the f(D) value of the designs that optimize the F4 vector. Recall

from Section A.2 that f(D) is a linear combination of the elements of the F4 vector, in

which the frequencies of large J4-characteristics receive a larger weight than those of small

J4-characteristics. Low values for the f(D) objective function thus imply that the design

has a high generalized resolution and that the frequency of the largest J4-characteristic

is small. So the f(D) value is able to distinguish designs that have the same generalized

resolution.

Figure 3 shows the f(D) values for the concatenated designs from the random search

and the CC algorithm. Figure 3b and Figure 3c include only designs with a general-

ized resolution of 4.5 and 4.6, respectively, because, otherwise, the weights for the large

J4-characteristics would distort the figure. Figure 3a shows that the medians of the con-

catenated designs from both approaches are the same. For the CC algorithm, the median

coincides with the upper quartile, so that few of the f(D) values exceed the median. For

the random search, the median coincides with the lower quartile, so most of the f(D)

values are larger than the median. So, we are better off by using the CC algorithm than

by conducting a random search. Figures 3b–3e for the other design cases show that the

CC algorithm generally generated concatenated designs with smaller f(D) values and thus

better F4 vectors than the random search.

B.3 Neighborhood structures

In this section, we investigate how important each added neighborhood is for the perfor-

mance of the CC/VNS algorithm. We generated concatenated designs with versions of the

CC/VNS algorithm including only neighborhood N1, including neighborhood N1 and N2,

and so on. For the 64-run cases, the 80-run case, and the 96-run cases, we generated 500

concatenated designs. For the 96-run cases in which the F4 vector was optimized, we only

generated 100 concatenated designs.

Figure 4 shows box plots of the B4 values of the concatenated designs when adding

one neighborhood at a time. For the OA64One case, Figure 4a shows a decrease in the

9

61.0

62.8

64.7

66.5

Random Search Column Change

B
4

(a) OA64One

64.5

65.2

66.0

66.8

Random Search Column Change

B
4

(b) OA64Two

134.6

135.6

136.6

137.6

Random Search Column Change

B
4

(c) OA80

242.3

243.8

245.4

246.9

Random Search Column Change

B
4

(d) OA96One

242.3

243.9

245.4

247.0

Random Search Column Change

B
4

(e) OA96Two

Figure 1: Performance of the column change algorithm and a random search strategy in
terms of minimizing the B4 value. Each boxplot involves 1,000 optimized designs.

median and the variance of the B4 values when neighborhoods two and three are introduced

successively. Using neighborhoods N1−N3, almost all concatenated designs have a B4 value

10

0

25

50

75

100

4.25 4.5

%
 o

f
d

e
s
ig

n
s

(a) OA64One

0

25

50

75

100

4.25 4.5

%
 o

f
d

e
s
ig

n
s

(b) OA64Two

0

25

50

75

100

4.4 4.6

%
 o

f
d

e
s
ig

n
s

(c) OA80

0

25

50

75

100

4.33 4.5

%
 o

f
d

e
s
ig

n
s

(d) OA96One

Figure 2: Generalized resolution for concatenated designs resulting from random search
(black) and the column change algorithm (gray) for four of the design cases in Table 1.
100% corresponds to 1,000 optimized designs.

of 61. When we also include the fourth neighborhood, half of the resulting concatenated

designs for this case have a B4 value smaller than 61. For the OA64Two case, Figure 4b

shows that introducing the second neighborhood does not lead to smaller B4 values in the

concatenated design. However, successively including neighborhoods three and four leads

to large numbers of concatenated designs with B4 values lower than 65. Figure 4c shows a

decrease in the B4 values of the concatenated designs for case OA80 when the second and

the fourth neighborhood are added; there seems to be no effect of the third neighborhood

in this case. Figures 4d and 4e clearly show a shift in the median and the distribution of

the B4 values produced by each additional neighborhood for the 96-run cases.

The effect of the successive inclusion of the four neighborhoods on the f(D) value is

11

1.2 × 10
+7

1.6 × 10
+10

3.3 × 10
+10

5.0 × 10
+10

Random Search Column Change

f(
D

)

(a) OA64One

8.6 × 10
+6

9.7 × 10
+6

1.1 × 10
+7

1.2 × 10
+7

Random Search Column Change

f(
D

)

(b) OA64Two

2.3 × 10
+7

2.5 × 10
+7

2.8 × 10
+7

3.0 × 10
+7

Random Search Column Change

f(
D

)

(c) OA80

5.0 × 10
+11

1.7 × 10
+15

3.3 × 10
+15

5.0 × 10
+15

Random Search Column Change

f(
D

)

(d) OA96One

8.1 × 10
+7

8.4 × 10
+7

8.7 × 10
+7

9.0 × 10
+7

Random Search Column Change

f(
D

)

(e) OA96Two

Figure 3: Performance of the column change algorithm and a random search strategy in
terms of the f(D) value. Figures (a), (d) and (e) show f(D) values for all designs resulting
from 1,000 starts. In Figures (b) and (c), designs with a generalized resolution of 4.25
(OA64Two) or 4.4 (OA80) are disregarded.

12

shown in Figure 5. For clarity of presentation, we removed the OA64One and OA96One

designs with generalized resolutions of 4.25 and 4.5, respectively. So, all concatenated

designs involving 64, 80, and 96 runs shown in the figure have generalized resolutions

of 4.5, 4.6 and 4.67, respectively. The figure shows that a successive inclusion of the

neighborhoods N1−N4 generally improves the objective function value. The improvement

due to the third neighborhood, however, is substantial only in the OA96One case. For

that case, the median f(D) value over 500 designs decreases from 5 × 1011 to 4.8 × 1011.

As neighborhood N3 is beneficial in at least one case, we retain this neighborhood in the

CC/VNS algorithm.

B.4 Performance for 128-run designs

We further test the potential of the CC/VNS algorithm by constructing 128-run designs

with 10, 15, 20, 25 and 30 factors from 64-run parents with the same number of factors.

We tested B4 optimization as well as F4 optimization.

We obtained suitable parent designs from three different sources. The first one is the

complete collection of regular 64-run designs of strength 3 (Chen et al., 1993). We used the

minimum aberration (MA) designs as parent designs and we label these designs 64.m.MA,

where m is the number of factors. Because all the non-zero J4-characteristics equal 64 in

these designs, we use them for B4 optimization only, as they are less likely to result in

128-run designs with minimal F4 vectors.

The second source of parent designs is the collection of nonregular designs based on

quaternary linear codes (QLC) found by Xu and Wong (2007). That collection includes

one or two 64-run designs for each number of factors up to 56. Whenever two designs are

given, one design has the best B4 value and the other has the best F4 vector of the two. The

parent designs are labeled 64.m.QLC when there is a single QLC design, or 64.m.QLC/B4

and 64.m.QLC/F4 in case there are two different designs.

Finally, we used projections of the 64-run strength-3 OA with 32 factors constructed by

folding-over the Paley Hadamard matrix of order 32 (Sloane, 1999). To find designs with

25 and 30 factors, we evaluated all projections, while for 10, 15 and 20 factors, we evaluated

50,000 random projections. The projections with the best F4 vectors were used as parent

13

60.0

61.7

63.3

65.0

N1 N1 − N2 N1 − N3 N1 − N4

B
4

(a) OA64One

64.0

64.5

65.0

65.5

N1 N1 − N2 N1 − N3 N1 − N4

B
4

(b) OA64Two

133.3

134.1

135.0

135.8

N1 N1 − N2 N1 − N3 N1 − N4

B
4

(c) OA80

241.1

241.9

242.7

243.4

N1 N1 − N2 N1 − N3 N1 − N4

B
4

(d) OA96One

240.8

241.7

242.6

243.4

N1 N1 − N2 N1 − N3 N1 − N4

B
4

(e) OA96Two

Figure 4: B4 values for 500 concatenated designs produced by the CC/VNS algorithm using
neighborhoods N1, N1 −N2, N1 −N3, or N1 −N4.

designs. Details are shown in Section C. These parent designs are labeled 64.m.P. We use

these designs for F4 optimization only as they have larger B4 values than the other parent

14

1.2 × 10
+7

1.3 × 10
+7

1.4 × 10
+7

1.4 × 10
+7

N1 N1 − N2 N1 − N3 N1 − N4

f(
D

)

(a) OA64One

8.6 × 10
+6

9.0 × 10
+6

9.4 × 10
+6

9.8 × 10
+6

N1 N1 − N2 N1 − N3 N1 − N4

f(
D

)

(b) OA64Two

2.1 × 10
+7

2.2 × 10
+7

2.3 × 10
+7

2.4 × 10
+7

N1 N1 − N2 N1 − N3 N1 − N4

f(
D

)

(c) OA80

4.8 × 10
+11

5.0 × 10
+11

5.3 × 10
+11

5.6 × 10
+11

N1 N1 − N2 N1 − N3 N1 − N4

f(
D

)

(d) OA96One

7.1 × 10
+7

7.5 × 10
+7

7.9 × 10
+7

8.3 × 10
+7

N1 N1 − N2 N1 − N3 N1 − N4

f(
D

)

(e) OA96Two

Figure 5: f(D) values for concatenated designs produced by the CC/VNS algorithm using
neighborhoods N1, N1 − N2, N1 − N3, or N1 − N4. The box plots in values (a), (b), (c),
(d) and (e) show results for 470, 500, 500, 93 and 100 designs, respectively.

15

designs.

Table 3: Performance of the CC/VNS algorithm for constructing 128-run designs that
optimize the B4 value.

Parent B4 Percentage of Percentage of
design parent concatenation iterations all plans

64.10.MA 2 0 100 0.089
64.10.QLC 2 0–0.5 88 0.082
64.15.MA 30 12 100 0.000
64.15.QLC 33 12 –13.375 65 0.000
64.20.MA 125 52 100 0.000
64.20.QLC/B4 125 52 100 0.000
64.25.MA 435 198–205 45 0.000
64.25.QLC/B4 435 198–205.5 6 0.000
64.30.MA 945 447–450.5 59 0.000
64.30.QLC 945 447–455.4 13 0.000

Table 3 shows the results for 100 iterations of the CC/VNS procedure when the objective

is to optimize the B4 value. The second column shows the B4 values of parent designs.

The third column shows the range of the B4 values obtained over the 100 iterations. The

fourth column shows the percentage of the iterations in which the design with the smallest

B4 value was found. For the cases with up to 20 factors, 10 iterations should suffice to find

the best design at least once. The cases with 25 and 30 factors are clearly more demanding.

However, the range of B4 values is quite narrow. It seems therefore reasonable to use 10

iterations for these cases as well. The last column shows that only a very small proportion

of all possible plans is visited by the CC/VNS algorithm to find the final concatenated

design.

Table 4 shows the results for 100 iterations of the CC/VNS procedure when the objective

is to optimize the F4 vector. The second and third columns show the generalized resolution

(GR) of the parent and concatenated designs, respectively. The 10-factor parent designs

have resolutions of 4.75 and 4.5. For both cases, the best concatenated 10-factor designs

have GRs of 5. In addition, QLC parent designs with 15, 20, 25 and 30 factors have a

GR of 4, while the corresponding concatenated designs have an improved GR of 4.5. For

all but one case, the parent designs obtained from projections of the folded-over 32-run

16

Table 4: Performance of the CC/VNS algorithm for constructing 128-run designs under F4

optimization.

Parent GR Fmax
4 Percentage of Percentage of

design parent concatenation parent concatenation iterations all plans

64.10.P 4.75 5 96 0 53 0.173
64.10.QLC 4.5 5 8 0 90 0.077
64.15.P 4.75 4.75 726 131-139 1 0.000
64.15.QLC 4 4.5 21 32-34 25 0.000
64.20.P 4.75 4.75 2640 575-602 1 0.000
64.20.QLC/F4 4 4.5 94 160-170 1 0.000
64.25.P 4.75 4.75 6974 1682-1710 1 0.000
64.25.QLC/F4 4 4.5 247 460-483 4 0.000
64.30.P 4.75 4.75 15120 1099-1153 1 0.000
64.30.QLC 4 4.5 561 3800-3835 3 0.000

Paley matrix have the same GR as the corresponding concatenated designs. The next two

columns in Table 4 show the frequency of the largest J4-characteristic of the parent design

and the concatenated design, respectively. The 100 concatenated designs for each case with

15 or more factors show a range of frequencies for the maximum J4-characteristic. The best

value typically occurs only a few times. However, the range of the frequencies is rather

narrow, so that any concatenated designs produced by the CC/VNS algorithm is actually

a good design. The last column of Table 4 shows again that only a very small proportion

of all possible plans is visited when constructing the concatenated design.

C Parent designs

We obtained the 32-run parent designs for the 64-run concatenated designs from the com-

plete catalogs available in Schoen et al. (2010). The parent designs we considered for the

64-run designs that optimize the B4 value were the 32-run OAs that have a minimum B4

value. The parent designs for 64-run designs that optimize the F4 vector were chosen from

the top three 32-run OAs in terms of the F4 vector. That is, we sorted the F4 vectors of all

32-run OAs and then selected the first three designs. For 12 and 13 factors, there are two

OAs that can have the last position in the top three. We selected one of these two designs

17

at random.

The 64-run designs used to construct 128-run designs that optimize the B4 value in-

clude the 64-run regular minimum aberration designs (Chen et al., 1993), the 64-run designs

constructed from quaternary linear codes (Xu and Wong, 2007), and our best 64-run con-

catenated designs in terms of the B4 value. We label these designs ‘ma.l ’, ‘xw.l ’, and ‘coa.l ’,

respectively, where l is the label used by the aforementioned authors.

For 128-run designs that optimize the F4 vector, we used our own 64-run concatenated

designs and projections of the 64-run strength-3 OA with 32 factors constructed by folding-

over the Paley Hadamard matrix of order 32 (Sloane, 1999). For m < 10 and m > 22, we

evaluated all projections, while for 10 ≤ m ≤ 22, we evaluated 50,000 random projections.

The projections with the best F4 vectors were used as parent designs. Table 5 shows the best

F4 vectors for 9 ≤ m ≤ 32 and the m columns from the folded-over Paley matrix required

to obtain these vectors. The number of degrees of freedom for two-factor interaction equals

30 for m = 11 and 31 for all other designs. For 9−11 factors, some of our best 64-run

concatenated designs outperform the designs constructed from projections of the folded-

over Paley Hadamard matrix of order 32 in terms of the G-aberration criterion. For this

reason, for 9 and 10 factors, we considered our best 64-run designs in terms of the B4 value

and, for 11 factors, our best 64-run design in terms of the F4 vector, as parent designs.

D Tables of concatenated designs

We present concatenated designs with 64 and 128 runs in Tables 6, 7 and 8, respectively.

The designs are labeled as k.b or k.f, where k = m + 1 is the number of factors in the

concatenated design, b corresponds to designs that minimize the B4 value and f to designs

that sequentially minimize the F4 vector. All concatenated designs shown include the

indicator factor z =
[
1N/2,−1N/2

]T
, where 1N/2 is a N/2 × 1 column vector of ones and

N is the run size of the concatenated design. This factor increases the number of degrees

of freedom for two-factor interactions by m − 1; all interactions involving this factor are

clear. There are separate tables for 128-run designs that optimize the B4 value and for

designs that optimize the F4 vector. The tables report the generalized resolution (R), the

F4 vector, the B4 value, the degrees of freedom for two-factor interactions (df), and the

18

Table 5: Projections from the folded-over Paley Hadamard matrix of order 32 used to
construct F4-optimized 128-run designs. F4(64, 48, 32) = (0, 0, 0) for all designs.

m Label F4(16) Columns

9 P9 58 1 2 3 4 5 11 12 19 30
10 P10 96 3 9 11 13 19 21 23 28 29 31
11 P11 160 2 3 6 8 10 11 14 16 24 25 30
12 P12 252 7 8 9 10 14 15 17 20 21 24 26 28
13 P13 370 4 5 6 9 10 13 21 24 25 28 29 30 31
14 P14 526 1 4 6 7 8 12 17 20 22 24 25 28 29 30
15 P15 726 1 2 5 7 11 13 14 15 16 21 23 24 25 28 30
16 P16 978 2 3 4 7 9 11 13 15 19 21 22 24 27 28 29 30
17 P17 1286 5 7 8 9 13 15 16 17 19 20 21 22 23 24 26 27 29
18 P18 1666 2 5 7 8 10 11 14 15 16 17 18 19 20 21 22 24 28 31
19 P19 2112 1 4 6 7 8 10 11 13 14 15 17 18 20 23 24 27 29 30 31
20 P20 2640 1 2 3 4 7 8 9 11 12 13 15 17 23 24 25 26 27 28 30 31
21 P21 3280 1 2 3 4 5 8 10 11 12 14 15 17 19 20 22 23 24 25 28 29 30
22 P22 4018 1 4 5 7 9 10 12 15 16 17 18 19 20 21 22 23 24 25 26 27 30 31
23 P23 4874 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 22 24 29 30
24 P24 5854 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 25 30
25 P25 6974 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 27
26 P26 8244 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 29 30
27 P27 9680 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 27 28 30
28 P28 11296 1 − 28
29 P29 13104 1 − 29
30 P30 15120 1 − 30
31 P31 17360 1 − 31
32 P32 19840 1 − 32

upper (Du) and lower parents (Dl) of the concatenated designs. The columns γ and δ in

the tables denote the columns in Dl of which the signs have to be switched, and the column

permutation required to obtain the final design after the sign switch, respectively.

The indicator factor can be used as a blocking factor, in which case the number of

degrees of freedom for interactions should be decreased by m − 1. If the concatenated

design is made up from different parent designs, we recommend to run first the parent

design with the smallest B4 value or the best F4 vector, or the one with the largest number

of degrees of freedom for interactions, depending on the interest of the experimenter. There

are four cases in which our 64-run designs are made from different parent designs and five

cases in which our 128-run designs are constructed from different parents.

For 64 runs, the concatenated designs based on different parent designs are 9.b, 10.b,

19

12.f and 16.b. Table 6 highlights the parent designs with the best B4 value (a), the best

F4 vector (b), and the largest number of degrees of freedom for two-factor interactions (c).

For 9 and 10 factors, both parent designs have the same B4 value and number of degrees of

freedom for interactions but one is best in terms of the G-aberration criterion. For 12 and

16 factors, the parent designs have the same number of degrees of freedom for interactions

and the same B4 value, but parent 20 (11 factors) and 3 (15 factors) have a better F4 vector

than parents 21 and 2, respectively.

For 128 runs, the concatenated designs based on different parent designs are 25.b, 27.b,

28.b, 30.b, and 32.b. Each of these designs consists of a QLC design and a MA design.

In each, both parent designs have the same B4 value and the same number of degrees of

freedom for two-factor interactions, but the QLC designs have a smaller G-aberration. If

the indicator factor is used as a blocking factor, we therefore recommend starting with the

QLC design.

The steps required to construct the concatenated designs from Tables 6 and 8 are:

1. Obtain the upper (Du) and lower (Dl) parent designs in m factors.

2. Switch the signs of the columns γ in Dl. Denote the resulting design by Ds.

3. Arrange the columns of Ds in the order indicated by δ. Denote the resulting design

by Dsp.

4. Concatenate Du and Dsp to create design D.

5. Append the indicator factor column z to D to obtain the final design involving k =

m+ 1 factors.

Example. To construct the 64-run design for 10 factors that optimizes the B4 value, we

take OA(32, 29, 3) with ID 34 from Schoen et al. (2010) as the lower parent design. Next,

we generate design Ds by reversing the signs of columns 3, 5, 6, 7, and 8 in that design.

Subsequently, we generate designDsp by arranging the columns of design Ds in the following

order: 6, 3, 4, 5, 2, 8, 9, 1, 7. That is, column 6 of Ds is the first column of design Dsp,

column 3 of Ds is the second column of Dsp, column 4 of Ds is the third column of Dsp, and

so on. Next, we concatenate the 9-factor orthogonal array ID 27 from Schoen et al. (2010)

20

with this design. Finally, we add the extra factor z = [132,−132]
T to the concatenated

design to produce the 64-run design for 10 factors that optimizes the B4 value. This design

has a generalized resolution of 4.75, F4(64, 48, 32, 16) = (0, 0, 0, 32), B4 = 2, and 45 degrees

of freedom for two-factor interactions. So, the design permits estimation of all two-factor

interactions along with the main effects.

Table 6: Concatenated designs with 64 runs. a: parent design with best B4 value; b:
parent with the best F4 vector; c: parent with the largest number of degrees of freedom for
two-factor interactions.

Design Du Dl R F4(64, 48, 32, 16) B4 df γ δ

9.b 23ac 32abc 4.75 (0, 0, 0, 16) 1 36 1, 5, 8 4, 1, 8, 3, 6, 2, 5, 7
9.f 32 32 4.75 (0, 0, 0, 16) 1 36 2, 3, 4, 5 1, 4, 2, 8, 5, 3, 7, 6
10.b 27ac 34abc 4.75 (0, 0, 0, 32) 2 45 3, 5, 6, 7, 8 6, 3, 4, 5, 2, 8, 9, 1, 7
10.f 34 34 4.75 (0, 0, 0, 32) 2 44 1, 5, 8, 9 6, 4, 8, 3, 2, 1, 7, 9, 5
11.b 20 20 4.5 (0, 0, 16, 0) 4 48 1, 2, 3, 5, 6, 8, 9, 10 6, 5, 7, 9, 4, 2, 10, 8, 1, 3
11.f 32 32 4.75 (0, 0, 0, 108) 6.75 40 1, 2, 3, 6, 7, 8, 10 1, 4, 3, 2, 7, 10, 6, 8, 5, 9
12.b 10 10 4.5 (0, 0, 21, 72) 9.75 41 1, 2, 3, 4, 5, 8, 9 3, 7, 6, 4, 2, 1, 5, 10, 11, 8, 9
12.f 20abc 21ac 4.5 (0, 0, 5, 154) 10.88 41 1, 2, 3, 5, 6, 9, 11 10, 1, 7, 2, 5, 11, 4, 9, 8, 6, 3
13.b 8 8 4.5 (0, 0, 36, 96) 15 42 2, 4, 7, 8, 9, 10, 11 7, 6, 4, 8, 3, 5, 1, 2, 11, 12, 10, 9
13.f 21 21 4.5 (0, 0, 10, 216) 16 42 1, 4, 5, 6 12, 7, 10, 2, 1, 9, 3, 4, 11, 8, 5, 6
14.b 2 2 4.5 (0, 0, 88, 0) 22 43 1, 2, 4, 5, 9, 11, 12, 13 7, 5, 6, 8, 11, 12, 9, 10, 2, 3, 1, 4, 13
14.f 12 12 4.5 (0, 0, 24, 292) 24.25 43 1, 6, 10, 12, 13 13, 4, 3, 1, 8, 5, 6, 10, 7, 12, 11, 9, 2
15.b 2 2 4.25 (0, 8, 68, 184) 33 44 1, 2, 3, 4, 5, 6, 9, 12, 13 14, 10, 13, 11, 3, 8, 4, 5, 6, 7, 1, 2, 9, 12
15.f 8 8 4.5 (0, 0, 38, 406) 34.88 44 3, 7, 10, 12, 13, 14 11, 9, 6, 14, 2, 5, 13, 7, 1, 10, 3, 4, 12, 8
16.b 2ac 3abc 4 (9, 0, 72, 288) 45 45 1, 3, 5, 8, 9, 10, 11, 12, 13, 14 8, 7, 1, 2, 12, 11, 10, 9, 4, 3, 5, 6, 13, 14, 15
16.f 5 5 4.5 (0, 0, 57, 552) 48.75 45 1, 3, 4, 8, 11, 12, 13 5, 2, 12, 14, 9, 8, 11, 13, 10, 7, 1, 6, 4, 3, 15
17.b 3 3 4 (12, 0, 96, 384) 60 46 1, 2, 3, 4, 7, 8, 10, 11, 14, 16 15, 16, 14, 13, 9, 10, 12, 11, 4, 3, 6, 5, 7, 8, 1, 2
17.f 4 4 4.5 (0, 0, 83, 708) 65 46 1, 8, 9, 10, 11 11, 13, 12, 1, 8, 7, 9, 16, 10, 14, 5, 15, 3, 2, 4, 6

E 128-run designs of strength 4

It is known that strength-4 128-run designs exist with up to 15 factors; see Hedayat et al.

(1999) for the construction of the 15-factor design. These designs necessarily consist of two

concatenated strength-3 64-run designs to which an extra factor is appended. Therefore,

provided the right 64-run parent designs are used as input, the CC/VNS algorithm should

be able to construct strength-4 128-run designs. The parent designs we used for concate-

nating 128-run designs that optimize the B4 value are the regular minimum aberration

designs (Chen et al., 1993), the designs constructed from quaternary linear codes (Xu and

Wong, 2007), and our own 64-run designs that minimize the B4 value. For the 128-run

designs that optimize the F4 vector, we used the best projections of the folded-over 32-run

21

T
ab

le
7:

12
8-

ru
n

co
n
ca

te
n
at

ed
d
es

ig
n
s

th
at

op
ti

m
iz

e
th

e
F
4

ve
ct

or
.
F
4
(1

28
,1

12
,9

6,
80
,6

4,
48

)
=

(0
,0
,0
,0
,0

)
fo

r
al

l
d
es

ig
n
s.

D
es

ig
n

D
u

D
l

R
F
5
(9

6,
64
,3

2)
B

5
d

f
γ

δ

10
.f

co
a.

9.
b

co
a.

9.
b

5.
25

(1
,

4,
23

)
3

45
6,

9
1,

9,
8,

4,
5,

2,
3,

7,
6

11
.f

co
a.

10
.b

co
a.

10
.b

5.
25

(2
,

8,
46

)
6

55
1,

4,
9

1,
7,

8,
9,

6,
5,

2,
3,

4,
10

D
es

ig
n

D
u

D
l

R
F
4
(3

2,
16

)
B

4
d

f
γ

δ

12
.f

co
a.

11
.f

co
a.

11
.f

4.
75

(1
,

15
0)

2.
41

66
1,

2,
7,

9,
10

10
,1

1,
6,

8,
9,

4,
7,

3,
2,

1,
5

13
.f

P
12

P
12

4.
75

(3
2,

28
6)

6.
47

74
1,

3,
5

10
,1

1,
7,

3,
8,

2,
4,

9,
12
,5
,1
,6

14
.f

P
13

P
13

4.
75

(5
2,

40
8)

9.
63

75
2,

8,
9,

12
,1

3
11
,8
,6
,1
,9
,4
,7
,2
,5
,1

2,
3,

10
,1

3
15

.f
P

14
P

14
4.

75
(8

8,
55

0)
14

.0
9

76
1,

3,
5,

8,
11
,1

2,
13

6,
13
,8
,3
,5
,2
,1

0,
4,

14
,7
,1
,1

1,
9,

12
16

.f
P

15
P

15
4.

75
(1

31
,

75
2)

19
.9

4
77

2,
3,

4,
7,

8,
10
,1

1,
12
,1

3,
14

2,
5,

13
,8
,1

4,
10
,4
,6
,1

2,
9,

1,
7,

15
,3
,1

1
17

.f
P

16
P

16
4.

75
(1

89
,

10
18

)
27

.7
2

78
2,

3,
6,

7,
8,

11
,1

2,
13
,1

4
10
,3
,1

1,
8,

5,
7,

13
,1

6,
1,

6,
2,

9,
14
,1

5,
12
,4

18
.f

P
17

P
17

4.
75

(2
63

,
12

84
)

36
.5

79
3,

6,
8,

9,
10
,1

1,
13
,1

5,
16
,1

7
5,

11
,3
,1

4,
7,

9,
1,

12
,2
,1

7,
13
,8
,6
,1

0,
15
,1

6,
4

19
.f

P
18

P
18

4.
75

(3
55

,
16

72
)

48
.3

1
80

1,
7,

8,
10
,1

1,
12
,1

8
15
,1

4,
4,

11
,1
,7
,1

7,
13
,5
,6
,1

2,
18
,9
,2
,1

6,
8,

3,
10

20
.f

P
19

P
19

4.
75

(4
57

,
21

06
)

61
.4

7
81

1,
2,

6,
7,

10
,1

1,
13
,1

4,
16
,1

7,
18
,1

9
17
,1

2,
16
,1

9,
4,

3,
9,

13
,1

4,
11
,1
,7
,1

5,
5,

10
,8
,2
,1

8,
6

21
.f

P
20

P
20

4.
75

(5
84

,
26

56
)

78
82

1,
2,

4,
6,

7,
8,

10
,1

2,
16
,1

7
5,

7,
18
,1

0,
2,

11
,3
,1

9,
12
,1

6,
9,

6,
4,

20
,1

7,
14
,1
,1

5,
8,

13
22

.f
P

21
P

21
4.

75
(7

53
,

31
88

)
96

.8
8

83
2,

3,
4,

7,
8,

9,
10
,1

3,
15
,1

6,
19
,2

1
1,

4,
15
,2

1,
16
,8
,1

7,
7,

20
,1

0,
11
,6
,1

4,
2,

5,
18
,9
,3
,1

9,
13
,1

2
23

.f
P

22
P

22
4.

75
(9

42
,

38
68

)
11

9.
31

84
2,

5,
6,

7,
8,

11
,1

2,
14
,1

7,
18
,2

0,
21
,2

2
5,

18
,2

2,
14
,1

3,
9,

15
,4
,8
,2

0,
19
,7
,2
,3
,1

2,
6,

11
,1

6,
10
,1
,1

7,
21

24
.f

P
23

P
23

4.
75

(1
15

0,
47

08
)

14
5.

44
85

3,
6,

7,
10
,1

1,
15
,1

7,
20

11
,1

6,
9,

8,
10
,1

8,
6,

5,
7,

14
,1

2,
19
,3
,1

3,
15
,2

3,
1,

17
,2

0,
22
,2

1,
4,

2
25

.f
P

24
P

24
4.

75
(1

40
5,

55
92

)
17

5.
19

86
1,

2,
3,

5,
8,

11
,1

2,
16
,1

7,
19
,2

1,
22
,2

3,
24

15
,2

0,
5,

21
,8
,2

2,
19
,1

2,
7,

18
,2

3,
10
,1

4,
9,

24
,1
,6
,1

6,
3,

11
,4
,1

7,
13
,2

26
.f

P
25

P
25

4.
75

(1
69

5,
66

20
)

20
9.

38
87

2,
3,

7,
9,

10
,1

3,
14
,1

6,
17
,1

9,
20
,2

1,
23
,2

5
7,

18
,2

4,
25
,1

5,
8,

2,
20
,2

2,
19
,1

4,
13
,1
,6
,1

1,
17
,1

2,
21
,1

6,
9,

3,
5,

23
,4
,1

0
27

.f
P

26
P

26
4.

75
(2

01
8,

78
02

)
24

8.
03

88
2,

3,
8,

9,
10
,1

1,
13
,1

5,
21
,2

2,
26

24
,2
,1

0,
25
,1

4,
18
,1

9,
9,

4,
8,

20
,1

6,
11
,1

5,
17
,3
,1
,7
,2

1,
23
,2

2,
5,

13
,2

6,
6,

12
28

.f
P

27
P

27
4.

75
(2

38
6,

92
28

)
29

3.
31

89
6,

7,
8,

10
,1

1,
12
,1

4,
15
,1

9,
20
,2

1,
22
,2

4,
26

26
,3
,2

7,
5,

6,
17
,1
,2

1,
18
,2

4,
13
,4
,1

4,
23
,2

5,
20
,1

2,
19
,1

1,
10
,2
,2

2,
16
,1

5,
9,

8,
7

29
.f

P
28

P
28

4.
75

(2
80

0,
10

74
4)

34
2.

88
90

2,
3,

6,
8,

10
,1

3,
15
,1

6,
17
,1

9,
20
,2

1,
22
,2

3,
25
,2

6,
28

3,
6,

28
,2

2,
18
,1

9,
1,

25
,2
,1

2,
10
,1

7,
7,

16
,1

3,
20
,2

6,
24
,2

7,
21
,1

4,
15
,9
,2

3,
4,

11
,8
,5

30
.f

P
29

P
29

4.
75

(3
28

0,
12

23
6)

39
6.

19
91

1,
2,

3,
5,

6,
7,

8,
9,

13
,1

4,
15
,1

7,
18
,2

2,
29

25
,2

4,
18
,4
,2

2,
8,

7,
15
,1

2,
26
,3
,2

3,
11
,2

7,
21
,5
,2

8,
10
,1
,9
,2

0,
13
,1

9,
17
,1

4,
6,

2,
16
,2

9
31

.f
P

30
P

30
4.

75
(3

79
6,

14
12

8)
45

8
92

2,
3,

5,
6,

7,
8,

9,
12
,1

3,
15
,1

6,
17
,1

9,
21
,2

2,
23
,2

4,
27
,2

8,
30

4,
9,

14
,7
,2

7,
1,

19
,1

3,
23
,2

4,
3,

5,
11
,2

2,
29
,3

0,
25
,6
,2

1,
10
,1

7,
15
,1

8,
20
,2

8,
12
,2
,8
,2

6,
16

32
.f

P
31

P
31

4.
75

(4
37

2,
16

32
0)

52
8.

25
93

1,
4,

6,
9,

11
,1

3,
16
,1

7,
20
,2

1,
24
,2

6,
29

9,
8,

23
,7
,2
,1

4,
22
,1
,1

9,
15
,2

4,
31
,1

7,
5,

3,
25
,3

0,
10
,2

6,
11
,1

3,
28
,1

2,
6,

27
,4
,2

1,
18
,2

0,
29
,1

6
33

.f
P

31
P

31
4.

75
(5

04
4,

18
59

6)
60

5.
81

94
2,

5,
6,

8,
9,

11
,1

5,
17
,1

8,
20
,2

3,
26
,2

8,
30
,3

1,
32

27
,7
,8
,2
,3
,9
,6
,1

9,
13
,2

8,
24
,2

1,
15
,3

2,
11
,1
,2

6,
14
,1

2,
4,

29
,2

3,
31
,1

0,
22
,2

0,
5,

25
,1

6,
17
,3

0,
18

22

T
ab

le
8:

12
8-

ru
n

co
n
ca

te
n
at

ed
d
es

ig
n
s

th
at

op
ti

m
iz

e
th

e
B

4
va

lu
e.

F
4
(1

28
,1

12
)

=
(0
,0

)
fo

r
d
es

ig
n
s

w
it

h
10

–1
5

fa
ct

or
s.

a
:

p
ar

en
t

d
es

ig
n

w
it

h
b

es
t
B

4
va

lu
e;

b
:

p
ar

en
t

w
it

h
th

e
b

es
t
F
4

ve
ct

or
;
c
:

p
ar

en
t

w
it

h
th

e
la

rg
es

t
n
u
m

b
er

of
d
eg

re
es

of
fr

ee
d
om

fo
r

tw
o-

fa
ct

or
in

te
ra

ct
io

n
s.

D
es

ig
n

D
u

D
l

R
F
5
(9

6,
64
,3

2)
B

5
d

f
γ

δ

10
.b

x
w

.9
-3

.a
c

x
w

.9
-3

.a
c

5.
5

(0
,

4,
32

)
3

45
1,

2,
3,

4,
6,

7
1,

8,
3,

4,
7,

6,
5,

2,
9

11
.b

co
a.

10
.b

co
a.

10
.b

5.
5

(0
,

2,
88

)
6

55
2,

3,
5,

6,
7,

8,
10

1,
2,

5,
4,

3,
8,

7,
6,

9,
10

12
.b

x
w

.1
1-

5.
ac

x
w

.1
1-

5.
ac

5.
5

(0
,

44
,

0)
11

66
2,

5,
6,

10
,1

1
1,

9,
8,

10
,1

1,
7,

6,
2,

3,
5,

4
13

.b
x
w

.1
2-

6.
ac

x
w

.1
2-

6.
ac

5.
5

(0
,

72
,

0)
18

78
6,

9,
10
,1

2
5,

6,
3,

4,
2,

1,
11
,1

2,
10
,9
,8
,7

14
.b

x
w

.1
3-

7.
ac

x
w

.1
3-

7.
ac

5.
5

(0
,

11
2,

0)
28

91
1,

2,
8,

12
1,

2,
3,

6,
7,

4,
5,

12
,1

3,
10
,1

1,
8,

9
15

.b
x
w

.1
4-

8.
ac

x
w

.1
4-

8.
ac

5.
5

(0
,

16
8,

0)
42

10
5

2,
3,

12
,1

3,
14

2,
1,

5,
6,

11
,1

2,
13
,1

4,
4,

3,
10
,9
,8
,7

D
es

ig
n

D
u

D
l

R
F
4
(1

28
,1

12
,9

6,
80
,6

4,
48
,3

2,
16

)
B

4
d

f
γ

δ

16
.b

m
a.

15
-9

.1
m

a.
15

-9
.1

4
(2

,
0,

0,
0,

40
,

0,
0,

0)
12

94
2,

3,
4,

5,
6,

8,
9,

10
,1

1,
12
,1

4
11
,1

0,
12
,7
,1

3,
6,

9,
14
,8
,1
,5
,1

5,
4,

2,
3

17
.b

m
a.

16
-1

0.
1

m
a.

16
-1

0.
1

4
(6

,
0,

0,
0,

44
,

0,
0,

0)
17

99
3,

4,
7,

12
,1

4,
15
,1

6
4,

9,
2,

6,
1,

11
,7
,1

3,
15
,3
,8
,5
,1

0,
14
,1

6,
12

18
.b

x
w

.1
7-

11
.a

x
w

.1
7-

11
.a

4
(1

1,
0,

0,
0,

48
,

0,
0,

0)
23

99
2,

4,
7,

8,
9,

10
,1

1,
12
,1

5,
17

11
,1

0,
14
,6
,7
,4
,1

2,
13
,1
,5
,8
,1

6,
17
,1

5,
3,

2,
9

19
.b

x
w

.1
8-

12
.a

x
w

.1
8-

12
.a

4
(1

4,
0,

0,
0,

64
,

0,
0,

0)
30

10
0

3,
4,

5,
6,

11
,1

2,
15
,1

6,
17
,1

8
12
,1

1,
13
,1

4,
17
,1

8,
3,

16
,2
,1
,1

0,
9,

7,
8,

5,
6,

4,
15

20
.b

x
w

.1
9-

13
.a

x
w

.1
9-

13
.a

4
(2

0,
0,

0,
0,

80
,

0,
0,

0)
40

10
5

2,
5,

13
,1

4,
16
,1

7,
18

19
,6
,3
,1

3,
5,

14
,1

6,
18
,1
,8
,1

1,
4,

12
,1

7,
2,

15
,7
,1

0,
9

21
.b

x
w

.2
0-

14
.a

x
w

.2
0-

14
.a

4
(2

0,
0,

0,
0,

12
8,

0,
0,

0)
52

10
6

1,
2,

3,
4,

6,
7,

8,
10
,1

1,
12
,1

3,
18
,2

0
20
,1

7,
5,

14
,1

9,
3,

15
,1

1,
2,

18
,6
,7
,1
,1

6,
10
,1

2,
9,

4,
13
,8

22
.b

m
a.

21
-1

5.
1

m
a.

21
-1

5.
1

4
(4

6,
0,

0,
0,

17
6,

0,
0,

0)
90

83
1,

2,
4,

5,
6,

8,
9,

10
,1

2,
16
,1

9,
20
,2

1
15
,1

6,
10
,7
,1

1,
2,

3,
9,

17
,6
,1

4,
21
,1

9,
5,

4,
1,

8,
12
,2

0,
13
,1

8
23

.b
m

a.
22

-1
6.

1
m

a.
22

-1
6.

1
4

(1
10

,
0,

0,
0,

0,
0,

0,
0)

11
0

83
1,

2,
3,

5,
7,

9,
10
,1

2,
14
,1

5,
16
,1

7,
20

8,
4,

9,
2,

5,
15
,1

0,
1,

3,
7,

11
,1

3,
12
,1

4,
6,

16
,1

8,
17
,2

1,
22
,1

9,
20

24
.b

x
w

.2
3-

17
.a

x
w

.2
3-

17
.a

4
(7

6,
0,

0,
0,

24
0,

0,
0,

0)
13

6
85

1,
2,

4,
6,

8,
11
,1

2,
13
,1

7,
18
,1

9,
20
,2

2,
23

1,
6,

7,
14
,1

5,
2,

3,
12
,1

3,
19
,1

8,
9,

8,
5,

4,
16
,1

7,
11
,1

0,
23
,2

2,
20
,2

1
25

.b
x
w

.2
4-

18
.a

m
a.

24
-1

8.
1

4
(5

1,
0,

72
,

0,
16

8,
0,

50
4,

0)
16

5
86

1,
2,

3,
5,

6,
7,

9,
10
,1

5,
19
,2

3
11
,6
,2

0,
15
,2

1,
22
,1

4,
19
,2
,7
,1

3,
18
,9
,8
,2

4,
23
,1

6,
5,

17
,1

2,
1,

3,
4,

10
26

.b
x
w

.2
5-

19
.a

x
w

.2
5-

19
.a

4
(1

09
,

0,
0,

0,
35

6,
0,

0,
0)

19
8

87
1,

2,
3,

8,
20
,2

1,
22
,2

3,
25

2,
1,

23
,2

2,
21
,2

0,
14
,1

5,
9,

11
,1

0,
24
,2

5,
8,

7,
18
,1

9,
16
,1

7,
6,

5,
3,

4,
13
,1

2
27

.b
x
w

.2
6-

20
.a

c
m

a.
26

-2
0.

1
4

(2
37

,
55

,
0,

10
4,

0,
30

4,
0,

76
0)

23
7

88
1,

2,
3,

4,
5,

16
,1

7,
18
,2

1,
23
,2

4,
25
,2

6
11
,2

3,
21
,2

4,
15
,2

6,
12
,9
,2
,6
,8
,2

0,
1,

3,
14
,1

6,
22
,1

0,
25
,1

3,
18
,7
,1

7,
19
,4
,5

28
.b

x
w

.2
7-

21
.a

c
m

a.
27

-2
1.

1
4

(6
9,

0,
12

0,
0,

35
2,

0,
88

8,
0)

28
0

89
2,

3,
5,

7,
10
,1

1,
12
,1

3,
15
,1

6,
17
,1

9,
20
,2

1,
25
,2

7
10
,2

3,
19
,2

2,
18
,1

4,
5,

27
,2

4,
12
,6
,4
,1

5,
1,

11
,2

5,
7,

16
,2

1,
17
,1

3,
20
,2

6,
2,

8,
9,

3
29

.b
x
w

.2
8-

22
.a

c
x
w

.2
8-

22
.a

c
4

(3
8,

0,
84

,
0,

56
8,

0,
16

44
,

0)
33

0
90

3,
4,

5,
6,

7,
8,

9,
13
,1

4,
17
,2

0,
28

2,
10
,4
,2

3,
17
,9
,1

3,
26
,2

7,
19
,2

2,
11
,1

4,
25
,7
,1

5,
6,

12
,1
,2

8,
21
,2

0,
3,

24
,1

6,
8,

18
,5

30
.b

x
w

.2
9-

23
.a

c
m

a.
29

-2
3.

1
4

(7
0,

0,
82

,
0,

76
4,

0,
12

62
,

0)
38

6
91

2,
3,

6,
7,

11
,1

2,
17
,1

9,
20
,2

1,
23
,2

4,
26

6,
13
,2

6,
9,

12
,4
,2

3,
25
,2

1,
15
,3
,1

9,
18
,1

4,
17
,2
,1

6,
20
,2

9,
24
,8
,1
,7
,2

7,
5,

11
,2

8,
22
,1

0
31

.b
x
w

.3
0-

24
.a

c
x
w

.3
0-

24
.a

c
4

(4
3,

0,
88

,
0,

76
8,

0,
26

00
,

0)
44

7
92

4,
5,

6,
8,

9,
10
,1

2,
13
,1

5,
16
,1

7,
24
,2

6,
30

2,
11
,2

0,
17
,1

5,
29
,1

0,
27
,2

4,
3,

19
,1

8,
8,

25
,2

6,
7,

9,
28
,2

2,
5,

30
,2

3,
13
,1

4,
1,

12
,4
,1

6,
21
,6

32
.b

x
w

.3
1-

25
.a

c
m

a.
31

-2
5.

1
4

(6
0,

0,
84

,
0,

12
12

,
0,

17
08

,
0)

51
7

93
1,

2,
4,

5,
6,

8,
10
,1

1,
13
,1

5,
16
,1

7,
18
,1

9,
24
,2

6,
27
,3

0
16
,3
,2

0,
15
,7
,1

8,
1,

10
,1

3,
5,

26
,2

7,
21
,6
,3

1,
14
,3

0,
28
,1

2,
2,

11
,2

3,
29
,2

4,
9,

17
,8
,4
,2

2,
25
,1

9
33

.b
x
w

.3
2-

26
.a

c
x
w

.3
2-

26
.a

c
4

(5
2,

0,
14

0,
0,

10
96

,
0,

29
96

,
0)

59
2

94
3,

4,
6,

8,
14
,1

7,
18
,2

1,
24
,2

8,
30
,3

2
23
,5
,1

6,
3,

20
,2

2,
8,

18
,3

0,
2,

27
,3

2,
6,

12
,2

4,
21
,7
,1

4,
15
,2

5,
4,

17
,1

9,
29
,2

6,
1,

11
,1

0,
13
,2

8,
9,

31

23

Paley matrix and our own 64-run concatenated designs as parent designs. A report of all

128-run designs we obtained and their parent designs is given in Sections C and D.

The generalized resolution of the designs we obtained by optimizing the F4 vector equals

5.25 for 10 and 11 factors and 4.75 for 12–15 factors. When minimizing the B4 value, all

10–15 factor designs we obtained had a generalized resolution of 5.5. More specifically, our

CC/VNS algorithm was able to produce strength-4 designs by minimizing the B4 value

using either the same copy of a 64-run design constructed from quaternary linear codes

or one of our own designs that minimize the B4 value. When minimizing the F4 vector,

our CC/VNS algorithm was able to find strength-4 designs for 10 and 11 factors. These

designs, however, have a generalized resolution of only 5.25. So, our CC/VNS algorithm

was not able to find designs with a generalized resolution of at least 5.5 when concatenating

parent designs based on the folded-over 32-run Paley matrix and sequentially minimizing

the F4 vector.

We compare our strength-4 128-run designs with 10–15 factors with the 128-run designs

from Xu and Wong (2007), the regular resolution V designs involving 10 and 11 factors

(Xu, 2009) and the minimum G-aberration designs we identified based on the complete

enumeration by Schoen et al. (2010). To the best of our knowledge, we are the first to

identify the minimum G-aberration 128-run designs. All designs under comparison allow

the independent estimation of all two-factor interactions, and have a B4 value of zero and

a zero F4 vector. For this reason, Table 9 shows the F5 vector of the designs. For 10 and 11

factors, all tabulated designs are minimum G2-aberration designs. As a matter of fact, the

B5 values of all 10-factor designs equal 3, while those of all 11-factor designs equal 6. While

they are not minimum G-aberration designs, the 10- and 11-factor designs produced by the

CC/VNS algorithm have a smaller G-aberration than the corresponding designs of Xu and

Wong (2007) and the regular designs of Chen et al. (1993). The minimum G-aberration

designs with 10 and 11 factors have a generalized resolution of 5.75, while our designs and

those of Xu and Wong (2007) have a generalized resolution of 5.5 only, and the regular

designs have a generalized resolution as low as 5. For 12–15 factors, our designs and the

designs of Xu and Wong (2007) are minimum G- and G2-aberration designs.

24

Table 9: F5(128, 96, 64, 32) vectors for strength-4 128-run designs with 10–15 factors.

k CC/B4 QLC MA Minimum G-aberration

10 (0, 0, 4, 32) (0, 0, 12, 0) (3, 0, 0, 0) (0, 0, 0, 48)
11 (0, 0, 2, 88) (0, 0, 24, 0) (6, 0, 0, 0) (0, 0, 0, 96)
12 (0, 0, 44, 0) (0, 0, 44, 0) (0, 0, 44, 0)
13 (0, 0, 72, 0) (0, 0, 72, 0) (0, 0, 72, 0)
14 (0, 0, 112, 0) (0, 0, 112, 0) (0, 0, 112, 0)
15 (0, 0, 168, 0) (0, 0, 168, 0) (0, 0, 168, 0)

25

References

Butler, N. A. (2003). Minimum aberration construction results for nonregular two-level

fractional factorial designs. Biometrika, 90:891–898.

Chen, J., Sun, D. X., and Wu, C. F. J. (1993). A catalogue of two-level and three-level

fractional factorial designs with small runs. International Statistical Review, 61:131–145.

Deng, L.-Y. and Tang, B. (1999). Generalized resolution and minimum aberration criteria

for Plackett-Burman and other nonregular factorial designs. Statistica Sinica, 9:1071–

1082.

Hedayat, A., Sloane, N., and Stufken, J. (1999). Orthogonal Arrays: Theory and Applica-

tions. Springer.

Schoen, E. D., Eendebak, P. T., and Nguyen, M. V. M. (2010). Complete enumeration of

pure-level and mixed-level orthogonal arrays. Journal of Combinatorial Designs, 18:123–

140.

Sloane, N. J. A. (1999). A library of Hadamard matrices.

Xu, H. (2009). Algorithmic construction of efficient fractional factorial designs with large

run sizes. Technometrics, 51:262–277.

Xu, H. and Wong, A. (2007). Two-level nonregular designs from quaternary linear codes.

Statistica Sinica, 17:1191–1213.

26

	Abstract
	1.Introduction
	2.Classification of Strength-3 Designs
	3.Algorithmic Construction of Even-Odd Designs
	3.1.Concatenation Principles
	3.2.Column Change Algorithm
	3.3.Variable Neighborhood Search Algorithm
	3.4.Performance of the CC/VNS Algorithm
	3.5.Choice of Parent Designs

	4.Results
	4.1.64 Runs
	4.2.128-Run Designs

	5.Practical Examples
	5.1.The Enzyme Stability Experiment
	5.2.The Software Process Simulation Experiment

	6.Discussion
	Supplementary Materials
	Acknowledgments
	Funding
	References

