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ABSTRACT

Definitive screening designs permit the study of many quantitative factors in a few runs more than twice
the number of factors. In practical applications, researchers often require a design for m quantitative factors,
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construct a definitive screening design for more than m factors and drop the superfluous columns. This

is done when the number of runs in the standard m-factor definitive screening design is considered too
limited or when no standard definitive screening design (sDSD) exists for m factors. In these cases, it is
common practice to arbitrarily drop the last columns of the larger design. In this article, we show that
certain statistical properties of the resulting experimental design depend on the exact columns dropped

KEYWORDS

Conference matrix;
D-efficiency; Isomorphism;
Second-order model;
Two-factor interaction.

and that other properties are insensitive to these columns. We perform a complete search for the best sets
of 1-8 columns to drop from sDSDs with up to 24 factors. We observed the largest differences in statistical
properties when dropping four columns from 8- and 10-factor definitive screening designs. In other cases,

the differences are small, or even nonexistent.

1. Introduction

Screening designs permit the experimental study of many fac-
tors in a small number of runs. Practitioners studying quantita-
tive factors may not feel comfortable with screening designs that
restrict attention to two levels per factor. They could argue that
screening also requires checking whether a factor’s main effect is
linear or not, and identifying active two-factor interactions. To
meet these concerns, Jones and Nachtsheim (2011) developed
three-level designs using a number of runs that is only one more
than twice the number of factors studied. The designs are now
called definitive screening designs (DSDs).

The original DSDs presented by Jones and Nachtsheim
(2011) were based on a heuristic optimal design algorithm. For
an odd number of factors and also for some even numbers of
factors, the original DSDs were not orthogonal. Xiao, Lin, and
Bai (2012) presented a construction of DSDs using conference
matrices. A major advantage of that construction is that it
guarantees that the resulting DSDs are orthogonal. A drawback
is that, for certain numbers of factors, the number of runs of the
resulting DSDs is larger than two times the number of factors
plus one. In this article, we refer to an n-factor DSD constructed
from an n-dimensional conference matrix as a standard DSD or
sDSD.

As an illustration, Table 1 shows how a 10-factor sDSD is
constructed from a 10 x 10 conference matrix C. The first 10
runs in the table show the original conference matrix. In general,
a conference matrix C is an n-dimensional square matrix of
—1s, 0s and 1s for which CI'C = (n — 1)I,,, where I,, is the
nx n identity matrix. Consequently, the columns of a conference
matrix are orthogonal. This implies that a conference matrix is

an ideal building block for an orthogonal experimental design.
For the design in Table 1, it is easy to verify that CTC = 9I,.

The second set of 10 runs of the 10-factor sDSD in Table 1
contains the mirror images or the negatives of the first 10 runs.
The sDSD’s final run is a center run in which all factors are set
at their middle level. Xiao, Lin, and Bai (2012) pointed out that
their construction guarantees that the linear main effects (LEs)
are orthogonal to all second-order effects (i.e., the quadratic
main effects (QEs) and the two-factor interaction effects (TFIs)),
and that the second-order effects are never completely aliased.

Conference matrices do not exist when n is odd, and when
n is 22, 34, or 58 (Colbourn and Dinitz 2006). For this reason,
it is impossible to construct sDSDs for which the run size is
as small as two times the number of factors plus one when the
number of factors is odd, or when it is 22, 34, or 58. To deal with
this problem, Xiao, Lin, and Bai (2012) recommended dropping
columns from a sDSD with one, two or three columns more than
the required number. For a design comparison, Dougherty et al.
(2015) followed this recommendation and generated a 9-factor
design with 21 runs by dropping one column from the 10-factor
sDSD in Table 1. Fidaleo et al. (2016) used the same 9-factor
DSD to investigate the electrochemical decolorization of the azo
dye RV5, a compound used for textile dyeing. In this article, we
refer to a DSD obtained by dropping one or more columns from
a sDSD as a projected DSD or pDSD.

Dropping k columns from a sDSD with n = m + k columns
can result in an m-factor design with better aliasing properties
than an m-factor sDSD so that the pDSD is more likely to iden-
tify the active effects. For instance, when comparing different
cost-efficient screening designs, Stone et al. (2014) preferred a
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Table 1. Standard definitive screening design (sDSD) with 10 factors, constructed
by folding overa 10 x 10 conference matrix C.
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6-factor pDSD with 17 runs constructed by dropping two
columns from the 8-factor sDSD to a 6-factor 13-run sDSD, due
to the substantial aliasing between pairs of TFIs and between
a QE and a TFI in the 13-run design. Patil (2017) studied
the impact of seven factors on a welding process where some
TFIs were expected to be active, and observed that the 7-factor
design formed by dropping one column from the 8-factor
sDSD exhibited a substantial amount of aliasing among the
interactions. To reduce the aliasing, he dropped three columns
from the 10-factor sDSD in Table 1, and thus used a 21-run
design instead of a 17-run design.

Errore et al. (2017) conducted a simulation study involving
sDSDs and pDSDs with 8, 10, and 12 factors. The pDSDs were
constructed by dropping two or four columns from 10-, 12-, 14-,
and 16-factor sDSDs. The simulations showed that an m-factor
pDSD is more likely to identify the active effects than an m-
factor sDSD. For this reason, Errore et al. (2017) recommended
the use of m-factor pDSDs obtained by dropping two columns
from (m + 2)-factor sDSDs.

So far, no systematic study has been performed about the
best subsets of k columns to drop from a sDSD with n =
m + k columns. In each of the applications mentioned above,
the authors arbitrarily dropped the last k columns. This is also
what commercial software packages do. However, a motivating
example detailed in Section 2 shows that there can be marked
differences in powers for detecting active effects and Type-I
error rates between pDSDs obtained by dropping different sets
of columns.

This article has three main contributions. Its first contribu-
tion is that it identifies the best sets of k columns to drop from
sDSDs. This required us to define criteria that distinguish the
designs obtained by dropping columns. In Section 3, we show
that several criteria from the literature are insensitive to the
sets of columns dropped, and that the criteria that do depend
on the sets of columns dropped are all based on correlations
between TFI contrast vectors. Our detailed study of criteria

that do and do not depend on the sets of columns dropped
provide additional insights into the properties of DSDs, and
forms the second contribution of this article. In Section 4, we
report the results of a complete search for the best sets of 1-8
columns to drop from sDSDs for up to 24 factors. In Section 5,
we compare m-factor sDSDs to m-factor pDSDs with larger run
sizes, obtained by dropping different numbers of columns from
sDSDs with more than m factors. In doing so, we highlight the
fact that TFI contrast vectors are, in several cases, more severely
aliased in pDSDs with larger run sizes than in sDSDs with
smaller run sizes. Our detailed study of this counterintuitive
phenomenon is the third contribution of this article. Finally, in
Section 6, we conclude with a discussion and some suggestions
for future research.

2. Motivating Example

Our motivating example is inspired by the study of Stone et al.
(2014) on alternative screening designs for an artificial 6-factor
experiment. Using simulations, these authors compared the per-
formance of a 16-run two-level fractional factorial design, a 12-
run Plackett-Burman design, a 16- and a 24-run two-level no-
confounding design (Jones and Montgomery 2010) and a 17-
run pDSD to correctly identify two to four active LEs, up to
three active TFIs and up to two active QEs. In order to detect
the second-order effects with the two-level design options, it was
possible to augment these designs with extra runs such as center
or axial runs, and to fold over the designs. The goal of the study
was to identify the screening design with the lowest expected
cost for the complete experiment, measured by the total number
of runs used, the number of correctly identified active effects at
the screening stage and the efficiency of the estimates of these
effects.

Here, we consider a situation where four out of six factors
are active. The nonzero effects involving these factors are their
four LEs, their six TFIs and one QE. A sensible screening design
for this scenario would be a 6-factor 21-run pDSD obtained
by dropping four columns from the 10-factor sDSD in Table 1.
Let pDSD,, be the design constructed by dropping the last four
columns, C7, Cg, Co, and Cjg, of the 10-factor sDSD and let
pDSD,, be the design constructed by dropping the columns
Cs, Cg, Co, and Cjg instead. Figure 1 visualizes the absolute
correlations between all pairs of contrast vectors corresponding
to the LEs and the TFIs for both design options. In the color
maps, the largest absolute correlations for the TFIs equal 0.75.
They are visualized by the darkest off-diagonal cells. Figure 1(a)
shows 18 of these dark off-diagonal cells (corresponding to nine
pairs of TFIs), while there are only 12 such cells in Figure 1(b)
(corresponding to six pairs of TFIs). The differences between
the design options are also reflected in the average absolute
correlations and the sums of squared correlations between all
pairs of TFI contrast vectors. The average absolute correlation
is 0.221 for pDSD, and 0.207 for pDSDy,. The sum of squared
correlations equal 8.25 and 6.75 for pDSD, and pDSDy, respec-
tively. So, the aliasing between the TFIs is more severe when
dropping the last four columns of the design in Table 1 than
when dropping the columns Cg, Cg, Co, and Cjo.



(b) pDSDy, utilizing columns C4-C5 and C7

(a) pDSD, utilizing columns C1-Cp

Figure 1. Color maps showing absolute correlations between the LE and TFI con-
trast vectors for two 6-factor pDSDs obtained from the 10-factor sDSD in Table 1.

The difference in the average absolute correlations and in the
sum of squared correlations between the two pDSD options may
have major consequences for any data analysis using the two
screening designs. To illustrate this, we conducted a simulation
study assuming that the signal-to-noise ratio for the active LEs,
TFIs and QEs equals two, which is the smallest signal-to-noise
ratio considered in the simulation study of Stone et al. (2014).
The model used for the simulations is formally described in sup-
plementary Section A. In this section, we consider the scenario
in which the active factors were allocated to the last columns
of pDSD, and pDSDj,. We simulated 1000 response vectors for
each design and determined the set of effects declared active
using the two-step approach of Jones and Nachtsheim (2017);
see supplementary Section A for details about this method as
well as the selection of its tuning parameters. We assessed the
performance of the pDSDs in terms of powers and Type-I error
rates. We calculated the power as the fraction of the simulations
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for which the active effects were correctly declared active, and
the Type-I error rate as the fraction of the simulations for which
the inactive effects were incorrectly declared active. The supple-
mentary materials of this article include an R implementation of
our simulation study.

Figure 2(a) shows the powers for the seven active second-
order effects given our assignment of the active factors to the
designs’ columns. Both for pDSD,, and pDSDy, the powers for
the active LEs all equal 1 (not shown). The figure shows that
the powers for the active second-order effects for pDSD,, are
uniformly larger than those for pDSD,. More specifically, the
powers for pDSD,, are in the range 0.28-0.39, while, for pDSDy,
the powers for the active TFIs range from 0.71 to 0.96, and the
power for the active QE equals 0.50. Figure 2(b) shows the Type-
I error rates for the 14 inactive second-order effects. The Type-I
error rates for the inactive LEs were very close to zero for both
pDSD,, and pDSD;, (not shown). Figure 2(b) shows that the
Type-I error rates tend to be smaller for pDSDj, than for pDSD,,
since the maximum Type-I error rate for pDSD,, and pDSDj, are
0.62 and 0.34, respectively. In summary, Figure 2 demonstrates
that, in the presence of several active TFIs, the reduced aliasing
of pDSDy, when compared to pDSD,, results in a more correct
detection of the active effects.

We conducted the above simulation study for all 15 possible
assignments of the active factors to the designs’ columns and
provide a comprehensive discussion of the results in supplemen-
tary Section A. The results show that pDSD,, has the unfavorable
powers and Type-I error rates from Figure 2 for three of the
assignments, and the favorable ones for the 12 other assign-
ments. For pDSDy, two of the assignments have the unfavorable
powers and Type-I errors, while the other 13 have the favorable
ones. Given our results, we conclude that pDSDy, is preferable to
pDSD,.
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Figure 2. Powers for the active second-order effects and Type-I error rates for the inactive second-order effects for pDSDq, constructed by dropping the last columns of
the 10-factor 21-run sDSD in Table 1, and pDSDy, constructed by dropping the columns Cg, Cg, Co, and Cyg. Black bars: powers and Type-I error rates for TFls; gray bars:

powers and Type-| error rates for QEs.
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3. Criteria to Evaluate Projected Definitive Screening
Designs

To evaluate all possible pDSDs as comprehensively as possible,
we considered all the statistical criteria that have been used to
evaluate DSDs in the literature, and express these criteria as
functions of the numbers of columns dropped from the sDSDs.
The criteria either do not depend on the exact columns dropped
from the sDSDs or they do depend on these columns. Obviously,
the criteria that do not depend on the columns dropped are not
helpful to select the best possible pDSDs. The criteria that do
depend on the columns dropped allow us to determine which
pDSDs ought to be preferred, and play a central role in Section 4.
We discuss the two groups of criteria in separate subsections.

3.1. Criteria That Do Not Depend on the Columns Dropped

Supplementary Section B shows analytical expressions for (i)
relative D-efficiencies to estimate the model with all LEs and
the model with all LEs and QEs; (ii) relative standard errors for
LE and QE estimates in these models; (iii) correlations between
pairs of QE contrast vectors; (iv) correlations between the con-
trast vector of a QE and a TFI; and (v) correlations between
pairs of TFI contrast vectors involving three factors. Each of
these properties only depend on the numbers of factors in the
pDSDs and the numbers of columns dropped from the sDSDs.
So, these measures do not depend on the exact set of columns
dropped from a sDSD. They all improve with the run size of the
pDSD, except for the correlation between pairs of QE contrast
vectors which increases to 1/3 for large run sizes. Expressions
similar to ours for (i)-(v) were given by Jones and Nachtsheim
(2011), Xiao, Lin, and Bai (2012) and Georgiou, Stylianou, and
Aggarwal (2014). Our expressions differ from the ones derived
in the earlier articles in that they are written as a function of the
number of columns dropped from sDSDs.

In this section, we provide expressions for powers of signifi-
cance tests in a null model, in a model including all LEs and in
a full response surface model in two or three factors. To the best
of our knowledge, our analytical expressions for these properties
are new to the literature on DSDs.

3.1.1. Null Model and Model With All Linear Effects
Departing from a model including only the intercept or from
a model containing the intercept and all LEs, we can conduct
t-tests for individual LEs, QEs, and TFIs. Four pertinent tests
are shown in Table 2. The first two columns in the table identify
the hypothesis to be tested, while the third column shows the
terms that appear in the model besides the effect to be tested.
The fourth column shows the degrees of freedom v for the ¢
statistic. The last column is the noncentrality parameter A of the
noncentral ¢-distribution needed to calculate the power of the
test. In the table’s second column, B;, B, and B;; represent the
LE of factor i, the QE of factor i and the interaction between the
factors i and j (where i # j), respectively. The derivations for the
degrees of freedom and noncentrality parameters are included
in supplementary Section B.

The first test, labeled Ly, is useful for testing whether adding
a LE to a model containing only the intercept has added value.
The second test in Table 2, labeled Ly, is useful in a scenario

Table 2. Degrees of freedom v and noncentrality parameters A for various signifi-
cance tests using a pDSD, assuming a signal-to-noise ratio of 1 for the effect tested.

Label Hypothesis Model terms v A

L4 Bi=0 Intercept only 2m4+-k) -1 J2(m¥k =2
Lme Bi=0 Intercept + all LEs 2k+m V2(m+ k) =2
Qme Bi =0 Intercept + all LEs 2k+m—1 g%it)ﬁ%
Ime Bj=0 Intercept + all LEs 2k+m—1 V2m+k)y—4

NOTE: Setting k = 0 shows the results for a sDSD.

where the experimenter first fits a model including all m LEs and
then tests whether one LE can be removed. The third and fourth
tests, labeled Qe and I,e, are relevant in situations where the
experimenter first fits a model including the intercept and all m
LEs, and then tests whether adding a single QE or a single TFI
improves the model significantly.

All noncentrality parameters A listed in Table 2 are increasing
functions of k. As a result, the powers for the four significance
tests increase with k and with the number of runs. The powers
for the four significance tests can all be calculated as

1— Prob(—tv,a/z < T\;,A < tv,a/Z)r

where T, is a random variable following a noncentral t-
distribution with v degrees of freedom and noncentrality
parameter A, and —t, /> and ¢, 42 are the critical values based
on a central t-distribution with v degrees of freedom for a
significance level equal to «. The noncentrality parameters and
the resulting powers are independent of the sets of k columns
dropped from an (m + k)-factor sDSD, and from the values of i
and j in the effects tested (i.e., B;, Bii, and B;j); see supplementary
Section B for details.

The A values in Table 2 assume that the absolute values of 8,
Bii and Bj; equal the standard deviation of the responses, 0. In
other words, the noncentrality parameters we report correspond
to signal-to-noise ratios of 1. To calculate the power for 8, B
and B;; values equal to o, the noncentrality parameter A has to
be multiplied by .

Finally, expressions for the powers of the tests L1, Lme, Qme
and Iy for sDSDs can be obtained from those in Table 2 by
setting k = 0.

3.1.2. Response Surface Model in Two or Three Factors

For any two factors, an (m+ k)-factor sDSD projects into a face-
centered central composite design, in which the four factorial
points each appear (m + k)/2 times, and the center point as
well as the four axial points occur only once. This is also true
for any m-factor pDSD obtained from an (m + k)-factor sDSD,
independent of which k columns are dropped from the sDSD. As
a result, all two-factor projections from a sDSD and any pDSD
obtained from it are identical. All statistical properties of two-
dimensional projections of sDSDs and pDSDs are therefore also
identical.

Schoen, Eendebak, and Goos (2019) show that all three-
factor projections from a sDSD and from any pDSD derived
from it are isomorphic. The isomorphism implies that the D-
efficiency for a second-order model in three factors is the same
for each three-factor projection of a sDSD and for any pDSD
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Table 3. Degrees of freedom v and noncentrality parameters A for various significance tests when using a pDSD for fitting a full second-order response surface model in

two or three factors, assuming a signal-to-noise ratio of 1.

Label Hypothesis v A Comment
Q2 Bi=0 2(m+k) =5 ,/% Anyn=m+k
I Bij=0 2(m+k) -5 J2(m+k) —4 Anyn=m+k
Q3 Bi=0 2(m+k) —9 %m n = m + kis amultiple of 4
%ﬂ?ﬁ:ge) n = m + kis an odd multiple of 2
I3 Bj=0 2m+k) —9 2(5”2;2373;77;;511;% n = m + kisamultiple of 4

n = m + kis an odd multiple of 2

2(5n3—43n24109n—86)
5n2—29n+36

NOTE: Setting k = 0 or n = m shows the results for a sDSD.

derived from it. Similarly, the I-efficiency is the same for each
three-factor projection of a sDSD or a pDSD obtained from it.

When fitting full second-order models in two or three quan-
titative factors, it is common to perform significance tests for
the individual QEs and the individual TFIs. Table 3 lists the
four tests, the degrees of freedom v for the tests as well as the
values for the noncentrality parameter A needed for calculating
the powers of the tests. The tests labeled Q, and I, are concerned
with a QE and a TFI in a two-factor response surface model,
while the tests labeled Q3 and I3 are concerned with a QE and a
TFI in a three-factor response surface model. In the expressions
for the noncentrality parameters for the latter two tests, we
replaced m + k by n to save space. Jones and Nachtsheim (2011)
also considered the tests Q, and I, for evaluating DSDs, but
they did not provide analytical expressions. Expressions for the
powers of these tests for sDSDs can be obtained from those in
Table 3 by setting k = 0.

The power calculations for the hypotheses Q3 and I3 include
two cases each because the correlations between contrast vectors
involving three factors can take different signs, depending on
whether n = m+k is a multiple of 4 or not (recall that, due to the
construction of sDSDs using conference matrices, n = m + k is
always even). Due to these differences in signs, the expressions
for the noncentrality parameters for the hypotheses Q3 and I3
also differ depending on whether n = m + k is a multiple of 4
or not.

As in the tests in Table 2, the noncentrality parameters in
Table 3 correspond to signal-to-noise ratios of 1. To calculate the
power for B;; and B;; values equal to §o in the tests in Table 3,
the noncentrality parameter X has to be multiplied by 6.

3.2. Criteria That Do Depend on the Columns Dropped

Different sets of k columns dropped from a sDSD can result in
different correlations between the contrast vectors of two TFI
effects B; and By, corresponding to four different factors i, j, k
and . For an (m + k)-factor sDSD and any m-factor pDSD
obtained from it by dropping k columns, the absolute values of
the correlations between the contrast vectors of B;; and By can
take the values
n—4t

Tijkl = >
v n—2

where 1 < t < |n/4],and n = m + k. This follows
from Corollary 1 in Schoen, Eendebak, and Goos (2019). The
maximum possible absolute correlation therefore is

2
n—2

This expression tends to 1 as n increases, but, even for small #, it
can take a fairly large value. For instance, for the 10-factor sDSD
in Table 1, the maximum correlationis 1—2/(10+0—2) = 3/4,
while the only other possible correlation value equals 1/4. None
of the correlations can be zero. Similarly, the 8-factor sDSD also
only involves two different values for the absolute correlation,
namely 0 and 2/3. For that sDSD, certain pairs of interactions
Bij and By have uncorrelated contrast vectors, while other pairs
of interactions have contrast vectors that have the maximum
absolute correlation of 2/3. The 16-factor sDSD involves the
absolute correlations 0, 2/7, 4/7 and 6/7 for pairs of interactions
Bij and Bj. Note that the absolute correlation of 6/7 is the
maximum one possible.

In any case, the maximum absolute correlations of 2/3, 3/4,
and 6/7 for the 8-, 10-, and 16-factor sDSDs show that two
interactions of the types Bj; and By can be strongly aliased
when sDSDs or pDSDs are used, especially when k is large. A
consequence of this result is that a broad range of r;;j values
is possible when an m-factor pDSD is obtained from a large
(m+k)-factor sDSD. The challenge then is to drop the k columns
that result in a pDSD that avoids as many large correlations of
the type r;j 4 as possible.

1—

4, Best Sets of k Columns to Drop

We performed a complete search for the best sets of k columns to
drop from an (m + k)-factor sDSD form+k € {6,8,. .., 20,24}
and k < 8. To this end, we considered several statistical cri-
teria that summarize the correlation between all pairs of TFI
contrast vectors. The n-dimensional conference matrices used
to construct the n-factor sDSDs were obtained from Xiao, Lin,
and Bai (2012) for n = 8, 10, 12, 14, 16, and 18. For n = 20 and
24, sDSDs were obtained from JMP 12. We introduce the criteria
in Section 4.1 and identify the best sets of k columns to drop
from the sDSDs in Section 4.2. The supplementary materials of
this article include R programs to reproduce all the results in this
section.
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Table 4. Overall best sets of k columns to drop from an (m + k)-factor sDSD, in
terms of the maximum absolute correlation, average absolute correlation and sum
of squared correlations between pairs of TFl contrast vectors.

# factors in sDSD # columns dropped (k)
(m+ k) 1 2 3 4
6 Any Any Any Any
8 Any Any Any Last four
10 Any Any Any 6,8,9,and 10
12 Any Any Any 7,8,10,and 12
14 Any Any Any Last four
16 Any 8,16 Last three Last four
18 Any Any Any Last four
20 Any Any Any 14,17,18,and 20
24 Any Any Any 20,22,23,and 24

4.1. Classification Criteria

The pDSDs (and also the sDSDs) resemble two-level orthogo-
nal designs of strength three. For instance, orthogonal designs
of strength three provide LE contrast vectors which are nei-
ther correlated with each other nor with the TFI contrast vec-
tors. For this reason, two-level strength-3 orthogonal designs
are commonly classified in terms of the correlation between
pairs of TFI contrast vectors. Two well-known criteria in this
context are the maximum Jy-characteristic (Deng and Tang
1999) and the By count (Tang and Deng 1999). The maxi-
mum J4-characteristic measures the maximum absolute cor-
relation between pairs of TFI contrast vectors while the By
count measures the sum of squared correlations. Inspired by
these criteria, we considered the maximum absolute correla-
tion and the sum of squared correlations between pairs of TFI
contrast vectors involving three or four factors, to classify the
pDSDs obtained by dropping different sets of columns. We also
considered the average absolute correlation between all pairs
of TFI contrast vectors, since this criterion was discussed in
Jones and Nachtsheim (2011) when evaluating sDSDs.

4.2. Results

We identified the best and worst sets of columns to drop
according to each of the three classification criteria (maximum
absolute correlation, average absolute correlation, and sum of
squared correlations). It turned out that the rankings produced
by the three criteria agreed for most combinations of m + k
factors and k columns to drop. Detailed results on the best
and worst sets of 1-8 columns to drop are given in Table S3
in supplementary Section C. Here, we present an overview of
our most important results, restricting attention to k < 4. We
refer to a set of columns that is best/worst in terms of all criteria
as the overall best/worst set.

Table 4 shows the overall best sets of 1-4 columns to drop
from each (m + k)-factor sDSD. Sometimes, there are multi-
ple overall best sets of columns that give rise to equally good
pDSDs. In that case, we report the overall best set of columns
that involves the largest indices. For all cases where the set of
columns dropped does not affect the quality of the resulting
design, we inserted the entry “Any” in the table.

Table 4 shows that we can drop any single column, any pair
of columns and any triplet of columns from an (m + k)-factor
sDSD without affecting the TFI contrast vectors’ correlations

(in other words, without affecting the aliasing among the TFIs),
except when starting from the 16-factor sDSD. As a result,
Dougherty et al. (2015), Fidaleo et al. (2016), Patil (2017), and
Stone et al. (2014) coincidentally used the best possible pDSD
for their experiment. Any other choice of columns to drop for
their particular case would have resulted in an equivalent pDSD
for their experiments.

Dropping different sets of four columns from a sDSD gen-
erally results in pDSDs with different values of the correlation
criteria for TFIs. To construct pDSDs for 4, 10, 12, and 14
factors from 8-, 14-, 16-, and 18-factor sDSDs, respectively, the
overall best option is to drop the last four columns. However,
the motivating example in Section 2 showed that a 21-run 6-
factor pDSD obtained by dropping columns 6, 8, 9, and 10 from
a 10-factor sDSD is better than the one obtained by dropping the
last four columns. Dropping columns 6, 8, 9, and 10 is in fact
the overall best option. Similar results hold for dropping four
columns from 12-, 20-, and 24-factor sDSDs.

Table 5 shows to what extent the choice of the set of columns
dropped from a sDSD affects the correlations among TFI con-
trast vectors in a pDSD. More specifically, it shows a comparison
of the average and maximum absolute correlations for TFI con-
trast vectors, as well as of the sum of the squared correlations,
for the best and the worst set of columns dropped from a sDSD.
Table 5 only covers the 10 cases in which the set of columns
dropped matters when k < 4 (i.e., the cases for which Table 4
does not have the entry “Any”). For each combination of number
of factors and number of columns dropped, the results for the
overall best set are shown first followed by the results for the
overall worst set, except for m + k = 16 and k = 4. For this
case, we report two worst sets of columns as there is no overall
worst set. The first set is worst according to the average absolute
correlation, whereas the second set is worst according to the
sum of squared correlations. Both sets have the same maximum
absolute correlation.

The largest difference between the best and the worst sets of k
columns is for the case in which four columns are dropped from
the 8-factor sDSD. For that case, the overall best set provides
a maximum absolute correlation as small as 0.167, an average
absolute correlation of 0.133, and a sum of squared correlations
of 0.333. In contrast, the overall worst set has a maximum
absolute correlation of 0.667, an average absolute correlation of
0.267, and a sum of squared correlations of 1.667. As explained
in the previous section, the value of 0.667 is the maximum
possible value for the correlations between pairs of TFI columns
involving four different factors when m + k = 8.

In all other cases, the maximum correlation is not affected
by the columns dropped. However, the average correlations and
the sums of squared correlations are smaller when the overall
best sets of columns are dropped. For m + k = 10, there is
an appreciable difference in average absolute correlation and
in the sum of squared correlations. We illustrated the impact
of this difference in average absolute correlation and sum of
squared correlations in Section 2. For m + k > 12, the best and
worst sets of columns to drop only result in minor differences in
terms of the average absolute correlation and the sum of squared
correlations. In conclusion, dropping the last few columns from
asDSD is generally a good strategy, except when leaving out four
columns from an 8- or a 10-factor sDSD.



Table 5. Comparison of the average and maximum correlations among TFl contrast
vectors and of the sum of the squared correlations between the best and worst sets
of k columns dropped from an (m + k)-factor sDSD.

#Factors  Set size Run size Average Maximum  Sum of squared
(m+ k) k 2(m+k) +1 correlation correlation correlations

8 4 17 0.13333 0.167 0.3333
0.26667 0.667 1.6667

10 4 21 0.20714 0.750 6.7500
0.22143 0.750 8.2500

12 4 25 0.19048 0.400 23.7600
0.19365 0.400 24.2400

14 4 29 0.19394 0.500 58.0000
0.19495 0.500 58.6667

16 4 33 0.12747 0.857 115.0408
0.13467 0.857 116.0204

0.12867 0.857 117.2449

16 3 33 0.13173 0.857 166.0102
0.13458 0.857 166.0102

16 2 33 0.13333 0.857 231.8571
0.13585 0.857 231.8571

18 4 37 0.18159 0.375 201.1875
0.18178 0.375 201.5625

20 4 41 0.17292 0.444 3222222
0.17311 0.444 322.8148

24 4 49 0.13479 0.364 693.3471
0.13485 0.364 693.7438

5. Comparing DSDs with Different Run Sizes

Creating pDSDs by dropping columns from sDSDs is useful
because it increases the number of runs for a given number
of factors under investigation. This results in smaller standard
errors and larger numbers of estimable TFIs, for instance. We
demonstrate the benefits of pDSDs by looking at power curves
for 6-factor designs, namely the 6-factor sDSD and five 6-factor
pDSDs obtained by dropping 2, 4, 6, 8, and 10 columns from 8-,
10-, 12-, 14-, and 16-factor sDSDs, respectively. Our findings
support those of the simulation study in Errore et al. (2017),
in that increasing the run size of the design generally leads to
larger powers. However, in contrast to these authors, we use
the analytical expressions in Tables 2 and 3 to determine the
power curves and show separate results for the different kinds
and sizes of effects. In this way, we provide more insight into the
capabilities of sSDSDs and pDSDs to detect active LEs, TFIs, and
QEs.

5.1. Power for Significance Tests

Figure 3 shows the power curves for the four types of tests in
Table 2, assuming a significance level of 0.05 and signal-to-noise
ratios of 1 and 2. The horizontal axis in the figure shows the
numbers of columns dropped from the larger sDSDs and the
number of runs in the resulting pDSD. The figure shows that the
powers for the four tests increase with k and thus with the run
size. The powers for the QEs’ significance tests are much lower
than the powers for the other tests. Figure 3(a) shows that QEs
with the same size as o are unlikely to be detected, as the power
is only about 25%. Figure 3(b) shows that QEs twice as large are
more likely to be detected. However, the power for the QEs is
still markedly lower than the powers for LEs and TFIs of that
size. The powers for active LEs and TFIs that are twice as large
as o equal one for the 6-factor sDSD and any pDSD constructed
from a larger sDSD.
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Based on Figure 3(a), we cannot recommend the 6-factor
sDSD involving 13 runs (and having k = 0) when effects as large
as the noise are of interest. Instead, we recommend the 17-run
pDSD used by Stone et al. (2014) and constructed by dropping
two columns from an 8-factor sDSD. For this option, the powers
of the tests for the LEs and the TFIs are larger than 0.86. Larger
designs only marginally improve the powers. When the signal-
to-noise ratio is equal to 3, the powers for all tests in Table 2 are
larger than 0.90, even for the 6-factor sDSD. We conclude that
it is worth considering a pDSD with four extra runs (and thus
k = 2) when the interest is in detecting small effects. This agrees
with the recommendation of Errore et al. (2017).

Figure 4 shows the power curves for the tests in Table 3 for the
6-factor sDSD and the 6-factor pDSDs constructed by dropping
2, 4, 6, 8, and 10 columns from sDSDs with 8, 10, 12, 14, and
16 factors, respectively. The signal-to-noise ratios assumed to
construct the curves were again 1 and 2. Comparing this figure
with Figure 3, we observe that the powers for hypothesis Q,
hardly differ from those for hypothesis Qme, while the powers
for hypothesis I, lie between those for hypotheses Ire and Lpe.
The powers for hypotheses Q3 and I3 in the context of a three-
factor model are lower than those for the hypotheses Q, and I,
in the context of a two-factor model.

Figure 4(a) shows that QEs with the same size as o are
unlikely to be detected when a second-order model in three
factors is estimated. The powers for the QEs are only about 25%
in that case. The figure also shows that, for TFIs, powers of 75%
or more are achieved only when a 6-factor pDSD is formed with
at least four more runs than the sDSD (by dropping two or four
columns from an 8- or 10-factor sDSD). Figure 4(b) shows that
the powers for effects that are twice as large as the standard
deviation of the noise are much larger than those for effects that
are as large as the standard deviation of the noise. The power for
hypothesis test Q3, however, remains substantially smaller than
1 for any of the run sizes considered here. Signal-to-noise ratios
equal to three result in powers larger than 0.90 for all tests listed
in Table 3, except for hypothesis Qs, in the event the sDSD is
used. In conclusion, when testing QEs and TFIs in 2- or 3-factor
second-order models, it pays oft to use a pDSD involving more
runs than the sDSD to detect effects with sizes equal to or twice
the standard deviation of the noise.

5.2. Aliasing of TFis

Based on the results reported in Section 4, we investigated
whether pDSDs have the potential to improve the aliasing pat-
tern of TFIs in sDSDs. We studied pDSDs involving 4-18 and
20 factors constructed by dropping the overall best sets of 1-4
columns from sDSDs with up to 24 factors. For even numbers
of factors up to 16, we consider the three designs obtained by
dropping 0, 2 and 4 columns. For 18 and 20 factors, we consider
only two different designs because there exists no 22-factor
sDSD. So, 18- and 20-factor pDSDs can only be constructed
starting from the 20- and 24-factor sDSDs. For odd numbers
of factors up to 17, we consider the pDSDs constructed from
sDSDs with one and three extra factors. For 19 factors, this is
impossible, again because there is no 22-factor sDSD. For this
reason, we do not discuss the 19-factor case here.
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Figure 4. Statistical power for testing the hypotheses in Table 3 for the sDSD with m = 6 factors (k = 0) and several pDSDs (k > 0). N: run size of the design. J : Qy;

Ol A:Q3+: 1.

Figure 5 shows the average absolute correlation, maximum
absolute correlation and sum of squared correlations between
pairs of TFI contrast vectors for the designs under study. Fig-
ures 5(a), (c), and (e) show the results for even numbers of
factors m, while Figures 5(b), (d), and (f) show the results
for odd numbers of factors m. Figures 5(a) and (b) show the
average absolute correlations, Figures 5(c) and (d) show the
maximum absolute correlations, and Figures 5(e) and (f) show
the logarithm of the sum of squared correlations.

Figure 5(a) shows that pDSDs with 4, 6, 10, 12, 18, and 20
factors have a smaller average absolute correlation between pairs
of TFI contrast vectors than the corresponding sDSDs. Similarly,
Figure 5(b) shows that 5-, 9-, 11-, 13-, and 17-factor pDSDs
with six extra runs and thus k = 3 also have a smaller average
absolute correlation between pairs of TFI contrast vectors than
the corresponding pDSDs with only two extra runs. The largest

decrease in average correlation is for the 4-factor designs where
the 9-run sDSD provides an average absolute correlation of 0.4,
while the 17-run pDSD obtained from the 8-factor sDSD has an
average as low as 0.13.

For 7 and 15 factors, increasing the run size by four (ie.,
using k = 3 instead of k = 1) causes the average absolute
correlation between pairs of TFI contrast vectors to go up. For
eight factors, the pDSD with four extra runs (corresponding
to k = 2) has a larger average absolute correlation than the
sDSD (k = 0), and it is the pDSD with eight extra runs (k =
4) which has the smallest average absolute correlation. For 14
and 16 factors, the best design options in terms of the average
absolute correlation are the pDSD obtained by dropping two
columns from the 16-factor sDSD and the 16-factor sDSD itself,
respectively. The 16-factor sDSD turns out to perform well in
terms of the average correlation, as the best 12-, 13-, 14-, 15-,
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Figure 5. Correlations between pairs of TFl contrast vectors.

and 16-factor designs in terms of that criterion are all based
on it.

Figures 5(c) and (d) show that the patterns in the maxi-
mum absolute correlations are quite different from those in
the average absolute correlations. More specifically, both figures

squared correlations

show that, for designs with 5-7, 11-13, 17, and 18 factors, the
maximum absolute correlation increases with the run size. The
largest increase in maximum absolute correlation is for designs
with 12 factors. The 12-factor sDSD provides a maximum abso-
lute correlation of 0.4, while the pDSD with eight extra runs
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(corresponding to k = 4) exhibits a maximum of 0.857. For 8-
10, 15, 16, and 20 factors, however, there are pDSDs which have
smaller maximum absolute correlations than the corresponding
sDSDs.

Regarding the sum of squared correlations between pairs of
TFI contrast vectors, Figures 5(e) and (f) show that increasing
the run size of pDSDs reduces the sum of squared correla-
tions for all numbers of factors. So, although the average and
maximum absolute correlations between TFI contrast vectors
are exacerbated when using specific pDSDs instead of sDSDs,
the sum of squared correlations of the larger options is always
smaller than for the sDSDs.

Figure 5 shows that the pDSD options used by Patil (2017)
and Stone et al. (2014) were not optimal in terms of the maxi-
mum absolute correlation between pairs of TFI contrast vectors.
While the 6-factor design with 17 runs of Stone et al. (2014)
provided a smaller average absolute correlation than the 6-factor
sDSD, it has a larger maximum absolute correlation (0.67 versus
0.5). The 7-factor design with 21 runs and k = 3 of Patil (2017)
has larger maximum and average absolute correlations between
its pairs of TFI contrast vectors than the 7-factor design with 17
runsand k = 1.

If there is one thing that Figure 5 makes clear, it is that cer-
tain sDSDs and pDSDs involve very large absolute correlations
between pairs of TFIs, indicating close to complete aliasing. Par-
ticularly unfavorable in this respect are the pDSDs constructed
by dropping columns from the 16-factor sDSD, because all of
these designs have quite a number of absolute correlations of
0.857 (despite the fact that the average correlations for this
design are small). Figure 5 also shows that, if a large maxi-
mum absolute correlation is a major concern, alternative design
options with a maximum absolute correlation below 0.5 are
available for all numbers of factors, except 7. For applications
involving seven factors in which many TFIs are expected to
be active, we recommend dropping five columns from the 12-
factor sDSD because the absolute correlations between the TFI
contrast vectors for the resulting design are smaller than or equal
to 0.4.

6. Discussion

In this article, we studied projected DSDs or pDSDs for m factors
constructed by dropping sets of k columns from sDSDs with
m + k factors. We considered sDSDs with 6-24 factors, and
studied the pDSDs resulting from dropping sets of 1-4 columns.
Table S3 in supplementary Section C includes additional results
we found on dropping up to eight columns.

The sDSDs used in this study were constructed from confer-
ence matrices. This allowed us to derive analytical expressions
for several criteria from the literature on DSDs. In supplemen-
tary Section B, we derive expressions for the relative D-efficiency
to estimate the LEs model and the LEs-plus-QEs model for
pDSDs with different run sizes, as well as expressions for the
relative standard errors for the LE and QE estimates. We also
derived expressions for the noncentrality parameter required for
calculating the power of various significance tests. We showed
that the correlations between two QE contrast vectors, a QE
and a TFI contrast vector, and between two TFI contrast vectors

involving a common factor are independent of the set of k
columns dropped from the (m-+k)-factor sDSD. Supplementary
Section B also includes analytical expressions for these correla-
tions.

How well multiple TFIs can be estimated at the same time
depends on the selection of the sets of k columns to drop
from the sDSDs. Using a complete search, we identified the
best sets of columns to drop in terms of the average absolute
correlation, the maximum absolute correlation, and the sum
of squared correlations between pairs of TFI contrast vectors.
The differences between the best and worst sets were largest
when dropping four columns from the 8- and 10-factor sDSDs.
Table S3 in supplementary Section C shows moderate or small
differences when dropping more than four columns from a
sDSD except when dropping columns from the 10-factor sDSD
or eight columns from the 12-factor sDSD. For these cases, the
maximum absolute correlation of the worst option is more than
three times as large as that of the best option. We conclude that
dropping the last few columns from a sDSD constructed using
the method of Xiao, Lin, and Bai (2012) is generally a good
strategy.

We also compared designs with different run sizes con-
structed by dropping columns from sDSDs with different run
sizes in terms of the average absolute correlation, the maximum
absolute correlation, and the sum of squared correlations
between pairs of TFI contrast vectors. We found that increasing
the run size for a given number of factors, which is equivalent to
dropping more columns from larger sDSDs, improves the sum
of squared correlations between pairs of TFI contrast vectors.
However, the average and maximum absolute correlations do
not necessarily improve. In fact, these values may even increase
with the run size of the pDSD. Thus, in order to limit the amount
of aliasing between TFIs, a careful design selection is needed.
For certain sDSDs and pDSDs, quite large numbers of TFIs are
nearly completely aliased.

The sDSDs have also been adapted to deal with two-level cat-
egorical factors and with blocking factors. The methods devel-
oped by Jones and Nachtsheim (2013) and Nguyen and Pham
(2016) to include k two-level categorical factors in a DSD trans-
form the last k columns into two-level columns. Picking other
columns than the last k may yield better designs. Similarly, the
blocking schemes of Jones and Nachtsheim (2016) convert the
last k columns of DSDs into blocking factors. Possibly, better
designs can be obtained by using other columns to create the
blocking factor. Investigating these issues would be an interest-
ing avenue for future research.
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