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Abstract. Using a matching pursuit (MP) approach to solve least squares problems with a sparsity constraint
sparse controllers are computed to compensate for atmospheric turbulence. The method has been validated by
simulation of von Kármán turbulence with frozen flow for the case of prediction, reconstruction and control.

1 Introduction

The need for numerically efficient controller for large scale adaptive optics (AO) has been widely
acknowledged in literature, see, e.g., [5,6,10,12]. The high number of actuators and sensors and the
high sampling rate result in high computational load and memory usage. For example, to compensate
for a single layer of turbulence with coherence length ofr0 = 20cm over a telescope aperture of
D = 40m the number of actuators and sensors will be in the order of(D/r0)2 = 40.000. When the
sampling rate of the controller is 2kHz even a simple integral controller where the mapping from
sensors to actuators is performed by one matrix multiplication takes already a computational load
of 6.4Tflops (1flops= 1 floating point operation per second). Current field programmable gate array
(FPGA) technology enables peak-performances of 10-100Gflops, such that the matrix multiplication
need to be distributed over about 100 FPGAs. Exploiting the temporal correlation in the turbulence by
means of optimal prediction, c.f., [8], and control (LQG) aswell as multiple layer AO will improve the
performance of the AO system but may also further increase the computational complexity. Hence, to
prevent extreme system complexity, power dissipation and cost, efficient (predictive) control methods
are needed.

To simplify the control problem efficient control algorithm have been derived assuming that the
turbulence is constant in time and temporal correlation hasbeen neglected, e.g., [5,10,12]. In [7] it has
been demonstrated on a laboratory setup that significant performance gain (up to a factor 20) can be
obtained by a controller that exploits both the temporal andthe spatial correlation that is present in the
turbulence by means of a disturbance model. Moreover, [7] proposed a method to determine this con-
troller from measured data rather than on the basis of a priori assumed statistics of the turbulence that
may significantly deviate from reality due to variations in wind speed and direction. The computational
complexity of the algorithm to determine the controller scales with the cube and the complexity of the
controller scales with the square of the number of channels and the degrees of freedom in the temporal
correlation. Therefore, in [4] fast adaptive control methods have been used to reduce the computational
complexity and to enhance the adaptation to variations in the turbulence statistics. In [11] another pre-
dictive control algorithm has been proposed which allows a much more efficient implementation based
on the Fast Fourier Transform.

This paper takes a different approach. The control problem is written as a least squares problem
which is solved by imposing a bound on the maximum number of non-zero elements. In [2] is proved
that this problem is NP-hard, and thus not feasible for the AOpurpose. Suboptimal methods have
been proposed in literature, e.g., see [1] for a recent overview, among which the class of Matching
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Fig. 1. Block diagram of the AO configuration with internal model control (IMC), whereH the DM influence
matrix, ψd the turbulence disturbanceψr the residual disturbance,G the wavefront sensor (WFS) matrix,ν the
measurement noise,s the sensor signal andz−1 the unit-sample delay. The internal modelĜĤ is used to determine
the disturbance signalsd which is the input to the controllerW that computes the control signalu.

Pursuit (MP) algorithms. This paper derives a MP variant to solve for sparse matrices providing a
sparse predictor or controller to compensate for atmospheric turbulence.

The following sections are structured as follows. Section 2introduces the AO problem and derives
a least squares problem for the optimal controller coefficients. Section 3 derives the sparse solution to
the least squares problem on the basis of Matching Pursuits.Section 4 provides simulation results for
a number of various AO configurations.

2 Adaptive Optics optimal prediction and control

Figure 1 illustrates the AO control problem, whereψd(k) ∈ Rnψ a vector containing phase-distortions
of the observed light-beam atnψ locations in the cross-section of the beam at discrete time instant
kT s, whereT s the sampling time. The objective is to compensate this phase-distortion by means of a
deformable mirror (DM) resulting in a residual phase distortion

ψr(k) := ψd(k) + Hu(k), (1)

whereu(k) ∈ Rnu the control signal andH ∈ Rnψ×nu the influence-matrix of the DM. We assume that
ψr does not have piston term. Because minimizing the 2-norm of the piston removed residual phase
approximately involves maximization of the Strehl ratio, the control objective will be to minimize

J(k) := E[ψr(k)Tψr(k)]. (2)

A sensor signal proportional to the (piston corrected) residual phase is obtained by

sr(k) := Gψr(k) + ν(k), (3)

whereG ∈ Rns×nψ the wave-front sensor (WFS) matrix andν(k) ∈ Rns measurement noise, which is
zero-mean white noise with covariance E

[
ν(k)ν(k)T

]
= σ2

ν I and independent ofψd(ℓ) for all k, ℓ.
In this paper we assume an AO system in which the sampling timeis chosen such that the wavefront

sensing, all data-transportation and the computation of the control signal are performed within one
sampling time period. This will result in one sample delay inthe control loop.

As in [4] a reference signal will be constructed by means of Internal Model Control (IMC)

sd(k) := sr(k) − ĜĤu(k) = sr(k) −GHu(k) (4)

which is assumed to be perfect. It can be shown thatsd(k) = Gψd(k)+ ν(k), which is only determined
by the disturbance and the measurement noise. Furthermore,the control signal is determined by

u(k) :=
p∑

i=1

Wi sd(k − i) (5)

First conference on Adaptive Optics for Extremely Large Telescopes

07004-p.2



Rufus Fraanje et al.: Sparse prediction of turbulence in time and space

whereWi ∈ Rnu×ns and p ≥ 1 a user chosen parameter determining the complexity of the controller.
Note that in (5)u(k) is only determined by delayed values ofsd(k) because of the one sample delay
in the closed loop. Also note that the controller (5) is inherently stable if the elements in the matrices
Wi and the integerp are all bounded. Hence, the control problem is to determine{Wi}pi=1 such that (2)
is minimized. However,ψr cannot be measured directly and thus (2) will be unknown. Oneapproach
is to model the correlation coefficients of the turbulence a priori, but the correlation coefficients might
be unknown in practice due to changing turbulence statistics.

Therefore, in this paper we will minimize the mean square value of the reconstructed phase
ψ̂r(k) := G†sr(k), whereG† the pseudo-inverse ofG. Then the cost function to be minimized is

J′ := tr
(
G†GE

[
ψr(k)ψr(k)T

]
(G†G)T + σ2

νG
†G†T
)

(6)

where the white noise property ofν has been used. Assuming the turbulence to be wide-sense station-
ary over at leastN samples, (6) is approximated by

J′N =
1
N

tr(C + AWBT )(C + AWBT )T (7)

where

A := G†GH, B :=



sd(p) sd(p + 1) · · · sd(N − 1)
sd(p − 1) sd(p) · · · sd(N − 2)

...
...

. . .
...

sd(1) sd(2) · · · sd(N − p)


, C :=

[
ψ̂d(p + 1) ψ̂d(p + 2) · · · ψ̂d(N)

]
.

The minimization of (7) is a least-squares problem, and a minimizing solution is given by

W = −A†C(B†)T (8)

which is unique if and only ifA has full column rank andB has full row rank. This solution appears
not to be sparse, even ifG, H are sparse. When a sparsity structure ofW is known a priori, then (7)
can be minimized subject to this structure, which still is a least squares problem. However, usually the
sparsity structure is not known, and one may impose a condition thatW only has a constrained number
of nonzero elements. It turns out that this problem is NP-hard [2].

3 Sparse Prediction by Matching Pursuits

Matching pursuits (MP’s) are typically used to determine (suboptimal) sparse solutions of linear equa-
tions with more unknowns than equations. Various type of versions have been proposed, c.f. [1] for
an overview. In this paper the basic MP algorithm as proposedin [9] will be used because of its sim-
plicity. The MP methods in literature are solving for sparsevectors, rather than matrices. Indeed, it
is possible to vectorizeW by stacking its column vectors on top of eachother resultingin the vector
w = vec(W) ∈ Rpns , then (7) can be rewritten as

J′N =
1
N

(
vec(C) + (B ⊗ A)w

)T (
vec(C) + (B ⊗ A)w

)
(9)

whereA ⊗ B denotes the Kronecker product ofA andB. Then the basic MP algorithm is given by:

Algorithm 1: Basic Matching Pursuit (BMP) [9]

1. Initializen = 0, rn = vec(C), w′n = 0.
2. LetA′ := (B⊗A)D−1 whereD a diagonal matrix which elements are the norms of the corresponding

columns ofB ⊗ A, henceA′ as unit-norm column vectors.
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3. Until stopping criterion is met,n = n + 1 and

δn = −A′T rn−1 (10)

in = argi max|δn,i| (11)

w′n,in = w
′
n−1,in + δn,in (12)

rn = rn−1 + A′inδn,in (13)

4. Outputrn andwn = D−1w′n.

whereδn,i denotes theith element ofδn andAin theithn column ofA.

The stopping criterion can be a maximum on the number of nonzero elements inw′n, the norm or
the change in the norm ofrn has a below some threshold parameter or the number of iterations has
exceeded a maximum.

In [3] estimates are given for the rate of convergence. Note,that Algorithm 1 can be implemented
more efficiently by computingδn recursively, which will be explained in more detail in the next sub-
section. Despite the simplicity of the MP algorithm, construction ofC ⊗ B ∈ Rpnsnψ×Nnψ will result in a
huge matrix resulting in high computational complexity andmemory usage. This drawback is solved
by the MP algorithm given in the next subsection for solving asparse matrix rather than a vector

The extension for matrix unknowns can be made by noting that in each iteration of the MP algo-
rithm a scalar coefficient is determined which minimizes the residual cost most.For matrix unknowns
the search for the most minimizing scalar now ranges not onlyover the rows, but also over the columns.
Then, the matrix MP algorithm is given by

Algorithm 2: Matrix Matching Pursuit (MMP)

1. Initializen = 0, Rn = C, W′n = 0.
2. LetA′ := AD−1

A andB′ := BD−1
B , whereDA andDB the diagonal matrices which diagonal elements

are the norms of the corresponding columns ofA andB respectively.
3. Until stopping criterion is met,n = n + 1 and

∆n = −A′T Rn−1B′ (14)

(in, jn) = argi, j max|∆n,i, j| (15)

W′n,in, jn = W′n−1,in, jn + ∆n,in, jn (16)

Rn = Rn−1 + A′in∆n,in, jn B′Tjn (17)

4. OutputRn andWn = D−1
A W′nD−1

B .

where∆n,i, j denotes thei, jth element of∆n.

As in the vector based MP algorithm, the inner product (14) can be computed recursively using the
update rule for the residual (17), which yields

∆n+1 = ∆n − Ein∆n,in, jn FT
jn

(18)

whereE := AT A, F := BT B and furtherEin andF jn denote theithn and the jthn column ofE andF
respectively.

Because the number of samplesN may be large, such that the number of rows ofB will be large, a
QR data compression step is usually recommended. Let the QR-decomposition of [B CT ] be given by

[
Q11 Q12
Q21 Q22

] [
R11 R12
0 R22

]
=
[

B CT
]

(19)

whereR11 is upper triangular, then (7) can be written as

J′N =
1
N

tr
(
(RT

12+ AWRT
11)(R

T
12+ AWRT

11)
T + RT

22R22

)
(20)
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Table 1. Relative performance and complexity of static inversion, least squares and the matrix MP algorithm.

A: P P/R
R.  # C R. E # C

SI: 0.23 1296 0.23 2592
LS1: 0.22 1296 0.22 2592
LS30: 0.097 38880 0.097 77760
MP1: 0.22 256 0.46 256
MP30: 0.10 1024 0.36 1024

SI+MP1: - - 0.22 2848
SI+MP30: - - 0.17 3291

P/C P/R/C
R. E # C R. E # C

SI: 0.23 2592 0.23 2592
LS1: 0.22 2592 0.22 2592
LS30: 0.097 38880 0.11 77760
MP1: 0.22 256 0.48 256
MP30: 0.12 1024 0.51 1024

SI+MP1: - - 0.22 2848
SI+MP30: - - 0.16 3291

and thusB andC can be replaced byR11 andRT
12 respectively. Note, that this QR decomposition can

also be evaluated recursively using new measurementssd(N + 1) andψ̂d(N + 1).

4 Simulation results

Simulations of the Matrix Matching Pursuit algorithm have been performed with von Kármán frozen-
flow turbulence with Fried parameterr0 = 0.16m and an outer diameter ofL0 = 1.00m. The wind
velocity was 10m/s in a constant direction. The telescope aperture is square of dimension 1.00×1.00m
and the piston mode has been removed from the turbulence. Thesampling rate isfs = 660Hz. To
generate a time sequence of the turbulence (60 sec.’s, the first 20 sec.’s for identification ofW and the
remaining 40 sec.’s for performance evaluation), an AR model of 100 taps has been computed on the
basis of the correlation coefficients resulting from the von Kármán frozen-flow model.

The DM consists of 36 actuators in a 6× 6 square grid. Each actuator has a Gaussian shaped
influence function given bye−d2/σ2

whered the distance from the actuator position andσ = 0.15. The
WFS measures spatial gradients in two directions at the samepositions as the actuators.

To analyze the influence of the DM and the WFS on the results experiments with different choices
of the DM influence matrixH and the WFS matrixG are performed:

1. Prediction:H = I andG = I;
2. Prediction and reconstruction:H = I andG the WFS matrix mapping the phases into slopes;
3. Prediction and control:H the influence matrix of the DM,G = I;
4. Prediction, reconstruction and control:H the influence matrix of the DM andG the WFS matrix.

In the experiments it was further assumed that there is no measurement noise, i.e.,σν = 0. For each
experiment, various methods are used to determineW:

1. SI: Static inversion, i.e.,W = −H†G†;
2. LS1: The least squares solution (8) withp = 1 taps;
3. LS30: The least squares solution (8) withp = 30 taps;
4. MP1: Matching pursuit algorithm (Algorithm 2) with maximum number ofp = 1 taps;
5. MP30: Matching pursuit algorithm (Algorithm 2) with maximum number ofp = 30 taps.

For the cases whereG , I, i.e., for reconstruction, also the following algorithms have been performed:
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6. SI+MP1: Same as MP1 but the input to the filterW is the reconstructed phaseψ̂d(k) = G†sd(k);
7. SI+MP30: Same as SI+MP1 but with a maximum number ofp = 30 taps.

Table 1 gives the relative error, i.e., the mean squared error divided by the mean squared value of the
turbulence for the various methods as well as the number of filter coefficients. The stopping criterion
for the MP algorithms was a bound on the number of coefficients as given in the #Coefficients column.

It is observed that in the prediction problem the phase can bepredicted with approximately the
same accuracy with the matching pursuit algorithms but withmuch fewer number of coefficients. Also
increasing the number of taps from 1 to about 30 improves the prediction, i.e., the error is reduced by a
factor 2. The same conclusions can be drawn for the case of prediction and control, which means that
the inversion of the influence matrixH, for Gaussian shaped influence functions with limited spatial
support, does not significantly reduce the performance by imposing sparsity constraints. This is differ-
ent when gradients are measured, and the phase need to be reconstructed by the feedforward controller
W, which show a significant loss of performance for MP1 and MP30. Part of the performance, was
restored by feeding the controller with the reconstructed phase as is done in SI+MP1 and SI+MP30.

5 Conclusions

The paper has shown how the optimal AO control problem can be reformulated in terms of a least
squares problem and how sparse solutions can be determined by means of matching pursuit (MP) al-
gorithms. For the matrix least squares problem considered in this paper, a matrix version of the basic
MP algorithm has been derived, which is validated on by simulation with von Kármán turbulence. Sim-
ulations show that prediction of the wavefront phase can be done very efficiently but reconstruction,
i.e., minimizing the wavefront phase on the basis of gradients significantly lowers the performance.
Further extensions of the algorithm may be in the direction of adaptive and faster implementations,
other filter structures and using orthogonal or conjugate gradient iterations for each MP iteration.
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