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Sparse prediction of turbulence in time and space
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Abstract. Using a matching pursuit (MP) approach to solve least sgyameblems with a sparsity constraint
sparse controllers are computed to compensate for atmsphbulence. The method has been validated by
simulation of von Karman turbulence with frozen flow foetbase of prediction, reconstruction and control.

1 Introduction

The need for numericallyfgcient controller for large scale adaptive optics (AO) hasrbwidely
acknowledged in literature, see, e.g., [5,6,10,12]. Tiyh mumber of actuators and sensors and the
high sampling rate result in high computational load and w®msage. For example, to compensate
for a single layer of turbulence with coherence lengthrpf= 20cm over a telescope aperture of
D = 40m the number of actuators and sensors will be in the ordéDd af)? = 40.000. When the
sampling rate of the controller is 2kHz even a simple integoatroller where the mapping from
sensors to actuators is performed by one matrix multipbcatakes already a computational load
of 6.4Tflops (1flops= 1 floating point operation per second). Current field progreainle gate array
(FPGA) technology enables peak-performances of 10-109&fkuch that the matrix multiplication
need to be distributed over about 100 FPGAs. Exploitingehgpioral correlation in the turbulence by
means of optimal prediction, c.f., [8], and control (LQG eall as multiple layer AO will improve the
performance of the AO system but may also further increasedimputational complexity. Hence, to
prevent extreme system complexity, power dissipation asti @ficient (predictive) control methods
are needed.

To simplify the control problemféicient control algorithm have been derived assuming that the
turbulence is constant in time and temporal correlatiorbless neglected, e.g., [5,10,12]. In [7] it has
been demonstrated on a laboratory setup that significafdarpgance gain (up to a factor 20) can be
obtained by a controller that exploits both the temporaltledspatial correlation that is presentin the
turbulence by means of a disturbance model. Moreover, pi@sed a method to determine this con-
troller from measured data rather than on the basis of aigsumed statistics of the turbulence that
may significantly deviate from reality due to variations ima@/speed and direction. The computational
complexity of the algorithm to determine the controllerlesawith the cube and the complexity of the
controller scales with the square of the number of chanmeldlee degrees of freedom in the temporal
correlation. Therefore, in [4] fast adaptive control maethbave been used to reduce the computational
complexity and to enhance the adaptation to variationsdrutbulence statistics. In [11] another pre-
dictive control algorithm has been proposed which allowsiaimmore éicient implementation based
on the Fast Fourier Transform.

This paper takes a filerent approach. The control problem is written as a leasareguyproblem
which is solved by imposing a bound on the maximum number afzero elements. In [2] is proved
that this problem is NP-hard, and thus not feasible for thepApose. Suboptimal methods have
been proposed in literature, e.g., see [1] for a recent ée@namong which the class of Matching
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Fig. 1. Block diagram of the AO configuration with internal model tah (IMC), whereH the DM influence
matrix, ¥y the turbulence disturbanag the residual disturbanc& the wavefront sensor (WFS) matrixthe
measurement noisethe sensor signal armd® the unit-sample delay. The internal modi is used to determine
the disturbance signa) which is the input to the controll& that computes the control signal

Pursuit (MP) algorithms. This paper derives a MP variantdives for sparse matrices providing a
sparse predictor or controller to compensate for atmosphebulence.

The following sections are structured as follows. Sectigmtdduces the AO problem and derives
a least squares problem for the optimal controlleffitoients. Section 3 derives the sparse solution to
the least squares problem on the basis of Matching Pur8gttion 4 provides simulation results for
a number of various AO configurations.

2 Adaptive Optics optimal prediction and control

Figure 1 illustrates the AO control problem, whargk) € R™ a vector containing phase-distortions
of the observed light-beam aj, locations in the cross-section of the beam at discrete tirstunt
kTs, whereTs the sampling time. The objective is to compensate this pHasertion by means of a
deformable mirror (DM) resulting in a residual phase distor

Yr(K) := ¢a(K) + Hu(k), 1)

whereu(k) € R™ the control signal antéi € R the influence-matrix of the DM. We assume that
¥ does not have piston term. Because minimizing the 2-norrepiston removed residual phase
approximately involves maximization of the Strehl ratiwe tontrol objective will be to minimize

IK) = Elyr (K¢ (K)]. (2)
A sensor signal proportional to the (piston corrected)hesi phase is obtained by
s (k) 1= Gyr(K) + v(K), 3)

whereG € R the wave-front sensor (WFS) matrix antk) € R"™ measurement noise, which is
zero-mean white noise with covarianc%\)ﬂ()v(k)T] = o2l and independent afy(¢) for all k, £.

In this paper we assume an AO system in which the samplingsicteosen such that the wavefront
sensing, all data-transportation and the computation efctintrol signal are performed within one
sampling time period. This will result in one sample delaghia control loop.

As in [4] a reference signal will be constructed by means térimal Model Control (IMC)

s1(K = s(K - GHuK) = s(K) - GHu(K) (4)

which is assumed to be perfect. It can be showndh&) = Gyqy(k) + v(K), which is only determined
by the disturbance and the measurement noise. Furthertheregntrol signal is determined by

p
uk) = > Wiss(k—1) 5)
i=1
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whereW, e R™*" andp > 1 a user chosen parameter determining the complexity ofdhedler.
Note that in (5)u(k) is only determined by delayed values®R{k) because of the one sample delay
in the closed loop. Also note that the controller (5) is irdrgly stable if the elements in the matrices
W and the integep are all bounded. Hence, the control problem is to deterr{rwinfzl such that (2)

is minimized. Howevery, cannot be measured directly and thus (2) will be unknown. &meoach

is to model the correlation cfiicients of the turbulence a priori, but the correlationfiogents might
be unknown in practice due to changing turbulence stadistic

_ Therefore, in this paper we will minimize the mean squarai&adf the reconstructed phase
¥ (K) := G's:(K), whereG' the pseudo-inverse @. Then the cost function to be minimized is

7o tr(GTGE [wr (k)wr(k)T] (GTG)T 4 O_EGTGTT) (6)

where the white noise property ehas been used. Assuming the turbulence to be wide-senemstat
ary over at leasi samples, (6) is approximated by

J = %tr(C + AWBT)(C + AWB™)T (7)
where
si(p) su(p+1)--- ss(N-1)
s(P-1) si(p) - sa(N-2) . - .
A:=G'GH, B:=| . L .| C=[da(p+ 1) da(p+2) - da(N) |

sa(l) =@ ---sa(N-p)
The minimization of (7) is a least-squares problem, and amining solution is given by
W = —A'C(B")" (8)

which is unique if and only ifA has full column rank an® has full row rank. This solution appears
not to be sparse, even@, H are sparse. When a sparsity structuré\bis known a priori, then (7)
can be minimized subject to this structure, which still isast squares problem. However, usually the
sparsity structure is not known, and one may impose a camditiatv only has a constrained number
of nonzero elements. It turns out that this problem is NRHf2}.

3 Sparse Prediction by Matching Pursuits

Matching pursuits (MP’s) are typically used to determindgptimal) sparse solutions of linear equa-
tions with more unknowns than equations. Various type ofieeis have been proposed, c.f. [1] for
an overview. In this paper the basic MP algorithm as propos¢2] will be used because of its sim-
plicity. The MP methods in literature are solving for spaveetors, rather than matrices. Indeed, it
is possible to vectoriz&/ by stacking its column vectors on top of eachother resultintpe vector

w = vec(W) € RP%, then (7) can be rewritten as

¥ = %(vec(C) +(B® Aw) (vecC) + (B® Alw) )

whereA ® B denotes the Kronecker productAfandB. Then the basic MP algorithm is given by:

Algorithm 1: Basic Matching Pursuit (BMP) [9]

1. Initializen =0,r, = vec(C), wj, = 0.
2. LetA := (BeA)D~!whereD a diagonal matrix which elements are the norms of the cooredipg
columns ofB® A, henceA’ as unit-norm column vectors.
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3. Until stopping criterion is mef)=n+ 1 and

Sn=-ATrn1 (10)
in = arg max|dn;l (11
Whi, = W1, + Oni 12)
M =Tp1+ Ai/nén,in (13)

4. Outputr, andwy, = D™ 1wy,
wheres,,; denotes thé" element o5, andA;, theil" column of A.

The stopping criterion can be a maximum on the number of mongkements inw;,, the norm or
the change in the norm of, has a below some threshold parameter or the number of dasatias
exceeded a maximum.

In [3] estimates are given for the rate of convergence. Nb#g,Algorithm 1 can be implemented
more dficiently by computing, recursively, which will be explained in more detail in thexhsub-
section. Despite the simplicity of the MP algorithm, coastion ofC ® B € RPN will result in a
huge matrix resulting in high computational complexity aneémory usage. This drawback is solved
by the MP algorithm given in the next subsection for solvirgparse matrix rather than a vector

The extension for matrix unknowns can be made by noting thatth iteration of the MP algo-
rithm a scalar coficient is determined which minimizes the residual cost nfemt.matrix unknowns
the search for the most minimizing scalar now ranges notavdy the rows, but also over the columns.
Then, the matrix MP algorithm is given by

Algorithm 2: Matrix Matching Pursuit (MMP)
1. Initializen=0,R, = C, W, =0.
2. LetA = AD,;1 andB’ = BDgl, whereDa andDg the diagonal matrices which diagonal elements

are the norms of the corresponding column#@indB respectively.
3. Until stopping criterion is mef)=n+ 1 and

An = -ATR1B (14)
(in, jn) = arg j max|4n, jl (15)
hindn = Waetinjn T Aninin (16)
Ro = Rot+ A Anj,.j B, (17)

4. OutputR, andW, = D;*W;Dgt.
wheredy; ; denotes the, i element of,,.

As in the vector based MP algorithm, the inner product (14) lba computed recursively using the
update rule for the residual (17), which yields

Ans1 = An = Eidnjy o], (18)

whereE := ATA, F := B'B and furtherE;, andFj, denote tha!" and thej" column of E andF
respectively.

Because the number of samplsnay be large, such that the number of row8afill be large, a
QR data compression step is usually recommended. Let thedeg@Bmposition of B C'] be given by

Q82| [Ry e = o) )

whereRy; is upper triangular, then (7) can be written as

1
K=t ((RI; + AWR])(R], + AWR]))" + R},Rz,) (20)
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Table 1. Relative performance and complexity of static inversieaskt squares and the matrix MP algorithm.

A : P P /R
R . #C R .E #C
Sl 0.23 1296 0.23 2592
LS1: 0.22 1296 0.22 2592
LS30: 0.097 38880 0.097 77760
MP1: 0.22 256 0.46 256
MP30: 0.10 1024 0.36 1024
SI+MP1: - - 0.22 2848
SI+MP30: - - 0.17 3291
P /C P /R /C
R .E #C R .E #C
Sl 0.23 2592 0.23 2592
LS1: 0.22 2592 0.22 2592
LS30: 0.097 38880 0.11 77760
MP1: 0.22 256 0.48 256
MP30: 0.12 1024 0.51 1024
SI+MP1: - - 0.22 2848
SI+MP30: - - 0.16 3291

and thusB andC can be replaced big;; and RIZ respectively. Note, that this QR decomposition can
also be evaluated recursively using new measurensgfits+ 1) andyq(N + 1).

4 Simulation results

Simulations of the Matrix Matching Pursuit algorithm haveeh performed with von Karman frozen-
flow turbulence with Fried parameteg = 0.16m and an outer diameter bf = 1.00m. The wind
velocity was 10ns in a constant direction. The telescope aperture is sqfidimension 100x 1.00m
and the piston mode has been removed from the turbulencesapling rate isfs = 660Hz. To
generate a time sequence of the turbulence (60 sec.’s, sh&0isec.’s for identification alV and the
remaining 40 sec.’s for performance evaluation), an AR rhofi&00 taps has been computed on the
basis of the correlation cé&cients resulting from the von Karman frozen-flow model.

The DM consists of 36 actuators in ax66 square grid. Each actuator has a Gaussian shaped
influence function given byrdz/f’2 whered the distance from the actuator position ane: 0.15. The
WFS measures spatial gradients in two directions at the pasigons as the actuators.

To analyze the influence of the DM and the WFS on the resultsréxents with diferent choices
of the DM influence matriH and the WFS matri% are performed:

1. PredictionH = | andG = I;

2. Prediction and reconstructiod: = | andG the WFS matrix mapping the phases into slopes;
3. Prediction and controH the influence matrix of the DM = I;

4. Prediction, reconstruction and contrdlthe influence matrix of the DM an@ the WFS matrix.

In the experiments it was further assumed that there is neunement noise, i.ec;, = 0. For each
experiment, various methods are used to determine

1. SlI: Static inversion, i.e\WW = —H'G";

2. LS1: The least squares solution (8) wiils= 1 taps;

3. LS30: The least squares solution (8) witk: 30 taps;

4. MP1: Matching pursuit algorithm (Algorithm 2) with maxirm number ofp = 1 taps;
5. MP30: Matching pursuit algorithm (Algorithm 2) with maxum number op = 30 taps.

For the cases whef@ # |, i.e., for reconstruction, also the following algorithres/e been performed:
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6. SHMP1: Same as MP1 but the input to the filtgtis the reconstructed phage(k) = G’ sy(K);
7. SHMP30: Same as $MP1 but with a maximum number qf = 30 taps.

Table 1 gives the relative error, i.e., the mean squared divirled by the mean squared value of the
turbulence for the various methods as well as the numbertef Gibdficients. The stopping criterion
for the MP algorithms was a bound on the number ofitcients as given in the #Ctigients column.

It is observed that in the prediction problem the phase caprédicted with approximately the
same accuracy with the matching pursuit algorithms but mitich fewer number of cdigcients. Also
increasing the number of taps from 1 to about 30 improvesitbéigtion, i.e., the error is reduced by a
factor 2. The same conclusions can be drawn for the case dicicen and control, which means that
the inversion of the influence matrkt, for Gaussian shaped influence functions with limited spati
support, does not significantly reduce the performance Ippsimg sparsity constraints. This igfer-
ent when gradients are measured, and the phase need to bstracted by the feedforward controller
W, which show a significant loss of performance for MP1 and MA&4)t of the performance, was
restored by feeding the controller with the reconstructeaisg as is done in $MP1 and SFMP30.

5 Conclusions

The paper has shown how the optimal AO control problem carefimulated in terms of a least
squares problem and how sparse solutions can be determimaddns of matching pursuit (MP) al-
gorithms. For the matrix least squares problem consideréhtis paper, a matrix version of the basic
MP algorithm has been derived, which is validated on by satioh with von Karméan turbulence. Sim-
ulations show that prediction of the wavefront phase candredery diciently but reconstruction,
i.e., minimizing the wavefront phase on the basis of gradisignificantly lowers the performance.
Further extensions of the algorithm may be in the directibadaptive and faster implementations,
other filter structures and using orthogonal or conjugatéignt iterations for each MP iteration.
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