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A B S T R A C T   

Energy poverty is receiving increased attention in developed countries like the Netherlands. Although it only 
affects a relatively small share of the population, it constitutes a stern challenge that is hard to quantify and 
monitor, hence difficult to effectively tackle through adequate policy measures. In this paper we introduce a 
framework to categorize energy poverty risk based on income and energy expenditure. We propose the use of a 
machine learning classifier to predict energy poverty risk from a broad set of socio-economic parameters: house 
value, ownership and age, household size, and average population density. While income remains the single most 
important predictor, we find that the inclusion of these additional socio-economic features is indispensable in 
order to achieve high prediction reliability. This result forms an indication of the complex nature of the 
mechanisms underlying energy poverty. Our findings are valid at different geographical scales, i.e. both for 
single households and for entire neighborhoods. Extensive sensitivity analysis shows that our results are inde
pendent of the precise position of risk category boundaries. The outcomes of our study indicate that machine 
learning could be used as an effective means to monitor energy poverty, and assist the design and imple
mentation of appropriate policy measures.   

1. Introduction 

The Sustainable Development Goals (SDGs) constitute a reference 
framework and set of guidelines for the development of societies across 
the globe over the next several decades (UN, 2015). One of the objec
tives, expressed in SDG 7, is to provide universal access to affordable, 
reliable and clean forms of energy by the year 2030. In other words, the 
goal of SDG 7 is to eliminate energy poverty within a decade (UN, 2012). 
The common way in which energy poverty manifests itself is the lack of 
access to modern energy services in many developing countries, notably 
in sub-Saharan Africa (IEA, 2019). An equally important dimension of 
energy poverty relates to the inability of certain households in devel
oped countries to pay their energy bills or to ensure adequate energy 
services at affordable costs (Bouzarowski, 2014; Thomson et al., 2016; 
Papada and Kaliampakos, 2018). 

The roots of energy poverty in developed countries can perhaps be 
traced back to the discussion around fuel poverty in the UK in the 1970s 
following the oil crises in those years. The first definition of fuel poverty 

is generally attributed to Bradshaw and Hutton (1983), who linked it to 
the inability of households to afford adequate heating services. Subse
quently, alternative definitions have been proposed in an attempt to 
quantify fuel poverty by relating it to income and fuel expenditure 
(Boardman, 1991; Hills, 2012). In this paper we use the term energy 
poverty to explicitly emphasize that we also consider energy carriers 
other than traditional liquid or gaseous fuels, including e.g. electricity. 
While specific policies measures to tackle energy poverty exist in the UK 
legislation, many European countries do not have official policies in 
place to monitor, quantify and attempt to eliminate the problem. The 
Netherlands – on which this paper focuses – is one of these countries. 

Energy poverty has been reported in the Netherlands in several 
recent studies (van Middelkoop et al., 2018; Roelfsema, 2017; Straver 
et al., 2017). Although only around 4% of the Dutch population is 
thought to be affected by the most severe form of energy poverty (van 
Middelkoop et al., 2018), it may hinder the country’s determination to 
achieve the energy transition towards net zero CO2 emissions by 2050. 
In several European countries energy poverty presently constitutes a 
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problem that is both difficult to evaluate and hard to solve (Casta
ño-Rosa et al., 2019; Sovacool, 2018; Thomson, 2016). Two major 
hurdles in this respect are: (i) the timely detection of households in 
which energy poverty is likely to occur, and (ii) the delivery of adequate 
policy support to address energy poverty. These difficulties stem in large 
part from the fact that the factors leading to energy poverty are poorly 
understood, and cannot be easily recognized and characterized. While it 
is generally accepted that energy poverty in households in developed 
countries mainly arises from a combination of low income, high energy 
prices and inadequate performance of buildings in terms of energy ef
ficiency (Ntaintasis et al., 2019; Desroches et al., 2015; Thomson, 2013), 
a growing body of literature is emerging that highlights the possibly 
substantial role of other drivers, both socioeconomic (Kearns et al., 
2019; Meyer et al., 2018; Namazkhan et al., 2020) and spatial (Mash
hoodi et al., 2020; Mashhoodi, 2018). The complex nature of energy 
poverty is also being recognized in recent studies (see e.g. Baker et al., 
2019). 

In this paper we make a step towards overcoming some of the dif
ficulties encountered in characterizing energy poverty in developed 
countries by presenting a framework that allows classifying energy 
poverty into four risk categories. We apply this framework to the 
Netherlands and use it to build a machine learning (ML) classifier with 
the aim of investigating to what extent income alone is a good predictor 
of energy poverty risk, and what other socio-economic features can be 
employed to improve the risk classification. We explore whether the 
level of geographical disaggregation in the datasets used to train our 
model has an effect on the accuracy of our classification, and we assess 
the sensitivity of our results to the position of classification boundaries. 
In section 2 of this article we describe our methodology, and in section 3 
we present our analysis and main results. In section 4 we discuss our 
findings and formulate several conclusions and recommendations for 
policy makers, as well as for further research in this domain. 

2. Methodology 

2.1. Datasets 

We make use of two separate datasets for the Netherlands. The first 
one, ‘Kerncijfers Wijken en Buurten’ (KWB), is a collection of many types 
of socio-economic data at the neighborhood level, annually compiled by 
Statistics Netherlands, CBS (CBS, 2013–2018). The second one, ‘Woo
nOnderzoek Nederland’ (WoON), contains a wealth of data at the 
household level obtained through a large-scale survey commissioned by 
the Dutch Ministry of Internal Affairs every three years (BZK, 
2015–2018). Table 1 summarizes the main characteristics of the two 
datasets. By applying our methodology at two different levels of 
geographical disaggregation – neighborhood averages vs. single house
holds – we are able to test whether our findings may be affected by 
statistical averaging. This is useful for checking the validity of our results 
and may serve policy makers and energy analysts. 

2.2. Analysis framework 

From the KWB dataset we extract the (neighborhood-)average 
annual per capita consumption of electricity and (natural) gas, while 
from the WoON database we obtain the average annual consumption of 
these energy carriers per household. From these average annual energy 
consumption data we derive the average annual energy expenditure per 
inhabitant (KWB) and per household (WoON) by multiplying them with 
the average price of energy (electricity respectively gas) (CBS, 2020) in 
the years from which the energy consumption data were taken. In the 
top two panels of Fig. 1 we chart, for electricity and gas respectively, the 
average annual per capita energy expenditure against the average 
annual per capita income on a log-log scale (only KWB data are shown in 
this Figure). Each datapoint in the panels represents a value averaged 
over a different neighborhood in the Netherlands. The points are colored 
according to the share of households in the neighborhood that are 
equipped with district heating. The black line in the plot is a guide to the 
eye that shows a uniform annual per capita expenditure level of 500 €. In 
the top left panel (electricity), we see that the average annual per capita 
energy expenditure is nearly constant at about 500 € for low and high 
incomes. For middle income levels, however, we observe a wider range 
of expenditure values that lie mostly below the horizontal 500 € line. We 
think the explanation is that at low incomes the capacity to reduce en
ergy expenditure (for example by purchasing energy-efficient equip
ment) is constrained, while at high incomes the incentive to do so may 
be limited. Middle-income citizens, on the other hand, may have both 
the capacity and readiness or interest to lower their energy expenditure, 
which leads to the widening of the distribution of expenditure values 
well below the 500 € line. Similar observations can be made for the top 
right panel (gas). The datapoints in the right panel, however, are shifted 
upwards, since for the majority of people in the Netherlands per capita 
expenditures for natural gas are higher than those for electricity. 
Consequently, an important difference between the two top panels is 
that the maximum annual per capita expenditure is about twice as high 
for gas (around 2000 €) than it is for electricity (approximately 1000 €). 
Furthermore, for middle income citizens the dip in the expenditure 
range for gas is much more pronounced than for electricity. This is partly 
an artifact of the dataset, however, as centralized consumption of gas for 
heating purposes through district heating networks is not accounted for 
in household gas usage statistics. The color-shading reveals indeed that 
the per capita gas expenditure in neighborhoods is substantially and 
progressively reduced with increasing shares of district heating – the 
remaining gas usage is mostly reserved for cooking purposes. The bot
tom panels of Fig. 1 show the same data, but energy expenditures are 
expressed as share of average annual per capita income. 

By combining electricity and gas expenditure levels from the KWB 
dataset we calculate the total average annual per capita energy expen
diture share in each neighborhood. In Fig. 2(a) we plot this expenditure 
share against the average annual per capita income. We define an in
come threshold and an expenditure threshold (depicted in Fig. 2(a) as 
vertical and horizontal dashed lines, respectively) that divide the dis
tribution into four energy poverty risk categories. Neighborhoods rep
resented by datapoints above the income threshold and below the 
expenditure threshold (No risk category, in green) experience the lowest 
energy poverty risk. On the opposite side of the spectrum, neighbor
hoods below the income threshold and above the expenditure threshold 
(Double risk category, in red) are subject to the highest risk of energy 
poverty. The two other quadrants denote two intermediate risk cate
gories, one (called Expenditure risk, in orange) characterized by high 
energy expenditure shares, and the other (called Income risk, in yellow) 
distinguished by low income levels. We set the income threshold at the 
official ‘minimum income’ level stipulated by the Dutch national gov
ernment. We adopt its value for 2015, i.e. 18 k€ (SZW, 2015), since 2015 
is one of the middle years in the time span considered from the KWB 
dataset. We define the expenditure threshold at a value of 4.3%, which 
corresponds to the 80th quantile of the distribution. This particular 

Table 1 
Main characteristics of KWB and WoON datasets.  

Dataset KWB WoON 

Years consulted 2013–2018 2018 
Data geolocated Yes No 
Geographical scope of individual 

datapoints 
neighborhood 
average 

single 
households 

Original size:   
- Datapoints ~40000 ~60000 
- Features ~100 ~1000 
Size after vetting:   
- Datapoints ~6000 ~12000 
- Features ~100 ~1000  
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choice for the two thresholds results in 77% of the datapoints falling in 
the No risk category, 16% in the Expenditure risk category, and 3.5% each 
in the Double risk and Income risk categories. We recognize that there is 
an inherent degree of arbitrariness in our choice of income and expen
diture threshold values. This issue is closely linked to the fact that it is 
practically difficult to objectively define and measure energy poverty, an 
observation that we further address and elaborate upon in subsequent 
parts of this paper. 

We adopt a similar approach to classify the WoON data, shown in 
Fig. 2(b). While the framework employed for the WoON data is analo
gous to that used for the KWB dataset, there are also a few important 
differences. First, each datapoint in the WoON dataset represents a 
surveyed household, rather than an average person in a neighborhood. 
Second, in Fig. 2(b) we classify the WoON data according to the level of 

average annual ‘disposable’ household income,1 rather than the average 
annual per capita income, hence the difference in variable depicted on 
the x-axis. Consequently, we also redefine the y-axis as the energy 
expenditure per household, expressed as a share of disposable household 
income. Finally, we set the income threshold at the official govern
mental ‘minimum income’ level for 2018, which is slightly higher than 
its value for 2015, i.e. 18.9 k€ (SZW, 2018). For the expenditure 
threshold we here adopt a value of 10%, hence more than twice the 
value used for the KWB dataset expenditure threshold, to match stan
dard classification methods in the literature (see e.g. Ntaintasis et al., 

Fig. 1. Top two panels: average annual per capita 
energy expenditure (for electricity and gas, respec
tively) of Dutch neighborhoods in 2015 against their 
average annual per capita income. Bottom two 
panels: the same, but with the energy expenditure 
expressed as share of income. Individual datapoints 
correspond to neighborhood averages and are 
shaded according to the share of houses equipped 
with district heating in each neighborhood. The 
black line is a guide to the eye. Data source: KWB, 
2015.   

Fig. 2. Our definition of four main energy poverty risk categories for two datasets from KWB (a) and WoON (b), respectively.  

1 Disposable household income represents the yearly net amount that a 
household has at its disposal to be spent or saved. 
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2019). 

3. Analysis and results 

3.1. Descriptive statistical analysis 

In Fig. 3 we reproduce the plot from Fig. 2(a) with exactly the same 
datapoints but now colored according to the value of five key parame
ters found in the KWB dataset. Among the many parameters at our 
disposal in this database we selected: (panel a) average house value (the 
so-called WOZ value in the Dutch communal housing registry), (b) 
population density, (c) average household size, (d) share of rented 

houses and (e) share of houses constructed after 2000. Following an 
extensive analysis of both the KWB and WoON datasets, we singled out 
these five parameters because (i) they are in similar (but not identical) 
ways available in both datasets, (ii) they constitute a suitable number of 
features for a machine learning model in view of the size of the two 
datasets, (iii) they represent quantities that are either publicly known or 
relatively easy to measure and leave little room for misinterpretation, 
and (iv) they were found to significantly influence the reliability for the 
prediction of the energy poverty risk category. 

The color-shaded scatterplots in Fig. 3 visualize the relationship 
between each of these five parameters and the four energy poverty risk 
categories that we defined. In panel (a) we see that the average property 

Fig. 3. Relationship between energy poverty risk category and (a) average house value, (b) population density, (c) average household size, (d) share of rented houses 
and (e) share of houses built after 2000, for the KWB dataset. 
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value correlates well with average income, given that essentially all 
high-value houses are owned by people with above-minimum incomes. 
This is not surprising, since wealthier citizens are more likely to move to 
neighborhoods with houses that are larger and more pricey. Panel (b) 
shows that in sparsely populated areas energy expenditure shares tend 
to be relatively high, which might be attributable to the physical prop
erties of the houses in these regions. Areas with a low population density 
typically host more large detached houses that do not benefit from the 
insulating properties of the presence of direct neighbors. This may 
explain a higher energy consumption level, and hence energy expendi
ture share, in regions with low population density. Another observation 
from this panel is that people with higher incomes have a higher ten
dency to live in areas with lower population density. In panel (c) it can 
be seen that there is essentially no correlation between household size 
and average per capita income. Small households are fairly evenly 
distributed across the chart around the more centralized datapoints that 

represent households with a higher number of members. Panel (d) 
demonstrates that neighborhoods with a high percentage of rented 
homes are typically characterized by lower incomes and lower energy 
expenditure shares. The former can be explained by the fact that lower 
incomes allow less for home ownership. For the latter perhaps the 
explanation is that the share of apartments (for which energy expendi
tures tend to be relatively low) that are rented out is higher than the 
share of houses (for which energy expenditures are typically higher) that 
are up for rent. The fact that home-owners tend to have a stronger 
incentive to invest in long-term maintenance and energy saving mea
sures than landlords who rent out their houses – a phenomenon also 
known as the split-incentive problem (see e.g. Melvin, 2018) – may be 
among the reasons why the vast majority of neighborhoods in the right 
part of the no-risk quadrant (high income and with a low share of rented 
houses) yield a low energy expenditure share. Panel (e) illustrates that 
neighborhoods with a high share of new houses nearly all fall in the 

Fig. 4. Relationship between energy poverty risk category and (a) house value, (b) degree of urbanization, (c) household size, (d) house ownership and (e) building 
year, for the WoON dataset. 
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no-risk category: they are characterized by moderate to high income 
levels and by low energy expenditure shares. Among the likely reasons 
for the latter are – apart from high incomes – the higher 
construction-quality, an increased focus on energy efficiency and fewer 
maintenance issues. 

In Fig. 4 we present similar plots as the ones depicted in Fig. 3, but 
now based on the WoON dataset. In Fig. 4 each datapoint represents a 
single household (rather than a neighborhood average) and some of the 
five parameters shown are measured against a different metric than 
those plotted in Fig. 3 based on the KWB database. The property value 
depicted in Fig. 4(a) displays essentially the same trend as observed for 
the neighborhood data of Fig. 3, but with increasing disposable house
hold income levels one observes a more gradual transition towards 
higher-value houses. Since population density is not directly available in 
the WoON dataset, in panel (b) we plot the degree of urbanization, a 
parameter that is closely related to population density.2 In this case the 
data look homogeneously distributed across the chart and, unlike with 
the population density data plotted in Fig. 3(b), no apparent correlation 
exists between the level of urbanization and the energy poverty risk 
category. Panel (c) shows that – understandably – single-person house
holds typically possess low disposable incomes, while larger families 
usually have larger disposable incomes thanks to multiple salaries. 
There is a relatively smooth transition between the two. Larger house
holds are clearly more frequent in the high disposable income end of the 
plot. High expenditure shares tend to be associated predominantly with 
1- and 2-person households. The trend is remarkably different from that 
observed at the neighborhood level shown in Fig. 3. The difference may 
be due to the flattening effect of neighborhood averaging in Fig. 3. Also, 
larger households typically correspond to families with dependent 
children. These households may yield low per-capita income levels 
(which we show in Fig. 3 based on KWB data) but not necessarily low 
household incomes (depicted in Fig. 4 on the basis of WoON data). In 
panel (d) blue and red dots correspond to owned and rented houses 
respectively. The overall trend is similar to that observed in Fig. 3(d) for 
the KWB data. In Fig. 4(e) we see that, while it is hard to distinguish a 
clear pattern, new houses tend to be slightly more clustered in the low 
energy expenditure part of the plot, which we saw in a more pronounced 
way in Fig. 3 at the neighborhood level. 

3.2. Machine learning models 

The next step in our analysis is to train a set of ML classifiers on the 
KWB and WoON datasets to predict the energy poverty risk category 
based on income and/or the five additional features introduced in the 
previous section. As we observed above, the number of datapoints in 
each category is not the same. This is true for both the KWB and the 
WoON datasets. The imbalance in category size could introduce a bias in 
the ML classifiers, whereby the largest category is predicted more 
frequently. In order to avoid such a prediction bias we down-sample the 
datasets so that we can train our models on categories containing the 
same number of data points. We do this by keeping all datapoints for the 
category with the smallest number of observations and randomly 
selecting the same number of points from each of the other three cate
gories. We have chosen to train gradient boosting decision tree (Fried
man, 2001) models on our datasets. We present here results obtained 
with XGBoost (Chen et al., 2016), but note that the same performance 
could also be achieved with Sklearn Gradient Boosting classifiers 
(Pedregosa et al., 2011). 

In Fig. 5 we present the performance of three XGBoost models 
trained on the KWB data, using as input features only income (Model A), 

only the five parameters described in section 3.1 (Model B), and income 
plus these five parameters (Model C). The performance is presented as 
confusion matrices, accompanied by tables that detail specific score 
metrics. To construct the confusion matrices of Fig. 5, the true label of 
each datapoint in the test set is compared with the label predicted by our 
ML algorithm, and the shares of correct and incorrect predictions are 
calculated. In the diagonal of a confusion matrix we find the share of 
‘true positives’, i.e. correctly predicted instances, for each category. In 
every row, the non-diagonal elements represent the share of ‘false neg
atives’, i.e. elements that are incorrectly allocated to other categories. 
The tables next to the confusion matrices in Fig. 5 present, for both the 
training and test samples, several standard performance metrics: ‘pre
cision’, ‘recall’, ‘f1-score’ (see Appendix for definitions and detailed 
descriptions) and size of each class, as well as an overall accuracy score 
(highlighted in bold font). By inspecting and contrasting the confusion 
matrices and scores in the three panels of Fig. 5, several conclusions can 
be drawn. First, when income is included in the set of features used to 
train the model (models A and C), the ‘0%’ cells in the confusion 
matrices indicate that the models are able to perfectly separate cate
gories double risk and income risk from the other two. In other words, no 
datapoint is misclassified across the vertical threshold of Fig. 2(a). This 
is to be expected in a model that contains income as a predictive feature, 
if the training sample is large and representative enough. Second, the 
overall prediction accuracy of model B on the training set is significantly 
higher than that of model A (76% vs. 63%, respectively), while the two 
models display essentially the same performance on the test set (61% vs 
62%, respectively). The accuracy drastically increases in model C, both 
on the training and the test sets up to, respectively, 88% and 77%. Third, 
by comparing the confusion matrices for models A and B, we see that the 
main advantage of the five extra features over income is that they enable 
to better discern double risk from income risk. This is attested by the 
difference in the amount of instances of double risk incorrectly classified 
as income risk between model A (54%) and model B (31%). Finally, 
model C attains the best performance, with shares of true positives 
above 70%, and shares of false negatives below 30% in all categories. 

In Fig. 6 we evaluate the importance of the different features in the 
XGBoost classification models B and C. The plots show a metric called 
‘gain’, the average f1-score improvement as a result of adding each 
feature to a decision branch. A higher gain implies that the feature has a 
larger overall effect on the predictions. Since income is one of the di
mensions of our categorization framework (i.e. it is used to label the data 
before training), we expect it to be the most important feature in models 
that include it. For model B, where income is not an explicit model 
feature, average house value has the highest gain, probably as a result of 
the fact that average house value is highly correlated to income (see 
Fig. 3(a)). In the case of model C, income is indeed the most important 
feature, followed by population density, while the gain of average house 
value is relatively low. Population density is the second most important 
feature in both models, while the other features show significantly lower 
gain. 

Figs. 7 and 8 present confusion matrices, scores and gains for the 
WoON dataset. From the confusion matrices and performance metrics in 
Fig. 7 we can see that in general the WoON data allow for more accurate 
predictions than the KWB data. In particular, model A, based only on 
income, already achieves performance scores comparable to those 
observed in Fig. 5 for model C, containing income and the extra five 
features. The performance of model B for the WoON dataset in Fig. 7, 
however, is significantly worse than its analogous for the KWB dataset. 
This indicates that, when assessing single households, disposable in
come is essential in order to achieve good predictions. Extensive analysis 
has shown that this conclusion holds also if other measures of income, e. 
g. gross household income, are used. When disposable income is com
bined with the other five features (Fig. 7, Model C), f1-scores above 75% 
are achieved in all categories. 

The gain plots in Fig. 8 show that for the WoON data, when income is 
not included in the features set, i.e. for Model B, household size and 

2 The urbanization level is assigned based on the average number of ad
dresses in the surroundings of the house, with 1: >=2500 addresses/km2, 2: 
1500 to 2500 addresses/km2, 3: 1000 to 1500 addresses/km2, 4: 500 to 1000 
addresses/km2, and 5: <500 addresses/km2. 
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house ownership are the most significant predictors. This is likely due to 
the fact that these two features are strongly correlated with income 
(more so than house value), as observed in Fig. 4. In contrast, these 
features are found to be among the least important predictors in the 
analogous case for the neighborhood level data (Fig. 6). If income is 
explicitly included in the features set, Fig. 8 confirms that for data at the 
single household level income is by far the most significant predictor of 

energy poverty risk. 

3.3. Sensitivity analysis 

A critical parameter in our analysis is the choice of income and 
expenditure thresholds. This choice has important policy implications. If 
a subsidy scheme is put in place, for example to help households in the 

Fig. 5. Confusion matrices and prediction scores for the KWB dataset, considering as features only income (Model A), only the five parameters described in section 
3.1 (Model B), and income plus the five parameters (Model C). 
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double risk category, the number of families receiving the subsidy would 
depend on where the thresholds are set. In the context of our ML analysis 
the choice of thresholds may have an impact on the predictive power of 
our ML models. This may occur because different threshold levels affect 
(i) the size of each category and hence the size of the training sample, 
and (ii) the position of category boundaries relative to the distribution of 
the five selected features in the expenditure vs. income scatter plot. 

In order to quantitatively assess the magnitude of these effects, we 
run a sensitivity analysis on the thresholds position. We accomplish this 
by systematically varying the position of both thresholds incrementally 
within a±20% range, relabeling the data, training our most accurate 
model (Model C that takes into account income plus the five selected 
features) on a sample of the re-labelled dataset, and recording the 
resulting average f1-score on a test sample thereof. Figs. 9 and 10 show 
the outcomes of these sensitivity runs for respectively the KWB and 
WoON datasets, in the form of standard ‘box-and-whiskers’ plots. The 
figures contain insets that visualize the sensitivity analysis range by 
means of semi-transparent blue rectangles. In panel (a) of both figures, 
for each assessed value of income threshold on the x-axis, the corre
sponding box-and-whiskers plot represents the range of f1-scores ob
tained by varying the energy expenditure share threshold 20% below 
and above its initial value. For the KWB data, the width of the box-and- 
whiskers diagrams decreases with increasing income threshold, while 
the median (green line in the boxes) presents the opposite trend. In 
contrast, for the WoON data, both the widths and the medians display 
relatively small variations that are fairly independent of the income 
threshold. The difference is likely due to the fact that by reducing the 
income threshold for the KWB dataset the number of available data to 
train our ML model becomes too small to achieve consistent predictions. 
For the WoON dataset this effect would only be triggered by reducing 
the income threshold by more than 20%. 

Panel (b) in both figures attempts to better illustrate the effect of 
training sample size on the prediction performance. Each of the 441 
combinations of income and energy expenditure share thresholds 
assessed in the sensitivity analysis is characterized by a minimum 
sample size (MSS), i.e. the number of points in the smallest of the 
resulting categories. This minimum size determines the available 
training sample size for building our ML model. In panel (b) of both 
figures we construct a new set of box-and-whiskers plots by grouping the 
f1-scores into ten equally sized bins, representing a range of MSSs 
observed in the f1-score data. For example the first bin in Fig. 9(b) 
contains a set of 44 f1-scores, resulting from samples of minimum size 
between 70 and 100 points. The last bin in the same figure contains the 
same amount of f1-scores from samples of minimum size between 3100 
and 5800 points. For both the KWB and the WoON datasets there is a 
clear negative correlation between MSS and width of the box-and- 

whiskers diagrams. The correlation is strongest for the KWB data, as 
expected from the analysis of panel (a). As MSS increases, median f1- 
scores for the KWB dataset systematically increase until MSS of 
around 1000 datapoints. For higher MSS median f1-scores are roughly 
constant, or even decrease slightly. For the WoON dataset, median f1- 
scores do not display a significant trend, although a slight negative 
correlation can be observed at large MSS levels. 

This sensitivity analysis enables us to conclude that varying 
threshold position does not significantly affect the prediction power of 
our best machine learning models, for both the KWB and WoON data
sets. This conclusion holds true as long as the specific threshold position 
induces MSS above ~1000 datapoints. 

4. Conclusion and policy implications 

In this paper we present a framework to classify households in the 
Netherlands into four energy poverty risk categories. Our framework 
builds on two large databases that report socio-economic parameters at 
the neighborhood and single-household level, respectively named the 
KWB and WoON datasets. We use a ML gradient boosting decision-tree 
algorithm (XGBoost) to predict the risk of experiencing energy poverty 
based on a set of selected socio-economic features that are available as 
neighborhood-level averages or for single-households, respectively. The 
main socio-economic drivers that we identify are house value, house 
ownership, house age, number of people per household, and the average 
population density in the residence’s surroundings. We confirm the 
common understanding that income is for both datasets the most 
important predictor of energy poverty. When a direct measure of income 
is excluded from the features upon which our ML models are trained, 
features that are correlated with income, e.g. house value for KWB and 
household size for WoON, display the highest predictive power. The 
inclusion or exclusion of specific (sets of) features in the ML analysis 
significantly affects the performance of ML models. This suggests that 
the mechanisms underlying the relationships between energy poverty 
and the socio-economic features considered in our study might be of 
intrinsically complex nature, as also suggested by Baker et al. (2018). 
Future research efforts could analyze this complexity to a deeper level by 
e.g. hypothesizing and testing a series of causal relations on the basis of 
our results. ML models with overall test-sample accuracies of around 
80% in terms of f1-score can be trained on both datasets, which indicates 
that ML could become a valuable tool to monitor and assess energy 
poverty at different geographical scales. Extensive sensitivity analysis on 
the income and energy expenditure thresholds that define our four en
ergy poverty risk categories reveals that the performance of ML models 
remains consistent across a wide range of category boundaries, as long 
as at least around 1000 datapoints are available for training. 

Fig. 6. Feature importance plots for models B and C, KWB dataset.  
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While in principle one could attempt to study the links between 
socio-economic drivers and energy poverty risk using traditional 
regression methods, we find that there are three clear benefits to doing 
this type of analysis using ML. First, the large amount of data and – 
especially – data features involved in many of today’s challenges are 
difficult to handle with traditional regression tools. Second, in order to 
study possible correlations between the various features, traditional 

regression methods would typically require some prior assumptions on 
which of the features could possibly be correlated; such assumptions a 
priori are not needed when using ML, since correlations naturally 
emerge from the analysis of the trained models. Third, ML models are by 
default able to deal with non-linear dependencies – which is a prereq
uisite for studying complex processes such as energy poverty – while 
traditional regression is often more suited to study linear problems. 

Fig. 7. Confusion matrices and prediction scores for the WoON dataset, considering as features only income (Model A), only the five parameters described in section 
3.1 (Model B), and income plus the five parameters (Model C). 
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The framework we use to classify our data is essentially analogous to 
those used to build low income high cost (LIHC) indicators (Hills, 2012). 
An example of this indicator applied to the Netherlands is given in van 

Middelkoop et al. (2018). Another notable example that relies on a 
similar risk-based index is the work of Walkers et al. (2012) on fuel 
poverty in Northern Ireland, where, interestingly, also temperature and 

Fig. 8. Feature importance plots for models B and C, WoON dataset.  

Fig. 9. Sensitivity analysis for the threshold values: average f1-score vs. income (a) and training sample size (b) for the KWB dataset.  

Fig. 10. Sensitivity analysis for the threshold values: average f1-score vs. income (a) and training sample size (b) for the WoON dataset.  
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fuel price effects are considered as drivers. In contrast to previous ana
lyses with LIHC estimates and other risk-based indices, our framework 
does not require complex and extensive data processing, but is based 
instead on a straightforward approach that builds on readily available 
raw statistical data. For example, while van Middelkoop et al. (2018) 
rely on a rather involved estimate of the remaining available household 
budget – after housing, energy and living costs have been accounted for 
– in order to determine an income threshold, we simply choose the 
minimum income as proxy. We show that, with an appropriate choice of 
the expenditure threshold, results can be obtained that are very close to 
those reported by van Middelkoop et al. (2018) in terms of overall shares 
in the four categories. This confirms the validity of our – simpler – 
approach. Based on these findings, a scheme can be envisioned in which 
ML models that rely on raw data are calibrated to reproduce the results 
of more detailed in-depth studies (e.g. analogous to van Middelkoop 
et al., 2018), and subsequently used for real-time monitoring of energy 
poverty. As shown in section 3.3, the use of a straightforward approach 
also allows for easily and systematically exploring the effect of shifting 
classification boundaries, which may be useful for creating what-if 
scenarios to study the consequences of adopting different energy 
poverty definitions. 

An additional element of novelty in our approach is that we adopt a 
general modelling framework and let a machine learn from actual data 
how the selected drivers should be weighed and how they are related to 
one another. In prior work – e.g. by Walker et al. (2012) – energy 
poverty risk is typically assessed by weighing socio-economic drivers 
based on intuition or common sense, and using predefined models. In 
this sense our work contributes to filling an existing gap in the literature, 
identified by Walker et al. (2012) as “the lack of an established protocol 
for weighting contributors to fuel poverty”. 

A comparison of the results obtained with each of the two datasets 
employed in this study – KWB containing neighborhood statistics and 
WoON containing single-household data – reveals the importance of the 
level of geographical aggregation in analyzing energy poverty. Fig. 2 
highlights that the two datasets, when plotted in essentially the same 
framework, present distinctively different distributions, each requiring a 
unique choice of thresholds. The assessment of model features in Figs. 6 
and 8 shows that income is the most important driver for both datasets. 
When income is removed, household size is also an important feature at 
both levels of aggregation. Features that relate to population density and 
house ownership display an opposite trend in the two datasets: the 
former is highly important for the KWB dataset, while it appears at the 
bottom of the list for the WoON dataset. The latter has the lowest f1- 
score for the neighborhood-level data, while it has relatively high 
feature importance for the single-household data. These observations 
have interesting consequences for the possible future use of our 
approach for monitoring purposes, as they highlight how different 
drivers should be considered when assessing the risk of energy poverty 
for a whole neighborhood or a single household. 

Our results are statistical, in the sense that they are based on either 
neighborhood-level averages or a representative set of typical single- 
households. This implies that statistical anomalies or atypical cases 
might be missed or “flattened” out in our analysis. One important 
question in this respect is whether our approach (or a refined version of 
it) could in the future successfully be used to also identify vulnerable 
households that are under-represented in statistical terms. This concerns 
for example households that have an abnormally low energy expendi
ture, a phenomenon sometimes referred to as hidden energy poverty (see 
e.g. Betto et al., 2020). While fully answering this question falls beyond 
the scope of the present paper and is left for future research, we observe 
here that this is a matter of (i) choosing an appropriate metric that can 
detect these households from the available data, and (ii) selecting an ML 
technique that can adequately deal with heavily unbalanced classes. 
Solutions can be envisaged for both (i) and (ii), but the success of the 
approach will ultimately be determined by the availability of a large 
enough representative training dataset. 

Our findings demonstrate that ML could assist policy-makers in 
detecting and possibly preventing energy poverty, by providing insights 
in its complex origins that are otherwise difficult to assess systemati
cally. This approach falls within the growing field of data-driven and 
evidence-based policy making (see e.g. Jansen et al., 2012; Millard, 
2018; Pawson, 2006). The use of large datasets to inform the policy 
process may possibly entail certain ethical and legal implications. We 
abstain from discussing these in our paper, and refer the interested 
reader to the relevant literature on this topic. 

The bottom-line level of uncertainty in our ML prediction for both 
the KWB and WoON datasets is dictated by the fact that the classification 
framework does not follow any specific natural distribution, i.e. the 
thresholds are artificially dividing a data continuum into four cate
gories. Follow-up work could be pursued in several directions to 
improve prediction accuracies. First, the effect of using a different set of 
socio-economic parameters as predictive features should be systemati
cally assessed. A particularly interesting addition would be the inclusion 
of the number of disconnections as a driver. While in the Netherlands (as 
in other European countries) laws are in place that attempt to minimize 
the occurrence of disconnections, these have been proposed in the 
literature as an important indicator of energy poverty risk (see e.g. 
Thomson and Bouzarovski, 2018). Second, spatial features that have 
been found to be related to household energy consumption (e.g. land 
surface temperature, as assessed by Mashhoodi et al., 2020) could be 
introduced to train the models. Third, ML models based on algorithms 
other than gradient boosting decision-trees (such as support vector 
machines or neural networks) should be trained and tested on the data. 
Fourth, the temporal dimension should be further explored by explicitly 
considering how the same neighborhood, respectively household, is 
classified in different years, as well as in different periods within the 
same year. Fifth, the framework could be generalized and applied to 
other countries for which enough data are available. Finally, another 
important way in which the results presented in this paper could be 
improved, would be to explicitly and systematically link them to the 
outcomes of qualitative and behavioral studies on energy poverty. In 
particular one could assess the practical difficulties experienced by 
families in the four risk categories, identify their possible causes, and 
quantify the impact of externalities such as extreme weather events. This 
type of information, combined with the findings provided by our ML 
classification, could lead towards a more systematic understanding of 
the mechanisms that cause energy poverty. 
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Appendix 

Definitions of performance metrics 

precision =
true positives

true positives + false positives 

Precision expresses the number of correct positive predictions as a share of total positive predictions. This metric is most suitable when there is a 
high cost associated with false positives. For example, when trying to predict households in the double risk class, a false positive would be a no risk 
household categorized as double risk. 

recall ​ =
true positives

true positives + false negatives 

Recall expresses the number of correct positive predictions as a share of total actual positives in the sample. This metric is most suitable when there 
is a high cost associated with false negatives. For example, when trying to predict households in the double risk class, a false negative would be a 
double risk household categorized as no risk. 

f 1 = 2 ×
precision × recall
precision + recall 

The f1-score combines precision and recall, and can be used as a general metrics that accounts for the costs of both false positives and false 
negatives. 
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