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Abstract: The timing of discrete-event systems with synchronization is naturally modeled
with canonical multi-rate max-plus linear equations. The main objectives of these models are
to analyze and control the systems. As a system becomes more complex, determining its
canonical model becomes more complicated. Moreover, these systems may change over time
which demands the model to be recalculated. Motivated by the compositional structure of many
systems, we propose operations to determine the canonical model for composed multi-rate max-
plus linear systems. The operations allow efficient (re-)calculation of the canonical models from
constituent canonical models. These models can be utilized to analyze and/or control complex

systems using existing methods.
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1. INTRODUCTION

Discrete-event systems (DESs) are extensively studied in
literature. This research has concentrated on modeling,
analysis and control of complex systems, ranging from
multi-processing systems (e.g. Stuijk et al. (2007)) and
telecommunication systems (e.g. Cruz (1991)) to trans-
portation systems (e.g. Kersbergen et al. (2016)).

The phenomenon of synchronization in DESs is a non-
linear characteristic in classic system theory that can be
modeled as a linear aspect in max-plus algebra (see Bac-
celli et al. (1992)). These DESs with synchronization are
referred to as Max-Plus Linear Systems (MPLSs). Max-
plus algebra provides an opportunity to apply some of the
classical linear system approaches for such systems, such
as model predictive control for MPLSs (De Schutter and
Van den Boom (2001)). Moreover, it facilitates to evaluate
performance properties of a system such as throughput
(Ghamarian et al. (2006)).

Finding a canonical max-plus linear model of a complex
system is a challenging task. Furthermore, a system may
dynamically change from one configuration to another.
Consider a software update for an autonomous vehicle
as an example. The performance of this system must be
guaranteed. For instance, a short delay in the response
time of this system may reduce the reliability of this
system and lead to catastrophic circumstances. Hence,
prior to this update, the performance of the system must
be carefully analyzed and verified. To evaluate and verify
the performance of the system, the canonical-form repre-
sentation of this system is determined. This system has
multiple heterogenous applications mapped onto a het-
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Fig. 1. A system constructed from components S and S’

erogenous distributed shared platform and a wide verity of
sensors and actuators. The applications and resources have
multiple configurations that vary over time. Moreover,
depending on the dynamics of the environment, an applica-
tion might be added or removed. Therefore, these systems
are sophisticated and (re-)calculation of their model is
consequently complicated. Nonetheless, these systems are
likely to be created from simpler components, such as
image filtering applications, object detection applications
and video tracking applications. These components have
their own canonical models and interact with each other
through their inputs and outputs.

A closed-form symbolic formulation reduces the com-
plexity of modeling complex systems, built from simpler
MPLSs, in canonical form. In particular, for a system with
multiple configurations, it is convenient to determine the
canonical-form representation of its actual configuration
based on the canonical model of its components without
flattening. Therefore, we propose a compositional model of
DESs described by canonical max-plus linear equations.

As a running example, Fig. 1 depicts a system with two
components S and S’, characterized by max-plus-linear
equations. S has two input ports, u; and wug, represented
by two-pronged forks, and two output ports, y; and ys,
depicted by lollipops. Similarly, «} and u) are input ports
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of S/, and S’ has two output ports y; and y5. Input and
output ports communicate discrete-time signals. These
signals capture the production times of events, not the
data values that are exchanged. In every execution of the
system, called an iteration, the system consumes a fixed
number of samples from each input port and produces
a fixed number of samples on each output. In figures,
sample rates (samples per iteration) greater than one are
annotated above ports. In Fig. 1, annotation 2 above port
y1 gives the sample rate of y;. Hence, these systems are
called Multi-rate Max-Plus Linear Systems (M?2PLSSs).

Fig. 1 illustrates two M2?PLSs S and S’ producing samples
for each other. Output y; of S is connected to input u}
of §’, and output y; of S’ is connected to input u; of
S. Our goal is to compute the canonical model of the
total system from the canonical models of S and S’.
First, the canonical-form representation of CS, which is
a composite model of S and S’ with a connection from
to uf, is determined. From the connection from y; to u}
in Fig. 1, it follows that two samples are produced on y;
in every iteration of S, while in every iteration of S’ only
one sample is read from u}. To handle these unbalanced
rates, first, we synchronize the rates. In this example,
a model of S’ for two iterations is determined, which
consumes two input samples in every execution. After
rate synchronization, the model of CS can be determined
through substitution. Then, the canonical model of CS
is determined as a composite model of CS after adding a
connection from y} to uj.

Our proposed method perceives each system as a black
box with its canonical model. The determined canonical
model abstracting the composite system can be used to an-
alyze or control that composite system. Our compositional
model is an algebraic method that composes M2PLSs
characterized in the canonical form using two operations.
The first operation synchronizes the sample rates of the
systems to be composed. The second operation captures
a connection from an output port to an input port. New
connections may introduce deadlocks. A deadlock is a state
in which a group of components waits for synchronization
among them in a cyclic way. Our method checks such
dependencies in the canonical max-plus linear model of
the system before adding a connection.

2. RELATED WORK

Widespread applications of max-plus linear system theory
have been investigated in the literature. The targets of
this research can be divided into three main purposes: (I)
modeling, (IT) performance analysis and (III) control and
optimization. This paper focuses on modeling of compos-
ite max-plus linear systems for the purpose of analysis
and/or control of complex DESs. Although no research
concentrates on the composition of max-plus linear sys-
tems as a generic problem, research often applies max-plus
algebra to model, analyze or control a specific composi-
tional system. For instance, a worst-case response time
analysis for parallel compositions of synchronous systems
was proposed by Aguado et al. (2017). In the following
two paragraphs, two compositional methods for modeling,
analysis and control of specific DESs, namely dataflow
systems and manufacturing systems, are reviewed.

The max-plus semantics of dataflow models is used to
analyze complex hierarchical dataflow models. Skelin and
Geilen (2017) propose a method to evaluate throughput of
hierarchical synchronous dataflow models. Their method
is an extension to the max-plus semantics of synchronous
dataflow models that facilitates throughput analysis of
hierarchical models without flattening them. To design
and predict behavior of complex applications of which
the behavior changes modes with a deterministic, periodic
pattern, a compositional dataflow model was suggested
by Alizadeh Ara et al. (2018). They utilize the max-
plus semantics of dataflow models to model and efficiently
analyze the behavior of complex applications. Although
both of these methods facilitate the analysis of composite
systems, their methods are only useful in their specific
domain and do not treat components as black boxes.

To analyze and control manufacturing systems created
from simpler systems, usually in a serial form, some re-
search focuses on the canonical max-plus linear model of
these systems. For instance, a model for the composition of
manufacturing systems has been proposed by Imaev and
Judd (2008). Their hierarchical model uses canonical max-
plus equations to calculate performance properties of a
system such as machine utilization and work in process.
However, their paper considers only serial composition of
manufacturing systems, where a sequence of jobs passes
from one system to another. Seleim and ElMaraghy (2014)
introduce a max-plus model of manufacturing flow lines.
They suggest a model for merging lines as well as for
serial systems. Their method facilitates analysis for re-
configuring flow lines. However, their method is presented
informally and is specific for their case study.

None of the aforementioned research addresses arbitrary
compositions of MPLSs even in their specific domains,
whereas we propose an algebraic method to find the
canonical model of any arbitrary composition of M2PLSs
as a generic problem.

3. PRELIMINARIES

This section introduces the necessary mathematical pre-
liminaries for this paper. For more detailed information,
see Baccelli et al. (1992) and Heidergott et al. (2005).

8.1 Max-Plus Algebra

For a,b € Ryue = RU {—0o0}, the ® and ® operations
are defined as a ® b £ maz(a,b) and a®@b = a + b.
As in linear algebra, the set R,,,, with operations can
be extended to vectors in R} .. and matrices in R X™,

where n,m € N. For A,B € R A @ B is defined
by [A @ B j = A @ By ), where (i,.j) denotes .the
element of row ¢ and column j of the matrix. To multiply
two matrices A € R2X™ and B € R, [A® B](; ;) =
@D Ak @ By j)- The b power of A € RIXT is
A’ =A®...®A.

—_——

b

3.2 Max-Plus Linear Systems

An important subclass of discrete-event systems for which
only synchronization and delay are the key aspects of exe-
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Fig. 2. The running example, a composite system is created
from two M?2PLSs.

cution is called max-plus linear systems. Synchronization
means that an operation waits until all preceding opera-
tions have been completed. This behavior can be modeled
by the & operation in max-plus algebra. Delay means
that an operation executes in a fixed amount of time,
which is modeled by operation ® in max-plus algebra.
The characteristic equations of max-plus linear systems
are described in canonical form as follows (see Baccelli
et al. (1992) and Heidergott et al. (2005)).

z(k+1) = A®xz(k) @ Bou(k) (1)
y(k) = Cox(k) ® Deu(k),
where x(k), u(k) and y(k) are discrete-time signals that
represent the production times of states, inputs, and
outputs respectively. A is called the state matrix, B, C
and D are called input, output and feed-through matrices,
respectively.

4. PROBLEM FORMULATION

Let MRS be a set of M?PLSs to be composed, e.g. S and
S’ € MRS. Let U and Y be the sets of inputs and outputs
of the MPLSs. For instance, in Fig. 2, uy,us,u},u)y € U.
Ip : MRS — P(U) specifies the set of input identifiers
of each system (e.g. Ip(S) = {u1,us}), where P(U)
denotes the power set of U. Similarly, Op : MRS — P(Y)
specifies the set of output identifiers of each system. These
identifiers are annotated below the input and output ports
in the graphical representation. Input and output ports
communicate discrete-time signals with elements from
Rynaz- Systems repeatedly execute during which they read
a fixed number of samples from each input and produce a
fixed number of samples on each output. Such an execution
is called an iteration, which is captured by one iteration
of the canonical equations of the M?PLS.

In one iteration, example system S reads two samples
from input u; and one sample from input us. It produces
two samples on output y; and one sample on output ys.
Sample rate Sr : U UY — N gives for each port the
number of samples consumed or produced in one iteration
of a system (e.g. Sr(y1) = 2). Rates are denoted by a
number above the ports. For simplicity, rates of one are
not shown. A vector of samples produced on y; € Op(S)
(consumed from u; € Ip(S)) for any S € MRS, in the
kth iteration of S, is indicated by y, (k) (ui(k)). A vector
of all samples produced (consumed) in the k" iteration

of S is denoted by y(k) (u(k)). For S in Fig. 2, y,(k) =
[y1(2k — 1) 11 (2k:)]T and S produces output vector y(k) =
[y1(2k — 1) y1(2k) yg(k)}T during its iteration k.

A connection is an injective partial function OI:Y — U
that specifies connections from outputs to inputs (e.g.,
OI(y1) = u}). To prevent a mutual sample dependency
(when output and input samples of two M?PLSs depend
on one another), a number of samples may be initially
available. The number of initial samples on connections
is specified by Is: O — Ny (e.g., Is(yy,u1) = 2). This is
shown in the graphical representation with a dot alongside
the number of available samples. At first, these available
initial samples are read and, as a result, produced samples
are consumed with delay.

The problem we address in this paper is the following.
Given the canonical models of two M2PLSs S and 5’, a
connection function OI and an initial sample function Is,
we want to obtain the canonical-form M?PLS represen-
tation of the composition of the two systems, where the
matrices of the composite M2PLS are expressed directly
in terms of the matrices A, B, C, D and A, B', C’,
and D’ of the constituent M2?PLSs. Note that this two-
component composition enables the composition of an
arbitrary number of components.

A composite system has a canonical model only if the sys-
tem is deadlock-free and consistent. A system is deadlock-
free when there is no mutual dependency between its
samples.

To define consistency of a system, we generalize the def-
initions of repetition vector and consistency for dataflow
graphs of Lee (1991). When a system is executed itera-
tively, the numbers of produced and consumed samples on
the connections must be equal in each iteration. Let r; € N
be the number of times component S; is repeated in each
iteration of the system. The following defines consistency
as the equality of the production and consumption sample
rates on all connections under r;.

Y(yj,ui) € OI : r;Sr(y;) = riSr(u,), (2)
where y; and u; denote an output of component S; and
an input of component S;, respectively.

Definition 1. [Consistency] A composite system built
from components Si,...,S, is consistent if and only if

there is a vector r = [r1 ... rn]T with strictly positive
elements that satisfies (2). The smallest such solution r is
called the repetition vector.

In case no solution for the equations in (2) exists, the
composite system is inconsistent and consequently has
no canonical model. Inconsistency implies that a system
may deadlock or that the delay between producing a
sample and consuming that same sample grows without
a bound. Inconsistent composite systems are therefore not
meaningful. In the remainder, we only consider consistent
compositions. Consistency is not sufficient for deadlock-
freedom though. Also a consistent composite system may
deadlock because of insufficient initial samples on its
connections. A sufficient condition for deadlock-freedom
of the composite system is checked in the derivation of the
canonical-form model of the composition.
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5. A COMPOSITIONAL MODEL OF M2PLSs

This section presents an algebraic method for finding the
canonical model of M2PLS compositions. Our method
determines symbolically the canonical max-plus linear
model of a composite system based on the canonical
models of simpler systems from which it is constructed.

Fig. 3 (d) shows a system created from our two example
M?PLSs, S and S’. Output y; of S is connected to input
uy of §" and yj of S’ is connected to uy of S. S produces
m samples on y; and consumes m samples from wuy, while
m’ samples are consumed from v} and produced on ¥} in
system S” (where m = 2 and m/ = 1 in the earlier concrete
examples). Composite system CS can only be consistent
if Sr(y1) = Sr(u}) and Sr(y;y) = Sr(u1) in the composite
system. So if m # m’, we need to synchronize these rates
before composition. Constituents of a composite system
are synchronized and aggregated into a synchronized-rate
model using operation RS specified in Definition 2 (Fig. 3
(a)) in Section 5.1. Next, the connection from y; to u}
is realized and the canonical model of CS is determined
using operation ZO of Definition 3 (Fig. 3 (b)) in Section
5.2. The second connection is realized by applying again
operation ZO to the model of CS (See Fig. 3 (c)).

5.1 Rate synchronization

In Fig. 3 (d), connection o0i = (y;,u}) € OI between S
and S’ is such that Sr(y;) = m and Sr(u}) = m/. This
implies that every iteration of S produces m samples on
oi; every iteration of S’ consumes m’ samples from oi.
The models of S and S’ can be synchronized using the
repetition vector of the composite system (Definition 1). In
m’ r_ m
ged(m,m’)’ r= ged(m,m’”)
and ged(m,m’) the greatest common divisor of m and
m’. This results in the sample rate rm = r'm’ for both
y1 and u). Also the rates of the second connection are
synchronized in this way.

the example, r = [r r]” withr =

We need a model of an M2PLS after a given number of
iterations. The values of the states after every p iterations
(x(kp + 1) € R?,..) and every single output sample
produced during these p iterations can be determined
from the values of the states before these p iterations
(x((k—1)p+1)) and all the input samples consumed
during these p iterations. Substituting k + 1 for &k in (1)
gives:

z(k+2)=Axz(k+1)® Bou(k+1) (3)

yk+1)=Cox(k+1)® Dou(k+1).
Substituting x(k + 1) from (1) into (3) and keeping y(k)
from (1) yields the following:

x(k+2) ARA ARB B x(k)
ylk) | =| C D —co|l®| wu(k) (4)
y(k+1) CA C®B D u(k+1)

Equation (4) shows how the states of a system after two
iterations @ (k +2) and the output samples of the first and
second iterations (y(k) and y(k+1)) can be obtained from
states (k) and inputs w(k) and w(k + 1) of the system
during these two iterations. This method can be extended
for p iterations of a system. The states after p iterations
(z(k + p)) and outputs from the first iteration (y(k)) up

to the p'” iteration (y(k+p—1)) can be determined from
states (k) and inputs w(k) up to u(k +p — 1), (5).

x(k + p) x (k)
y(k) u(k)
: =M® : (5)
y(k+p—1) u(k+p—1)
AP A" 'sB ... B
C D cee —00

with M =

C®A"!' CoA’ ?®B - D
To calculate matrices after every p iterations, substituting
p(k—1) 41 for k in (5) yields:

[;;;*P(k+ 1)} _ {A*” B*p} F:*P(k)] (©)

y* (k) c* D | | (k)
where
zP(k+1)=z(pk + 1),
AN L
ylp(k—1)+2 u(p(k—1)+2
y*p(k>: . , u*P(k): A
y(pk) u(pk)
A" = AP, B = [A""'®B A" ?’®B ... A®B B,
C
CA
C*? = : and
CoAP~!
D —00 —0o0 —00
C®B D —00 —00
pw_| CoA®B C®B D —00

C2 A" %22 B C2A®B C®B D

Definition 2. [Synchronized-rate model] AS = RS(S,S’,r)
is an operation taking the canonical models of two
M?PLSs S and S’, and repetition vector r = [r r’]T
to equalize the production and consumption sample rates
(on the required connections between them). It returns
the canonical model of an M2PLS that is an aggregated
model of §* and S, §*" and S’*"" are the canonical
models of S after every r iterations and S’ after every r’
iterations and can be determined from (6). Equation (7)
shows the max-plus linear equations of AS.

zRS(k+1)] _ [ARS B®S . xRS (k)] )
’yRS(k) - CRS DRS ’UJRS(]{)_’
where
RS _|z(k) RS _|yT(k) ]
x (k) = |:£L‘/*T/(k):| Y (k) = |:yl*7'/(k)- s
!’ T
uS (k) = [w (k)u*" (k)]
A —0 B —00]
RS _ RS _ f
A - {m A/*T ] ?B - [m B/*T‘ | b
*r D*’l“ _
O e T
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Fig. 3. Composing two M2PLSs S and S’ by adding two connections stepwise
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yh(2k) le ¢ 6 ¢ ¢ ¢ € 6 4 2 el ub(2k) |

1%2 / l /78642
B =[A'®B B}[9753},

5 1 5 1
CI*QZ C/ — 2 —00 — 2 —o0
C'oA 5 1 4 —o0 9 2 |’
2 0| %[5 1 6 —00
5 3 —o0o —0
D - 2 —00 —00 —00
%2 _
and D = [C’@B’ D’] =lo 7 5 3
6 4 2 —o0
The synchronized-rate model in canonical form of this
example is depicted in Fig. 4, where ¢ = —oo. For the

purpose of illustration, the top left 4 x 4 matrix in this

figure denotes ARS,
2 —00 —00 —00
RS _ 4 2 —o0 —0
A T |—o0 —00 8 —o©0
—00 —o0 9 2

5.2 10 Connection

After synchronizing and aggregating the canonical mod-
els of two systems S and S’, using operation RS of
Definition 2, the connection io = (yi,u}) is added to
the canonical model of AS (Fig. 3 (b)). To formulate
adding connections in general, consider that a connection
oi = (y1,u1) € OI with Sr(y;) = Sr(u;) = m is added
to the model of S € MRS, such that Is(oi) = 4, with

Fig. 4. The synchronized-rate model of the example

y1 € Op(S) and uy € Ip(S). To determine the canonical
model considering this connection, the inputs and outputs
of S are divided into two groups. Let uw; and y; be the
input and the output to be connected. Therefore, y, (k)
is the vector of produced samples on this connection oz,
while w1 (k) indicates the vector of consumed samples from
oi. Let the vector of the rest of the samples produced on
the other connections be y, (k). Likewise, let the vector of
the rest of the input samples be us(k). According to this
notation, the system equations can be rewritten as follows:

z(k+1) = A®z(k) ® Bi®ui(k) ® Ba@ua(k) (8)
Y1 (k) = C1@x(k) © D11@ui(k) © D1 s@us(k)
Yo (k) = Co@x(k) © D21 @ui(k) © Do o@ua(k)

After adding connection oi, y; and u; are no longer an
output and input of the composite component. Therefore,
the values of these vectors should be captured in terms
of other signals and eliminated from the canonical model
of the composite system. For this purpose, in general,
we follow two strategies: (I) eliminating those produced
samples consumed within an iteration and (II) saving those
produced samples that are not consumed in the same
iteration in auxiliary vectors called augmented states. The
problem is divided into two cases: (I) the number of initial
samples ¢ on the connection is less than the w; and y;
sample rates m and (II) ¢ > m.
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In case 0 < 7 < m, some of the produced outputs are
consumed within the same iteration. For the system to be
deadlock-free, no (earlier) outputs should depend on some
of the (later) inputs. Then it is sufficient if the open loop
matrix looks like:

GC(]C + 1) A Bla Blb BQ .’B(k)
Yia(k) | _ [|Cia Digia —00 Digp ® U14(k)
Yi(k) |~ | C1 Dipjia Divis Digy2 up(k) |’
Yo (k) Cy Djy1o Doy Dip uz(k)

(9)
where y; is split into y1, and y1, and u; into wy, and
u1p such that yi, is the output that is produced and
immediately consumed by input u;, within an iteration.
Input w, initially consumes the initial samples on the
connection. After the first iteration, wq, reads the later
samples produced by yi, in the previous iteration. To
ensure deadlock-freedom, it suffices if submatrix D14 15 =
— 0O (m—i)x (m—i), Which is an (m —i) x (m — 1) matrix
with —oo entries. D141, describes the dependency of
Y1,.(k) on uip(k). It is not feasible to consider uq,(k) =
Y1, (k) because these two are waiting for one another, at
the same time. This mutual dependency between w1y (k)
and y,, (k) introduces deadlock in the system. From (9),
Y1a(k) = [Cra Dia1a Do @[a(k) uia(k) uz(k)]" and
as a result of u1,(k) = y,,(k), the following equations are
true:

x(k) I —;O —o© z(k)
) [T E g
uz (k) —c0 —oco I uz(k)

where I is a max-plus identity matrix with zeros on the
main diagonal and —oo elsewhere. Substituting the right-
hand side of (10) for [z(k) wi4(k) wip(k) u2(k)]T in (9)
yields:

33(]{7+1) A Bla Blb B2 )
yla(k) — Cla Dla,la —0o0 Dla,Q ®
Y1p(k) C1y Diy1a Dip1p Dia2
Yo (k) Cy; D3io D31y Doy |
I —oc0 —o0 _
—oo I —o0 (k)
Cla Dla,la Dla,2 ® U1a(]f) -
—00 —O00 I uz(k) |
A®B,®C, B1,®B1;,®D14,14
Cla D1a71a

C1®D15,1,0C 14 D1p,1aDD15,10@D14,14
Co8D;31,0C1, D21,8D21,®@D1g, 14

B2@Blb®D1a72 w(k)
Dy,
a, . A
D1, 2®D1 150D s ® 1;12((]{))1 (11)

D358 D3 15@D142

Given that the value of y,,(k) is already incorporated in
x(k + 1), y;,(k) and y,(k) in (11), its corresponding (the
second) row is removed from (11), which results in:

z(k+1) A®B;,®C1, B1,®B1;,®D14,14
Yip(k) | =|C168D151:9C14 D11,1aBD15,16@D14g 14
Yo(k) Cy®D31,0C1a D21,5D21,®@D14,14
BQ@BM@DlaQ il}(k)
Diyo®D1p10®@D1gp | ® ula(k‘)‘|
D3 2®3D31,®@D1a,2 uz (k)

(12)

To capture the values of the newly added initial samples
on connection oi and y1, let x(k + 1) € R . be
a new augmented state vector indicating the values of
the remaining samples after iteration k. In iteration k,
U1, reads the values of remaining samples from iteration
k — 1 which is x(k). After iteration k, vector y,,(k)
produces samples which are not consumed in iteration
k; thus, x(k + 1) = y;,(k). Consequently, x(k + 1) and
x (k) can be substituted for y,,(k) and wui,(k) in (12),
respectively. These substitutions yield the following results
describing CS, which is the canonical model of S after
adding connection oi = (y1,uq).

[wIO(k 4 1):| - l:AIO BIO:| @ l:wIO(k):|

yIO(k) - CIO DIO UIO(k‘) (13)

where
2?0 (k) =[z(k) x(k)]", uT©(k)=us(k), y*°(k)=y,(k),

AZO _ A®B;,®C, B1,®B1,®D14,14
Ciy®D14,15®C10 D151 ®D15,16@D1g 10|’

BIO _ By®B1,®D14,2
D1, o®D1p156@D142|’

C*° = [Cy®D21,®C1, Do 1,5 D2 1,@D1414)
and D*® = Dy & Dy 1,@ D14 0.

In case ¢ > m, no samples are consumed in the same
iteration in which they are produced. Therefore, the sys-
tem after adding the connection is deadlock-free. Thus, in
contrast to the previous case, the condition D41, = —00
is not necessary. The canonical model of S is described as
follows:

x(k+1) A B, By, B, xz (k)
Y1.(k) | _ | C1a Dig1a Dia1p Diag U1, (k)
Yi(k) |~ | C1 Dipjia Dipiy Diag wip(k) |
Yo (k) Cy; D3io D31y Doy us (k)

(14)

As a result of ¢ initial samples on connection oi, the first
part of the produced samples y,,(k) € R%}mw(i’m))
on connection oi is read in iteration k + |--] by wu,
where mod(i,m) is the remainder of the division of 4
by m. The rest of the produced samples in iteration k
(y1,(k) € R%Zi@’m)) is consumed by u14(k+[-£]). There-
fore, y1,(k) = wi(k + | 5;]) and yy, (k) = wia(k + [11).
To be able to formulate and include y, (k) = wip(k+ | ])
in the canonical-form representation, L#J new augmented
state vectors called x;,(k), Xaq(k), ---, X(L#’jq)a(k),
X )q(k) € R{mmod@m) - are defined. Likewise, [L]
new augmented state vectors x1,(k), ..., X(x1-1)5(k),

Xri1(k) € Redm) are added to address yp(k) =

max
u14(k+[-£]). To capture the delay between the production
and consumption of the samples, the relations between
vectors are defined as follows:

Xla(k + 1)
X2a(k + 1)
: = : and

X(| 4 -nak+F1 11X
X| 4 ja(k+1) X ([~ ]-1)a(k)
Ulb(k)
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X1p(k + 1) Y (k)
Xop(k + 1) X15 (k)

= : . 16
X (ri1-2y(k) (16)
X(r&1-1)p(k)
L Xrz7e(k)
T
[Xla X2a(k) X(L#j—l)a(k)]
and x,(k) = [Xal(k) X| i Ja( )]T; likewise, (k) =
[Xu;(k) X((%]—l)b(k)] = [Xbl(k) X(#]b(k)}T
Thus, from (15) and (16) the following equations are true:
k) Y (k)
kot 1)= | Yol dx,(k+1)= I 7
xali+ )= Ve and e )= (2]
Substituting y,, (k) from (14) results in:

X(ri1-1(k+1)
Xrip(k+1)
ula(k)

Let’s define x,; (k

z (k)
Xal(k)
X, (k+1)= |:C€1a ; Dlea,lb z Dlg,m D1ea,2] o ;ll,igg
Ula(k)
uz (k)
x(k)
X(Ll(k)
_ [Cla € D1y € Dig1a Dla,2:| ® X\_%Ja(k)
e I € € € € X1 (F)
X[%}b(k)
ua(k)
Crv € Diwt] [€ Droe] Dros] o)
a € a, € a,la a, a
[ TS R 2'2]@9 Yl 1
uy(k)
where € = —oo; similarly, substituting y,,(k) from (14)
yields:
x, (k+1) = {Ceu; [e D€1b,1b] [e [?12],1a] Dib,2] © | Xa

Adding x,(k + 1) from (18) and x,(k + 1) from (19) to
the left-hand side of (14) and eliminating y,,(k), y1,(k),
u1,(k) and wqp(k), which are captured by x,(k + 1),
Xp(k+ 1), xp(k) and x,(k), respectively, from (14) yields
the following results describing the canonical model of S
after adding connection (y1,u1).

@Ok +1)| _ [A70 B77]  Ta7 (k) (20)
yIO(k) - CIO DIO uIO(k) )
where
27O (k) =[a (k) x,(k) x,(k)]",
'O (k) =usy(k), y° (k) =y, (k),
A [6 Blb] [E Bla] B2
Cia| |€ Dig1y| |€ Dig1a D14
ATO—_|| € I € € € , BTO= € ,
Ciy| |€ Dipapn| |€ Dipia Dy
€ € € I € €
CIO [CQ [6 D2 lb] [6 D2,1aH and DIO:D272.
In the special case when mod(i,m) = 0, all produced

samples in an iteration are consumed in one iteration.

This results in empty vectors yq,(k) and wui.(k) and
Y1.(k) = yy(k) and ui4(k) = wi(k); therefore, (13) and
(20) become simpler.

Definition 3. [IO composite model] CS = ZO(S,oi,m,1)
is an operation taking a canonical model of system S, a
connection oi = (y1,u1) with Sr(y;) = Sr(u1) = m and
i1 representing the number of initial samples on o0i, and
returning the canonical model CS which is a composite
model after adding connection oi to S. If 0 < i < m,
the CS model can be calculated from (13); otherwise,
from (20). In the former equation, the condition D1, 1p =
— OO (m—i)x(m—i) is sufficient to ensure deadlock-freedom.

Theorem 1. [Canonical model of a composite system]
Given two M?PLSs S and S’ in canonical form with b
connections between them. To determine the canonical-
form representation of a composite system fabricated from
those, first the consistency of the composite system is
checked and its repetition vector r is calculated (see Defi-
nition 1). Then, operation RS (Definition 2) is performed
to synchronize the sample rates on connections between
those M2PLSs. Finally, operation O (Definition 3) is
performed b times to find the canonical model after adding
the b connections. Each step takes the calculated model of
the pervious step and information of a new connection.

It is worth returning to the running example. After syn-
chronizing and aggregating two systems, the canonical
synchronized-rate model of AS was computed and shown
in Fig. 4. The next step, as shown in Fig. 3 (b), is adding
the connection from y; to v in Fig. 2 with Is(yi,u}) = 0.
Thus, the canonical model of the composite system after
adding this connection can be calculated from (13). This
is a special case and y,,(k) = y; (k) and u/1,(k) = u} (k).

The condition D141, = —002y4 is satisfied. Thus,
2 € €c¢
RS\IO _ ARS RS o ~RS _ |4 2 €€
(A™)"Y = A™ @ B C” = 11128 €|
121392
€ € 2 €¢
RS\IO _ pRS RS Rs _ |21 4 ecc
(B ) *B2 69Bl ®D1,2* 9 5116 2|
1061273
2 € €€
8 6 51
(CTO=CF° oDy @CT® = |5 3 2¢|,
12109 2
9 7 6c¢
€ € 2 €c¢
6 ¢ 8 3¢
and (D)0 = DI & DIY @D = |3 € 5 € c
1061273
739 4c¢€

These matrices describe the canonical model of CS in
Fig. 2. This model in turn is used to compute the canonical
model of CS’ as it is conveyed in Fig. 3 (¢). According
to Definition 3, CS’ = ZO(CS, (y},u1),2,2) which is
determined from (20). As a result of mod(i,m) = 0,
Y 1.(k) =y’ (k) and uy,(k) = uy (k). Since | 1, then
Xa(k +1) =x1,(k +1) =y, (k) and x,(k + uy (k).

H IIS

#J
i)
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For this special case,

2 € €€ € €
(ARS)ZO (BRSHIO 141 122 § E 3 é
((ARS)IO)IO: RS\TO RS 11(9 = )
(C™°)E° (D*™°)19 121392106
7 8 6 51 6 €
121092106

where, as an example, (C*)70 is a matrix constructed
from the second and third rows of (C™%)Z€ indicating the

interplay between y{ and x.

(BRS)jTo] [24111259 T
((BRS)IO) ©= |:(DRS)I(9:| |ﬁ €6 7 ¢ 4] ’
ee 2 3 ecc¢
2€ce€c
((Cns)zo)zo [(CRS)IO (DRS = [5 32¢€¢3 61
976¢73
2 €€
and ((D™)F)FC = (D™*)33 [5 ‘ ]
94 ¢

In contrast to the shown model in Fig. 2, the above
calculated model, which is in the canonical form, can be
utilized to control and analyze the system. For instance,
the matrices are used to evaluate the throughput and
latency of the system by adopting the method of Geilen
et al. (2020).

6. CONCLUSION

In this paper, an algebraic compositional model of
M?PLSs in canonical form was introduced. The proposed
method can find the canonical model of any system con-
structed from canonical-form representations of M2?PLSs.
A check for consistency of the composite system, which
is a necessary condition for a system to be modeled, and
two operations were explained, (I) rate synchronization
and (II) IO composition. The first operation synchronizes
the rates of two M2PLSs on connections between them
and aggregates the two systems into one system, while
the latter operation computes the canonical model of a
composite system after adding an IO connection. Having a
deadlock-free composite system is a necessary condition for
the second operation. A sufficient condition for deadlock-
freeness is given.

One use of the proposed method is that it facilitates
(re-)calculating canonical models of reconfigurable as well
as of composite systems. Consider a system with multiple
configurations, of which the model dynamically changes.
To evaluate its performance properties, or to control the
system, its canonical model should be (re-)determined for
every configuration. Changes from one configuration to
another might only appear in a part of the system. Saving
M?PLSs in a repository and (re-)computing the compo-
sitional model of the system based on its configuration,
instead of determining the canonical model from scratch,
may considerably reduce the cost of modeling.

As future work, we aim to adopt the proposed method
to design and analyze video processing pipelines. This
method will be used to reason about performance prop-
erties of complex streaming applications with multiple

configurations. This will simplify the quality and resource
management of these applications.
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