
IFAC PapersOnLine 53-4 (2020) 493–500

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2021.04.045

10.1016/j.ifacol.2021.04.045 2405-8963

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0)

SMT-based verification of temporal
properties for component-based software

systems

R. Jonk ∗ J. Voeten ∗ M. Geilen ∗ T. Basten ∗,∗∗

R. Schiffelers ∗∗∗,∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands.
∗∗ ESI (TNO), Eindhoven, The Netherlands.

∗∗∗ ASML, Veldhoven, The Netherlands

Abstract: We introduce a technique to verify temporal properties expressed in MTL on Interval
Message Sequence Charts (IMSC), a model based on UML2.0 MSC that captures the timed
execution of component-based software systems. We accomplish this by encoding the IMSC
and the property of interest in a constraint satisfaction problem, which is then solved with an
SMT solver. We demonstrate the scalability of this technique with a synthetic case study and
a large-scale industrial case study.

Keywords: Verification, Component-based software system, Message Sequence Chart, Metric
Temporal Logic, Modeling

1. INTRODUCTION

Component-based software systems (CBSS) are widely
used, e.g. in enterprise applications (Matena et al. (2003)),
consumer electronics (Van Ommering et al. (2000)), avion-
ics applications (Sharp (1998)) and cyber-physical sys-
tems such as interventional X-ray machines (Kurtev et al.
(2017)) and lithography equipment (Loose et al. (2018)).
Our work is motivated by the need to verify temporal
properties (expressed in MTL, first introduced by Koy-
mans (1990)) of CBSS after implementation, e.g., on pro-
totypes or in systems operating in the field. The execution
of a component-based software system can be viewed as
a timed sequence of discrete events which represent the
starting or finishing of functions. Such an observed se-
quence models the behaviour of a single execution. Ver-
ification of temporal properties for a CBSS requires con-
sidering all possible executions.

A suitable abstraction for this purpose are Message Se-
quence Charts (MSC). Although primarily used for speci-
fication, the concept of lifelines representing components,
the underlying partially ordered set (poset) structure of
events and their dependencies, and message exchanges
representing communication dependencies across compo-
nents, serve as a strong basis for representing the struc-
tural concepts of component-based software systems. We
capture temporal concepts of component-based software
systems by introducing finite intervals on the dependen-
cies between events. These intervals provide bounds on
the minimum duration between events. The lower bound
occurs naturally due to the fact that function executions
and message communications take time. On modern com-
putational platforms, consisting, e.g., of multiprocessors
running Linux or RTOSs, the duration of function exe-
cutions and message communication exhibits a bounded

variation. This provides upper bounds on the duration
between events (Wilhelm et al. (2008)).

Many approaches to the verification of (temporal) proper-
ties on posets exist. One approach is to translate a poset
model to an automaton and verify it against an automa-
ton that encodes the property (e.g. Alur and Yannakakis
(1999)) by checking whether the language of the model
is accepted by the automaton representing the property.
Encoding a poset model by extracting global states from a
partial order is a process with exponential time complex-
ity which does not exploit the poset structure. Another
approach is to translate the poset model to the language
of process algebra and modal µ-calculus (e.g. Blom et al.
(2003); Groote et al. (2007)). Both of these languages,
while expressive, do not exploit the poset structure of the
model directly, which may result in a state-space explosion.
We introduce a technique to verify temporal properties by
reducing the problem on the poset structure to a constraint
satisfaction problem directly and show it to be effective.

The contributions of this paper are twofold. The first
contribution is the introduction of Interval Message Se-
quence Charts (IMSC) and their semantics in terms of
timed traces. The second contribution is the encoding of
an IMSC and an MTL property of interest in a constraint
satisfaction problem. This contribution also shows that
transforming the poset to an automaton is not necessary.

The structure of the remainder of the paper is as follows.
We discuss related work in Section 2. In Section 3 we
recall the MTL language and provide a model of MSCs. In
Section 4 we introduce IMSCs and present the MTL model
checking problem on IMSCs. In Section 5 we introduce
the encoding of the model checking problem as an SMT
problem. In Section 6 we perform a synthetic and indus-
trial case study to validate the method and we compare

SMT-based verification of temporal
properties for component-based software

systems

R. Jonk ∗ J. Voeten ∗ M. Geilen ∗ T. Basten ∗,∗∗

R. Schiffelers ∗∗∗,∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands.
∗∗ ESI (TNO), Eindhoven, The Netherlands.

∗∗∗ ASML, Veldhoven, The Netherlands

Abstract: We introduce a technique to verify temporal properties expressed in MTL on Interval
Message Sequence Charts (IMSC), a model based on UML2.0 MSC that captures the timed
execution of component-based software systems. We accomplish this by encoding the IMSC
and the property of interest in a constraint satisfaction problem, which is then solved with an
SMT solver. We demonstrate the scalability of this technique with a synthetic case study and
a large-scale industrial case study.

Keywords: Verification, Component-based software system, Message Sequence Chart, Metric
Temporal Logic, Modeling

1. INTRODUCTION

Component-based software systems (CBSS) are widely
used, e.g. in enterprise applications (Matena et al. (2003)),
consumer electronics (Van Ommering et al. (2000)), avion-
ics applications (Sharp (1998)) and cyber-physical sys-
tems such as interventional X-ray machines (Kurtev et al.
(2017)) and lithography equipment (Loose et al. (2018)).
Our work is motivated by the need to verify temporal
properties (expressed in MTL, first introduced by Koy-
mans (1990)) of CBSS after implementation, e.g., on pro-
totypes or in systems operating in the field. The execution
of a component-based software system can be viewed as
a timed sequence of discrete events which represent the
starting or finishing of functions. Such an observed se-
quence models the behaviour of a single execution. Ver-
ification of temporal properties for a CBSS requires con-
sidering all possible executions.

A suitable abstraction for this purpose are Message Se-
quence Charts (MSC). Although primarily used for speci-
fication, the concept of lifelines representing components,
the underlying partially ordered set (poset) structure of
events and their dependencies, and message exchanges
representing communication dependencies across compo-
nents, serve as a strong basis for representing the struc-
tural concepts of component-based software systems. We
capture temporal concepts of component-based software
systems by introducing finite intervals on the dependen-
cies between events. These intervals provide bounds on
the minimum duration between events. The lower bound
occurs naturally due to the fact that function executions
and message communications take time. On modern com-
putational platforms, consisting, e.g., of multiprocessors
running Linux or RTOSs, the duration of function exe-
cutions and message communication exhibits a bounded

variation. This provides upper bounds on the duration
between events (Wilhelm et al. (2008)).

Many approaches to the verification of (temporal) proper-
ties on posets exist. One approach is to translate a poset
model to an automaton and verify it against an automa-
ton that encodes the property (e.g. Alur and Yannakakis
(1999)) by checking whether the language of the model
is accepted by the automaton representing the property.
Encoding a poset model by extracting global states from a
partial order is a process with exponential time complex-
ity which does not exploit the poset structure. Another
approach is to translate the poset model to the language
of process algebra and modal µ-calculus (e.g. Blom et al.
(2003); Groote et al. (2007)). Both of these languages,
while expressive, do not exploit the poset structure of the
model directly, which may result in a state-space explosion.
We introduce a technique to verify temporal properties by
reducing the problem on the poset structure to a constraint
satisfaction problem directly and show it to be effective.

The contributions of this paper are twofold. The first
contribution is the introduction of Interval Message Se-
quence Charts (IMSC) and their semantics in terms of
timed traces. The second contribution is the encoding of
an IMSC and an MTL property of interest in a constraint
satisfaction problem. This contribution also shows that
transforming the poset to an automaton is not necessary.

The structure of the remainder of the paper is as follows.
We discuss related work in Section 2. In Section 3 we
recall the MTL language and provide a model of MSCs. In
Section 4 we introduce IMSCs and present the MTL model
checking problem on IMSCs. In Section 5 we introduce
the encoding of the model checking problem as an SMT
problem. In Section 6 we perform a synthetic and indus-
trial case study to validate the method and we compare

SMT-based verification of temporal
properties for component-based software

systems

R. Jonk ∗ J. Voeten ∗ M. Geilen ∗ T. Basten ∗,∗∗

R. Schiffelers ∗∗∗,∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands.
∗∗ ESI (TNO), Eindhoven, The Netherlands.

∗∗∗ ASML, Veldhoven, The Netherlands

Abstract: We introduce a technique to verify temporal properties expressed in MTL on Interval
Message Sequence Charts (IMSC), a model based on UML2.0 MSC that captures the timed
execution of component-based software systems. We accomplish this by encoding the IMSC
and the property of interest in a constraint satisfaction problem, which is then solved with an
SMT solver. We demonstrate the scalability of this technique with a synthetic case study and
a large-scale industrial case study.

Keywords: Verification, Component-based software system, Message Sequence Chart, Metric
Temporal Logic, Modeling

1. INTRODUCTION

Component-based software systems (CBSS) are widely
used, e.g. in enterprise applications (Matena et al. (2003)),
consumer electronics (Van Ommering et al. (2000)), avion-
ics applications (Sharp (1998)) and cyber-physical sys-
tems such as interventional X-ray machines (Kurtev et al.
(2017)) and lithography equipment (Loose et al. (2018)).
Our work is motivated by the need to verify temporal
properties (expressed in MTL, first introduced by Koy-
mans (1990)) of CBSS after implementation, e.g., on pro-
totypes or in systems operating in the field. The execution
of a component-based software system can be viewed as
a timed sequence of discrete events which represent the
starting or finishing of functions. Such an observed se-
quence models the behaviour of a single execution. Ver-
ification of temporal properties for a CBSS requires con-
sidering all possible executions.

A suitable abstraction for this purpose are Message Se-
quence Charts (MSC). Although primarily used for speci-
fication, the concept of lifelines representing components,
the underlying partially ordered set (poset) structure of
events and their dependencies, and message exchanges
representing communication dependencies across compo-
nents, serve as a strong basis for representing the struc-
tural concepts of component-based software systems. We
capture temporal concepts of component-based software
systems by introducing finite intervals on the dependen-
cies between events. These intervals provide bounds on
the minimum duration between events. The lower bound
occurs naturally due to the fact that function executions
and message communications take time. On modern com-
putational platforms, consisting, e.g., of multiprocessors
running Linux or RTOSs, the duration of function exe-
cutions and message communication exhibits a bounded

variation. This provides upper bounds on the duration
between events (Wilhelm et al. (2008)).

Many approaches to the verification of (temporal) proper-
ties on posets exist. One approach is to translate a poset
model to an automaton and verify it against an automa-
ton that encodes the property (e.g. Alur and Yannakakis
(1999)) by checking whether the language of the model
is accepted by the automaton representing the property.
Encoding a poset model by extracting global states from a
partial order is a process with exponential time complex-
ity which does not exploit the poset structure. Another
approach is to translate the poset model to the language
of process algebra and modal µ-calculus (e.g. Blom et al.
(2003); Groote et al. (2007)). Both of these languages,
while expressive, do not exploit the poset structure of the
model directly, which may result in a state-space explosion.
We introduce a technique to verify temporal properties by
reducing the problem on the poset structure to a constraint
satisfaction problem directly and show it to be effective.

The contributions of this paper are twofold. The first
contribution is the introduction of Interval Message Se-
quence Charts (IMSC) and their semantics in terms of
timed traces. The second contribution is the encoding of
an IMSC and an MTL property of interest in a constraint
satisfaction problem. This contribution also shows that
transforming the poset to an automaton is not necessary.

The structure of the remainder of the paper is as follows.
We discuss related work in Section 2. In Section 3 we
recall the MTL language and provide a model of MSCs. In
Section 4 we introduce IMSCs and present the MTL model
checking problem on IMSCs. In Section 5 we introduce
the encoding of the model checking problem as an SMT
problem. In Section 6 we perform a synthetic and indus-
trial case study to validate the method and we compare

SMT-based verification of temporal
properties for component-based software

systems

R. Jonk ∗ J. Voeten ∗ M. Geilen ∗ T. Basten ∗,∗∗

R. Schiffelers ∗∗∗,∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands.
∗∗ ESI (TNO), Eindhoven, The Netherlands.

∗∗∗ ASML, Veldhoven, The Netherlands

Abstract: We introduce a technique to verify temporal properties expressed in MTL on Interval
Message Sequence Charts (IMSC), a model based on UML2.0 MSC that captures the timed
execution of component-based software systems. We accomplish this by encoding the IMSC
and the property of interest in a constraint satisfaction problem, which is then solved with an
SMT solver. We demonstrate the scalability of this technique with a synthetic case study and
a large-scale industrial case study.

Keywords: Verification, Component-based software system, Message Sequence Chart, Metric
Temporal Logic, Modeling

1. INTRODUCTION

Component-based software systems (CBSS) are widely
used, e.g. in enterprise applications (Matena et al. (2003)),
consumer electronics (Van Ommering et al. (2000)), avion-
ics applications (Sharp (1998)) and cyber-physical sys-
tems such as interventional X-ray machines (Kurtev et al.
(2017)) and lithography equipment (Loose et al. (2018)).
Our work is motivated by the need to verify temporal
properties (expressed in MTL, first introduced by Koy-
mans (1990)) of CBSS after implementation, e.g., on pro-
totypes or in systems operating in the field. The execution
of a component-based software system can be viewed as
a timed sequence of discrete events which represent the
starting or finishing of functions. Such an observed se-
quence models the behaviour of a single execution. Ver-
ification of temporal properties for a CBSS requires con-
sidering all possible executions.

A suitable abstraction for this purpose are Message Se-
quence Charts (MSC). Although primarily used for speci-
fication, the concept of lifelines representing components,
the underlying partially ordered set (poset) structure of
events and their dependencies, and message exchanges
representing communication dependencies across compo-
nents, serve as a strong basis for representing the struc-
tural concepts of component-based software systems. We
capture temporal concepts of component-based software
systems by introducing finite intervals on the dependen-
cies between events. These intervals provide bounds on
the minimum duration between events. The lower bound
occurs naturally due to the fact that function executions
and message communications take time. On modern com-
putational platforms, consisting, e.g., of multiprocessors
running Linux or RTOSs, the duration of function exe-
cutions and message communication exhibits a bounded

variation. This provides upper bounds on the duration
between events (Wilhelm et al. (2008)).

Many approaches to the verification of (temporal) proper-
ties on posets exist. One approach is to translate a poset
model to an automaton and verify it against an automa-
ton that encodes the property (e.g. Alur and Yannakakis
(1999)) by checking whether the language of the model
is accepted by the automaton representing the property.
Encoding a poset model by extracting global states from a
partial order is a process with exponential time complex-
ity which does not exploit the poset structure. Another
approach is to translate the poset model to the language
of process algebra and modal µ-calculus (e.g. Blom et al.
(2003); Groote et al. (2007)). Both of these languages,
while expressive, do not exploit the poset structure of the
model directly, which may result in a state-space explosion.
We introduce a technique to verify temporal properties by
reducing the problem on the poset structure to a constraint
satisfaction problem directly and show it to be effective.

The contributions of this paper are twofold. The first
contribution is the introduction of Interval Message Se-
quence Charts (IMSC) and their semantics in terms of
timed traces. The second contribution is the encoding of
an IMSC and an MTL property of interest in a constraint
satisfaction problem. This contribution also shows that
transforming the poset to an automaton is not necessary.

The structure of the remainder of the paper is as follows.
We discuss related work in Section 2. In Section 3 we
recall the MTL language and provide a model of MSCs. In
Section 4 we introduce IMSCs and present the MTL model
checking problem on IMSCs. In Section 5 we introduce
the encoding of the model checking problem as an SMT
problem. In Section 6 we perform a synthetic and indus-
trial case study to validate the method and we compare

SMT-based verification of temporal
properties for component-based software

systems

R. Jonk ∗ J. Voeten ∗ M. Geilen ∗ T. Basten ∗,∗∗

R. Schiffelers ∗∗∗,∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands.
∗∗ ESI (TNO), Eindhoven, The Netherlands.

∗∗∗ ASML, Veldhoven, The Netherlands

Abstract: We introduce a technique to verify temporal properties expressed in MTL on Interval
Message Sequence Charts (IMSC), a model based on UML2.0 MSC that captures the timed
execution of component-based software systems. We accomplish this by encoding the IMSC
and the property of interest in a constraint satisfaction problem, which is then solved with an
SMT solver. We demonstrate the scalability of this technique with a synthetic case study and
a large-scale industrial case study.

Keywords: Verification, Component-based software system, Message Sequence Chart, Metric
Temporal Logic, Modeling

1. INTRODUCTION

Component-based software systems (CBSS) are widely
used, e.g. in enterprise applications (Matena et al. (2003)),
consumer electronics (Van Ommering et al. (2000)), avion-
ics applications (Sharp (1998)) and cyber-physical sys-
tems such as interventional X-ray machines (Kurtev et al.
(2017)) and lithography equipment (Loose et al. (2018)).
Our work is motivated by the need to verify temporal
properties (expressed in MTL, first introduced by Koy-
mans (1990)) of CBSS after implementation, e.g., on pro-
totypes or in systems operating in the field. The execution
of a component-based software system can be viewed as
a timed sequence of discrete events which represent the
starting or finishing of functions. Such an observed se-
quence models the behaviour of a single execution. Ver-
ification of temporal properties for a CBSS requires con-
sidering all possible executions.

A suitable abstraction for this purpose are Message Se-
quence Charts (MSC). Although primarily used for speci-
fication, the concept of lifelines representing components,
the underlying partially ordered set (poset) structure of
events and their dependencies, and message exchanges
representing communication dependencies across compo-
nents, serve as a strong basis for representing the struc-
tural concepts of component-based software systems. We
capture temporal concepts of component-based software
systems by introducing finite intervals on the dependen-
cies between events. These intervals provide bounds on
the minimum duration between events. The lower bound
occurs naturally due to the fact that function executions
and message communications take time. On modern com-
putational platforms, consisting, e.g., of multiprocessors
running Linux or RTOSs, the duration of function exe-
cutions and message communication exhibits a bounded

variation. This provides upper bounds on the duration
between events (Wilhelm et al. (2008)).

Many approaches to the verification of (temporal) proper-
ties on posets exist. One approach is to translate a poset
model to an automaton and verify it against an automa-
ton that encodes the property (e.g. Alur and Yannakakis
(1999)) by checking whether the language of the model
is accepted by the automaton representing the property.
Encoding a poset model by extracting global states from a
partial order is a process with exponential time complex-
ity which does not exploit the poset structure. Another
approach is to translate the poset model to the language
of process algebra and modal µ-calculus (e.g. Blom et al.
(2003); Groote et al. (2007)). Both of these languages,
while expressive, do not exploit the poset structure of the
model directly, which may result in a state-space explosion.
We introduce a technique to verify temporal properties by
reducing the problem on the poset structure to a constraint
satisfaction problem directly and show it to be effective.

The contributions of this paper are twofold. The first
contribution is the introduction of Interval Message Se-
quence Charts (IMSC) and their semantics in terms of
timed traces. The second contribution is the encoding of
an IMSC and an MTL property of interest in a constraint
satisfaction problem. This contribution also shows that
transforming the poset to an automaton is not necessary.

The structure of the remainder of the paper is as follows.
We discuss related work in Section 2. In Section 3 we
recall the MTL language and provide a model of MSCs. In
Section 4 we introduce IMSCs and present the MTL model
checking problem on IMSCs. In Section 5 we introduce
the encoding of the model checking problem as an SMT
problem. In Section 6 we perform a synthetic and indus-
trial case study to validate the method and we compare

SMT-based verification of temporal
properties for component-based software

systems

R. Jonk ∗ J. Voeten ∗ M. Geilen ∗ T. Basten ∗,∗∗

R. Schiffelers ∗∗∗,∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands.
∗∗ ESI (TNO), Eindhoven, The Netherlands.

∗∗∗ ASML, Veldhoven, The Netherlands

Abstract: We introduce a technique to verify temporal properties expressed in MTL on Interval
Message Sequence Charts (IMSC), a model based on UML2.0 MSC that captures the timed
execution of component-based software systems. We accomplish this by encoding the IMSC
and the property of interest in a constraint satisfaction problem, which is then solved with an
SMT solver. We demonstrate the scalability of this technique with a synthetic case study and
a large-scale industrial case study.

Keywords: Verification, Component-based software system, Message Sequence Chart, Metric
Temporal Logic, Modeling

1. INTRODUCTION

Component-based software systems (CBSS) are widely
used, e.g. in enterprise applications (Matena et al. (2003)),
consumer electronics (Van Ommering et al. (2000)), avion-
ics applications (Sharp (1998)) and cyber-physical sys-
tems such as interventional X-ray machines (Kurtev et al.
(2017)) and lithography equipment (Loose et al. (2018)).
Our work is motivated by the need to verify temporal
properties (expressed in MTL, first introduced by Koy-
mans (1990)) of CBSS after implementation, e.g., on pro-
totypes or in systems operating in the field. The execution
of a component-based software system can be viewed as
a timed sequence of discrete events which represent the
starting or finishing of functions. Such an observed se-
quence models the behaviour of a single execution. Ver-
ification of temporal properties for a CBSS requires con-
sidering all possible executions.

A suitable abstraction for this purpose are Message Se-
quence Charts (MSC). Although primarily used for speci-
fication, the concept of lifelines representing components,
the underlying partially ordered set (poset) structure of
events and their dependencies, and message exchanges
representing communication dependencies across compo-
nents, serve as a strong basis for representing the struc-
tural concepts of component-based software systems. We
capture temporal concepts of component-based software
systems by introducing finite intervals on the dependen-
cies between events. These intervals provide bounds on
the minimum duration between events. The lower bound
occurs naturally due to the fact that function executions
and message communications take time. On modern com-
putational platforms, consisting, e.g., of multiprocessors
running Linux or RTOSs, the duration of function exe-
cutions and message communication exhibits a bounded

variation. This provides upper bounds on the duration
between events (Wilhelm et al. (2008)).

Many approaches to the verification of (temporal) proper-
ties on posets exist. One approach is to translate a poset
model to an automaton and verify it against an automa-
ton that encodes the property (e.g. Alur and Yannakakis
(1999)) by checking whether the language of the model
is accepted by the automaton representing the property.
Encoding a poset model by extracting global states from a
partial order is a process with exponential time complex-
ity which does not exploit the poset structure. Another
approach is to translate the poset model to the language
of process algebra and modal µ-calculus (e.g. Blom et al.
(2003); Groote et al. (2007)). Both of these languages,
while expressive, do not exploit the poset structure of the
model directly, which may result in a state-space explosion.
We introduce a technique to verify temporal properties by
reducing the problem on the poset structure to a constraint
satisfaction problem directly and show it to be effective.

The contributions of this paper are twofold. The first
contribution is the introduction of Interval Message Se-
quence Charts (IMSC) and their semantics in terms of
timed traces. The second contribution is the encoding of
an IMSC and an MTL property of interest in a constraint
satisfaction problem. This contribution also shows that
transforming the poset to an automaton is not necessary.

The structure of the remainder of the paper is as follows.
We discuss related work in Section 2. In Section 3 we
recall the MTL language and provide a model of MSCs. In
Section 4 we introduce IMSCs and present the MTL model
checking problem on IMSCs. In Section 5 we introduce
the encoding of the model checking problem as an SMT
problem. In Section 6 we perform a synthetic and indus-
trial case study to validate the method and we compare

494 R. Jonk et al. / IFAC PapersOnLine 53-4 (2020) 493–500

the results of the synthetic case to results obtained with
Uppaal. Finally, Section 7 concludes.

2. RELATED WORK

Model checking is typically done on (state and clock
valuation) traces generated by timed automata. In our
work, we restrict the traces of our models to those induced
by partial orders specified in IMSCs, which is a proper
subset of the traces generated from timed automata.
Uppaal (Uppaal, 1995) is the tool most commonly used for
model checking temporal properties for timed automata.
Uppaal uses symbolic state exploration with zones to
verify reachability and invariance properties expressed in a
subset of CTL. While the logic itself is untimed, Uppaal’s
state formulae allow constraints on the clock values to
specify timing constraints. We use MTL, a logic which
explicitly uses time. For a subset of properties expressed in
MTL, we can formulate equivalent properties in Uppaal’s
CTL logic. We compare our model checking method to
Uppaal for such properties.

A method that combines timed automata and model
checking using SAT solvers is presented in (Zbrzezny,
2005). This work translates a timed automaton to tran-
sition systems with discrete time while preserving reacha-
bility, i.e., a location is reachable in the real-valued timed
transition system if and only if it is reachable in the
discrete-time transition system. The reachability prob-
lem is translated to a bounded model checking problem
which is then encoded in SAT. A similar approach that
enables model checking of properties specified in MTL,
albeit restricted to discrete-time automata with strongly
monotonic traces, is introduced in (Woźna-Szcześniak and
Zbrzezny, 2014). The discrete time automaton is aug-
mented with additional clocks that correspond to the in-
tervals in the MTL formula. Properties expressed in MTL
are encoded in SAT to verify whether there exists a path of
bounded length that satisfies the formula. While our work
enables the verification of the same class of properties, the
traces of IMSCs and the traces of discrete-time automata
with strongly monotonic traces differ. In (Zbrzezny et al.,
2019), an enhancement of the earlier SAT based method,
SMT is used to verify reachability properties on timed au-
tomata using bounded model checking without discretizing
time. This approach is shown to improve the efficiency of
reachability verification.

To improve the model checking efficiency of certain classes
of timed automata, (Malinowski and Niebert, 2010) use
partial order semantics through multisteps with syn-
chronous, semi-synchronous or relaxed time progress to
reduce the state space of the model. Reachability problems
are translated to bounded model checking problems, which
are then encoded as SAT problems. The method is com-
pared with Uppaal and the results show improvements.

In the work of (Alur and Yannakakis, 1999), model check-
ing of message sequence charts (MSC) is described. The
MSCs formalized in this work describe, like IMSCs, par-
tially ordered sets, albeit without the notion of time.
Model checking of MSCs is accomplished by translating
an MSC to an automaton. The size of the automaton that
expresses the same traces as the MSC is exponential in the
number of parallel components in the MSC.

In our work, different from all the mentioned work, we
encode MTL properties and timed system behaviour with
real-valued time stamps captured in an IMSC, essentially
a partial order, directly in SMT. In this way, we avoid the
step to translate IMSCs to a more expressive language.

3. PRELIMINARIES

3.1 Metric temporal logic

For this work to be self-contained, we include the defini-
tions of Metric Temporal Logic (MTL) (Koymans (1990)).
A finite time sequence τ = τ1τ2 . . . is a sequence of non-
decreasing non-negative real (R+

0) time values that start
at time 0 (i.e. τ1 = 0). A trace over a set AP of atomic
propositions is a finite sequence σ = σ1σ2 · · ·σn of states
where σi ∈ 2AP for all i (1 ≤ i ≤ n).

A timed trace ρ = (σ, τ) is a pair consisting of a state
sequence σ and a time sequence τ , both of the same length.
We alternatively represent a timed trace as the sequence
(σ1, τ1)(σ2, τ2) · · · . For any i ≤ |τ |, ρi refers to the state-
time pair (σi, ti) at position i, and (ρ, i) refers to the tail
of ρ starting at position i.

The set of MTL formulas, ranged over by φ, is inductively
defined as follows:

φ = p | φ ∧ φ | ¬φ | φUIφ (1)

where p ∈ AP and I ⊆ [0,∞) is an interval on R+
0 . We

use the notation (a, b), [a, b], (a, b], [a, b], (a,∞) or [a,∞)
(a, b ∈ Q+

0) to represent an open, closed, left-open, right-
open, left-open-bounded and left-closed-bounded interval,
respectively. We use rational number bounds to be able to
represent the bounds in an implementation of the property.
The semantics of the satisfaction relation � for MTL is
given in the following definition:

Definition 1. (Trace semantics of MTL). Let ρ = (σ1, τ1),
(σ2, τ2), · · · , (σn, τn) be a finite timed trace of length
n ≥ 1. The satisfaction relation on ρ starting at position
1 ≤ i ≤ n is defined inductively as follows:

• (ρ, i) � p iff p ∈ σi,
• (ρ, i) � φ ∧ ψ iff (ρ, i) � φ and (ρ, i) � ψ,
• (ρ, i) � ¬φ iff (ρ, i) � φ, and
• (ρ, i) � φUIψ iff there exists j ≥ i s.t. (ρ, j) � ψ,
τj − τi ∈ I and for all i ≤ k < j, (ρ, k) � φ

The satisfaction of ρ � φ is equivalent to (ρ, 1) � φ. We
use the following shorthand notations: false ≡ p ∧ ¬p,
true ≡ ¬false, φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ), φ ⇒ ψ ≡ ¬φ ∨ ψ,
φ ⇔ ψ ≡ φ ⇒ ψ ∧ ψ ⇒ φ, FIφ ≡ trueUIφ, and GIφ ≡
¬FI¬φ. In the shorthand for false (p ∧ ¬p), p denotes an
arbitrary element of AP , which is assumed to be a non-
empty set. The operators FIφ andGIφ denote that φmust
sometime be satisfied and must always be satisfied on the
interval I, respectively.

3.2 Untimed Message Sequence Charts

We formalize a subset of the UML2.0 standard (UML
(2005)) which, in this work, we call Untimed Message
Sequence Charts (UMSCs). An example illustrating the
concepts included in a UMSC is shown in Figure 1a. Verti-
cal lifelines depict the components that execute functions.

 R. Jonk et al. / IFAC PapersOnLine 53-4 (2020) 493–500 495

the results of the synthetic case to results obtained with
Uppaal. Finally, Section 7 concludes.

2. RELATED WORK

Model checking is typically done on (state and clock
valuation) traces generated by timed automata. In our
work, we restrict the traces of our models to those induced
by partial orders specified in IMSCs, which is a proper
subset of the traces generated from timed automata.
Uppaal (Uppaal, 1995) is the tool most commonly used for
model checking temporal properties for timed automata.
Uppaal uses symbolic state exploration with zones to
verify reachability and invariance properties expressed in a
subset of CTL. While the logic itself is untimed, Uppaal’s
state formulae allow constraints on the clock values to
specify timing constraints. We use MTL, a logic which
explicitly uses time. For a subset of properties expressed in
MTL, we can formulate equivalent properties in Uppaal’s
CTL logic. We compare our model checking method to
Uppaal for such properties.

A method that combines timed automata and model
checking using SAT solvers is presented in (Zbrzezny,
2005). This work translates a timed automaton to tran-
sition systems with discrete time while preserving reacha-
bility, i.e., a location is reachable in the real-valued timed
transition system if and only if it is reachable in the
discrete-time transition system. The reachability prob-
lem is translated to a bounded model checking problem
which is then encoded in SAT. A similar approach that
enables model checking of properties specified in MTL,
albeit restricted to discrete-time automata with strongly
monotonic traces, is introduced in (Woźna-Szcześniak and
Zbrzezny, 2014). The discrete time automaton is aug-
mented with additional clocks that correspond to the in-
tervals in the MTL formula. Properties expressed in MTL
are encoded in SAT to verify whether there exists a path of
bounded length that satisfies the formula. While our work
enables the verification of the same class of properties, the
traces of IMSCs and the traces of discrete-time automata
with strongly monotonic traces differ. In (Zbrzezny et al.,
2019), an enhancement of the earlier SAT based method,
SMT is used to verify reachability properties on timed au-
tomata using bounded model checking without discretizing
time. This approach is shown to improve the efficiency of
reachability verification.

To improve the model checking efficiency of certain classes
of timed automata, (Malinowski and Niebert, 2010) use
partial order semantics through multisteps with syn-
chronous, semi-synchronous or relaxed time progress to
reduce the state space of the model. Reachability problems
are translated to bounded model checking problems, which
are then encoded as SAT problems. The method is com-
pared with Uppaal and the results show improvements.

In the work of (Alur and Yannakakis, 1999), model check-
ing of message sequence charts (MSC) is described. The
MSCs formalized in this work describe, like IMSCs, par-
tially ordered sets, albeit without the notion of time.
Model checking of MSCs is accomplished by translating
an MSC to an automaton. The size of the automaton that
expresses the same traces as the MSC is exponential in the
number of parallel components in the MSC.

In our work, different from all the mentioned work, we
encode MTL properties and timed system behaviour with
real-valued time stamps captured in an IMSC, essentially
a partial order, directly in SMT. In this way, we avoid the
step to translate IMSCs to a more expressive language.

3. PRELIMINARIES

3.1 Metric temporal logic

For this work to be self-contained, we include the defini-
tions of Metric Temporal Logic (MTL) (Koymans (1990)).
A finite time sequence τ = τ1τ2 . . . is a sequence of non-
decreasing non-negative real (R+

0) time values that start
at time 0 (i.e. τ1 = 0). A trace over a set AP of atomic
propositions is a finite sequence σ = σ1σ2 · · ·σn of states
where σi ∈ 2AP for all i (1 ≤ i ≤ n).

A timed trace ρ = (σ, τ) is a pair consisting of a state
sequence σ and a time sequence τ , both of the same length.
We alternatively represent a timed trace as the sequence
(σ1, τ1)(σ2, τ2) · · · . For any i ≤ |τ |, ρi refers to the state-
time pair (σi, ti) at position i, and (ρ, i) refers to the tail
of ρ starting at position i.

The set of MTL formulas, ranged over by φ, is inductively
defined as follows:

φ = p | φ ∧ φ | ¬φ | φUIφ (1)

where p ∈ AP and I ⊆ [0,∞) is an interval on R+
0 . We

use the notation (a, b), [a, b], (a, b], [a, b], (a,∞) or [a,∞)
(a, b ∈ Q+

0) to represent an open, closed, left-open, right-
open, left-open-bounded and left-closed-bounded interval,
respectively. We use rational number bounds to be able to
represent the bounds in an implementation of the property.
The semantics of the satisfaction relation � for MTL is
given in the following definition:

Definition 1. (Trace semantics of MTL). Let ρ = (σ1, τ1),
(σ2, τ2), · · · , (σn, τn) be a finite timed trace of length
n ≥ 1. The satisfaction relation on ρ starting at position
1 ≤ i ≤ n is defined inductively as follows:

• (ρ, i) � p iff p ∈ σi,
• (ρ, i) � φ ∧ ψ iff (ρ, i) � φ and (ρ, i) � ψ,
• (ρ, i) � ¬φ iff (ρ, i) � φ, and
• (ρ, i) � φUIψ iff there exists j ≥ i s.t. (ρ, j) � ψ,
τj − τi ∈ I and for all i ≤ k < j, (ρ, k) � φ

The satisfaction of ρ � φ is equivalent to (ρ, 1) � φ. We
use the following shorthand notations: false ≡ p ∧ ¬p,
true ≡ ¬false, φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ), φ ⇒ ψ ≡ ¬φ ∨ ψ,
φ ⇔ ψ ≡ φ ⇒ ψ ∧ ψ ⇒ φ, FIφ ≡ trueUIφ, and GIφ ≡
¬FI¬φ. In the shorthand for false (p ∧ ¬p), p denotes an
arbitrary element of AP , which is assumed to be a non-
empty set. The operators FIφ andGIφ denote that φmust
sometime be satisfied and must always be satisfied on the
interval I, respectively.

3.2 Untimed Message Sequence Charts

We formalize a subset of the UML2.0 standard (UML
(2005)) which, in this work, we call Untimed Message
Sequence Charts (UMSCs). An example illustrating the
concepts included in a UMSC is shown in Figure 1a. Verti-
cal lifelines depict the components that execute functions.

(a) An Untimed Message
Sequence Chart (UMSC).

(b) An Interval Message
Sequence Chart (IMSC).

Fig. 1. A schematic view of UMSCs and IMSCs.

Each lifeline contains a component label from the set C
of component labels. Function executions are depicted by
rectangles drawn on the component’s lifelines, annotated
with a function label from the set F of function labels.
Functions can be executed within the context of another
function representing nested local function calls. In the
figure, nesting is represented by positioning function ex-
ecutions on top of each other in a call stack. Finally,
components can exchange messages. These are depicted
by arrows going from the start/end of one function execu-
tion’s rectangle to the start/end of another’s, with message
labels from the set M of message labels. We draw solid
arrows for messages indicating remote function calls, and
dashed arrows for the reply of such a remote function call.

The formalization of UMSCs is done in terms of events
and dependencies between events. We assume a set E ={
{c, f, i, s} | c ∈ C, f ∈ F , i ∈ N+, s ∈ S

}
of events, where

S = {↑, ↓} (C, F , N and S are assumed to be disjoint).
If e = {c, f, i, s} ∈ E and s = ↑, then e denotes the start
event of the ith execution of function f on component c.
Similarly, if s = ↓, then e denotes the end event of the
ith execution of function f on component c. An event is
uniquely identified by its component name (c), function
name (f), index (i) and event type (↑ or ↓), and therefore
will be referred to by expression c.f(i)s. For event e ∈ E ,
we use c(e), f(e), i(e), s(e) to refer to the component label,
function label, index and start/end of e, respectively.

Definition 2. (Untimed Message Sequence Charts). A
UMSC U is a three-tuple (E,→,m), where

• E ⊆ E is a finite set of events,
• → ⊆ E × E defines an ordering relation between
events, and

• m : → +�→ M is a partial function that maps the
ordering relation to messages.

We write e1→e2 to denote that (e1, e2) ∈ → and say there
is an edge from e1 to e2. Furthermore, we use the functions
pred(e) = {e′ ∈ E | e′ → e} and succ(e) = {e′ ∈ E | e →
e′} to denote all the events which have edges to e and from
e, respectively. We require that the transitive closure →∗

of the ordering relation → restricted to the events of a
component is a total order.

4. PROBLEM STATEMENT

We introduce IMSCs to add temporal concepts to UMSCs
and give semantics to IMSCs in terms of timed traces. We
then introduce the model-checking problem on IMSCs.

4.1 Interval Message Sequence Charts

Figure 1b depicts an Interval Message Sequence Chart.
Edges between events are annotated with an interval.

Definition 3. (Interval Message Sequence Charts). An
IMSC I is a tuple (E,→,m, I), where

• (E,→,m) is a UMSC, and
• I is a function that maps each edge in → to an
open/closed/half-open interval of real numbers with
rational bounds.

We use the notation Ie′,e to denote the interval on the
edge e′ → e. The interpretation of IMSCs is a set
P (I) of timed traces. Figure 2 shows an example time
valuation of the events, depicted by the numbers next to
the start/finish of function executions. The values depicted
by the numbers between brackets between start/finish
of function executions represent the minimal time that
must elapse before the subsequent event may occur. These
values are taken from the intervals depicted in Figure 1b.
The timed traces that correspond to this time valuation
are shown on the right of the figure.

The set P (I) of timed traces is constructed as follows.
The set AP of atomic propositions of an IMSC is the
union of the set of all component labels, function labels,
used indices, and the start/finish labels. In the exam-
ple, the set AP is {C1, C2, f0, f1, f2, g0, g1, 1, ↑, ↓}. Every
e = {c(e), f(e), i(e), s(e)} ∈ E is a state. For example,
event C1.f0(1)

↑ corresponds to the state {C1, f0, 1, ↑}. For
every edge e′ → e, a value is chosen from the interval,
representing the minimum duration between events e′ and
e. For instance, in Figure 2, the value 1 (1 ∈ [1, 2])
is chosen for the edge between C1.f0(1)

↑ and C1.f1(1)
↑.

These chosen values determine a time sequence τ . The time
value τie for a state σie is determined to be 0 if the event
has no predecessors, and otherwise the maximum of the
time values of each predecessor plus the value chosen from
the interval on the edge from the predecessor. These time
values correspond to the urgent execution of events, i.e.,
an event occurs at the earliest moment in time at which all
incoming edges are ready. This is illustrated in Figure 2
at event C1.f2(1)

↓. Here, the time value of C1.f2(1)
↓ is

the maximal value of 5 + 1 = 6 (from the predecessor
C1.f1(1)

↑) and 7+1 = 8 (from the predecessor C1.f2(1)
↓),

max (6, 8) = 8. This is the smallest time value at which
C1.f2(1)

↓ can occur given the chosen time values in each
interval. The chosen values from each interval determine
a set of timed traces. This set of timed traces consist
of the linearisations σ of the poset (E,→) such that the
time sequences are monotonically ascending. We use the
notation ie to refer to the index at which event e occurs
in σ. Note that σie = e.

Definition 4. (Timed traces of IMSCs). Let I be an IMSC.
The set P (I) contains all timed traces ρ = (σ, τ) where
σ is a linearisation of the poset (E,→) and where τ is
a non-decreasing time sequence constructed inductively
according to the following rules for the timing of events:

496 R. Jonk et al. / IFAC PapersOnLine 53-4 (2020) 493–500

Fig. 2. On the left: a visualization of a time value assign-
ment of the IMSC in Figure 1b. On the right: the two
timed traces derived from the time sequence.

• if pred(e) = ∅, then τie = 0,
• if pred(e) = {e1, e2, . . . , en}, then there exist
de1,e ∈ I(e1 → e), de2,e ∈ I(e2 → e), . . . , den,e ∈
I(en → e) such that τie = maxk∈{1..n} τiek + dek,e.

4.2 Model checking problem

Our goal is to determine I � φ which expresses that φ is
satisfied for all traces in P (I).
Definition 5. (Satisfaction semantics of I � φ). Let I be
an IMSC and φ be an MTL formula. Then I � φ holds
if and only if for all ρ ∈ P (I), ρ � φ.

Since P (I) can be (uncountably) infinite, we cannot enu-
merate all timed traces to solve the model-checking prob-
lem. Therefore, we need an alternative method.

5. MODEL CHECKING OF INTERVAL MSCS

In this section, we encode the IMSC model-checking prob-
lem in a constraint satisfaction problem (CSP). We use
Satisfiability Modulo Theories (SMT) as a framework. In
Section 5.1 we define the constraint language. Section 5.2
encodes an IMSC I as a constraint CI that models
the semantics of IMSCs given in Definition 4. Then, in
Section 5.3, we phrase a constraint CI,φ that encodes
whether or not a timed trace of I exists that satisfies φ.
In Section 5.4 we formulate the model checking problem
I � φ in terms of the constraint satisfaction problem CI ∧
CI,¬φ and prove its correctness. Section 5.5 discusses the
complexity of the encoding. Finally, Section 5.6 provides
an optimized encoding for specific classes of formulas.

5.1 Constraint language

The model checking problem can be encoded in a system
of constraints. The constraint language C follows the
following grammar:

C = ζ ∼ ζ | C ∧ C | ¬C
ζ = τ | τ + τ | τ − τ | c, (2)

where τ denotes a real valued variable, c ∈ Q+
0 denotes

a rational number constant, and ∼ ∈{<,≤,=, �=,≥, >} a
relation. We use the commonly used shorthand notations
(e.g. C ∨ C ≡ ¬(¬C ∧ ¬C)). Furthermore, we use the
shorthand

∧
1≤i≤n ci to denote c1 ∧ c2 ∧ · · · ∧ cn and

∨
1≤i≤n ci to denote c1 ∨ c2 ∨ · · · ∨ cn. Finally, we use

τ = maxx∈X(ζx) as a shorthand for
∧

x∈X(
∧

x′∈X(ζx ≥
ζx′) ⇒ (τ = ζx)) for some finite set X.

Let υ be a function that assigns values to the variables used
in a constraint. If υ assigns values such that the constraint
C evaluates to true, then υ is a solution to the constraint
satisfaction problem, which we denote by υ � C.

The constraint language C defined in Equation 2, a quanti-
fier free logic over uninterpreted functions and real arith-
metic, is a first-order logic of real-closed fields, which is
proven to be decidable by (Tarski and Jónsson, 1949).
Hence, since our model-checking problem I � φ can be
encoded in this formalism, it is decidable as well.

5.2 Encoding the IMSC

An IMSC I is encoded as a constraint CI . For every event
e ∈ E, we introduce a real valued variable τe representing
the time value of the event and a real valued variable ie

to encode the ordering relation. For every edge e′ → e we
introduce a real valued variable τe

′,e representing the time
value taken from the interval Ie′,e. For the lower-bound
(upper-bound) of the interval we introduce a rational

constant ce,e
′

l (ce,e
′

u). We let ≺ denote < or ≤ and � denote
> or ≥ depending on whether an interval I is open/closed
at the left/right side, respectively. The encoding follows
the semantics of P (I) as defined in Definition 4 and is
given as follows.

Definition 6. Let I be an IMSC. The constraint CI that
encodes I is defined as follows:

CI =
∧

(e′,e)∈→

(ce
′,e

l ≺ τe
′,e ∧ τe

′,e≺ ce
′,e

u ∧ ie
′
< ie) ∧

∧
e∈E

∧
e′∈E\{e}

(τe = τe
′
⇒ ie �= ie

′
) ∧

∧
e∈Einit

(τe = 0) ∧

∧
e/∈Einit

(τe = maxe′∈pred(e)(τ
e′ + τe

′,e)

The first two lines of the constraint encode that, given
a solution υ, there is a total ordering of events, i.e.
the lexicographic ordering of events by their time value
variables τe and their ordering variables ie is total.

5.3 Encoding the formula with respect to the IMSC

In this section, we obtain the condition CI,φ that encodes
whether or not there exists a timed trace of I that satisfies
φ. This constraint is attained according to the structure of
the formula interpreted on events. For every until operator
with interval I, there are rational valued constants cIl and
cIu encoding the lower- and upper-bound of the interval,
respectively. The encoding of the formula φ with respect
to I interpreted at event e ∈ E, denoted CI,φ

e , is as follows.

Definition 7. Given an IMSC I, an event e ∈ E, and
a formula φ ∈ MTL, the constraint CI,φ

e is inductively
computed following the structure of φ:

CI,p
e =

{
true if p ∈ e

false if p /∈ e
,

 R. Jonk et al. / IFAC PapersOnLine 53-4 (2020) 493–500 497

Fig. 2. On the left: a visualization of a time value assign-
ment of the IMSC in Figure 1b. On the right: the two
timed traces derived from the time sequence.

• if pred(e) = ∅, then τie = 0,
• if pred(e) = {e1, e2, . . . , en}, then there exist
de1,e ∈ I(e1 → e), de2,e ∈ I(e2 → e), . . . , den,e ∈
I(en → e) such that τie = maxk∈{1..n} τiek + dek,e.

4.2 Model checking problem

Our goal is to determine I � φ which expresses that φ is
satisfied for all traces in P (I).
Definition 5. (Satisfaction semantics of I � φ). Let I be
an IMSC and φ be an MTL formula. Then I � φ holds
if and only if for all ρ ∈ P (I), ρ � φ.

Since P (I) can be (uncountably) infinite, we cannot enu-
merate all timed traces to solve the model-checking prob-
lem. Therefore, we need an alternative method.

5. MODEL CHECKING OF INTERVAL MSCS

In this section, we encode the IMSC model-checking prob-
lem in a constraint satisfaction problem (CSP). We use
Satisfiability Modulo Theories (SMT) as a framework. In
Section 5.1 we define the constraint language. Section 5.2
encodes an IMSC I as a constraint CI that models
the semantics of IMSCs given in Definition 4. Then, in
Section 5.3, we phrase a constraint CI,φ that encodes
whether or not a timed trace of I exists that satisfies φ.
In Section 5.4 we formulate the model checking problem
I � φ in terms of the constraint satisfaction problem CI ∧
CI,¬φ and prove its correctness. Section 5.5 discusses the
complexity of the encoding. Finally, Section 5.6 provides
an optimized encoding for specific classes of formulas.

5.1 Constraint language

The model checking problem can be encoded in a system
of constraints. The constraint language C follows the
following grammar:

C = ζ ∼ ζ | C ∧ C | ¬C
ζ = τ | τ + τ | τ − τ | c, (2)

where τ denotes a real valued variable, c ∈ Q+
0 denotes

a rational number constant, and ∼ ∈{<,≤,=, �=,≥, >} a
relation. We use the commonly used shorthand notations
(e.g. C ∨ C ≡ ¬(¬C ∧ ¬C)). Furthermore, we use the
shorthand

∧
1≤i≤n ci to denote c1 ∧ c2 ∧ · · · ∧ cn and

∨
1≤i≤n ci to denote c1 ∨ c2 ∨ · · · ∨ cn. Finally, we use

τ = maxx∈X(ζx) as a shorthand for
∧

x∈X(
∧

x′∈X(ζx ≥
ζx′) ⇒ (τ = ζx)) for some finite set X.

Let υ be a function that assigns values to the variables used
in a constraint. If υ assigns values such that the constraint
C evaluates to true, then υ is a solution to the constraint
satisfaction problem, which we denote by υ � C.

The constraint language C defined in Equation 2, a quanti-
fier free logic over uninterpreted functions and real arith-
metic, is a first-order logic of real-closed fields, which is
proven to be decidable by (Tarski and Jónsson, 1949).
Hence, since our model-checking problem I � φ can be
encoded in this formalism, it is decidable as well.

5.2 Encoding the IMSC

An IMSC I is encoded as a constraint CI . For every event
e ∈ E, we introduce a real valued variable τe representing
the time value of the event and a real valued variable ie

to encode the ordering relation. For every edge e′ → e we
introduce a real valued variable τe

′,e representing the time
value taken from the interval Ie′,e. For the lower-bound
(upper-bound) of the interval we introduce a rational

constant ce,e
′

l (ce,e
′

u). We let ≺ denote < or ≤ and � denote
> or ≥ depending on whether an interval I is open/closed
at the left/right side, respectively. The encoding follows
the semantics of P (I) as defined in Definition 4 and is
given as follows.

Definition 6. Let I be an IMSC. The constraint CI that
encodes I is defined as follows:

CI =
∧

(e′,e)∈→

(ce
′,e

l ≺ τe
′,e ∧ τe

′,e≺ ce
′,e

u ∧ ie
′
< ie) ∧

∧
e∈E

∧
e′∈E\{e}

(τe = τe
′
⇒ ie �= ie

′
) ∧

∧
e∈Einit

(τe = 0) ∧

∧
e/∈Einit

(τe = maxe′∈pred(e)(τ
e′ + τe

′,e)

The first two lines of the constraint encode that, given
a solution υ, there is a total ordering of events, i.e.
the lexicographic ordering of events by their time value
variables τe and their ordering variables ie is total.

5.3 Encoding the formula with respect to the IMSC

In this section, we obtain the condition CI,φ that encodes
whether or not there exists a timed trace of I that satisfies
φ. This constraint is attained according to the structure of
the formula interpreted on events. For every until operator
with interval I, there are rational valued constants cIl and
cIu encoding the lower- and upper-bound of the interval,
respectively. The encoding of the formula φ with respect
to I interpreted at event e ∈ E, denoted CI,φ

e , is as follows.

Definition 7. Given an IMSC I, an event e ∈ E, and
a formula φ ∈ MTL, the constraint CI,φ

e is inductively
computed following the structure of φ:

CI,p
e =

{
true if p ∈ e

false if p /∈ e
,

CI,ψ1∧ψ2
e = CI,ψ1

e ∧ CI,ψ2
e ,

CI,¬ψ
e = ¬CI,ψ

e , and

CI,ψ1UIψ2
e =

∨
e′∈E

(
CI,ψ2

e′ ∧
τe

′ − τe � cIl ∧ τe
′ − τe ≺ cIu ∧ (τe

′
= τe ⇒ ie

′ ≥ ie)∧∧
e′′∈E(τ

e ≤ τe
′′ ∧ τe

′′ ≤ τe
′ ∧ (τe = τe

′′ ⇒ ie ≤ ie
′′
) ∧

(τe
′
= τe

′′ ⇒ ie
′′
< ie

′
)) ⇒ CI,ψ1

e′′

)
.

The encoding of the formulas p, ψ1 ∧ ψ2, ¬ψ is straight-
forward. The intuition behind the encoding of ψ1UIψ2 is
as follows. The disjunction

∨
e′∈E ranges over all events.

The constraint CI,ψ2

e′ encodes that event φ2 holds at e′.
An event can only make the right hand side of the until
operator true, if it occurs within the interval. This is
encoded as τe

′ − τe � cIl ∧ τe
′ − τe ≺ cIu. Now, if 0

is in the interval, we need to assert that e′ occurs after
e or is e itself (corresponding to j ≥ i in Definition 1).

This assertion is encoded as (τe
′
= τe ⇒ ie

′ ≥ ie). Then,
for every event e′′, if it occurs between e (inclusive) and
e′ (exclusive), then (ρ, ie′′) � ψ1. This is encoded as the
conjunction over all events

∧
e′′∈E . To encode that the time

value of e′′ lies between the time values of e and e′, we have
constraints τe ≤ τ e

′′
and τe

′′ ≤ τ e
′
. To encode that if e′′

occurs at the same time as e implies the index of e′′ to be
at least as large as the index of e, there is the constraint
(τe = τe

′′ ⇒ ie ≤ ie
′′
). To encode that if e′′ occurs at the

same time as e′ implies the index of e′′ to be smaller than
the index of e′, we have constraint (τe

′
= τe

′′ ⇒ ie
′′
< ie

′
).

Finally, CI,ψ1

e′′ encodes that ψ1 holds for event e′′.

We encoded constraint CI,φ
e for every event e. A timed

trace ρ ∈ P (I) satisfies φ iff the first event in ρ satisfies
φ. This event must be from the set of initial events
Einit = {e ∈ E | pred(e) = ∅}. Furthermore, if the trace
ρ with first event e satisfies φ, then the constraint CI,φ

e
is true, and CI,φ must also be true. Therefore, since any
trace starts with one of the initial events and CI,φ encodes
whether there exists a timed trace in I that makes φ true,
it is sufficient to satisfy at least one of the constraints
CI,φ

e . Hence, the constraint CI,φ is the disjunction of the
constraints for all initial events: CI,φ =

∨
e∈Einit CI,φ

e .

5.4 The model-checking problem as an SMT problem

We are now ready to express the IMSC model-checking
problem in terms of an SMT problem. As we have estab-
lished in Section 5.2, the constraint CI encodes the timing
semantics of the IMSC. In Section 5.3, we have encoded as
CI,φ the timing constraints between events that encodes
the property of interest (φ). We prove the following lemma:

Lemma 1. Let I be an IMSC and let φ be an MTL
formula. There exists a timed trace ρ ∈ P (I) such that
ρ � φ iff there exists a valuation υ such that υ � CI∧CI,φ.

Proof of Lemma 1. We sketch a proof in both directions.
The proof is available in (Jonk et al., 2020).

⇒ Let ρ ∈ P (I) be such that ρ � φ. Construct a
valuation υ such that for every event e ∈ E, υ(τe) =
τie and υ(ie) = ie. It can be shown that υ � CI .

Observe that if υ � CI,φ
σ1

, then, since σ1 must be an

initial event, υ � CI,φ follows from the disjunction
over all initial events. We can show that ρ � φ implies
υ � CI,φ

σ1
by induction on the length of the formula.

⇐ Let υ be such that for some e ∈ Einit, υ � CI ∧CI,φ
e

and for all e′ ∈ E, υ(ie) ≤ υ(ie
′
). Order the events E

according to the lexicographic ordering of ascending
time valuations and ascending indices. Construct a
timed trace ρ such that for every event e ∈ E,
τie = υ(τe) and ie according to the ordering. It can
be shown that ρ ∈ P (I). Since υ � CI,φ

e and e occurs
first in the lexicographic order, it must be the first
event in ρ. Then, ρ � φ, which can be shown by
induction on the length of the constraint. �

We can now formulate the main theorem of the paper:

Theorem 1. Let I be an IMSC and let φ be a MTL
formula. Then, I � φ iff CI ∧ CI,¬φ is not satisfiable.

Proof of Theorem 1.

I � φ iff ∀ρ∈P (I) (ρ, 1) � φ Definition 5

iff ¬∃ρ∈P (I) (ρ, 1) � ¬φ DeMorgan

iff ¬∃υ υ � CI ∧ CI,¬φ Lemma 1

iff CI ∧ CI,¬φ is unsatisfiable �

5.5 Complexity analysis

We analyse the time and space complexity of the SMT
problem. The variables that occur in CI ∧ CI,¬φ corre-
spond to the events and edges in the IMSC I. We create
two variables for each event and one variable for each edge,
so the number of variables in the CSP is 2|E|+ |→|.
The encoding of CI generates four clauses per edge (three
from the first constraint in Definition 6 and one from the
last) and one clause for every combination of events, so

in total O(12 |E|2 + 4|→|) clauses. The encoding of CI,φ

depends on the length of the formula. The encoding of
an until operator is a disjunction over all events, and for
each event there is a conjunction over all events. The
complexity for an until operator is thus O(|E|2). In the
worst case, until formulas are nested. Therefore, the total

worst case number of clauses in the CSP is O(|E|2|φ|).
In our experiments, we use the z3 theorem prover. z3
uses CDCL (Marques-Silva and Sakallah (1999)), which
is based on DPLL algorithms (Davis et al. (1961)), which
have a worst-case running time of O(2n) and a worst case
space complexity of O(n), where n is the size of the input
(number of variables plus number of clauses). The time

complexity of the SMT problem is therefore O(2(|E||φ|))

and the space complexity is O(|E|2|φ|).

5.6 Optimization of the encoding

We discuss two practical optimizations for the encoding
of the IMSC. The first optimization concerns formulas
for which the until operator only appears as a finally
or globally operator. The second optimization concerns
removing and simplifying clauses from the constraints that
do not influence the result.

498 R. Jonk et al. / IFAC PapersOnLine 53-4 (2020) 493–500

In our encoding of the formula ψ1UIψ2, we require con-
straints on the indices to guarantee the ordering of events.
For formulas for which ψ1 only occurs as true for until
operators, i.e., only for finally and globally operators, then

the constraint CI,true
e′′ is equivalent to true for all e′′.

This results in a more compact constraint CI,trueUIψ2
e :∨

e′∈E CI,ψ2

e′ ∧ τe
′ − τe � cIl ∧ τe

′ − τe ≺ cIu ∧ (τe
′
= τe ⇒

ie
′ ≥ ie). We let CI,∗ be the encoding of the IMSC I with-

out the constraints
∧

e∈E

∧
e′∈E\{e}(τ

e = τe
′ ⇒ ie �= ie

′
).

Lemma 2. Let I be an IMSC and φ be an MTL formula
for which until operators only occur as finally or globally
operators. Then, there exists a timed trace ρ ∈ P (I) such
that ρ � φ, if and only if there exists a valuation υ such
that υ � CI,∗ ∧ CI,φ.

Proof of Lemma 2. The proof for “⇒” is identical to
the proof of Lemma 1. The proof for “⇐” follows from
assuming a total order for events that are unordered in the
poset (E,→) to construct a timed trace ρ, and otherwise
follows the proof of Lemma 1. �

As a corollary to Lemma 2, we conclude a similar result
as Theorem 1 for CI,∗.

Theorem 2. Let I be an IMSC and let φ be an MTL for-
mula where until operators only occur as finally/globally
operators. Then, I � φ iff CI,∗ ∧ CI,¬φ is not satisfiable.

The second optimization follows from annihilation of con-
junctions containing false (disjunctions containing true).
We call CI,φ

r the result of annihilating such clauses from
CI,φ. Not every variable τe and ie occur in CI,φ

r . There-
fore, we can eliminate the events corresponding to these
variables from the IMSC such that the encoding of the
IMSC does not affect the model checking problem. An
event e can be eliminated from I if τe and ie do not occur
in CI,¬φ

r , according to the following rules:

R1 if succ(e) = ∅: remove e and all edges e′ → e.
R2 if pred(e) = {ep} and succ(e) = {es}: remove e and

the edges ep → e and e → es. Then, if there does
not exist an edge ep → es, add an edge ep → es with
interval the sum of the lower- and upper-bounds of
the removed intervals. Otherwise, adjust the lower-
and upper-bounds of the existing edge such that the
interval on the edge is the maximum of the existing
lower- and upper-bounds and the sum of the lower-
and upper-bounds of the removed intervals.

R1 states that events at the end of the IMSC can be
removed if their variables do not occur in CI,φ

r . R2 states
that events with one incoming and one outgoing event can
be removed and the intervals on the incoming edge and
outgoing edge can be added. If this results in two edges
between the predecessor and the successor, the edges are
merged with by taking the maximum values for the lower-
and upper-bounds, respectively.

R1 and R2 can be repeatedly applied on the events in I
until no more events can be removed. This results in a
reduced IMSC Ir. The following theorem states that the
reduced model checking problem is equivalent to the model
checking problem in Theorem 1.

Theorem 3. Let I be an IMSC and φ be a formula. CIr ∧
CI,¬φ

r is not satisfiable iff CI ∧ CI,¬φ is not satisfiable.

Proof of Theorem 3. The proof follows by showing that
the time valuations of the remaining variables remain
unchanged. The full proof is available in (Jonk et al., 2020).

6. EXPERIMENTAL EVALUATION

In this section we evaluate our model checking method and
compare the SMT based solution of the model checking
problem to the automaton based strategy, choosing Uppaal
as a tool. We do so with a synthetic case study to
demonstrate the scalability in terms of computation time
and memory usage for our encoding and via manually
translating the IMSC to an equivalent timed automaton.
We also validate the method using an industrial case study.
We implemented the encoding according to Definitions 6
and 7. The encoding is done such that it can be used as
input for (z3, 2011). The experiments are done on an Intel
Core i7-6560 2.20GHz quad core CPU with 16GB of RAM
on a Windows 8.1 Enterprise 64-bit operating system.

6.1 A synthetic case-study: TGPP

We use the Timed Generic Pipeline Paradigm (TGPP)
as a synthetic case study. The case study is inspired by
the case study used in (Woźna-Szcześniak and Zbrzezny,
2014) and (Woźna-Szcześniak et al., 2017), based on a
Generic Pipeline Paradigm introduced in (Peled, 1993).
The proposed case study is originally presented in the
context of timed automata. We adapt the case study
to fit our formalism of IMSCs. We also create a timed
automaton following the semantics of the IMSC to be used
as input to Uppaal.

Figure 3 shows the UMSC where two pieces of data are
being produced, processed by one intermediate node and
finally consumed. The Producer component consists of
a function prod loop which subsequently calls the func-
tions prod and send repeatedly. After a piece of data is
produced, it is sent to the first node. When the Node1
component is notified of the message from the producer,
it starts a handler which calls the functions rec, process
and send in sequence. At the end of rec, it notifies the
producer it has received the piece of data. After processing
the data, it sends it to the next node, or, as in Figure 3,
to the consumer, if it is the last node. The node may now
receive the next piece of data. Finally, when a piece of data
reaches the consumer, it starts a handler which receives the
data and consumes it by calling function cons.

The synthetic case can be scaled by increasing the number
n of intermediate nodes and/or the number r of data pieces
that are produced by the producer. For our experiments,
we pick r = 10 for all experiments, and vary n between
0 and 30. There is a time-out at 600 seconds for each

Fig. 3. The UMSC of a Timed Generic Pipeline Paradigm
execution with one intermediate processing node.

 R. Jonk et al. / IFAC PapersOnLine 53-4 (2020) 493–500 499

In our encoding of the formula ψ1UIψ2, we require con-
straints on the indices to guarantee the ordering of events.
For formulas for which ψ1 only occurs as true for until
operators, i.e., only for finally and globally operators, then

the constraint CI,true
e′′ is equivalent to true for all e′′.

This results in a more compact constraint CI,trueUIψ2
e :∨

e′∈E CI,ψ2

e′ ∧ τe
′ − τe � cIl ∧ τe

′ − τe ≺ cIu ∧ (τe
′
= τe ⇒

ie
′ ≥ ie). We let CI,∗ be the encoding of the IMSC I with-

out the constraints
∧

e∈E

∧
e′∈E\{e}(τ

e = τe
′ ⇒ ie �= ie

′
).

Lemma 2. Let I be an IMSC and φ be an MTL formula
for which until operators only occur as finally or globally
operators. Then, there exists a timed trace ρ ∈ P (I) such
that ρ � φ, if and only if there exists a valuation υ such
that υ � CI,∗ ∧ CI,φ.

Proof of Lemma 2. The proof for “⇒” is identical to
the proof of Lemma 1. The proof for “⇐” follows from
assuming a total order for events that are unordered in the
poset (E,→) to construct a timed trace ρ, and otherwise
follows the proof of Lemma 1. �

As a corollary to Lemma 2, we conclude a similar result
as Theorem 1 for CI,∗.

Theorem 2. Let I be an IMSC and let φ be an MTL for-
mula where until operators only occur as finally/globally
operators. Then, I � φ iff CI,∗ ∧ CI,¬φ is not satisfiable.

The second optimization follows from annihilation of con-
junctions containing false (disjunctions containing true).
We call CI,φ

r the result of annihilating such clauses from
CI,φ. Not every variable τe and ie occur in CI,φ

r . There-
fore, we can eliminate the events corresponding to these
variables from the IMSC such that the encoding of the
IMSC does not affect the model checking problem. An
event e can be eliminated from I if τe and ie do not occur
in CI,¬φ

r , according to the following rules:

R1 if succ(e) = ∅: remove e and all edges e′ → e.
R2 if pred(e) = {ep} and succ(e) = {es}: remove e and

the edges ep → e and e → es. Then, if there does
not exist an edge ep → es, add an edge ep → es with
interval the sum of the lower- and upper-bounds of
the removed intervals. Otherwise, adjust the lower-
and upper-bounds of the existing edge such that the
interval on the edge is the maximum of the existing
lower- and upper-bounds and the sum of the lower-
and upper-bounds of the removed intervals.

R1 states that events at the end of the IMSC can be
removed if their variables do not occur in CI,φ

r . R2 states
that events with one incoming and one outgoing event can
be removed and the intervals on the incoming edge and
outgoing edge can be added. If this results in two edges
between the predecessor and the successor, the edges are
merged with by taking the maximum values for the lower-
and upper-bounds, respectively.

R1 and R2 can be repeatedly applied on the events in I
until no more events can be removed. This results in a
reduced IMSC Ir. The following theorem states that the
reduced model checking problem is equivalent to the model
checking problem in Theorem 1.

Theorem 3. Let I be an IMSC and φ be a formula. CIr ∧
CI,¬φ

r is not satisfiable iff CI ∧ CI,¬φ is not satisfiable.

Proof of Theorem 3. The proof follows by showing that
the time valuations of the remaining variables remain
unchanged. The full proof is available in (Jonk et al., 2020).

6. EXPERIMENTAL EVALUATION

In this section we evaluate our model checking method and
compare the SMT based solution of the model checking
problem to the automaton based strategy, choosing Uppaal
as a tool. We do so with a synthetic case study to
demonstrate the scalability in terms of computation time
and memory usage for our encoding and via manually
translating the IMSC to an equivalent timed automaton.
We also validate the method using an industrial case study.
We implemented the encoding according to Definitions 6
and 7. The encoding is done such that it can be used as
input for (z3, 2011). The experiments are done on an Intel
Core i7-6560 2.20GHz quad core CPU with 16GB of RAM
on a Windows 8.1 Enterprise 64-bit operating system.

6.1 A synthetic case-study: TGPP

We use the Timed Generic Pipeline Paradigm (TGPP)
as a synthetic case study. The case study is inspired by
the case study used in (Woźna-Szcześniak and Zbrzezny,
2014) and (Woźna-Szcześniak et al., 2017), based on a
Generic Pipeline Paradigm introduced in (Peled, 1993).
The proposed case study is originally presented in the
context of timed automata. We adapt the case study
to fit our formalism of IMSCs. We also create a timed
automaton following the semantics of the IMSC to be used
as input to Uppaal.

Figure 3 shows the UMSC where two pieces of data are
being produced, processed by one intermediate node and
finally consumed. The Producer component consists of
a function prod loop which subsequently calls the func-
tions prod and send repeatedly. After a piece of data is
produced, it is sent to the first node. When the Node1
component is notified of the message from the producer,
it starts a handler which calls the functions rec, process
and send in sequence. At the end of rec, it notifies the
producer it has received the piece of data. After processing
the data, it sends it to the next node, or, as in Figure 3,
to the consumer, if it is the last node. The node may now
receive the next piece of data. Finally, when a piece of data
reaches the consumer, it starts a handler which receives the
data and consumes it by calling function cons.

The synthetic case can be scaled by increasing the number
n of intermediate nodes and/or the number r of data pieces
that are produced by the producer. For our experiments,
we pick r = 10 for all experiments, and vary n between
0 and 30. There is a time-out at 600 seconds for each

Fig. 3. The UMSC of a Timed Generic Pipeline Paradigm
execution with one intermediate processing node.

� � � � � � � � � �

0

0

300

600

900

1200

1500

n

0 2 4 6 8

0

200

400

600

800

1000

N
u

m
b

e
r

o
f

E
v
e

n
ts

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

� Encoding Time

SMT Solve Time

Number of Events

(a) Computation time for
x = 12

� � � � � � � � � �

0

0

300

600

900

1200

1500

n

0 2 4 6 8

0

200

400

600

800

1000

N
u

m
b

e
r

o
f

E
v
e

n
ts

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

� Encoding Time

SMT Solve Time

Number of Events

(b) Computation time for
x = 20 + 6n

Fig. 4. The computation time and number of events for φ1

as a function of n.

experiment. All intervals on the edges between events are
set to [1, 2]. We evaluate the following formulas:

• φ1 = F[0,x](prod∧ ↓)U[0,∞)(prod∧ ↓ ∧ r)
“Always until the producer has produced r pieces of
data, new data is produced within x time units” (we
evaluate using x = 12 and x = 20 + 6n),

• φ2 = φ2,1 ∧ φ2,2 ∧ · · · ∧ φ2,r, where

φ2,i =G[0,∞)((prod ∧ i ∧ ↓) ⇒
F[6+6n,12+12n](cons ∧ i ∧ ↓))

“For each piece of data, when it is produced, it is
consumed within 6+ 6n to 12+ 12n time units,” and

• φ3 = G[0,∞)((cons ∧ ↓ ∧ ¬r ⇒ F[1,16+6n](cons ∧ ↑))
“Whenever a cons execution finishes (except the last),
the next cons execution will start within 1 to 16 + 6n
time units.”

The following formulas are expected to be true: φ1 for
x = 20+6n, φ2,1 and φ3. The other formulas are expected
to be false. We evaluate the formulas on the Timed Generic
Pipeline Paradigm IMSC and equivalent formulas for φ2

and φ3 in Uppaal on the timed automaton.

Figure 4 shows the results for φ1. Since the formula
contains an until operator, the optimizations discussed
in Section 5.6 do not help. The computation time to
encode the constraint (black circles), the time to solve the
constraint problem (blue line) and the number of events
(blue squares) are shown for x = 12 (a) and x = 20 + 6n
(b). The figure shows that the encoding in SMT takes
significantly less time than solving the SMT problem. Even
for small n, the solving time for the SMT reaches the time-
out of 1200 seconds.

Figure 5 and 6 show the results for φ2 and φ3 for the
unoptimized encoding. We evaluated each sub-formula φ2,i

separately. In (a), the (mean) computation time to encode
the constraint (black circles), the mean computation time
to solve the constraint problem (blue line) and the number
of events (blue squares) are shown, and in (b) the peak
memory usage and the number of events are shown. The
figures show that Uppaal performs better for smaller
models, but does not scale as well as our method.

We implemented the optimizations discussed in Section 5.6
and verified formulas φ2 and φ3 again. Figures 5 and 6
show the results for φ2 and φ3, respectively. At the left-
hand side of the figures, the (mean) time to solve the
constraint problem (red dashed line) and the number of

�

�

�

�
�

�
�

�
�

� �
�

� �
�

� � � � � � � � � � � � �
� � �

0 5 10 15 20 25 30

n

0.001

0.01

0.1

1

10

100

1000

0

500

1000

1500

2000

2500

3000

N
u

m
b

e
r

o
f

E
v
e

n
ts

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

� Encoding Time

SMT Solve Time

Number of Events

Sim. SMT Solve Time

Sim. Number of Events

Uppaal

(a) Computation time

0 5 10 15 20 25 30

n

10

100

1000

10000

0

500

1000

1500

2000

2500

3000

N
u

m
b

e
r

o
f

E
v
e

n
ts

P
e

a
k
 m

e
m

o
ry

 u
s
a

g
e

 (
M

B
)

Peak Mem. Usage

Number of Events

Sim. Peak Mem. Usage

Sim. Number of Events

(b) Peak memory usage

Fig. 5. The mean computation time, peak memory usage
and number of events for φ2,i as a function of n.

�

�

�

�

�

�

�

�
� �

�
� �

�
�

� � �
� � � � � � � � � �

� � �

0 5 10 15 20 25 30

n

0.001

0.01

0.1

1

10

100

1000

0

1000

2000

3000

4000

N
u

m
b

e
r

o
f

E
v
e

n
ts

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

� Encoding Time

SMT Solve Time

Number of Events

Sim. SMT Solve Time

Sim. Number of Events

Uppaal

(a) Computation time

0 5 10 15 20 25 30

n

10

100

1000

10000

0

500

1000

1500

2000

2500

3000

N
u

m
b

e
r

o
f

E
v
e

n
ts

P
e

a
k
 m

e
m

o
ry

 u
s
a

g
e

 (
M

B
)

Peak Mem. Usage

Number of Events

Sim. Peak Mem. usage

Sim. Number of Events

(b) Peak memory usage

Fig. 6. The mean computation time, peak memory usage
and number of events for φ3 as a function of n.

events (red triangles) for the simplified problem are shown,
and at the right-hand side of the figures, the peak memory
usage (red dashed line) and the number of events (red
triangles) are shown. Since φ2 only uses finally and globally
operators, the optimization is effective at reducing the
number of events, and shows a clear improvement over the
regular IMSC. The figures show that φ3 takes significantly
longer to compute than each individual φ2,i, while the
memory usage is similar to the memory usage for φ2. The
results for the simplified constraints are an improvement
over the regular constraints. Uppaal is able to verify up
to depth five, whereas our simplified approach allow us to
verify properties upto a pipeline depth of thirty.

6.2 Industrial case study

We apply the verification technique to a case study on
lithography scanners. Lithography scanners use an optical
system to project an image of a pattern on a quartz
plate, called the reticle, onto a photosensitive layer on a
substrate, called the wafer. Since one wafer can contain
many ICs, typically 100 or more, the wafer needs to be
repositioned from exposure to exposure. Exposures take
place during scanning motions of the wafer, as illustrated
in Figure 7 (redrawn from (Butler, 2011)). A wafer is
divided in image fields, which are scanned one by one
according to a step and scan pattern. Each physical step
and scan action involves a motion path of the wafer defined
in terms of a setpoint profile which has to be tracked with
nanometer positional accuracy. Due to physical distur-
bances, e.g. temperature perturbations, feed-back setpoint
adjustments are computed based on system-wide sensor
and data input. To obtain optimal system throughput, all

500 R. Jonk et al. / IFAC PapersOnLine 53-4 (2020) 493–500

Fig. 7. A schematic overview of a wafer being exposed.
Redrawn from Figure 15 in (Butler, 2011).

step and scan actions must be executed in a concatenated
fashion. Therefore, each setpoint adjustment computation
is subject to latency requirements.

We created a UMSC U and measured execution times
for each edge from a run of a TWINSCAN machine. U
contains 48.7 million events and 60.4 million edges. We fold
the function executions and the execution times occurring
in each setpoint adjustment computation to an IMSC Ie l

covering a single setpoint computation, where the lower-
and upper-bound of each interval is determined by the
minimum and maximum execution times observed for each
edge. The resulting IMSC Ie l contains 952 events and 987
edges. Requirements are formulas of the form G[0,∞)

(
a ⇒

F[0,t)(b)
)
. That is, from the moment event ‘a’ occurs, event

‘b’ occurs within t time units. We verified four latency
requirements on Ie l. All of the latency requirements gave
a result within fifteen seconds.

7. CONCLUSIONS

We have studied the verification of temporal properties
on Interval Message Sequence Charts with temporal con-
cepts modelled by interval-labelled edges between events.
We approached the problem by encoding the model and
properties as an SMT problem. Our encoding to a con-
straint satisfaction problem supports the full MTL. We
have validated the encoding of the model checking problem
in an SMT problem for a scalable synthetic case and an
industrial case. The results of the synthetic case show that
verifying properties on a system containing in the order
of thousand events is feasible for formulas that do not
contain the until operator. These properties are verified
a lot more time-efficiently than equivalent properties that
verified using Uppaal. The industrial case study shows the
method to be applicable to verify a relevant property of
the software of a lithography scanner.

REFERENCES

Alur, R. and Yannakakis, M. (1999). Model checking of
message sequence charts. In International Conference
on Concurrency Theory, 114–129. Springer.

Blom, S., Ioustinova, N., and Sidorova, N. (2003). Timed
verification with µCRL. In International Andrei Ershov
Memorial Conference on Perspectives of System Infor-
matics, 178–191. Springer.

Butler, H. (2011). Position control in lithographic equip-
ment [applications of control]. IEEE control systems,
31(5), 28–47.

Davis, M., Logemann, G., and Loveland, D.W. (1961).
A machine program for theorem-proving. New York
University, Institute of Mathematical Sciences.

Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., and
Van Weerdenburg, M. (2007). The formal specification

language mCRL2. In Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Jonk, R., Voeten, J., Geilen, M., Basten, T., and Schif-
felers, R. (2020). SMT-based verification of temporal
properties for component-based software systems. ES
Report, 2020(01), http://www.es.ele.tue.nl/esreports.

Koymans, R. (1990). Specifying real-time properties with
metric temporal logic. Real-time systems, 2(4), 255–299.

Kurtev, I., Schuts, M., Hooman, J., and Swagerman, D.J.
(2017). Integrating Interface Modeling and Analysis in
an Industrial Setting. In MODELSWARD, 345–352.

Loose, R., van der Sanden, B., Reniers, M., and Schif-
felers, R. (2018). Component-wise supervisory con-
troller synthesis in a client/server architecture. IFAC-
PapersOnLine, 51(7), 381–387.

Malinowski, J. and Niebert, P. (2010). SAT based bounded
model checking with partial order semantics for timed
automata. In Tools and Algorithms for the Construction
and Analysis of Systems, 405–419. Springer.

Marques-Silva, J.P. and Sakallah, K.A. (1999). GRASP:
A search algorithm for propositional satisfiability. IEEE
Transactions on Computers, 48(5), 506–521.

Matena, V., Stearns, B., and DeMichiel, L. (2003). Apply-
ing enterprise JavaBeans: component-based development
for the J2EE platform. Pearson Education.

Peled, D. (1993). All from one, one for all: on model check-
ing using representatives. In International Conference
on Computer Aided Verification, 409–423. Springer.

Sharp, D.C. (1998). Reducing avionics software cost
through component based product line development.
In Digital Avionics Systems Conference, 1998. Proceed-
ings., 17th DASC., volume 2, G32–1. IEEE.

Tarski, A. and Jónsson, B. (1949). Cardinal algebras.
UML (2005). Unified Modeling Language 2.0.
http://omg.org/spec/UML/2.0/About-UML/.
Accessed: 29-11-2019.

Uppaal (1995). Uppaal. http://www.uppaal.org/. Ac-
cessed: 3-12-2019.

Van Ommering, R., Van Der Linden, F., Kramer, J., and
Magee, J. (2000). The Koala component model for
consumer electronics software. Computer, 33(3), 78–85.

Wilhelm, R. et al. (2008). The Worst-case Execution-time
Problem - Overview of Methods and Survey of Tools.
ACM Transactions on Embedded Computing Systems,
7(3), 36:1–36:53.

Woźna-Szcześniak, B., Zbrzezny, A.M., and Zbrzezny, A.
(2017). SMT-based Searching for k-quasi-optimal Runs
in Weighted Timed Automata. Fundamenta Informati-
cae, 152(4), 411–433.

Woźna-Szcześniak, B. and Zbrzezny, A. (2014). Checking
MTL properties of discrete timed automata via bounded
model checking. Fundam. Inform., 135(4), 553–568.

z3 (2011). Z3. http://github.com/Z3Prover/z3. Ac-
cessed: 29-11-2019.

Zbrzezny, A.M., Szymoniak, S., and Kurkowski, M. (2019).
Efficient Verification of Security Protocols Time Proper-
ties Using SMT Solvers. In International Joint Confer-
ence: CISIS 2019 and ICEUTE 2019, 25–35. Springer.

Zbrzezny, A. (2005). Sat-based reachability checking for
timed automata with diagonal constraints. Fundamenta
Informaticae, 67(1-3), 303–322.

