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To lower CO2 emissions, policy makers want to integrate as much variable renewable energy (VRE) as possible
into power systems. This has been translated into targets for VRE as a share of total electricity generation and pol-
icies that aim to maximize the use of electricity available from VRE sources. However, in this paper we demon-
strate that it is a misconception that maximizing VRE production always lowers CO2 emissions. In fact there
are many constraints in power system operation that can lead to situations when curtailing VRE reduces both
costs and CO2 emissions. In this paper we identify these situations and constraints, and illustrate themwith sev-
eral examples. The examples show how different constraints from optimal power system operation, using eco-
nomic dispatch (ED) and unit commitment (UC), can combine to create the seemingly paradoxical result that
curtailing VRE reduces both costs and CO2 emissions. Broadly defined these situations can occur 1) due to net-
work constraints which create the need for inefficient redispatch actions if VRE is not curtailed, 2) due to in-
creased need for ramp capability and cycling from other units, and 3) due to reserve/security requirements
which canbe satisfiedmore efficiently by allowingVRE curtailment. To achieve themost economical and efficient
operation of power systems, instead of VRE curtailment being seen as ameasure of last resort to preserve system
security, VRE should always be optimally dispatched throughmarkets based on its true cost, thusmaximizing the
value of VRE to the system rather than its output.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Sources of variable renewable energy (VRE), such as wind and solar,
are considered to be key technologies in the transition to a carbon free
and sustainable energy system. In order to reach high shares of VRE in
power systems, renewable energy producers are receiving incentives
to guarantee their recovery of investment costs. Usually these incen-
tives go from investment and operational subsidies to priority access
to the grid. The objective is to increase VRE production by fully
dispatching VRE sources into power systems, and many countries
have adopted targets for the VRE share of the total annual electricity
generation.

However, with higher VRE penetration there are growing chal-
lenges to fully dispatching the VRE production into power systems,
of which the main challenges are: 1) variability, 2) uncertainty,
3) nonsynchronous generation, and 4) location-specificity, where
more transmission capacity is required to access the full VRE potential
from different locations (Cochran et al., 2015). Note that these
-España), elisn@kth.se

. This is an open access article under
challenges require conventional generation to remain operational.
Especially for the first 3 challenges, a significant amount of conven-
tional generation is needed to provide flexibility to the system (usu-
ally through reserves) to face the VRE sources' variability and
uncertainty as well as to ensure system security (challenge 3). That
is, when there is high VRE production, units providing reserves and
contributing with inertia inevitably supply part of the demand, and
it may be necessary to curtail part of the VRE production. Curtailment
may also be necessary if there is insufficient transmission capacity
from areas with high VRE production.

Although it is accepted that some VRE curtailment is necessary to,
e.g., avoid excessive expansion of transmission capacity (Klinge
Jacobsen and Schröder, 2012) and maintain system security (Steurer
et al., 2017), there is also a widespread belief that curtailment should
be avoided if not strictly necessary for operational reasons such as
those mentioned above. Curtailment is seen as inherently wasteful
(Golden and Paulos, 2015) and is claimed to “increase(s) fuel use and
generation-related emissions of (the) conventional power plants”
(Steurer et al., 2017). Furthermore, it is argued that there is an inherent
value of a “green kWh” as opposed to a “grey kWh”, since the former
contributes to meeting renewable targets (Höfling et al., 2015), which
are set as a percentage of the produced energy in many countries.
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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The view that curtailment is undesirable is also reflected in the liter-
ature on short-term power system operation such as unit commitment
(UC). There is a large literature on how to incorporate the uncertainty of
VRE into the UC problem (Zheng et al., 2015). However, many UC for-
mulations do not allow VRE curtailment (Jiang et al., 2012; Jiang et al.,
2013; Zhao et al., 2013; Zhao and Guan, 2016; Zhai et al., 2017; Shi
et al., 2019; Alizadeh et al., 2018; Zhang et al., 2017; Sundar et al.,
2019). For example, one of the most common methods for solving the
UC problem with VRE uncertainty is robust optimization. Many robust
UC formulations model the VRE uncertainty as a fixed uncertainty set,
and thus do not allow for the possibility of curtailment to decrease ei-
ther the variability or uncertainty from VRE (Jiang et al., 2012, 2013;
Shi et al., 2019; Zhai et al., 2017; Zhao et al., 2013; Zhao and Guan,
2016). In other cases only the uncertainty of the residual load (demand
minus VRE production) is modelled (Alizadeh et al., 2018), which also
means that curtailment of VRE is not allowed. Anothermethod to tackle
VRE uncertainty is through chance-constraints, i.e., constraints that only
need to be fulfilled with a certain probability, depending on the out-
come of the stochastic variable representing VRE uncertainty. Many
chance-constrained UC/OPF formulations also model VRE uncertainty
as a fixed probability distribution, thus neglecting the possibility for
VRE curtailment (Zhang et al., 2017; Sundar et al., 2019; Vrakopoulou
et al., 2013; Roald and Andersson, 2018).

Contrary to these ideas, it has been shown that inflexible operation
of VRE such as wind can increase system operation costs (Baldick,
2012; Ela and Edelson, 2012; Morales-España et al., 2017; Deng et al.,
2015; E3, 2018). The increased costs result when constraints such as
network constraints or unit commitment constraints prevent the units
from being dispatched in merit order from low cost units to high cost
units. Not allowing curtailment then limits the possibilities for satisfying
these constraints,which can lead to an increase in costs compared to the
case when curtailment is allowed. On the other hand, it is not so well
known that inflexible VRE operation can also increase CO2 emissions.
To the best of our knowledge, this has been shown to occur in two stud-
ies (Deng et al., 2015; E3, 2018), and the only cause identified is in-
creased startup emissions from conventional units (Deng et al., 2015).

In this paper, we show that there are many different situations
where maximizing VRE production can lead to a simultaneous increase
in both costs and CO2 emissions. This can occur not only due tomore fre-
quent startups and shutdowns of units, as discussed in (Deng et al.,
2015), but also due to network constraints, ramping requirements,min-
imumuptime requirements or reserve/security constraints, all of which
affect the mix of online units.

A commonmarket setup for power system operation includes a day-
ahead market which solves a UC problem or similar to determine the
online/offline status of units for the next day and an economic dispatch
(ED) to find the optimal production set points of the units which have
been scheduled to operate, ED is also commonly used to clear real-
time markets (FERC, 2014). In this paper, we provide several examples
of situations where curtailing VRE simultaneously reduces costs and
CO2 emissions, for both ED and UC problems. For the ED, we show
that either 1) network constraints or 2) ramping constraints can, by
themselves, create such situations. For theUC, thepresence ofminimum
outputs in combination with 3) startup costs or 4) minimum up/down
times is sufficient. Furthermore, when solving a 5) stochastic UC with
wind uncertainty, or 6) a UCwith N-1 security constraints, it is also pos-
sible to have situations where VRE curtailment leads to decreased costs
and CO2 emissions.

The examples presented here use data for costs and emissions of
units taken from Deng et al. (2015). However, similar results can be
found for units with different characteristics, as long as there are con-
straints such as network constraints, unit commitment constraints, or
reserve requirements that constrain the dispatch. These types of con-
straints are present in all power systems and are incorporated inmarket
clearing algorithms in increasing detail, since they are needed to
guarantee that the market solution will result in a technically feasible
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dispatch of units (although the degree to which technical constraints
are considered vary between different markets). For example, the
European market clearing algorithm EUPHEMIA considers simplified
transmission constraints based on a zonal model and allows block bids
that respect the minimum production level of units and span several
time periods, thus respecting the units' minimum uptime (NEMO,
2020). On the other hand,most of themarkets in theUS operate by solv-
ing UC and ED problems (FERC, 2014).

Additionally, we show that, for all the examples, using a regression
model to estimate themarginal change of CO2 emissionswith increased
wind production gives misleading results. Such regression models are
commonly used to estimate the efficiency of VRE in decreasing CO2

emissions (Kaffine et al., 2013; Amor et al., 2014; Novan, 2015;
Oliveira et al., 2019), but our results show that, for these examples,
they are not able to capture the dynamics of power systems, such as
the inter-dependence between different time periods, and the binary
nature of the commitment decisions.

Thus the main contributions of this paper are:

1. We demonstrate that it is a misconception that increasing VRE pro-
duction always decreases CO2 emissions. For this purposewe identify
the situations and constraints present in power systems that lead to
situations with the paradoxical result that curtailing VRE production
simultaneously reduces both costs and CO2 emissions. We show that
these situations can occur not only due to more frequent unit
startups, as noted in (Deng et al., 2015), but also due to network con-
straints, ramping requirements, minimum uptime requirements or
reserve/security constraints, all of which affect the mix of online
units. We illustrate these situations using stylized examples from
power system operation (UC and ED).

2. We also show that, for these examples, econometric regression anal-
ysis does not capture the inter-dependencies in power system oper-
ation, thus givingmisleading conclusionswith regard to themarginal
effect of increased VRE production on CO2 emissions.

The remainder of this paper is organized as follows: Section 2 gives
examples of the ways in which VRE is forced into the grid in European
power systems, considering both renewable support mechanisms and
market data. Section 3 presents examples of when curtailing VRE can
decrease both costs and CO2 emissions, and Section 4 applies regression
analysis to the results. Section 5 discusses and draws general conclu-
sions from the examples, and Section 6 concludes.

2. Ways of forcing renewables into the grid

There are differentways inwhichVRE is forced into the grid,without
consideringwhether this is themost efficientway to operate the system
in terms of costs and CO2 emissions. The mainmechanisms are: 1) sub-
sidies to VRE that incentivice negative bidding and thus avoid curtail-
ment, 2) giving priority dispatch to VRE during system operation,
i.e., only curtailing VRE after all options for curtailing conventional gen-
eration have been exhausted, and 3) having VRE installations which are
insensitive to market signals such as behind-the-meter installations or
installations where curtailment is not technically possible. In this sec-
tion we give examples of these mechanisms, with focus on European
power systems.

2.1. Renewable support schemes

The most straightforward VRE support scheme is the feed-in-tariff,
which guarantees VRE producers a fixed price for their energy produc-
tion. VRE producers receiving a pure feed-in-tariff will never volontarily
curtail their production, irrespective of what the market prices are.
Feed-in-tariffs are still common for small-scale VRE, e.g., in both
Germany and France where PV plants smaller than 100 kW receive
this subsidy (EU, 2021).



Fig. 1. Evidence of negative bidding by wind in the Nordpool market from 2020. Solid line
shows aggregate wind generation (left axis) and dashed line shows the total volume of
spot market bids (right axis) in the range (−100,−20]EUR/MWh (top) and
(−500,−100]EUR/MWh (bottom).

Fig. 2. Evidence of negative bidding by wind in the Netherlands from 2019. Solid line
shows aggregate wind generation (left axis) and dashed line shows the total volume of
spot market bids (right axis) in the range (−100,−20]EUR/MWh (top) and
(−500,−100]EUR/MWh (bottom).
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For large scale VRE themost common supportmechanisms are some
form of energy subsidies (Banja et al., 2017; EC, 2019). Although VRE
producers receiving these subsidies are participating in electricity mar-
kets, they have an incentive to produce even at negative electricity
prices, thus reducing curtailment compared to if they were dispatched
according to their true production cost. These support mechanisms
include both feed-in-premiums such as those in Germany and the
UK (Huntington et al., 2017) and flat energy-subsidies such as the elec-
tricity certificates used in Sweden and Norway (Banja et al., 2017).
Some energy subsidies, such as the SDE+ support scheme in the
Netherlands (RVO, 2021), give very similar incentives to feed-in-
premiums, since they almost completely compensate the losses in-
curred by VRE producers during periods of negative prices. However,
in some countries such as the Netherlands and Germany, energy subsi-
dies are not given if prices are negative for more than 6 consecutive
hours (Höfling et al., 2015; RVO, 2021).

In the following analysis ofmarket data, we show that VRE flexibility
is indeed withheld from the market in European power systems. Al-
though bids submitted to European electricity markets are anonymous,
it is possible to infer the behaviour of VRE production such aswind from
the aggregated bid curves (which are available). Figs. 1-2 show the neg-
ative bidding by wind power for the Nordic market (Fig. 1) and for the
Netherlands (Fig. 2). The figures show, for each hour, the volume of all
bids within a certain price range together with the aggregated wind
production, as well as the Pearson correlation coefficient and R2 value
when the bid volume is regressed against the wind power production.
The strong correlation between the time series clearly indicates that
the bids consist mainly of wind power2. Surprisingly, there seems to
be a significant amount of wind power that is bidding below −100
EUR/MWh, both in the Nordpool market area and in the Netherlands.
In the Netherlands this may bemotivated by the SDE+ support scheme
which is a form of feed-in-premium (RVO, 2021). For Nordpool, which
consists of several countries with different VRE support schemes, it is
not clear if this bidding is motivated by VRE subsidies or if it is related
to operational strategies of wind producers. For example, it may be
that a wind producer considers the risk of incurring a substantial loss
due to negative prices so low that it is better to bid close to the price
floor and thus ensure being dispatched, to avoid having to be prepared
to curtail its production.
2 Notice that a perfect correlation cannot be expected, since the bids made in the day
ahead market contain forecast errors.
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2.2. Priority dispatch

During times when curtailment is necessary, market prices may in-
duce VRE to self-curtail if prices become sufficiently low (negative).
However, often it can happen that the need for curtailment is not seen
by the market, either due to forecast errors that become apparent first
close to real-time, or if curtailment is necessary due to, e.g., grid conges-
tion or security reasons not considered in the market clearing. In such
situations system operators will have to make the choice of which
units to curtail. Often in these situations VRE has priority to be
dispatched. For example, in Germany it is mandated by law that VRE
curtailment is only allowed if the issues creating the need for curtail-
ment (grid congestion or severe threats to system reliability) cannot
be solved by curtailing conventional generation (Brandstätt et al.,
2011; BMWi, 2017). By EU law, all VRE commissioned before 4 July
2019orVREwith a capacity below400kWis subject to priority dispatch
(EC, 2019), meaning it will be curtailed after conventional generation.

2.3. Behind-the-meter generation

Significant amounts of VRE, particularly solar, is installed behind-
the-meter in private homes and commercial buildings, which means
that the production of these VRE plants is not directly monitored by
the TSO/DSO. For example, in California there was estimated to be 6.2
GW of behind-the-meter solar PV capacity in 2018 (CAISO, 2018).
Such generation ismostly price-insensitive, as theplant owner is not ex-
posed to market prices. Also, most such plants are small scale and may
not have the technical capability, such as remote control, to perform dy-
namic curtailment. For example, the European grid code does not re-
quire power plants smaller than 1 MW to be able to be operated
remotely, although it is possible for TSOs to require remote turn-off ca-
pability (EC, 2016). In Germany, 52% of all solar capacity, or 22 GW, is
installed in PV-systems with less than 100 kW capacity (Wirth, 2020).

3. Examples of decreased emissions by curtailing renewables

Here we provide examples of how different constraints in both UC
and ED can create a situation when curtailing VRE simultaneously de-
creases costs and CO2 emissions. Examples 1–2 are versions of ED and
Examples 3–6 are UC problems, thus including commitment decisions
and minimum outputs of units. Notice that the examples can be valid
also for power systems that do not explicitly operate by means of UC
and ED. For example, also the European day-ahead market clearing



Table 1
Generator units.

Type Fuel Max prod.
(MW)

Min prod.
(MW)

Max ramp
(MW/h)

Min up time
(h)

Min down
time (h)

Startup cost
($)

Startup CO2 emis.
(ton)

Marginal cost
($/MWh)

Marginal CO2 emis.
(ton/MWh)

ST Coal 200.0 80.0 80.0 3 2 48,879.0 1035.0 38.8 0.824
CCGT Natural gas 300.0 120.0 120.0 3 3 15,671.0 190.0 27.7 0.337
CT Natural gas 150.0 50.0 100.0 1 1 18,687.0 49.0 69.6 0.844
Wind – – – – – – 0 0 0 0

Types: ST - Steam turbine, CCGT - Combined cycle gas turbine, CT - Combustion turbine (single cycle).

Fig. 3. Three bus networkwith the CCGT connected to bus A, the CT to bus B, and thewind
farm to bus C. All lines are assumed to have the same reactance, e.g., 1 Ω.
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algorithm EUPHEMIA includes unit-commitment constraints such as
minimum generation levels (NEMO, 2020), and solving an ED may be
used to simulate the optimal re-dispatch of units in a real-timeor imbal-
ance markets.

The examples are based on the generator units shown in Table 1. The
costs and emissions of the units are taken from (Deng et al., 2015), as-
suming a CO2 price of $25/ton. Notice that wind power production is
completely flexible within the range given by the available production,
which varies for the different examples. This is motivated by the techni-
cal capabilities of VRE such as wind farms and PV solar farms, which
allow them to operate very flexibly within the bounds set by the maxi-
mum available production (Faiella et al., 2013; NREL, 2017). See
Appendix A for the complete ED and UC formulations, and Appendix B
for the load and wind data.
3.1. Network constraints

This example solves an optimal dispatch for one time period, i.e., an
optimal power flow (OPF) with DC network constraints. The network is
shown in Fig. 3. Only the generators CCGT and CT are included, and they
are both assumed to have maximum output 1000 MW (different from
those in Table 1) and minimum output 0 MW. Additionally there is a
wind generator which can produce a maximum of 345 MWh. The
total demand of the system is 900 MWh.

Table 2 shows the results obtained both when forcing wind and
when optimally dispatching wind. Due to the congestion of line BC (in
direction fromC to B), the units cannot be fully dispatched from cheaper
to expensive, that is, to obtain a feasible solution and not overload the
line BC. When imposing that wind must be completely dispatched, the
most expensive unit (CT) needs to produce 545 MWh and the next
Table 2
Results from DCOPF with network constraints.

Gen. [MW] Cost [$] CO2 [ton]

Forced Optimal Forced Optimal Forced Optimal

CCGT 10 700 277 19,390 3.37 235.9
CT 545 200 37,932 13,920 459.98 168.8
Wind 345 0 0 0 0 0

Total 900 900 38,209 33,310 463.35 404.7
Avg. [1/MWh] – – 42.5 37 0.515 0.45
Diff. [%] – – – −12.9 – −12.6
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cheaper unit (CCGT) can only produce 10 MWh. If we allow the wind
to be optimally dispatched, by curtailing it as long as it reduces costs
and CO2 emissions, 100% of thewind is curtailed resulting in a reduction
of costs and CO2 emissions by 12.9% and 12.6%, respectively.

This counter-intuitive result can be explained as follows: starting
from the solution when wind is fully dispatched (and line BC is
congested), suppose the load at bus C is increased by 1 MW. To find
the marginal price at bus C we want to know what the cheapest
redispatch is that can supply this load. The cheapest way to do this is
to increase production by CCGT by 1 MW. This will increase the flow
on BC (from B to C) by 1/3 MW, thus making the line BC less congested
than before. Since BC is less congested, CCGT can increase its production
additionally by 1 MW, while CT decreases its production by 1 MW. This
second transaction decreases theflowonBC by 1/3MWso that it is once
more fully congested. The total cost of the redispatch is 2MWh ⋅ 27.7$/
MWh − 1MWh ⋅ 69.6$/MWh = − 14.2$, i.e., a decrease of the total
costs by 14.2$. Thus the locational marginal price (LMP) at bus C is
−14.2$/MWh (formally obtained from the dual variables). Similarly
the marginal CO2 emissions at bus C are −0.17 ton/MWh, meaning
that additional wind power production at bus C increases emissions.
As long as CT is producing and line BC is congested, it will be beneficial
to curtail wind power, which results in all wind power being curtailed.
Thus this example shows that just network constraints, by themselves,
can create a situation when curtailing wind power decreases both
costs and CO2 emissions. A similar example showing that curtailing
wind power can reduce costs, but without any analysis of the impact
on CO2 emissions, can be found in (Ela and Edelson, 2012).
3.2. Ramping constraints

The example of this section shows howwinddispatch can help to in-
crease the ramp capabilities of the system, thus increasing its flexibility.
This example consists of three units, a wind unit and the two generating
units CCGT andCT,whichmust supply the demand shown in Fig. 4.Min-
imum ouput levels are not considered and wind can provide a steady
supply of 100 MWh for all periods. When wind is forced to produce its
maximum possible output for all the periods, the optimal dispatch for
Fig. 4. ED with ramp constraints: forcing wind (left) and optimally dispatching wind
(right).



Table 4
Results from UC with startup costs.

Gen. [MW] Cost [$] CO2 [ton]

Forced Optimal Forced Optimal Forced Optimal

ST 160 320 55,087 12,416 1166.84 263.68
Wind 560 400 0 0 0 0

Total 720 720 55,087 12,416 1166.84 263.68
Avg. [1/MWh] – – 76.5 17.2 1.621 0.366
Diff. [%] – – – −77.5 – −77.4

Table 3
Results from ED with ramp constraints.

Gen. [MW] Cost [$] CO2 [ton]

Forced Optimal Forced Optimal Forced Optimal

CCGT 580 780 16,066 21,606 195.46 262.86
CT 100 0 6960 0 84.4 0
Wind 400 300 0 0 0 0

Total 1080 1080 23,026 21,606 279.86 262.86
Avg. [1/MWh] – – 21.3 20 0.259 0.243
Diff. [%] – – – −6.1 – −6.2

Fig. 5. UC with startup costs: forcing wind (left) and optimally dispatching wind (right).
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the remaining units is to dispatch the next more expensive unit CCGT
(60 MWh), thus covering the demand completely for the first two
hours, and then increasing its production to 180 MWh by ramping up
at its maximum ramping capability (120 MW/h). However, since the
CCGT cannot cover the complete demand ramping requirement of 220
MW/h, then the CT has to provide the ramping and energy deficit of
100 MWh in hour 3.

Table 3 shows the total cost and emissions of this example. When
forcing wind the marginal prices and emissions for hours 1 and 4 are
set by the marginal unit CCGT, and for hour 3 the marginal values are
Fig. 6. UC with minimum up time: forcing wind (

5

set by the marginal unit CT. However, for hour 2 the marginal price
and emissions are −14.2 $/MWh and −0.17 ton/MWh, respectively.
Similarly to the previous example, these negative marginal costs (emis-
sions) appear because an additional unit of load at hour 2would be sup-
plied by the CCGT also allowing to increase its production at hour 3 by 1
unit, which in turn would reduce the production of the CT by 1 unit.
Consequently, the CCGT provides additional energy for both hours 2
and 3, delivering 2 additional MWh in total, while the electricity output
of the CT is reduced by 1 MWh. The marginal cost of this 1 MWh in-
creased demand, or wind reduction, at hour 2 is then 2 ⋅ 27.2 − 69.6
= − 14.2$/MWh, and the marginal emissions are 2 ⋅ 0.337 − 0.844 =
− 0.17ton/MWh. Thus increasing wind production (or decreasing
load) at hour 2 increases costs and CO2 emissions.

On the other hand, by optimally dispatching wind, the ramping ca-
pability of the system increases, that is, wind is now supplying ramp-
up flexibility to the system. As shown in Fig. 4, wind is optimally
dispatched (curtailed) during the second hour, allowingwind to supply
a 100MW ramp from hour 2 to 3, thus lowering the (residual) ramping
needs of the system and completely replacing the flexibility previously
provided by CT. Table 3 shows that although there is 25% less wind pro-
duction, the total costs and emissions are lowered by 6%, compared to
the case without curtailment.

Notice that this example is similar to the famous case of the “duck
curve” in California (NREL, 2015), when the evening load peak com-
bines with decreasing PV output to produce a very steep increase in
the residual load (demand minus VRE production).

3.3. Startup costs and minimum output

This example includes just two generators, the ST and wind, which
together should supply a constant load of 180 MW for 4 h. For the ST
we include min/max output constraints, production and startup costs
as well as production and startup emissions. The unit is assumed to be
online at the start of the period, thus not incurring startup costs and
emissions for the first hour. The potential wind generation is as shown
in Fig. 5. If all available wind power is dispatched, the ST needs to shut
down in period 2 and start up again in period 4, see Fig. 5. Total costs
and emissions are shown in Table 4, where more than 87% of costs
and emissions result from the additional startup. If, on the other hand,
wind can be curtailed the optimal schedule is to curtail enough wind
during period 2–3 to allow the ST to remain online, thereby avoiding a
startup of this unit. Table 4 shows that curtailing 29% of available
wind generation results in a reduction of costs and emissions by 77%.

3.4. Minimum uptime and minimum output

Here, apart from wind, we consider the CCGT and ST units and all
constraints (however, for this example, only the minimum up time
left) and optimally dispatching wind (right).



Table 6
Results from stochastic UC when forcing wind production.

Gen. [MW] Cost [$] CO2 [ton]

Scenario 1 2 1 2 1 2

CCGT 0 0 0 0 0 0
ST 0 0 0 0 0 0
CT 860 1200 78,543 102,207 774.84 1061.8
Wind 1140 800 0 0 0 0

Total 2000 90,375 918.32
Avg. [1/MWh] – 45.2 0.459

Table 5
Results from UC with minimum up time.

Gen. [MW] Cost [$] CO2 [ton]

Forced Optimal Forced Optimal Forced Optimal

CCGT 1320 1500 36,564 41,550 444.84 505.5
ST 480 320 116,382 61,295 2465.52 1298.68
Wind 1040 1020 0 0 0 0

Total 2840 2840 152,946 102,845 2910.36 1804.18
Avg. [1/MWh] – – 53.9 36.2 1.025 0.635
Diff. [%] – – – −32.8 – −38
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and minimum output are binding). It is assumed that the CCGT was al-
ready online at the beginning of hour 1 and the ST was offline. Fig. 6
shows the optimal dispatch of the units and Table 5 uptime shows the
resulting costs and emissions. Note that the residual load for hours 3
and 6 is 310 MWh, which is higher than the maximum output of the
CCGT, hence the ST is needed. To balance supply and demand when
forcing wind, the ST must be turned off during hours 4 and 5 because
the minimum outputs of the ST (80 MW) and the CCGT (120 MW) ex-
ceed the residual load during these periods (190 MWh). Therefore,
when fully dispatching the wind power, the ST must be started up
twice to supply the demand for hours 3 and 6. Moreover, the minimum
up time of the ST also forces it to be producing from hours 1 to 2 and
from 7 to 8, thus reducing the output of CCGT, the cheaper and less pol-
luting unit, to accommodate the minimum output of the more expen-
sive and polluting ST during these periods. On the other hand, if wind
is optimally dispatched, the ST then produces during 4 periods instead
of 6 and has one startup instead of two, as shown in Fig. 6. By curtailing
just 2% of the available wind power, costs and emissions are reduced by
33% and 38%, respectively.

Notice that the cost and emissions shown here include contributions
from the startupprocess. However, solving theproblemwithout consid-
ering startup costs gives the same production schedules, with a reduc-
tion (though smaller than before) in both costs and emissions in the
case when wind power is curtailed. Thus the combination of minimum
output andminimumuptime requirements, by themselves, is enough to
Fig. 7. Stochastic UC with wind uncertainty: forcing w
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create a situation where costs and CO2 emissions can be decreased by
wind curtailment.

3.5. Wind uncertainty and minimum output

This example is solved using stochastic optimization to optimally
schedule the dispatch of units to accommodate variations in wind power
and its expected uncertainty. In this example all three units are considered
with all of their constraints, and all units are assumed to be offline initially.
Two possible wind scenarioswith equal probability of occurrence are con-
sidered, as shown in Fig. 7. To face thiswinduncertainty, a set of unitsmust
be committed in advance to accommodate any of the two wind scenarios
while balancing generation anddemand. This canbe seenas if the commit-
ted units must have sufficient reserves to balance the wind generation, al-
though the reserves are not modelled explicitly in the stochastic
optimization problem. Thus here we consider the main two-stage deci-
sions that take place in power systems, where the first stage represents
the day-ahead planning of which units should be online and the second
stage optimally dispatches the online units in response to the realized
wind uncertainty, as in, e.g., real-time and imbalance markets.

If wind curtailment is not allowed, the other units that are commit-
ted must have the flexibility to supply the residual load, which is be-
tween 70 MWh and 150 MWh. The only unit able to supply this
residual load is the CT, because the others have a higher minimum out-
put. The optimal solution is then presented in Table 6, where the CT is
ind (left) and optimally dispatching wind (right).



Table 7
Results from stochastic UC when optimally dispatching wind.

Gen. [MW] Cost [$] CO2 [ton]

Scenario 1 2 1 2 1 2

CCGT 1050 1200 44,756 48,911 543.85 594.4
ST 0 0 0 0 0 0
CT 0 0 0 0 0 0
Wind 950 800 0 0 0 0

Total 2000 46,833.5 569.125
Avg. [1/MWh] – 23.4 0.285

Table 8
Results from UC with N-1 security.

Gen. [MW] Cost [$] CO2 [ton]

Forced Optimal Forced Optimal Forced Optimal

CCGT 0 960 0 26,592 0 323.52
CT 400 0 27,840 0 337.6 0
ST 720 640 27,936 24,832 593.28 527.36
Wind 1280 800 0 0 0 0

Total 2400 2400 55,776 51,424 930.88 850.88
Avg. [1/MWh] – – 23.2 21.4 0.388 0.355
Diff. [%] – – – −7.8 – −8.5

Fig. 9. Regression of CO2 on wind power for example 3 with startup costs.
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the only scheduled unit, even though it is the most expensive and pol-
luting unit. On the other hand, by optimally dispatching wind, the
most economic unit, the CCGT, can be scheduled instead, and the opti-
mal results are shown in Table 7. In this case, wind lowers its produc-
tion, thus offering flexibility to the system and not leaving all the
flexibility demands to the other units. By allowing wind to provide
flexibility, the total costs and emissions are lowered by 48% and 38%,
respectively.

3.6. N-1 security and minimum output

In this example all units in Table 1 are considered andmust supply a
constant load of 300 MW together with the wind production shown in
Fig. 8. Additionally, the UC formulation in this example also includes
N-1 security constraints, i.e., a common security requirement that en-
sures that if anyone of the online units (including the wind generator)
is lost due to an outage, the remaining online units have enough re-
serves to make up for the lost production. In this example only conven-
tional units are able to provide reserves. This means that at least two
conventional units need to be online, so that in case one of them fails
the other one can cover the lost production. It is assumed that which-
ever units are scheduled in the first period they have been online
since previously, i.e., startup costs are not imposed in the first hour.

Table 8 shows the costs and emissions resulting from the optimal
commitment schedules. If all wind power is dispatched, the optimal
schedule uses the ST and the CT. Although the CCGT is more economical
than both the ST and the CT, it is not possible to schedule this unit be-
cause the residual load is too low to allow simultaneous operation of
the CCGT together with another unit.

However, if wind can be curtailed, it is possible to lower wind gener-
ation enough to allow the CCGT to replace the CT in the operation sched-
ule. This curtailment of 33% of availablewind power results in a reduction
of costs by 8% and emissions by 9%, as shown in Table 8. Notice that in this
formulation there is no cost for conventional units to provide reserves.
However, if this were the case, allowing wind curtailment would allow
the wind unit to provide reserves and thus further reduce the cost, as
the curtailedwindpower could replace some reserves held byother units.
Fig. 8. UC with N-1 security: forcing wind (left
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4. Regression analysis of CO2 emissions

A commonmethod to assess howmuchVRE such aswind power de-
creases CO2 emissions is regression analysis (Kaffine et al., 2013; Amor
et al., 2014; Novan, 2015; Oliveira et al., 2019). Assuming time series
data for CO2 emissions is available, this data can be regressed against
the wind power production using multivariate regression. In addition
to wind power production these regression models commonly include
demand data (included with different powers to capture non-linear ef-
fects) and fixed effects for different time periods (Novan, 2015; Oliveira
et al., 2019).

We can apply a similar analysis to examples 2–6 which span several
time periods. Fig. 9 shows a simple regression of CO2 emissions on the
wind power production, for Example 3 when forcing the maximum
wind production. The data points with 100 MWhwind production cor-
respond to period 1 and 4 with the highest costs and CO2 emissions and
period 2 and 3 are seen as the point to the rightwith zero CO2 emissions.
The obtained coefficient suggests that each extra MWh of wind power
) and optimally dispatching wind (right).



Table 9
Coefficients for regression of CO2 emissions on wind power for
the examples.

k [ton/MWh]

2 Ramp −0.45
3 Startup −7.29
4 Min uptime −3.68
5 Stochastic −1.06
6 N-1 security −0.82
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reduces CO2 emissions by 7.29 ton.3 However, as shown in the example
CO2 emissions can in fact be reduced by almost 80% by curtailing 1/3 of
the available wind generation, and thus avoiding an extra startup of the
coal unit. Also, a marginal increase of available wind power in period 1
and 4 will not reduce either costs or CO2 emissions, since the ST is al-
ready producing at its minimum output level. Notice that since demand
is constant, the same result would also be obtained using multivariate
regression and incorporating demand as an explanatory variable.

Table 9 shows the coefficients, obtained similarly, for Examples 2–6.
For the exampleswhich donot have constant demand (Example 2 and4),
the demand was made constant (380 MWh and 400 MWh, respec-
tively) and the wind production was changed to give the same residual
load as in the original examples. This yielded the same dispatch of the
conventional units for the caseswhen forcing and optimally dispatching
wind, and thus also the same costs and CO2 emissions. For all examples,
the regression suggests that more wind will decrease CO2 emissions,
when in fact the opposite is true, that optimally curtailing windwill de-
crease CO2 emissions. The results also hold under a multivariate regres-
sion including demand, as this is constant.

The reason for the results is that a regression model is not able to
capture the non-linear and time-coupled effects that exist in power
systems. For example 3, the regression model cannot see that wind
production in period 2 and 3 is causing a large increase of CO2 emis-
sions in period 4 as the coal unit ST has to start up. Similarly, for ex-
ample 2, the regression does not capture that reducing wind power
can decrease the ramp of the net load between hour 2 and 3, thus
avoiding the use of the polluting CT. Notice that this last example is
a an ordinary linear programme (LP), meaning that all variables are
continuous and all constraints linear, but the regression still gives
misleading results.

5. Discussion

In Section 3we presented examples fromED andUCproblemswhen
curtailingwind power can simultaneously decrease costs and CO2 emis-
sions. Although each example involves a specific set of constraints that
gives rise to the situation where curtailment is beneficial, we can iden-
tify three broad categories of reasons:

1. Curtailing due to network constraints, as seen in Example 1.
Curtailing can sometimes be the most efficient way to alleviate net-
work constraints, and not curtailing can create a need for
redispatching conventional units in such a way that the total emis-
sions of the system increases.

2. Curtailing to decrease the need for cycling of other units, as seen
in Examples 2–4. The reduced cycling can be achieved by reducing
system ramp requirements and avoiding the use of fast-ramping
units (Example 2) or reducing the number of startups/shutdowns
of conventional units due tomore efficient ways of satisfyingmin-
imum production levels (Example 3) and minimum up-times
(Example 4).
3 The high value is due to the start-up emissions in period 4, resulting in a large amount
of CO2 emissions even though the unit is only producing 80MWh for one hour. In general,
since the examples are stylized and consider only a few units for a short time period the
magnitude of the CO2 emissions is not representative of real systems.
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3. Curtailing to satisfy reserve requirements more efficiently, as in Ex-
amples 5–6. Curtailing renewable generation can decrease the
range of upward and downward reserves needed to facewind uncer-
tainty (Example 5) or for providing N-1 security (Example 6) and
thus allow reserve requirements to be met by cheaper and less pol-
luting units.
Notice that similar results can be obtained for different types of

units. For example, the unit CCGT may be replaced with a biomass
unit with the same cost and technical characteristics but zero emissions.
This will give the same dispatch results for all examples but further in-
crease the reduction in CO2 emissions achieved with flexible operation
of wind power, as the difference in CO2 emissions between the biomass
unit and themore polluting conventional units will be even larger. Also,
all examples in Section 3 give exactly the same results if the CO2 emis-
sions areminimized instead of the operation costs. This is not surprising,
as the costs are correlatedwith the CO2 emissions due to the inclusion of
CO2 prices in the variable costs. A dispatch thatmaximizes socialwelfare
can also lead to a minimization of CO2 emissions, if VRE is dispatched in
a flexible manner, thus maximizing its value to the system.

The examples in this paper do not consider the possibility of using
renewables to provide reserves, but doing so would further increase
the value of VRE flexibility, as curtailed generation can be used for pro-
viding reserves (Dvorkin et al., 2015; Hedayati-Mehdiabadi et al., 2015).
Actually, many European grid codes require large scale VRE to be
curtailable, and specify requirements for active power frequency control
to allow VRE to provide primary frequency reserves (Nycander and
Söder, 2018). Generally, both large scale PV andwindpower have excel-
lent capabilities to provide ancillary services that require either active or
reactive power control (providing spinning reserves, load following,
voltage control, frequency regulation, etc.), and actually perform better
than conventional generators in some respects (Faiella et al., 2013;
NREL, 2017). Wind power also has the possibility to provide synthetic
inertia, which would lower the need for conventional generation to re-
main operational, thereby reducing another source of inflexibility in the
system (Fernández-Guillamón et al., 2019). For an overview of the use
of VRE to provide reserves in practice in European and U.S. electricity
markets, we refer to (Edmunds et al., 2019; Ela et al., 2011).

An important question is to what extent the results shown for the
examples in this paper can be generalized to larger, more realistic sys-
tems. Deng et al. (2015) have shown, using test systems with 9–16
units and different compositions of thermal and nuclear generators,
that CO2 emissions can increase by about 1.5% as curtailment penaliza-
tions increase from 0$/MWh to 300$/MWh. However, they omit net-
work constraints, and it is possible that having a high concentration of
VRE in a certain part of the network, as is often the case in real systems,
can increase the negative impacts of not curtailing, as units have to be
redispatched to satisfy transmission constraints, as shown in Example
1. The effect of inflexible VRE operation on CO2 emissions will also de-
pend on factors such as the system size, the level of VRE penetration,
and the CO2 price. The latter is investigated in Deng et al. (2015) with
the result that the effect of the CO2 price depends strongly on the
power system that is considered.

Some of the examples in this paper can be thought to be less relevant
for larger test systems. The results in Examples 5 and 6 occur since there
is only a small number of conventional units with different minimum
output levels, so that a relatively small change in the wind power dis-
patch can change which units are scheduled to be online. For a larger
test system, the number of combinations of other units increases expo-
nentially, so it may be thought that the impact on CO2 emissions will be
smaller. On the other hand, there can also be other constraints,
e.g., network constraints, which limit the choices of online units. In gen-
eral, if there are no technical constraints on the system, then VRE should
be dispatched fully, since it has zero marginal cost and thus comes first
in the merit order dispatch. The more constraints that are added to the
UC and ED problems, to reflect amore realistic operation, the higher the
probability that the merit order dispatch cannot be realized, and that it
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may be necessary to curtail VRE. Thus, we believe that more studies on
realistic test systems will be necessary to determine to what extent the
effects shown in this paper are relevant in real power systems.

There are several studies that investigate the emission increases in
actual power systems resulting from increased flexibility requirements
from conventional units due to more VRE. While some studies find
that these emission increases are small compared to the emission re-
ductions due to the displaced energy (NREL, 2013; Clancy et al., 2015),
there are also studies which show that flexible VRE generation can de-
crease CO2 emissions in real systems for high VRE penetrations
(E3, 2018).

Another question is how relevant the results are for future low carbon
power systems. As mentioned before, the examples remain valid if the
CCGT unit is replacedwith an identical unitwhich has zero CO2 emissions
(e.g., a nuclear or hydrogen-fired power plant). The implication of this is
that as long as there is a single polluting technology remaining, inflexible
VRE operation can force the use of the polluting technology, thereby in-
creasing CO2 emissions. If there are network constraints, as in Example
1, or ramping constraints for the low- or non-polluting technologies, as
in Example 2, these constraints can then force the use of the polluting
unit(s). The situation in Example 4 and 5 can also occur, if the low- or
non-polluting technologies have constraints such as minimum output
levels and minimum up/down-times. Many technologies which may
come to play an important part in a future low-carbon power system
have these type of constraints, e.g., nuclear power (Helistö et al., 2020),
conventional power plants with carbon capture and storage (Brouwer
et al., 2015; Szima et al., 2019; Oates et al., 2014), and also from the de-
mand side, such as electrolysis for hydrogen production (Gabrielli et al.,
2018). Thus, as long as the power system is not completely CO2 free we
believe that flexible VRE operation will be important to minimize the
costs and emissions from its operation.

The results presented here have implications for methods for power
system operationwith significant VRE penetration, for VRE support pol-
icies, and for assessing CO2 reductions from VRE.

Regarding research on power system operation using UC and ED,
there is a large litterature aimed at improving existing methods to con-
sider VRE uncertainty (Zheng et al., 2015). As mentioned in the
Introduction, many formulations inherently consider the VRE uncer-
tainty as arising from a fixed probability distribution, whether these
are robust formulations (Jiang et al., 2012; Jiang et al., 2013; Zhao
et al., 2013; Zhao and Guan, 2016; Zhai et al., 2017; Shi et al., 2019) or
use chance-constrained optimization (Zhang et al., 2017; Sundar et al.,
2019; Vrakopoulou et al., 2013; Roald and Andersson, 2018).

Expanding these methods to allow for a flexible uncertainty range
can sometimes be difficult. For example, Shao et al. (2017) expand the
standard robust UC formulation to include flexible uncertainty sets,
thus allowing the uncertainty range to be reduced through curtailment.
However, this significantly increases the complexity of the formulation.
On the other hand, Morales-España et al. (2018) show that under cer-
tain restrictions on the uncertainty set a robust UC with dispatchable
wind power can be translated into an equivalent single-level MIP,
thus simplifying the formulation. Another example is presented by
Roald et al. (2016), where chance constraints are used for limiting the
probability of having insufficient reserves to cover wind power fluctua-
tions. When the wind power fluctuations are assumed to be normally
distributed this allows for a tractable reformulation of the chance con-
straints using formulas for normally distributed variables. However,
enforcing a strict upper bound on the wind power fluctuation, as re-
quired for curtailment, introduces the need to evaluate the chance
constraints using numerical integration with Monte-Carlo sampling,
thus considerably increasing the computational complexity of the
formulation.

Methods for handling uncertainty in power system operation
have an inherent disadvantage if they are not able to represent the
VRE uncertainty in a simple manner while simultaneously allowing
9

this uncertainty to be reduced by curtailment. For this reason for-
mulations that rely on pre-determined, but adjustable, reserve re-
quirements may be preferable. For example, (Morales-España et al.
2016) account for wind uncertainty by setting separate requirements
for capacity and ramp reserves, based on the expected capacity
range of wind power production and the expected hourly wind
power ramp excursions. This allows curtailment to be handled in a
more straightforward manner, by reducing the reserve requirements.

Regarding VRE support schemes, our examples highlight the impor-
tance of achieving better market integration of VRE so that they par-
ticipate based on their true costs, as opposed to support schemes that
give incentives for VRE to maximize its energy production without re-
gard to its value to the system. It is widely acknowledged that energy-
based support schemes create barriers to market integration of VRE
(Huntington et al., 2017; Newbery et al., 2018; Hu et al., 2018). In
Huntington et al. (2017) a capacity-based support mechanism is pro-
posed, whereby a VRE producer receives compensation payments
based on the market value of the production of a reference plant with
similar characteristics: a lowermarket value gives higher compensation
payments. Since this decouples the compensation payments from the
VRE producer's own production, only market forces are left to dictate
the operational decisions. Capacity-based support schemes such as
this will also give incentives to VRE installations designed to maximize
the system value of the produced electricity, rather than maximizing
the energy output. Examples may be installing PV-panels in a way
that their daily production profile is more aligned with the daily de-
mand pattern (Huntington et al., 2017). Hu et al. (2018) also argue
that capacity-based support schemesmay be preferable formarket inte-
gration, and suggest a range of other changes in market design such
as nodal pricing and shorter market time intervals. Additionally,
capacity-based support schemes have been found to be more effective
in reducing technology costs than energy-based subsidies (Özdemir
et al., 2019).

In some EU countries steps towards decreasing the negative market
impact of energy-based support schemes have been taken, e.g., by re-
moving energy subsidies for periods with negative prices for more
than 6 consecutive hours (Höfling et al., 2015; RVO, 2021), and it
would be possible to further restrict subsidies during periods with neg-
ative prices. However, due to the non-convexities in UC problems there
may not always exist energy prices that give incentives for individual
producers to follow the optimal generation schedule (Gribik et al.,
2007; Eldridge et al., 2020). This means that even if no subsidies are
given during hours with negative prices the resulting VRE curtailment
may not be optimal from a system perspective.

For small scale generation there are also cost-related and technical
barriers to achieving higher market integration. There has been worries
that as support schemes for small scale VRE are phased out, thiswill lead
to decomissioning of significant amounts of VRE, e.g., for small scale PV
inGermany (Apunn andWehrmann, 2019). This shows the challenge of
designing support schemes that give enough support for small scale VRE
installations to be viable, while at the same time not causing excessive
integration costs. However, affordable control systems and aggregation
are being more widely used to operate small scale VRE in a more coor-
dinated and system-friendly manner (NREL, 2018).

Finally, we showed in Section 4 that applying regression analysis to
estimate the impact of VRE on CO2 emissions can givemisleading results
due to the dynamics of power systems, such as the binary nature of the
commitment decisions and coupling between different time periods.
For this reason studies such as Clancy et al. (2015) and Weigt et al.
(2013) that use power systemmodels to assess the impact on CO2 emis-
sions may be preferable over econometric models. However, it is not
certain to which degree the findings here extend to more realistic test
systems, and for future research it would be interesting to perform UC
studies together with regression analysis for larger test systems to see
if similar results are obtained.
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6. Conclusion

There is a widespread belief that more variable renewable energy
(VRE) is always better, at least in the sense that more VRE will reduce
CO2 emissions. This is reflected in the general literature and inmany for-
mulations for power systemoperation under VRE uncertainty, which do
not consider VRE curtailment when optimizing the system. In real
power systems many VRE support schemes give incentives for VRE to
produce at negative prices, and our analysis of market data shows that
there is wind power bidding below −100 EUR/MWh in both the
Nordpool market area and in the Netherlands.

However, in this paper we demonstrate that it is a miscon-
ception that increasing VRE production always decreases CO2

emissions. To this end, we identify the constraints in power
system operation that can lead to situations when, paradoxically,
curtailing VRE simultaneously reduces system costs and CO2 emis-
sions. The cases are illustrated using stylized examples based on re-
alistic generator characteristics, using unit commitment (UC) and
economic dispatch (ED) for optimal power system operation.
Broadly defined these situations when VRE curtailment is benefi-
cial can occur 1) due to network constraints which create the
need for inefficient redispatch actions if VRE is not curtailed,
2) due to increased need for flexibility from the system in terms
of unit cycling and increased ramp capabilities, and 3) due to re-
serve/security requirements.

Instead of seeing curtailment as a measure of last resort to preserve
system security, VRE should always be dispatched through the market
based on its operating costs, to achieve the most economical, efficient,
and least polluting operation of the power system, thus maximizing
the value of VRE to the system rather than its output.
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Appendix A. Model formulations

This section provides the mathematical formulations for the examples
in Section 3. The general form for the ED, UC, and stochastic UC formu-
lations are given, and Table A.1 lists the constraints that are included for
each example. For easy comparison Table A.2 lists which type of con-
straints are present in each formulation without referring to the equa-
tion numbers. Notice that for all formulations, the wind dispatch can
either be optimized orwind can be forced to itsmaximumavailable out-
put. All formulations hereminimize system operation costs. However, it
10
is straightforward to solve the same problemwhile minimizing the CO2

emissions instead, which is done by replacing costs
Cg
MC, CgSU with emissions EgMC, EgSU in the objective. For all examples, min-

imizing costs and CO2 emissions give the same result.

Table A.1
Formulations used in examples.
Example
 Units
 Obj.
 Constraints
Network
 CCGT, CT
 (A.1)
 (A.2), (A.4)-(A.6)

Ramp
 CCGT, CT
 (A.1)
 (A.2)-(A.5)

Startup
 ST
 (A.7)
 (A.8)-(A.9), (A.11), (A.14)-(A.15)

Min uptime
 CCGT, ST
 (A.7)
 (A.8)-(A.15)

Stochastic
 CCGT, ST, CT
 (A.18)
 (A.19)-(A.25)

N-1 Security
 CCGT, ST, CT
 (A.7)
 (A.8)-(A.17)
6
Table A.2
Type of constraints used in examples.
Example
 Min.
prod.
Ramping
 Min. up/down
times
Network
 N-1
security
Network
 x

Ramp
 x

Startup
 x

Min Uptime
 x
 x
 x

Stochastic
 x
 x
 x

N-1 Security
 x
 x
 x
 x
6
A.1. Nomenclature

Sets:

B−network buses, indexedb

G−conventional generator units, indexedg

T −time periods, indexedt∈ 1, . . . , T½ �

Parameters:

CMC
g −marginal cost of unit g $=MWh½ �

CSU
g −startup cost of unitg $½ �

Dt ,Dbt−aggregate load=loadatbusbfor timet MWh½ �

EMC
g −marginal emissions of unitg ton=MWh½ �

ESUg −startup emissions of unitg ton½ �

Fl−capacity of line l MW½ �

Ns−number of wind scenarios

Pg , Pg−max =min production of unitg MW½ �

RUg ,RDg−up=down ramp capability of unit g MW=h½ �

TUg , TDg−minup=down time for unit g h½ �

Wt ,Wst−available wind production for timet and scenariosð Þ MWh½ �

Γlb−sensitivity PTDFð Þof linel to injectionsatbusb p:u:½ �

Variables:

pgt ,pgst−production of unitg for timet and scenario sð Þ MWh½ �
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rgt−spinning reserves heldbyunitgattimet MW½ �

ugt−binary commitment variable for unitgand timet

vgt , zgt−binary startup=shutdown variable for unitgand timet

wt ,wst−wind production for timet and scenario sð Þ MWh½ �

A.2. Economic Dispatch (ED)

The general ED problem is to minimize energy cost (A.1) subject to
capacity constraints (A.2), ramp constraints (A.3), limits for wind
power production (A.4), demand balance (A.5), and network con-
straints (A.6):

min∑
t∈T

∑
g∈G

CMC
g pgt s:t: ðA:1Þ

0 ≤ pgt ≤ Pg ∀g, t ðA:2Þ

−RDg ≤ pgt−pg,t−1 ≤ RUg ∀g, t ðA:3Þ

0 ≤wt ≤Wt ∀t ðA:4Þ

∑
g∈G

pgt þwt ¼ ∑
b∈B

Dbt ∀t ðA:5Þ

−Fl ≤∑
g∈G

Γl,b gð Þpgt þ Γl,b wð Þwt−∑
b∈B

ΓlbDbt ≤ Fl ∀l, t ðA:6Þ

A.3. Unit Commitment (UC)

The general UC problem is

min∑
t∈T

∑
g∈G

CMC
g pgt þ CSU

g vgt
� �

s:t: ðA:7Þ

Pgugt≤pgt ∀g, t ðA:8Þ

pgt þ rgt≤Pgugt ∀g, t ðA:9Þ

−RDg≤pgt−pg,t−1≤RUg ∀g, t ðA:10Þ

ugt−ug,t−1 ¼ vgt−zgt ∀g, t ðA:11Þ

∑
t

i¼t−TUgþ1
vgi≤ugt ∀g, t∈ TUg , T

� �
ðA:12Þ

∑
t

i¼t−TDgþ1
zgi≤1−ugt ∀g, t∈ TDg , T

� �
ðA:13Þ

0≤wt≤Wt ∀t ðA:14Þ

∑
g∈G

pgt þwt ¼ Dt ∀t ðA:15Þ

∑
h∈G∖ gf g

rht≥pgt ∀g, t ðA:16Þ

∑
g∈G

rgt≥wt ∀t ðA:17Þ

The cost function (A.7) contains energy production costs and startup
costs (no-load costs are zero for all UC examples). The units are re-
stricted by capacity constraints (A.8)-(A.9), ramp constraints (A.10),
commitment logic (A.11), minimum up/down times (A.12)-(A.13),
11
and wind power is subject to production limits (A.14). Finally, demand
balance is enforced using (A.15), and the N-1 security requirement that
the remaining online generators have enough reserves to cover the out-
age of a conventional unit or thewind farm is enforced by (A.16)-(A.17).
Note that for formulations without constraints (A.16)-(A.17), the re-
serve variable rgt must be removed from (A.9). For a more elaborated
and efficient UC formulation for solving large-scale problems, see
(Gentile and Morales-España, 2017).

A.4. Stochastic Unit Commitment

The stochastic formulation for Example 5 is given by

min∑
t∈T

∑
g∈G

CSU
g vgt þ

1
Ns

∑
Ns

s¼1
∑
t∈T

∑
g∈G

CMC
g pgst s:t: ðA:18Þ

Pgugt≤pgst≤Pgugt ∀g, s, t ðA:19Þ

−RDg≤pgst−pgs,t−1≤RUg ∀g, s, t ðA:20Þ

ugt−ug,t−1 ¼ vgt−zgt ∀g, t ðA:21Þ

∑
t

i¼t−TUgþ1
vgi≤ugt ∀g, t∈ TUg , T

� �
ðA:22Þ

∑
t

i¼t−TDgþ1
zgi≤1−ugt ∀g, t∈ TDg , T

� �
ðA:23Þ

0≤wst≤Wst ∀s, t ðA:24Þ

∑
g∈G

pgst þwst ¼ Dt ∀t ∀s, t ðA:25Þ

where the objective function (A.18) is the sum of startup costs and the
expected energy production costs, calculated as the average over the
wind power scenarios. The commitment decisions ugt, vgt, zgt are first
stage decision variables and the energy dispatches pgst and wst are sec-
ond stage decisions.

Appendix B. Data

Table B.3 shows the load and wind data used in the examples.

Table B.3
Load and wind data.
Example
 2. Ramp
 3. Startup
 4. Min. Uptime
 5. Reserves
 6. N-1 Security
Hour
 Load [MWh]

1
 160
 180
 300
 250
 300

2
 160
 180
 300
 250
 300

3
 380
 180
 410
 250
 300

4
 380
 180
 410
 250
 300

5
 –
 –
 410
 250
 300

6
 –
 –
 410
 250
 300

7
 –
 –
 300
 250
 300

8
 –
 –
 300
 250
 300
Hour
 Wind [MWh]

1
 100
 100
 100
 100, 100
 150

2
 100
 180
 100
 100, 100
 150

3
 100
 180
 100
 100, 150
 170

4
 100
 100
 220
 100, 180
 170

5
 –
 –
 220
 100, 180
 170

6
 –
 –
 100
 100, 180
 170

7
 –
 –
 100
 100, 150
 150

8
 –
 –
 100
 100, 100
 150
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