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Abstract. The problem of consistent therapy adherence is a current challenge for 
health informatics, and its solution can increase the success rate of treatments. Here 

we show a methodology to predict, at individual-level, future therapy adherence for 

patients receiving daily injections of growth hormone (GH) therapy for GH 
deficiency. Our proposed model is able to generate predictions of future adherence 

using a recurrent neural network with adherence data recorded by easypodTM, a 

connected autoinjection device. The model was trained with a multi-year long 
dataset with 2500 patients, from January 2007 to June 2019. When testing, the model 

reached an average sensitivity of 0.70 and a specificity of 0.88 per patient when 

predicting non-adherence (<85%) periods. When evaluated with thousands of 
therapy segments extracted from a test set, our model reached an AUC-PR score of 

0.79 and AUC-ROC of 0.90; both metrics were consistently better than traditional 

approaches, such as simple average model. Using this model, we can perform 
precise early identification of patients who are likely to become non-adherent 

patients. This opens a path for healthcare practitioners to personalize GH therapy at 

any stage of the patients’ journey and improve shared decision making with patients 
and caregivers to achieve optimal outcomes. 
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1. Introduction 

Growth hormone (GH) treatment for children is an efficacious treatment for various 

growth disorders but consistent adherence to the prescribed dose regimen is fundamental 

for achieving optimal growth [1,2]. The use of eHealth-based ecosystems provided a new 

mechanism to monitor adherence automatically and perform real-time data transmission 

to healthcare professionals (HCPs) [3]. This enables HCPs to detect low adherence and 

provide a personalized individual-patient intervention with the ultimate goal of positive 

population-based health outcomes. Data from clinical studies using an eHealth 

ecosystem including a connected injection device showed that most patients maintained 
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an adherence to GH therapy of ≥85% of the prescribed dose for >3 years; however, the 

high number of non-adherent patients deserves careful investigation [2].  

In this study we focus on individual- rather than group-level analysis for 

personalized interventions [4] to identify patients who are likely not to fully adhere to 

the treatment in the near future. We show how to train a recurrent neural network (RNN) 

with therapy segments from different time periods extracted from multiple patients. We 

also perform a feature importance analysis to understand how the information from each 

day contributes to the model’s final decision. 

2. Methodology 

 
Figure 1. Diagram showing how we extract therapy segments from the therapy adherence data of a patient. 

 

Therapy segments allow us to specify different periods of the adherence data to be 

modeled by the deep learning algorithm and predict future adherence. Figure 1 shows 

how these segments are created, starting from the left, from top downwards, with the 

adherence 1d-vector of size 540, where each value represents a daily adherence ratio 

(100% x injected dose/prescribed dose). The therapy segment has two parts: the past (in 

blue), used as input for the model, and the future (in red), where we extracted the 

classification of the segment. We used 180 days of data to predict the next 90 days of 

therapy adherence. Thus, in the middle, we show the two therapy segments extracted 

from a patient with 540 days of therapy adherence data. 

On the right of Figure 1, we illustrate how the model works. As input, it receives the 

patient’s past information and outputs the classification of the future part of the therapy 

segment. Suppose the patient has an average adherence ≥85% (missed at most 1 

injection/week [5]) in the future region of the segment. In that case, the perfect model 

should always output 0 (adherence) given the past region as input. Otherwise, if the 

patient has an average adherence <85% in the future region, the perfect model should 

always predict 1. To train and evaluate our model, we used data from 2500 patients 

divided randomly into three sets: train, validation, and test. The reported results are only 

based on the patients’ data in the test set that was never looked at by the model during 

the training phase. While training, we used the train and validation sets to find the best 

parameters for our deep learning RNNs. The best configuration found was to use a single 

layer RNN using 16 gated recurrent unit cells followed by an output dense layer with 

two neurons with softmax activation. Due to class imbalance towards adherence, we used 

cost-sensitive learning to force the model to give more attention to non-adherence 

segments [6]. This is possible by setting the class weight learning parameter. The 

adherence class received weight 1, and the non-adherence class received weight 3.31, 

which is the imbalance ratio on the training set. We use Adam optimizer with a learning 
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rate of 0.0001 and batch size 16. We used the AUC-PR (area under the curve-precision 

recall) score on the validation set to be a reference for our early stopping mechanism, 

which allowed our model to be trained over 31 epochs. To implement the model, we used 

the Keras framework2 backed with Python’s Tensorflow library version 2.2.03.  

To test the model performance, we compared our deep learning model with a simple 

average approach. This comparison reinforces a non-trivial pattern finding in the model, 

leveraged by a more complex artificial intelligence (AI) approach. The simple average 

computes the mean over therapy adherence in the past part of the segment and uses the 

value to predict future adherence. To compute the metrics of the result section, we must 

order therapy segments based on how far they are from the therapy classification 

threshold (e.g. segments close to 0% of adherence have close to 100% probability to non-

adhere). Thus, we apply a sigmoid function on the absolute difference between mean 

adherence and the classification threshold of 85%. 

3. Results 

We analyzed a sample of 2500 patients (56% male), from which we extracted 5199 

segments where the patients adhered to the therapy and 1555 segments in which the 

patients did not adhere to the therapy. We randomly assigned 1361 patients (3643 

segments) for the training set, 166 patients (517 segments) for the validation set, and 973 

(2594 segments) for the test set. The mean starting age of the therapy was 10.2 years, 

with a standard deviation of 3.1 years (min. 4 and max. 18 years). 

 

 
Figure 2. ROC curve (left) and PR-curve (right) when evaluating therapy segments of the test set. 

 

We evaluated the predictions of our deep learning model on the 2594 therapy 

segments extracted from the patients in the test set. On the left of Figure 2, we show the 

receiver operating characteristic (ROC) curves for both deep learning model and simple 

average. The deep learning model had an AUC score of 0.90 versus 0.88 from the simple 

average. On the right of Figure 2, we show the PR curve, presenting the trade-off between 

recall (sensitivity) and precision (positive predictive value). The PR-curve is considered 

to be the more suitable metric for imbalanced datasets [7]. Our model had an AUC-PR 

score of 0.79 versus 0.69 from the simple average. 
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Figure 3. Aggregated average sensitivity and specificity per patient (left) and sensitivity per patient (right).  

 

Patients can have one or more therapy segments to be evaluated. Thus, we also 

computed the aggregated sensitivity and specificity to understand our approach’s 

performance per patient (instead of per segment) (Figure 3). On the left, we show that 

our model’s sensitivity was 0.70, higher than the 0.59 of a simple average, maintaining 

almost the same specificity. On the right, we investigate the differences between both 

models, comparing their sensitivity score per patient. Since we can compute sensitivity 

only for patients with at least one therapy segment, these values are based on 371 patients 

from the test set. When the red line is above the black line, our model was better than the 

simple average baseline on sensitivity for the patient along the x-axis. Overall, our model 

had a higher or equal sensitivity for 359 out of the 371 patients. 

 

 
Figure 4. Analysis of absolute SHAP values for each day in the therapy segment. 

 

Figure 4 shows how each of the 180 values used as input to the model impacts the 

model decision. These are the average absolute SHAP (SHapley Additive exPlanations) 

values for each day in the segment [8]; SHAP values are higher approaching Day 180 

(more recent) in the segment, with a sharp drop on the last two days. 

4. Discussion 

The comparison between our deep learning model and a simple average model justifies 

the use of AI for the proposed task of predicting, at any time in the therapy, the future 

adherence of a patient. When we compare each model’s ROC curve, we see the AI model 

consistently outperforms a simple average and the PR-curve, in which a 0.70 value on 

recall gives observed precision of 0.77 in our model, is better than 0.69 from the simple 

average with the same 0.70 recall. When looking at per patient performance, we observe 

that the deep learning model is better in terms of sensitivity. Our model has 0.11 higher 

sensitivity, at the cost of only 0.01 of specificity, versus the simple average approach. 

As observed by the analysis of the importance of the values used as input to the 

model, the information that dictates the model output is mostly, but not entirely, defined 

by the last 30 days of the segment. Further investigation is needed to understand why 
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there is a sharp drop in importance on the two most recent days. It might suggest that the 

last day(s) of use may not be that important for future prediction, but the pattern of 

routine, i.e. the combination of various days, is more relevant. Furthermore, the model 

does not ignore any of the 180 values used as input, considering all information given. 

The application of this model is straightforward. We can collect the last 180 days of a 

patient’s therapy history and predict how their coming 90 days will be classified at any 

moment in time. By sorting the patients based on the probability of non-adherence 

generated by the model, we can build a priority list for earlier and precise intervention. 

5. Conclusions 

This work presents a novel application that uses a deep learning approach evaluating a 

series of 180 daily recorded values of adherence to predict, at the individual level, the 

probability of a patient not adhering to their GH therapy during the next 90 days. We 

compared our approach to a simple average model and showed that we could have a 

higher sensitivity at very little cost of specificity. Overall, using both AUC-ROC and 

AUC-PR metrics, our proposed model is better than the simple average. We aim to 

integrate the proposed model into the physician interface for the easypod™ device, 

which may improve engagement and adherence to optimize treatment outcomes. 
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