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Abstract: In levee system reliability, the length effect is the term given to the phenomenon that the
longer the levee, the higher the probability that it will have a weak spot and fail. Quantitatively, it is
the ratio of the segment failure probability to the cross-sectional failure probability. The literature
is lacking in methods to calculate the length effect in levees, and often over-simplified methods are
used. An efficient (but approximate) method, which we refer to as the modified outcrossing (MO)
method, was developed for the system reliability model used in Dutch national flood risk analysis
and for the provision of levee assessment tools, but it is poorly documented and its accuracy has not
been tested. In this paper, we propose a method to calculate the length effect in levees by sampling
the joint spatial distribution of the resistance variables using a copula approach, and represented by a
Bayesian Network (BN). We use the BN to verify the MO method, which is also described in detail in
this paper. We describe how both methods can be used to update failure probabilities of (long) levees
using survival observations (i.e., high water levels and no levee failure), which is important because
we have such observations in abundance. We compared the methods via a numerical example, and
found that the agreement between the segment failure probability estimates was nearly perfect in the
prior case, and very good in the posterior case, for segments ranging from 500 m to 6000 m in length.
These results provide a strong verification of both methods, either of which provide an attractive
alternative to the more simplified approaches often encountered in the literature and in practice.

Keywords: length effect; system reliability; Bayesian network; proven strength; levee systems;
Bayesian updating

1. Introduction

The length effect was first brought to light by Leonardo de Vinci, who said “Among cords of equal
thickness the longest is the least strong” [1]. In the context of levees, the length effect refers to the fact
that as the length increases, there is a larger distance over which to encounter a weak spot in the levee,
and thus a higher probability of failure. Typical reliability analyses of levees compute the probability
of geotechnical failure over a small or infinitesimal length referred to as a cross section. However, risk
analysis is often interested in the failure probability of long stretches (or reaches) of levees. Depending
on the spatial variability of the soil parameters, and the length of the levee, the failure probability of a
reach can be many times greater than that of a cross section. Incorrectly assigning it to the reach can
lead to inaccuracies in failure and risk assessment of levees, in an unconservative direction.

Different approaches of accounting for the length effect in levees can be found in the literature.
Vanmarcke proposed a method involving first crossings [2,3] to estimate the probability of failure over
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a longitudinal length. A crossing refers to the resistance being surpassing by the load, or equivalently
the difference between them (also referred to as the limit state function) crossing zero and becoming
negative. The method calculates the probability of such a crossing along a given length. It treats the
limit state function as a random field, the parameterizing of which requires some assumptions. Li and
Hicks [4] compared a simple reliability method for long earthen slopes proposed by Vanmarcke [5] with
a fully three-dimensional model for slope stability and concluded that for large scales of fluctuation,
the methods were in agreement, but for small scales of fluctuation, the Vanmarcke approach can
produce unconservative reliability indices. The slope they considered was only 50 meters long, so
the differences may have been due predominantly to the simplified modeling of slope instability in
the Vanmarcke method, rather than the method of handling the spatial variability. More pragmatic
methods are also found in the literature. Bowles et al. [6] took the length effect into account in a risk
analysis of the Herbert Hoover Dike in Florida. In that case, they broke up the levee into segments of
about 500 m, and for all failure mechanisms besides ’piping through the foundation’, they assumed
the segments were independent. For piping through the foundation, they judged that there was
‘some correlation’ between sections, and accounted for this by taking the average of failure probability
assuming (1) full correlation and (2) complete independence. This approach does not clarify for which
correlation such an average is valid, or how likely that correlation is to be the correct one. The risk
methodology manual developed by the U.S. Bureau of Reclamation [7] contains guidance for the
length effect, proposed by the U.S. Army Corps of Engineers. Essentially they break up segments into
‘characteristic lengths’ which can be considered statistically independent. They do not specify how to
estimate the characteristic length other than stating that it can be based on statistical analysis of spatial
correlations, or via expert judgment.

In the Netherlands, a modified version of the standard outcrossing method is used to calculate
the length effect, which we refer to in this paper as the modified outcrossing (MO) method. It is
programmed into the flood defense reliability model Hydra-Ring (based on a previous model
PC-Ring) [8,9] that is used in national flood risk studies [10–12] and to support the assessment of flood
defenses. Reliability calculations are often concerned with limit state functions, which are defined to be
negative when geotechnical failure (such as piping or slope instability) occurs, and positive otherwise.
The MO method approximates the limit state function as a one-dimensional Gaussian random field.
This follows directly when first-order reliability method (FORM) is used at the cross section level,
because FORM approximates the limit state function as a linear combination of Gaussian processes.
However, it is not required to use FORM at the cross-section level; if, for example, Monte Carlo is
used, the design point (the most probable set of variables leading to failure) can be estimated and
used to approximate the limit state function as a linear combination of Gaussian processes. The MO
method then uses the theory of outcrossing rates for Gaussian and ergodic random fields to determine
the probability that the limit state becomes negative for at least one point along the levee segment.
The MO method is similar to that of Vanmarcke [2,3], but is modified to handle the non-ergodicity of
the limit state function. Information about the MO method can be found in [8,9,13,14], and we provide
details in Appendix A. Parallel research is looking into theoretical details of the MO method and its
effect on design codes for flood defense systems [15]. One of the issues we address in this paper is
that although the MO method is an integral part of national flood risk analysis in the Netherlands,
its accuracy has not been tested.

In this paper, we propose a method to compute the length effect by sampling from the (discretized)
joint spatial distribution of the limit state function, using a copula approach. A similar approach
has been proposed in other areas of engineering [16], but has not been applied to levee reliability.
We represent the joint distribution with a Bayesian network (BN), which allows us to visualize the
correlation structure in the joint spatial distribution, and clarifies how the different parts of the
reliability analysis fit together. Using the BN, we are able to update the joint distribution using
observations. In this paper, we focus on updating the reliability estimate using survival observations.
These are coupled observations of a (high) water level and survival of the levee, which we have in
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abundance. Researchers have looked at updating reliability estimates at a cross-section scale [17].
In this paper, we expand upon this by using the BN to update the reliability of a (long) levee segment.

Traditional Bayesian networks, which work with inference algorithms designed for discrete
distributions, become severely burdened computationally when the BN is densely connected (i.e., lots
of correlations between variables). This is the case in levee reliability where the soil parameters
are spatially correlated. When we slice up the levee into cross-sections (i.e., discretize the random
field), the resistance variables in one cross section will be correlated with (connected to) the resistance
variables in all other cross sections. Bensi et al. [18] developed an approximate method to make
discrete BNs tractable in these cases, but it remains difficult to know apriori how much error will
be incurred for a particular application. Further, they require discrete conditional probability tables.
In levee reliability applications, we generally have continuous marginal distributions of the random
variables, where we are particularly interested in the tails of the distributions. The method we propose
in this paper is particularly well-suited to levee reliability problems. It allows variables in the network
to be described by continuous marginal distributions; correlations between variables are captured via
autocorrelation coefficients. It assumes a Gaussian autocorrelation structure of resistance variables,
but—in contrast to the MO method—does not approximate the limit state function as a Gaussian
random field. Note that in general the limit state function is not a Gaussian random field because it is
an (often non-linear) combination of resistance and load variables that are traditionally not Normally
distributed (note that the terms “Normal” and “Gaussian” are used interchangeably throughout the
paper).

The spatial scales we consider in this paper are a cross section (typically in the order of meters) and
a statistically homogeneous levee segment (order of kilometers). Figure 1 shows a schematic of a levee
segment and a cross section. Computing levee reliability often relies on failure mechanism models,
which calculate whether a particular failure mode—such as geotechnical stability or piping—will occur
given specific soil properties and load conditions. The random variables in these models sometimes
take into account some degree of spatial averaging over the vertical dimension of the levee (e.g., slope
stability), but the reliability estimate is only valid for a relatively short length of the levee (i.e., a cross
section). This is because the mechanism models generally look at point values of the soil parameters,
while in reality these parameters are random fields over the length of the segment. Consider Figure 2;
for a given point sample, there is the possibility of many other values of the soil parameter at other
locations along the segment, even though they are all governed by the same probability distribution
(see right side of Figure 2). To estimate the failure probability of the segment, we need to account for
the spatial variability of the soil parameters and the likelihood of finding a weak spot in the segment.
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Figure 1. Spatial scales: A levee segment and a cross section.
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Figure 2. Random field perspective rather than a point estimate considered in a failure model.

This paper has two main objectives: The first is to present the proposed BN method for
computing the length effect in levee reliability, and the second is to use the BN method to address
the accuracy/validity of the MO method, both with and without reliability updating using survival
observations. The BN method is considered a more exact method (provided enough Monte Carlo
samples are taken) because it does not require any assumptions about the distribution or correlation
function of the limit state function (which the MO method does). We also devote attention to comparing
the computational efficiency of the two methods, and exploring under which conditions survival
observations are most informative. Section 2 provides a brief background about the MO method
(detailed information is provided in Appendix A; in Appendix B, we describe how we updated the
segment failure probability—based on a survival observation—using the MO method). Section 3
presents background about BNs, and introduces a new method for computing the reliability of a
levee segment using a BN, as well as updating the reliability using a survival observation. Section 4
presents a numerical example via which we compare the BN and MO methods, both prior to and
following the incorporation of a survival observation. Section 5 provides discussion about (1) the
influence that the prior failure probability and the extremity of an observed load have on the impact
of a survival observation, and (2) computational costs of both the BN and MO methods. Section 6
presents general conclusions.

2. Modified Outcrossing Method

The modified outcrossing (MO) method to compute the failure probability of a homogeneous
levee segment begins by computing the failure probability of a cross section, Pf ,CS. While not required,
this cross-sectional failure probability is typically calculated using first order reliability method (FORM)
because it returns influence coefficients of the random variables, which we will need (see below).
The limit state function (Z) depends on load and resistance variables (denoted later in the paper by
S and R, respectively). In the MO method the loads and resistances are approximated as Gaussian
processes, and the limit state as a linear combination of them (and thus itself also a Gaussian process).
That is, the limit state function can be written as Z = β + α1U1 + α2U2 + . . . + αnUn, where Ui is
the i-th standard-Normally-distributed load or resistance variable, and αi is its influence coefficient.
The reliability index β is directly related to the failure probability: β = −Φ−1

(
Pf ,CS

)
, where Φ−1 is the

inverse standard Normal distribution. Z can be written equivalently, but more compactly, in the form
of Equation (1), where U is a standard Normally distributed variable. The spatial autocorrelation of Z
is modeled according to Equation (2), where ∆x is the longitudinal distance between two points, dx is
known as the correlation length, and dictates how quickly the correlation decreases in space, and ρx is
the residual correlation at large distances. Note that in Equation (2), ρx represents the non-ergodic part
of the autocorrelation. Expressions for dx and ρx, which depend on the autocorrelations and influence
coefficients of the load and resistance variables, are available in the literature [9,13], and are provided
in Appendix A.

Z = β−U (1)

ρZ (∆x) = (1− ρx) exp
(
−∆x2

d2
x

)
+ ρx (2)
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Figure 3 illustrates the limit state function Z as a random field in one dimension (longitudinally).
The probability of having a realization for which Z < 0 increases as the length of the segment increases.
The increase is dependent on both the length of the levee (L), and how frequently Z crosses 0. This
latter quantity is referred to as an outcrossing rate, and is dependent on the spatial autocorrelation
of Z. For example, as seen in Figure 3, a strongly-autocorrelated Z function will change slowly in
space, while a weakly-autocorrelated Z function will show much more rapid change (allowing more
opportunities for Z to cross 0). The strength of the autocorrelation between two locations is dictated by
the correlation length dx in Equation (2).

b
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0

Z

horizontal distance (  )

x

x

Z x U x( ) = - ( )b

Z x U x( ) = - ( )b

probability density of Z

horizontal distance (  )x

Figure 3. Spatial variability of the limit state function Z for a strongly autocorrelated Z function (top)
and a weakly autocorrelated Z function (bottom).

The outcrossing rate is calculated analytically based on theory for Gaussian ergodic random fields
(see Van Marcke [3]). However, the limit state function is not ergodic, due to the nearly fully-correlated
nature of the load over a levee segment (other variables which are fully correlated over the length of
the levee segment (such as model uncertainty) also contribute to the non-ergodicity of the limit state
function). This is taken into account by calculating the segment failure probability conditional on the
non-ergodic part of the limit state function, and then using the theorem of total probability to obtain
the full segment failure probability.

Full details of the MO method are provided in Appendix A. Appendix B presents the details of
how the MO method was applied in this paper when updating with survival observations (this has
not been done in practice, and we were required to make some choices in our implementation for
this paper).

In this paper, we are interested in verifying the MO method, which relies on the approximation of
Z as a Gaussian random field. The marginal distribution of Z is modeled as a Normal distribution,
and a Gaussian correlation structure is assumed. In general, the limit state function is not a Gaussian
random field, because it is an (often) nonlinear combination of variables which are not necessarily
Normally distributed. It is unclear how well the approximation works, both prior to and following
incorporation of a survival observation. In the next section we describe a method to compute the failure
probability of a levee segment in which the (discretized) spatial joint distribution of the resistance
variables—and the limit state function—is represented by a BN, and sampled using a copula approach.
Because the BN method does not require the limit state function to be approximated by a Gaussian
random field, we can use the failure probability estimates from the BN to evaluate the accuracy of the
prior and posterior failure probabilities computed by the MO method.
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3. Bayesian Network Approach

3.1. Background

A Bayesian network (BN) is a type of probabilistic graphical model; it is a graphical way to describe
a multivariate joint distribution. BNs are particularly convenient when the joint distribution is complex
(involving many correlated variables), or when we want to update the estimate of the joint distribution
once one or more of the variables in the network have been observed. The traditional approach to
a BN is to is to factorize the joint distribution into marginal and conditional distributions, using the
graphical structure to identify the needed conditional distributions (according to the arcs between the
variables). BNs can represent joint continuous distributions; however, their most common form is in
the discrete domain, where distributions are tabulated, i.e., conditional distributions are represented
by conditional probability tables. Figure 4 presents a simple example; variables are represented by
circular nodes, and arcs (arrows) between nodes represent dependence. For example, in Figure 4 the
independent variables X1 and X2 are referred to as the parents of X3, and variable X3 is referred to
as the child of X1 and X2. Each node is assigned a conditional probability table, conditional on its
parents. Nodes without parents are described by marginal probability tables. The joint distribution is
the product over all of the node probabilities. Equation (3) shows the joint distribution represented by
this example network.

P (X1, X2, X3) = P (X1) · P (X2) · P (X3|X1, X2) (3)

BNs can contain nodes that have a functional relationship (i.e., described by formulas) with their
parents. Such nodes are referred to as functional nodes.

1
X

2
X

3
X

Figure 4. Example three-variable Bayesian network, where X1 and X2 are the independent parents
of X3.

The BN described above suffers two shortcomings when it comes to reliability analysis: (i) Efficient
inference algorithms are almost exclusively available for discrete distributions, while in reliability
analysis we typically have continuous distributions, and are particularly interested in the tails, and (ii)
all dependent (i.e., child) nodes must be represented by conditional distributions, while we typically
have marginal distributions, which we can obtain from data. Hybrid BNs address the first of these,
allowing nodes to be described by both discrete and continuous distributions. A number of these have
been developed [19–21], and often involve discretization, which has drawbacks [19]. The method we
use falls under a type of network known as a non-parametric hybrid BN, and allows for variables to be
represented by marginal, continuous distributions. Details are provided in the following section.

3.1.1. Non-Parametric Hybrid Bayesian Network

The non-parametric hybrid BN [22–24] was developed to address some of the shortcomings
in traditional networks. A good comparison with other hybrid networks, as well as more recent
applications using the non-parametric hybrid BN, are provided in [25]. The name ‘non-parametric’ is a
bit misleading, but is meant to emphasize the fact that no parametric form of the joint distribution is
necessary. It describes nodes in the network with marginal distributions (which can be parametric,
though not required), and calculates the dependence structure among the variables using copulas.

Copulas were first introduced by Sklar [26] as a convenient way to build multivariate probability
distributions, because they separate the dependence structure from the marginal distributions.
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The word “copula” means “link” in Latin, and copulas literally link the marginal distributions together
to form the joint distribution. Suppose we have a random vector X = (X1, ..., Xn), with marginal
distribution functions F1, ..., Fn, and a joint distribution function F1,...,n. A copula C is a joint distribution
function that operates on uniform random variables, and satisfies Equation (4).

F1,...,n (X1, . . . , Xn) = C (F1 (X1) , . . . , Fn (Xn)) (4)

There are many popular copulas, which differ most notably in how they describe tail correlation
(see [27,28]). The choice of copula is usually determined by observing the tail dependence in data.
The non-parametric BN can theoretically take any copula to represent the dependence structure,
but using the Gaussian copula makes performing inference more efficient. This is because the Gaussian
copula inherits most of the properties of the Gaussian distribution, which in turn allows for analytical
derivations of any conditional distributions.

In reliability analysis, it is common to use the Nataf or Rosenblatt transformation to describe
and sample correlated variables. It has however been shown that the classic version of Nataf and
the Rosenblatt transformations are equivalent to using the Gaussian copula (see [27,29]), which we
use in this paper. The practical implementation we used is to sample [U1, ...Un] from the multivariate
standard Normal distribution Φ< (0,<), where 0 is an n× 1 vector of means equal to zero, and < is the
n× n linear correlation matrix, which in the case of the (multivariate) standard Normal distribution is
equal to the covariance matrix. The variables [X1, ..., Xn] are then derived using their inverse marginal
distributions: Xi = F−1

i (Φ (Ui)), where Φ is the standard Normal distribution function.
The use of the Gaussian copula requires a positive definite correlation matrix. In our

application, this is guaranteed because we use a positive definite correlation function to generate
the autocorrelations. In general though, where the joint distribution is over many variables,
with correlation information coming from any combination of judgment or data, it can be impossible
to intuitively construct a positive-definite correlation matrix. In these cases, the non-parametric BN is
particularly helpful, because it allows the specification of conditional rank correlations (the parameters
of the conditional copulas), which can be anything between −1 and 1, and transforms these into a
unique, valid positive-definite correlation matrix, using recursive formulas provided in [30].

The use of copulas, and the ability to work with conditional rank correlations, while still
guaranteeing positive definiteness, make the non-parametric BN a powerful tool to sample from
complex, non-parametric joint distributions. It also performs both forward inference (when input
variables are observed) as well as backward inference (when output or functional variables are
observed), making it particularly useful in cases exploring the impact of good performance of a
structure, under known loading conditions. We discuss the specifics of how inference is performed in
Section 3.3.

3.2. Modeling Levee Reliability with a Bayesian Network: Methodology

We describe in this section how we model levee reliability at different spatial scales. The method
is presented for the case that failure of the levee is described by a formula. In these cases, the limit
state function is represented by a functional node. BNs can be excellent tools in cases where the failure
mechanism is not analytically formulated. However, it would require some preprocessing, and falls
outside the scope of this paper. Specifically, the geotechnical model describing failure would need
to be used to extract the dependence between the input random variables and the output variables
(e.g., the limit state function). The latter would then be incorporated within the BN as a non-functional
random variable, with arcs and correlations representing the dependence extracted via the geotechnical
model (see [31] for an example). Thereafter, the method as presented in this paper could be applied.



Safety 2020, 6, 7 8 of 23

3.2.1. Reliability of a Levee cross Section

We begin by considering the reliability of a cross section. We build the BN based on the formulaic
representation of failure, which is often postulated as a limit state function. We include a failure
node in the network, Fail, which is binary: 0 when Z ≥ 0 and 1 when Z < 0. In the MO method,
the limit state is recast into a standardized form (see Section 2). In the BN, we describe the limit state
as a function of the load and resistance variables. As an example, consider a limit state function that
depends on three resistance variables R1, R2, and R3, and a load variable S. Figure 5 shows what
the BN for the failure probability of the cross section might look like. Variables R1, R2, R3, and S are
shown as clear circular nodes, representing random input variables, and Z and Fail are shown as
circular nodes with black edges, representing functional nodes (this is the notation used by the UniNet
software (https://lighttwist-software.com/); we have adopted the same notation in this paper). Note
that in this example, the input variables are independent of each other (no arcs between them), but this
does not have to be the case.

1R 2R 3R

Z

Fail

S

Figure 5. Example of a Bayesian Network (BN) for cross sectional levee failure probability with three
resistance variables R1, R2, and R3, and a load variable S.

The BN is sampled taking into account any defined correlations between variables
(see Section 3.1.1 for details). The failure probability can then be estimated according to Equation (5).

P̂f =
1
N

N

∑
j=1

f ailj (5)

N is the number of samples, and f ailj is the value of the failure node Fail (1 or 0) for the j-th sample.

3.2.2. Reliability of a Levee Segment

Homogeneous levee segments can be long, typically a few kilometers. The failure probability
of a cross section is therefore a poor representation of the failure probability of the entire segment.
So instead of representing the failure probability by a single cross section, we represent it by multiple
cross sections, and take care to honor the spatial autocorrelation of the variables between cross sections.
Figure 6 shows an example of a levee segment whose spatial variability is represented by three cross
sections. This can also be interpreted as splitting the segment into three sub-segments (where within a
sub-segment there is full correlation), where the cross-sections represent the midpoint. Figure 7 shows
what the BN would look like for the levee segment in Figure 6, for the case where the cross-sectional
BN is described in Figure 5.

https://lighttwist-software.com/
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Figure 6. Example of a levee segment whose spatial variability is represented by three cross sections.

1
1R

2
1R

2
2R

3
2R

3
1R

1
2R

1
3R

2
3R

1Z 2Z
3Z

3
3R

S

1Fail 2Fail
3Fail

SegFail

Figure 7. BN for a levee segment, in this example represented by three cross sections, each with
autocorrelated resistance variables R1, R2, and R3, and one common load variable S.

In the example in Figure 7, superscripts indicate the cross section. So for example, R2
1 indicates

variable R1 in the second cross section. Similarly, Fail1, Fail2, and Fail3 represent the failure nodes
for the first, second, and third cross sections, respectively. These cross-sectional failure nodes are
then connected to a failure node for the entire segment, FailSeg, a binary node (1 for failure and 0 for
non-failure), described in Equation (6).

FailSeg =

{
0, if ∀i Faili = 0
1, if ∃i s.t. Faili = 1

(6)

The number of cross sections needed to adequately estimate the failure probability of the segment
will depend on the autocorrelation of the resistance variables, the length of the segment, and the
magnitude of the prior failure probability. We iteratively increase the number of cross sections
representing the segment, each time computing the failure probability of the segment, until additional
cross sections no longer change the estimate. The method requires a defined stop criterion (e.g.,
a maximum difference in subsequent segment failure probability estimates), such that when the
criterion is met, the number of cross sections is considered sufficient to represent the spatial variability
of the segment. We discuss this in more detail with an example in Section 4.2.
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We describe the arcs between resistance variables (see Figure 7) by Pearson product moment
correlations. The latter can be estimated using data and one of a number of valid autocorrelation
functions [32]. The one we use in this research is commonly used for resistance variables in the
Netherlands [8,9,11], and depends on the distance between variables ∆x and a parameter dx which
dictates how quickly the correlation decreases with distance; see Equation (7). This function is identical
to the one used in the MO method for the limit state function (Equation (2)), for the case that the
ergodic parameter ρx is equal to zero. We exclude the parameter ρx here because resistance variables
(due to their heterogeneity) become uncorrelated at large distances.

ρ (∆x) = exp
(
−∆x2

d2
x

)
(7)

Once we have specified the marginal distributions of the input random variables, the equations
of the functional variables, and the correlation matrix < =

{
ρjk

}
= ρ

(
∆xjk

)
(see Equation (7)),

where ∆xjk is the distance between Rj
i and Rk

i , we can sample the joint distribution as described in
Section 3.1.1. We then enter these samples into the equations for the functional variables in the network,
and derive the sample of FailSeg. From this, we calculate the failure probability of the system using the
standard Monte-Carlo estimator.

3.3. Inference

Inference is performed differently depending on the type of variable that is observed: An input
variable or a functional one. An input variable is described by a marginal probability distribution,
whereas a functional variable is described by an equation which operates on the input variables. In the
sections below we describe how inference is performed for three cases: (1) An observed input variable,
(2) an observed functional variable, and (3) a coupled observation of an input and a functional variable
(e.g., observed water level and levee survival).

3.3.1. Observed Input Variable

When one or more input variables are observed, we can analytically compute the conditional joint
Gaussian copula (conditional on the observed variable(s)). This is straight-forward and formulas are
available; see ([30] (Section 2.4), and [33]). This is the power and benefit of using the Gaussian copula
(note that it is also a feature of the multivariate Normal distribution in general). Once the conditional
joint copula has been calculated, we can use the marginal distributions of each of the unobserved
variables to translate back into real space.

3.3.2. Observed Functional Variable

When a functional variable is observed, we must first sample the network to perform inference.
This generates an empirical joint distribution over the random and functional variables. We can then
impose the observation as a constraint on the samples. For example, suppose we observe that the
limit state function is greater than zero (indicating no failure): Z > 0. We would then retain the joint
samples of all our random variables for which Z > 0, which would serve as an empirical conditional
joint distribution. This is also known as rejection sampling, because we reject all samples for which
our condition (Z > 0) is not met. When the variance of the posterior failure probability estimate is
too high using rejection sampling, other methods are available, such as importance resampling [34],
or Markov-chain Monte Carlo [35], but we do not consider those in this paper.

3.3.3. Coupled Observation of Input and Functional Variables

Often we are interested in coupled observations of input and functional variables. Most notably
in levee system reliability, we are interested in water level observations and the simultaneous
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failure/survival of the levee. These coupled observations allow us to update our failure probability
estimate, and provide useful information about the remaining uncertain variables in the network.

In the case of coupled input and functional variables, we begin by first (analytically) specifying
the conditional joint distribution, given the observed value of the input variable. Subsequently we
sample the conditional joint network, and retain only those samples that meet the observed value(s) of
the functional variable (e.g., Z > 0 for survival). These retained samples form the updated empirical
posterior joint distribution over the resistance variables.

3.3.4. Posterior Dependence

Observing the value of a variable in the network can introduce dependence between previously
independent variables. This dependence is not always easily captured with a correlation coefficient.
For example, consider a case where we have a limit state function Z = R1 + R2 − S, where R1 and R2

are resistance variables, and S is a load variable. This example is illustrated in Figure 8.

1R 2R

Z S

Figure 8. BN representing the limit state function Z = R1 + R2 − S for one cross section.

Now let us suppose that the load S is observed at S = 5, and no evidence of failure was observed
(i.e., Z > 0). This means that R1 + R2 > 5. Shown graphically (see Figure 9), we can see the dependence
between the variables has a sharp boundary.

If one wants to use the updated distributions of the resistance variables for analysis, the posterior
dependence between them must be accounted for. The simplest way to do this is to retain the posterior
joint resistance samples. For example, in Figure 9, the posterior samples (shown as black dots) are
retained for future analysis. It may be possible to develop a parametric way to represent such a
constrained posterior dependence, but that was not explored in this paper.
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Figure 9. Posterior constraints on R1 and R2, imposed by the observation that Z > 0 for an observed
value of S, Sobs = 8.
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3.3.5. Updated Failure Probability

The posterior segment failure probability Ppost
f ,seg can be described by Equation (8). It is the

probability that the spatial (multivariate) distribution Z is less than zero, given that at the time
of the load observation (tobs), Z was greater than zero (survival observed at time tobs).

Ppost
f ,seg = P (Z < 0|Z (tobs) > 0) (8)

Our posterior distribution of the resistance variables includes the condition Z (tobs) > 0,
because we only retained joint samples for which this is the case. We therefore only need to calculate
the probability that Z < 0 using our joint posterior resistance samples. We sample the load S Np times
(where Np is the number of posterior resistance samples), and calculate Z for each sample. Recall that
the load is a temporally-spatial variable, and is unknown both before and after the observation time
tobs. The posterior failure probability is then calculated according to Equation (9).

Ppost
f ,seg =

1
NP

NP

∑
i=1

I (Z < 0) (9)

When computing the posterior failure probabilities, we are limited to the number of samples
retained after performing inference. If this number is insufficient to keep the variance in the failure
probability estimate low (this generally happens when the posterior failure probability is small), we use
importance sampling, which is a method to reduce the variance in a MC estimate.

Importance sampling replaces the real distribution fS(S) with a biased one gS(S) that leads to a
higher number of failures. The Monte Carlo output is weighted to correct for the use of the biased
distribution gS(S) so that the failure probability estimate remains unbiased; see Equation (10) for the
importance sampling estimator, wherein N is the number of samples, and I (·) is the indicator function.

Pf ,seg =
1
N

N

∑
i=1

I
(

FailSeg = 1
) fS (si)

gS (si)
(10)

The choice of the biased distribution gS(S) will depend on the problem at hand. In general,
for updating with survival observations, a reasonable choice is to translate the distribution fS(S) so
that the mean is centered on the observed (high) load Sobs.

4. Numerical Example

In this section, we illustrate and compare the BN and the MO methods via a numerical example.
We explore both prior and posterior failure probability estimates (the latter following from a specified
coupled observation of load and levee survival) for levee segment lengths of 500 m, 1000 m, 2000 m,
4000 m, and 6000 m. This section is organized as follows: Section 4.1 provides details of the
example, Section 4.2 describes the criterion we used to determine the number of cross sections in
the BN, and Sections 4.3 and 4.4 provide results and discussion about the prior and posterior failure
probability estimates.

4.1. Details of the Example

We begin with the example we used for describing the posterior dependence among resistance
variables, in Section 3.3.4, which considered a single cross section. The BN for the cross section
was provided in Figure 8, and the limit state function describing cross-sectional failure is given in
Equation (11). We assigned lognormal distributions to the resistance variables, R1 and R2, and a
Gumbel distribution to the load variable S. These choices were made to mimic realistic cases, in which
load variables are described by extreme value distributions (of which the Gumbel is one), and (soil)
resistance variables are commonly described by lognormal distributions (in part due to the constraint
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that many soil parameters take on only positive values). The parameters of the resistance variables are
provided in Table 1 and the parameters of the load variable in Table 2. The Gumbel probability density
function is provided in Equation (12). We provide an illustration of the BN for the segment - using
only three cross sections to keep the visualization clear—in Figure 10.

Z = R1 + R2 − S (11)

f (x) =
1
β

exp
[
− x− µ

β

]
· exp

[
− exp

[
− x− µ

β

]]
(12)

Table 1. Lognormal distribution parameters µ and σ, distribution mean and standard deviation (SD),
and correlation length dx for resistance variables R1 and R2.

Variable Distribution µ σ Mean SD dx (m)

R1 Lognormal 0.842 0.385 2.50 1 200
R2 Lognormal 1.420 0.232 4.25 1 200

Table 2. Gumbel parameters µ (location parameter) and β (scale parameter), distribution mean and
standard deviation (SD), and correlation length dx for variable S.

Variable Distribution µ β Mean SD dx

S Gumbel 3 0.3 3.8 0.15 ∞

1
1R

1
2R

S

2
1R

3
1R

2
2R

3
2R

1Z 2Z 3Z

2Fail
1Fail 3Fail

SegFail

Figure 10. BN for a segment, shown here for three cross sections, where cross-sectional failure is
defined by the limit state function in Equation (11).

In this example, we consider survival of the levee for an observed load of sobs = 4.38, which
corresponds to the 99% quantile of S (i.e. P(S < sobs) = 0.99). We discuss the influence of the (extremity
of the) load observation on the posterior failure probability in Section 5. The prior density functions of
R and S are shown together with the observed load in Figure 11.
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Figure 11. Prior densities of R (R = R1 + R2) and S, and the observed load sobs = 4.38 corresponding
to the 99% quantile of S (P(S < sobs) = 0.99).

4.2. Number of Cross Sections in the BN

The criterion we defined for determining the number of cross sections to sufficiently represent the
spatial variability of the segment (see Section 3.2.2 for a general description) is based on the width of the
95% confidence interval (this confidence interval captures the uncertainty due to the variance in Monte
Carlo sampling) around the prior segment failure probability estimate, Pf ,seg. We iteratively increase
the number of cross sections representing the segment. To speed up the convergence we take two
steps in the iterative process, so that n = 1, 3, 5, and so on, computing the segment failure probability
estimate each time. We stop the iterative procedure when we find eight sequential iterations (e.g.,
n = 15, n = 17, ... , n = 29) for which the estimates all lie within the 95% confidence interval of the last
estimate. At this point, we consider the asymptote to have been reached, so that remaining differences
between iterations are due only to sampling variance. The number of iterations for which the estimates
must lie within the confidence interval—in our case eight—is somewhat arbitrary, and will require
visual inspection of the results to confirm it is a good one.

The confidence interval around the failure probability estimate is computed according to
Equation (13), and depends on the relative error ε of the segment failure probability estimate.
The formula for the relative error (see reference [36]) is provided in Equation (14); it depends on
the segment failure probability estimate, the number of Monte Carlo samples, N, and the value k,
which is a quantile of the standard Normal distribution. So, for example, since we are interested in
95% confidence intervals, we would choose the quantile k such that Φ (k)−Φ (−k) = 0.95, which is
k = 1.96.

CI = [(Pf ,seg − ε · Pf ,seg), (Pf ,seg + ε · Pf ,seg)] (13)

ε =

√√√√ k2

N

(
1− Pf ,seg

)
Pf ,seg

(14)

We determined the number of cross sections using the prior segment failure probability estimates,
but applied it to both the prior and posterior BNs. In our case, this proved sufficient, but in
general the same approach described above may need to be carried out separately for the posterior
network if the prior number of cross sections seems insufficient to reach the posterior segment failure
probability asymptote.
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4.3. Prior Segment Failure Probabilities

We computed the segment failure probability with the BN and the MO method prior to
incorporating any survival observations. Figure 12 shows (for the 1000 m levee segment) how the BN
estimate of the segment failure probability increases with the number of cross sections that represent
the segment, and the asymptotic behavior of the estimate once the number of cross sections meets
the criterion discussed in Section 4.2. The confidence intervals around the BN estimate (shown in
Figure 12) were calculated according to Equations (13) and (14). The MO estimate is also shown in
Figure 12 for comparison; it is shown as a horizontal line because it is not a function of the number of
cross sections in the BN.
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Figure 12. Comparison of the BN with the modified outcrossing (MO) estimate, for Z = R1 + R2 − S,
with R1 and R2 lognormally distributed, and S Gumbel-distributed, prior to incorporating a
survival observation.

The BN for the 1000 m segment was represented by 41 cross sections. The failure probability
estimate is 0.0097 with confidence interval [0.0095, 0.0099]. The MO estimate is 0.0096. The results
for the other segment lengths can be summarized by Figure 13. The BN and MO estimates are in
near-perfect agreement, regardless of the length of the segment. The strong agreement between
estimates is a good verification of both methods.
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Figure 13. Comparison of BN and MO segment failure probability estimates (shown together with the
1:1 line, which represents perfect agreement).
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4.4. Posterior Segment Failure Probabilities

We are specifically interested in how well the MO method approximation holds when we
take a survival observation into account (e.g., a simultaneous observation of water level and levee
survival). The estimates for the failure probability of the 1000 m segment are presented in Figure 14.
The agreement between the MO method and the BN remains very good. The BN estimates that
Pf ,seg = 1.59 · 10−3 and the MO method estimates Pf ,seg = 1.63 · 10−3.
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Figure 14. Comparison of posterior segment failure probability estimates computed with the BN and
MO methods; 95% confidence intervals on the BN estimate are also indicated.

Figure 15 summarizes the posterior results for levee lengths of 500, 1000, 2000, 4000, and 6000 m.
The differences between the MO and BN posterior segment failure probability estimates remain small,
though they increase slightly as the length increases. For a 6000 m segment, the MO method estimates
Pf ,seg = 5.1 · 10−3 and the BN estimates Pf ,seg = 4.6 · 10−3, which is a difference of about 10%. This is

fairly minor, and in terms of reliability index β (where recall β = Φ−1
(

1− Pf ,seg

)
), the difference is

only 1%.
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Figure 15. Comparison of BN and MO posterior segment failure probability estimates (shown together
with the 1:1 line, which represents perfect agreement).
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5. Discussion

In this section, we discuss (1) under which conditions survival observations are useful, as well
as our choice of load in the numerical example, and (2) the computational costs of the BN and
MO methods.

5.1. The Value of Survival Observations

In the example presented in Section 4, we considered an observed load equal to the 99% quantile
of the load distribution. That is, the probability of observing a load higher than the observed load
was P(S > sobs) = 0.01. We chose this load because it is high enough that, together with a survival
observation, it is likely to result in a valuable reduction in the failure probability estimate (though
this will also depend on the prior segment failure probability, which we will discuss next). The other
reason we chose this value of the load is that, while high, it is still realistic that we might observe it in
measurement records.

We also considered in the numerical example a prior segment failure probability estimate of
approximately Pf ,seg = 0.01. Failure probability estimates can be much lower, but if they are too low
they are unlikely to benefit from a survival observation. For example, suppose the prior failure
probability estimate is Pf ,seg = 10−4. Then even for a high load, such as the 99% quantile we
just discussed, the expected conditional probability of failure at that load will still be very low.
The observation that we did not see failure will therefore not be particularly informative in such a case.

Table 3 shows the influence of both the extremity of the load and the prior segment failure
probability on the impact of a survival observation, for the limit state we considered in the numerical
example (see Equation (11)). The impact was measured as a reduction in the segment failure probability
estimate, calculated as the ratio of the prior to posterior segment failure probabilities. In the table we
consider three prior segment failure probabilities: Pf ,seg = 0.01, 0.001, and 0.0001, and three extremities
of the load observation: P(S > sobs) = 0.1, 0.01, and 0.001. We calculated the values in Table 3 using
the limit state function described in the numerical example (Section 4, Equation (11)), for a 1000 m levee
segment. We obtained the different prior segment failure probabilities by modifying the distribution
parameters of R1 and R2.

Table 3. Reduction in the segment failure probability, computed as the ratio of prior to posterior
segment failure probabilities, after updating with a coupled observation of the load (sobs) and survival
of the segment.

Prior Pf ,seg P(S > sobs) = 0.1 P(S > sobs) = 0.01 P(S > sobs) = 0.001

0.01 1.7 6.1 34.6
0.001 1.1 2.2 7.8

0.0001 1.0 1.2 2.2

The reductions shown in Table 3 are specific for the limit state function and parameter distributions
in this example; in general, the reduction in failure probability due to a survival observation will
depend on how influential the load is on failure. Recall with a survival observation, the load is fixed,
so only uncertainties in the resistance variables are reduced. In general, the stronger the influence of
the resistance variables on the failure probability estimate, the more impact a survival observation
will have (in this example, the influence of the load is around 40%). Thus, survival observations will
be more useful for failure mechanisms where there is large uncertainty in the soil parameters (e.g.,
slope stability or piping) then failure mechanisms where the load dominates the failure probability,
like overtopping. Because the values in Table 3 are specific to the numerical example, they are to
be considered as illustrative. The overall trend is as expected: lower prior failure probabilities and
higher load observations (together with observed survival of the segment) lead to a greater reduction
in the segment failure probability. When the prior segment failure probability is 0.0001, even observing



Safety 2020, 6, 7 18 of 23

the 99.9% quantile (i.e., the probability of a higher load is 0.001) only reduces the failure probability
estimate by a factor of about 2. For more realistic load observations, we barely see any reduction in the
estimate. However, when the prior failure probability is so low, it is likely to already meet its safety
standard, and there will be less need for updating it with survival observations. For the prior failure
probability used in our numerical example in Section 4, Pf ,seg = 0.01, the use of a survival observation
can lead to substantial reduction (a factor 6 for the 99% quantile load).

In conclusion, we recommend updating with survival observations primarily in cases where the
prior failure probability is not too low relative to the exceedance probability of the (highest) observed
load; in the example presented here, not more than a factor 10 (i.e. Pf ,seg > 1/10 · P(S > sobs)).

5.2. Computing Times

In this section, we discuss the efficiency of the BN and MO methods in terms of computation
time (computation times are based on a 2.8 GHz computer with 8GB RAM). Table 4 presents the
computation times for the numerical example we presented in Section 4, for segments lengths of 500,
1000, 2000, 4000, and 6000 m. The calculation time of the MO method does not depend on the length
of the segment, and therefore remains relatively constant (fluctuating between 0.5 and 0.7 minutes).
The BN method requires more time as the number of cross sections needed to represent the segment
increases. The MO method is clearly much more efficient, ranging from 6 times faster for shorter
segments to 55 times faster for longer segments.

Table 4. BN and MO computation times (in minutes) for the example described in Section 4, for different
segment lengths; BN = BN with iterative procedure to find the number of cross sections (#CS); BN* = BN
without iterative procedure.

Comp. Time (min)Length #CS BN BN* MO

500 43 3.6 0.5 0.6
1000 41 3.9 0.4 0.7
2000 79 16.9 1.3 0.6
4000 81 15 1.0 0.5
6000 111 38.5 2.0 0.7

The computation time for the BN is substantially longer than for the MO method, because of the
iterative procedure required to determine the number of cross sections (column BN in Table 4 includes
this iterative procedure). Once the number of cross sections has been determined, the BN is relatively
fast (column BN* in Table 4), on par with the MO method. Further research can look into more efficient
methods to determine the number of cross sections.

The computation times in Table 4 are specific to the example in Section 4. Computation times will
increase as the number of spatially-variable random variables within a cross section increases. To get a
feeling for how the computation time increases, we looked at a simple example for a 1000 m segment,

where the limit state function was defined to be Z =
NR
∑

i=1
Ri − S. Each Ri has a Normal distribution

with mean µR = 1, standard deviation σR = 0.1, and correlation length dx,R = 200. We looked at
computation times for cases where the number of resistance variables (NR) within a cross section was
1, 2, 5, 10, 15, and 20. We let S be normally distributed with mean µS = NR · µR − 3 · σR, and standard

deviation σS =
√

NR · σ2
R. The resulting computation times are presented in Table 5. They increase

roughly linearly with the number of (spatially-correlated) resistance variables.
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Table 5. BN computation times for different numbers of resistance variables (NR), for a 1000 m segment,

where the cross sectional limit state function is Z =
NR

∑
i=1

Ri − S.

NR Computation Time (min)

1 2.1
2 2.4
5 8.5
10 12.8
15 20.4
20 24.9

6. Conclusions

We have presented in this paper a method to calculate the length effect in levees by sampling the
joint spatial distribution of the limit state function, represented by a BN, without having to approximate
a parametric form of the spatial distribution. Using Monte Carlo rejection sampling for inference,
the method can update failure probabilities of (long) levees using survival observations (e.g., high
water levels and no levee failure). We compared results with the modified outcrossing (MO) method,
currently in use in reliability modeling of flood defenses in the Netherlands, via a numerical example,
for verification purposes. The primary difference between the two methods is that the BN method
samples from the joint spatial distribution, whereas the MO method uses an approximative parametric
form of the spatial distribution of the limit state, and solves the problem analytically.

The prior and posterior segment failure probabilities calculated by the two methods are in
strong agreement. Slight discrepancies were found for posterior segment failure probabilities for long
segments (4000 and 6000 m), but these differences were less than 10%, and in terms of reliability index,
less than 1%. These results provide a strong verification of the MO method for prior analysis, which
is used in the levee reliability model Hydra-Ring. They also provide an important verification of
the MO method for posterior analysis, which has a lot of potential. The speed of the MO method
makes it possible to efficiently update failure probabilities of numerous levee segments with abundant
survival observations.

Given the strong agreement between BN and MO results, and the relative efficiency of the MO
method, we advocate use of the latter in practice. However, we must emphasize that the examples
considered in this paper do not represent an exhaustive set of cases. For failure probability updating
with survival observations, we advocate comparing the BN and MO output for each new type
of application (e.g., new limit state function, new set of variable distribution types or correlation
parameters). Once the results are verified, the MO method can be used with confidence for all
examples of the same type.

Finally, we strongly advocate the use of either the BN or MO method to account for the length
effect in reliability analysis over some of the more simplified approaches found in the literature.
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Appendix A. Details of the Modified Outcrossing Method

In this appendix, we provide details for the calculation of the segment failure probability using
the modified outcrossing method.

The method begins by computing the failure probability of a cross section, Pf ,CS. The limit
state function is then recast as a Normal distribution (Equation (A1)) once the reliability index, β =

Φ−1
(

Pf ,CS

)
, is known (where Φ−1 is the inverse standard Normal distribution). In Equation (A1), U

is a standard normally distributed variable. Failure occurs if Z < 0 anywhere along the segment.

Z = β−U (A1)

We wish to know the outcrossing rate of Z. Following the work of Vanmarcke [3], the crossing
rate for a stationary, ergodic, Gaussian process can be expressed as a function of U̇ (the derivative of
U) according to Equation (A2).

v (β) = φ (β) · E
(∣∣U̇∣∣) (A2)

where φ is the standard normal density function. As we mentioned, U̇ depends on the spatial
autocorrelation of Z. In levee reliability, the limit state function Z is a combination of resistance and
load variables. The former tend to have short correlation lengths and no residual correlation (at large
distances), while the loads tend to have long correlation lengths and a high residual correlation (and
are often assumed fully correlated over a levee segment). The autocorrelation of the limit state function
is modeled as a combination over these different variables, and has the form of Equation (A3) [9,13],
where dx is known as the correlation length, and dictates how quickly the correlation decreases in
space, and ρx is the residual correlation at large distances. These two parameters depend on the
autocorrelation functions of the load and resistance variables (see Equations (A4) and (A5)) [9], where
αi is the influence coefficient, ρx,i is the residual correlation, and dx,i is the correlation length of the
i-th variable.

ρZ (x) = (1− ρx) exp
(
− x2

d2
x

)
+ ρx (A3)

ρx =
n

∑
i=1

α2
i ρx,i (A4)

1
d2

x
=

1
1− ρx

n

∑
i=1

α2
i (1− ρx,i)

1
d2

x,i
(A5)

The problem with the autocorrelation in Equation (A3) is that it means the limit state is not
ergodic, which was a requirement to use the upcrossing rate in Equation (A2). Ergodicity assumes that
any sample of a process should have the same mean as the ensemble of all possible samples, and this
is not the case when the residual correlation ρx is not equal to zero. To account for this, the method
separates the ergodic and non-ergodic parts of the limit state function Z. So instead of Equation (A1),
we get Equation (A6), where U is the ergodic part, and W is the non-ergodic part, both of which are
standard normally distributed variables.

Z = β−U
√
(1− ρx)−W

√
ρx (A6)

It then computes the ergodic part of the segment failure probability Pf (w), which is conditional
on a value of the non-ergodic variable W = w. Subsequently it uses the theorem of total probability to
obtain the total segment failure probability.

Continuing with the ergodic part of Z, the upcrossing rate (which is half of the crossing rate) is
given in Equation (A7), which is derived from Equation (A2) taking into account that U̇ is standard
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normally distributed. In Equation (A7), σU̇ is the standard deviation of the variable U̇, an expression
for which is available via [37], see Equation (A8).

v+ (β) =
σU̇
2π

exp
[
− β2

2

]
(A7)

σ2
U̇ = −σ2

U · ρ′′Z (0) = −ρ′′Z (0) (A8)

The variable ρ′′Z(0) is the second derivative of the autocorrelation function, evaluated for a lag of zero.
Making use of the correlation function in Equation (A3) (with ρx set to zero for the ergodic part of Z),
we can calculate the expression for σU̇ in Equation (A8), and combine this with Equation (A7) to derive
an expression for the upcrossing rate wherein all the variables are known; see Equation (A9).

v+ (β∗(w)) =
1√

2πdx
exp

[
− β∗(w)2

2

]
(A9)

The reliability index β∗(w) is the reliability index for the ergodic part of Z and is conditional on
W = w. The expression for β∗(w) is given in Equation (A10); it is derived from Equation (A6).

β∗ (w) =
β− w

√
ρx√

1− ρx
(A10)

If we assume that the upcrossings are a Poisson process, then we can express the conditional
survival probability of the segment, PS(w), according to Equation (A11), where b is the width of a
cross section, hereafter assumed to be negligible (b ≈ 0 ). The formula shows that the higher the
upcrossing rate, and the longer the levee segment (length denoted by L), the lower the segment
survival probability.

PS(w) =
(

1− Pf ,CS

)
exp [− (L− b) · v+ (β∗(w))] (A11)

Filling in the expressions for Pf ,CS and v+(β∗(w)) in Equation (A11), we can compute the
conditional failure probability of the levee segment as Pf (w) = 1− PS(w); see Equation (A12).

Pf (w) = 1− (1−Φ (β)) exp

[
− L√

2πdx
exp

[
− β∗(w)2

2

]]
(A12)

To calculate the total failure probability of the segment, the method uses the theorem of total
probability; see Equation (A13).

Pf =
∫
W

Pf (w) f (w)dw (A13)

Appendix B. Incorporating Survival Observations with the Modified Outcrossing Method

The modified outcrossing (MO) method has not been used in conjunction with failure probability
updating based on survival observations. To compare the posterior segment failure probabilities of
the MO and BN methods we needed to make some implementation choices. This appendix describes
those choices.

The first step is to update the cross-sectional failure probability based on a survival observation,
and then apply the MO method to scale it up to the failure probability of the segment. The inference at
the cross-sectional level is performed using MC rejection sampling, similar to the BN (see Section 3.3),
but for a single cross section. This is the same method that Schweckendiek et al. describe in [17] for
updating at the cross-sectional level (see Section 2.5 of that paper). The inference results in an empirical
joint posterior density over the resistance variables, f post

R (in our numerical example in Section 4, this
would be the joint density over R1 and R2). Equation (A14) describes the posterior failure probability;
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it is the integration (over the failure space Z < 0) of the joint density of all the random variables. In our
numerical example in Section 4, the resistance and the load are independent, so that the joint density is
the product f post

R · fS. We evaluate the integral in Equation (A14) with MC sampling. It is not possible
to use FORM to calculate the posterior failure probability because the joint posterior distribution of the
resistance variables has a dependence structure that is difficult/impossible to capture in a parametric
way (see Section 3.3.4).

Ppost
f =

∫
Z(r,s)<0

f post
R (r) fS (s) drds (A14)

The MO method requires influence coefficients of all the random variables, which it uses to
estimate the parameters of the autocorrelation function of the limit state (see Appendix A). MC
simulation does not automatically return influence coefficients the way that FORM does, so we used a
method known as center of gravity. Note that this step in the implementation is important, and one in
which errors can be introduced. For example, using a less robust method of estimating the influence
coefficients can lead to large differences between MO and BN posterior segment failure probabilities
that are not due to the MO method. We recommend the center of gravity method specifically because
it is a robust (consistent) and accurate method.

The center of gravity method translates the posterior samples of the random variables (in the
example in Section 4, this would be R1, R2, and S) to independent standard normal variables (UR1,
UR2, and US). It then takes the mean over the samples which led to failure as the center of gravity.
The method then searches the line between the center of gravity and the origin for the limit state
(where Z = 0), and takes that point to be the design point, denoted

[
udR1 , udR2 , udS

]
. The design

point can be written in terms of the influence coefficients and the reliability index:
[
udR1 , udR2 , udS

]
=

[αR1β, αR2β, αSβ]. We can use the equality to solve for the influence coefficients αR1, αR2, and αS;
specifically αR1 = udR1

/
β, αR2 = udR2

/
β, and αS = udS

/
β.

Once the influence coefficients and reliability index for the cross section are derived, we can carry
out the MO method as described in Appendix A.
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