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ARTICLE

Deep convolutional neural networks for surface coal mines determination 
from sentinel-2 images
L. Madhuanand a,b, P. Sadavarteb,c, A.J.H. Visschedijkb, H.A.C. Denier Van Der Gonb, I. Abenc and F.B. Oseia

aDept. Of Earth Observation Science, Faculty of Geo-Information Science and Earth Observation(ITC), University of Twente, Enschede, The 
Netherlands; bTNO, Dept. Climate, Air and Sustainability, Utrecht, The Netherlands; cSRON Netherlands Institute for Space Research, 
Utrecht,The Netherlands

ABSTRACT
Coal is a principal source of energy and the combustion of coal supplies around one-third of 
the global electricity generation. Coal mines are also an important source of CH4 emissions, 
the second most important greenhouse gas. Monitoring CH4 emissions caused by coal mining 
using earth observation will require the exact location of coal mines. This paper aims to 
determine surface coal mines from satellite images through deep learning techniques by 
treating them as a land use/land cover classification task. This is achieved using 
Convolutional Neural Networks (CNN) that has proven to be capable of complex land use/ 
land cover classification tasks. With a list of known coal mine locations from various countries, 
a training dataset of “Coal Mine” and “No Coal Mine” image patches is prepared using Sentinel- 
2 satellite images with 13 spectral bands. Various pre-trained CNN network architectures (VGG, 
ResNet, DenseNet) are trained and validated with our prepared coal mine dataset of 3500 “Coal 
Mine” and 3000 “No Coal Mine” image patches. After several experiments with the VGG 
network combined with transfer learning is found to be an optimal model for this task. 
Classification accuracy of 98% has been achieved for the validation dataset of the pre-trained 
VGG architecture. The model produces more than 95% overall accuracy when tested on unseen 
satellite images from different countries outside the training dataset and evaluated against 
visual classification.

ARTICLE HISTORY 
Received 26 October 2020  
Revised 13 April 2021  
Accepted 19 April 2021 

KEYWORDS 
Coal mine; supervised 
classification; deep learning; 
vgg; sentinel-2

INTRODUCTION

Methane (CH4) is the second most important anthro
pogenic greenhouse gas after carbon dioxide, with 
a Global Warming Potential (GWP) of 84 compared to 
CO2 over a 20-year time horizon (Myhre et al., 2013). 
Due to this high warming potential on a short time
scale, reducing methane emissions is considered an 
essential and relatively easily achievable task to miti
gate climate change in the near future. Consistent 
monitoring of anthropogenic methane emissions can 
aid in the understanding of the human-induced 
impact on atmospheric composition and subsequently 
the climate. The sources of methane include wetland 
rice fields, waste management, fossil fuel production 
and distribution, enteric fermentation and manure 
management from livestock. Among these, coal 
mines are one of the largest sources of methane emis
sions. The global emission inventory EDGAR v4.3.2 
estimates fugitive CH4 emissions of coal mines at 
~13% of the global anthropogenic methane budget 
and as per U.S.Epa (2019) coal mines contribute to 
11% of global methane emissions. Coal Mine Methane 
(CMM) is a common term used to refer to methane 
which is trapped in the coal bed (Karacan et al., 2011). 
In the case of underground mines, CMM is often 

actively vented to the atmosphere for safety reasons 
to avoid explosion danger. Even after a mine is aban
doned the methane release from the coal mine may 
continue for a long period if unabated (Kholod et al., 
2019). Most scholars suggest that the contribution of 
fossil fuel-related methane emissions is highly under
estimated (Kholod et al., 2019). For coal mines, the 
emission estimates and associated mitigation potential 
vary based on mine type, coal type and mining prac
tices from country to country.

Estimating the contribution of methane emissions 
from various sources and regions through different 
approaches is an important step towards mitigation 
of anthropogenic CH4 emissions. The GALES (GAs 
LEaks from Space) project is aimed at the detection 
and quantification of localized CH4 sources using the 
measurements from the Sentinal-5P satellite and its 
Tropospheric Monitoring Instrument (TROPOMI) at 
a global scale. The GALES project is led by SRON 
Netherlands Institute for Space Research in collabora
tion with TNO (Netherlands Organisation for Applied 
Scientific Research) and Free University (VU) to esti
mate CH4 emissions from the fossil-fuel industry at 
a global scale. The TROPOMI onboard Sentinal-5P 
satellite is a state-of-the-art spectrometer that is 
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launched by the European Space Agency (ESA) in 
October 2017. The TROPOMI instrument provides 
daily global coverage of atmospheric concentrations of 
CH4 and other pollutants (CO and NO2) at a ~ 7 × 7 km2 

on-ground resolution. It was recently shown that large 
sources of methane due to oil and gas production can 
be identified and quantified using TROPOMI (Pandey 
et al., 2019; Varon et al., 2019). To accurately quantify 
the emissions from coal mines using TROPOMI, the 
exact locations of coal mines at a global scale are 
required. There is currently no open-source global 
dataset for the location of coal mines and databases 
at a national scale may have many missing locations 
and are difficult to access.

The main aim of this study is to identify surface 
coal mine locations at a global scale using remote 
sensing techniques. The underlying objective is that 
the obtained results can subsequently be used to iden
tify potential coal mine methane emissions from 
TROPOMI CH4 observations. This will reduce the 
large uncertainty of methane emissions from coal 
mines and can also be used to identify the location of 
mines with high methane emissions for future 
methane emission reduction strategies.

CLASSIFICATION

For this, the location of coal mines needs to be deter
mined at a larger scale. Therefore, the identification of 
coal mines is approached as an image classification 
problem which is handled through remote sensing 
techniques. Image classification is a process of giving 
labels for each pixel based on their corresponding land 
use/land cover themes (Lillesand et al. (1994)). 
Different techniques are developed and widely used 
for identifying land use/land cover features. The clas
sification can be per pixel or sub-pixel based, super
vised or unsupervised, parametric or non-parametric, 
hard or soft classification (Mather and Tso (2009)). 
Supervised techniques require information on the 
land use/land cover labels to be used for the classifica
tion task while unsupervised approaches classify the 
images by clustering similar spectral classes together 
(Krizhevsky et al. (2017); Al-doski et al. (2013)). 
Classification algorithms follow either of the two 
approaches and vary based on the data availability or 
the features to be identified. One of the earliest and 
commonly used clustering algorithm is based on 
Gonzalez (1985)’s K-means clustering which groups 
pixels into clusters based on the nearest neighbour
hood in an unsupervised way and the centres of the 
clusters are provided with a land use/land cover label. 
Many classification algorithms have proven successful 
in image classification tasks since then, like Support 
Vector Machines (SVM) (Richards (2013); Keuchel 
et al. (2003)), Decision Trees (Chen et al., (2002); 
Song and Lu (2015)), Object-Oriented Classification 

(Gamanya et al., 2009), Artificial Neural Networks 
(Sehgal, 2012).

Different approaches have been used in the past 
for the classification of minerals and geological fea
tures specifically. Gasmi et al. (2016) used principal 
component analysis with a combination of SVM for 
geological mapping of mineral deposits from 
Advanced Space Borne Thermal Emission and 
Reflection Radiometer (ASTER) data. Meanwhile, 
Hede Hawu et al. (2017) used various spectral 
indices to separate vegetation and mineral by split
ting them based on spectral information. Tang and 
Spikes (2017) use neural networks to identify shale 
by training their network with high-resolution 
images from a Scanning Electron Microscope 
(SEM). Sun et al. (2017) compared techniques like 
support vector machines, artificial neural networks 
and random forests for mineral mapping, particu
larly copper ore.

Specific studies of coal mine mapping are limited. 
Zeng et al. (2017) used Landsat-8 images to identify 
surface coal mines over a region in China. They used 
object-oriented decision trees as a classification algo
rithm which is a combination of decision trees and 
object-oriented classification techniques to identify 
the surface coal mines. The satellite images are seg
mented into smaller patches to form objects and three 
indices, Normalised Difference Coal Index (NDCI), 
Normalised Difference Vegetation Index (NDVI) and 
Built-up Area Index (BAI). These indices are applied 
to segregate the satellite images into clusters satisfying 
the given condition. This approach works on a trial 
and error basis to fix the appropriate spectral values of 
various indices. Similarly, Lobo et al. (2018) 
approached this detection problem of surface coal 
mines using classification and regression trees in 
Amazon forest regions. They suggested the use of 
satellite images with a medium spatial and spectral 
resolution for this purpose as the use of high- 
resolution images might increase the complexity of 
image processing techniques. Their method involved 
the use of Sentinel-2 images (10 m resolution) for 
pixel-based classification by applying a collection of 
decision trees. This is also implemented only in 
a particular region and the selected properties are 
based on the study area. On the other hand, L. Chen 
et al. (2019) approached this task using hyperspectral 
information which includes Hyperion data and 
a geological perspective by identifying its composition. 
In summary, such studies require spectral information 
and have the inherent limitation of being region- 
specific. Hence, these approaches may not be suitable 
for a global study.

With the developments in neural networks and 
deep learning techniques, deep Convolutional 
Neural Networks (CNN) have proved to be success
ful in different land use and land cover classification 
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tasks. Deep learning techniques have been widely 
applied and have proven performance in identifying 
fine features from satellite images in both super
vised and unsupervised ways (Basu et al. (2019), 
Kroupi et al. (2019)), and Helber et al. (2019) used 
a patch-based classification technique with CNN by 
creating a EuroSAT dataset of 10 land use/land 
cover classes with Sentinel-2 images. The dataset 
consisted of around 2000 ~ 3000 images for each 
class covering around 34 European countries with 
a combination of 13 multi-spectral bands and RGB 
bands. This study proved that deep learning models 
can be used to identify a wide variety of features 
from satellite images. Sumbul et al. (2019) proposed 
the BigEarthNet dataset with multiple labels within 
a single image using the Sentinel-2 bands. This is 
a huge dataset with more than 20 classes and has 
a class which includes all the mineral extraction 
sites but does not specifically concentrate on coal 
mines. The identification of coal mines, which is 
a composition of complex land use/land cover fea
tures, requires similar high-level classification algo
rithms for extracting those features, making deep 
learning the preferred approach. There has been 
very limited or no study to determine the location 
of coal mines at a global scale from Sentinel-2 
images using deep learning methods. This makes 
our study an important contribution towards eval
uating the deep learning models for identifying 
features similar to coal mines.

The overall objective of our study is to identify 
locations of coal mines from satellite images using 
deep learning techniques. In this study, a supervised 
approach where the CNN network is trained with 
image samples that are labelled (classes) either “Coal 
Mines” or “No Coal Mines” is implemented in this 
study. The paper is structured as follows. Section 2 
describes coal mine features, training dataset prepara
tion and pre-processing. Section 3 explains the meth
odology followed and the deep learning network used. 
The results along with the different experiments per
formed are detailed in section 4 while section 5 sum
marizes the conclusions and provides suggestions for 
further research.

DATASET

This section explains the different types of coal mines 
and their composition along with their features. The 
pre-processing steps undertaken to prepare a training 
dataset for deep learning models to learn from are also 
explained.

COAL MINES

Coal is an important fossil fuel. It is a principal source 
of energy and supplies around one-third of the global 

electricity generation (Ramani & Evans, 2020). 
Therefore, coal mines are an important source for 
both local and global economies. Based on the extrac
tion method coal mines can be classified as either 
surface mine or underground mine. This study will 
focus on the identification of surface coal mines as 
underground mines have a different composition of 
land use/land cover features. It is expected that higher 
resolution images than used in this study are required 
for capturing these features.

Surface mines or opencast mines deploy surface- 
based mining techniques where the mineral lies close 
to the surface, making it easier for extraction at rela
tively low costs (Drahansky et al., 2016). They are 
mainly composed of extracting areas, stripping areas 
and dumping areas. The appearance of surface coal 
mines varies from one region to another as shown in 
Figure 1. This makes the identification of coal mines at 
a global scale challenging. A typical opencast mine 
may also include different land use/land cover features 
like a barren land, water bodies and industrial com
plexes along with distinct stripping patterns. This 
composition of different features mandates the use of 
higher spectral bands for identification and classifica
tion. Considering these challenges, the training dataset 
is prepared by using training images of coal mines 
from various regions to make the dataset as globally 
representative as possible.

TRAINING IMAGES

The training dataset comprises images of the land use/ 
land cover classes that are to be classified. Any feature 
that is not part of the training images cannot be pre
dicted by the model. Moreover, the dataset should be 
unbiased for the model to be able to generalise. For 
this particular problem, the training images are pre
pared in a similar way as that of the EuroSAT dataset 
(Helber et al., 2019). The freely available, medium 
resolution Sentinel-2 (L1C) data is used for the pre
paration of training images. The resolution of 
Sentinel-2 varies between 10 m to 60 m with 13 spec
tral bands in visible, near-infrared and short-wave 
infrared spectrum. It has a global coverage of 56°S to 
84°N and a revisit period of 5 days with a 290 km field 
of view. The frequent revisit time, its open-source 
nature and its global coverage make it a preferred 
choice to build the database. To prepare the training 
dataset, geographic locations of 400 opencast coal 
mines are manually identified as is shown in Figure 
2. The number of locations identified from each coun
try is listed in Table 1. For these reference locations, 
Sentinel-2 tile images are downloaded from the USGS 
Earth Explorer. At each location, the most recent 
image in which mines are clearly visible with mini
mal/no cloud cover has been selected.
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The downloaded images with 13 separate bands 
are stacked and resampled together using bilinear 
sampling to form a single layer of 10 m resolution. 
Image patches of size 64 × 64 pixels (640 m × 640 m) 
are extracted from the stacked image covering the 
opencast coal mine location in each tile. From the 
same tile, randomly selected patches of size 64 × 64 
pixels that do not contain coal mines are also 
extracted. It should be noted that the area of most 
of the surface coal mines is much larger than 
640 m × 640 m and hence multiple patches are 
required to cover a single coal mine. In this way, 
a total of 3500 and 3000 image patches are extracted 
to form the “Coal Mine” and “No Coal Mine” class, 
respectively, for the training dataset. Some examples 
from the coal mine and no coal mine training data 
are shown in Figure 3.

VALIDATION IMAGES
The dataset consisting of the two classes, Coal 
Mines and No Coal Mines, is split into a training 
and a validation dataset. For each class, 70% of the 
image patches are used for training and 30% is 
used as a validation set. The total number of train
ing image patches is around 2450 for Coal Mines 
and 2100 for No Coal Mines. The number of vali
dation image patches is 1050 for Coal Mines and 
900 for No Coal Mines. During training, images 
from the training dataset are given as input to the 
CNN for learning, and the model evaluates its 
performance by predicting the class of images 
from the validation dataset. The classification accu
racy is defined as the percentage of correct predic
tions by the model when applied to the 
validation set.

Figure 1. Opencast mines – a) Greece. b) Russia. c) Australia. d) Iran (Scale-1:20,000, Source – Google Earth,2018).
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TESTING IMAGES
The trained model is tested on a full or partial 
Sentinel-2 tile to understand its ability to identify 
coal mines on unseen tiles that did not contribute 
to the training dataset. Sentinel-2 tiles with coal 
mines are selected from different countries and 
classified with the trained model. Sentinel-2 tiles 
of size 40 × 40 km2, one tile each from India, 
Australia, West Europe (Germany), East Europe 
(Poland) etc., are tested. The testing area consists 
of different land use/land cover features like barren 
land, waterbodies, built-up area, vegetation, agricul
tural fields, etc. The unseen tile is given as input to 
the trained model for classification of the entire 
image into two classes (Coal Mine or No Coal 
Mine). The classification results from the model 
are compared with visually obtained classification 
for estimation of accuracy.

METHODOLOGY

The methodology is shown in Figure 4. It is divided into 
three stages, dataset preparation, training the deep learn
ing model and testing the model on different regions. The 
first step is to prepare a dataset for the intended classify
ing feature. In this case, the “Coal Mines” and “No Coal 
Mines” dataset is created as described in the previous 
section, for training the model. A Very Deep 
Convolutional Neural Networks (VGG) architecture is 
trained with the Coal Mine training dataset. The classifi
cation accuracy of the trained model is evaluated based 
on the model performance on the validation set. The 
trained model is then tested on unseen Sentinel-2 tiles 
with coal mines from different regions. The performance 
of the model on unseen tiles is evaluated through overall 
accuracy, user’s accuracy, producer’s accuracy and kappa 
by comparing model classification with visually identified 
coal mine classification (Richards, 2013). The following 
section explains the algorithm of deep learning model 
and VGG network architecture.

DEEP LEARNING MODELS

CNNs are advantageous for classification tasks as they 
consider the spatial context of an image. CNNs work 
through moving windows over images, having fewer 

Figure 2. Manually identified reference coal mine locations.

Table 1. Number of coal mine locations identified manually 
from different regions.

Country Number of coal mine points

India 62
Australia 72
Europe 34
South Africa 52
Russia 80
Other countries 100
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parameters makes it easier for training (Krizhevsky et al., 
2017). The filters are trained to learn to extract different 
features (like gradients, edges, etc.) at each layer by sliding 
over the images in small-sized windows. As the training 
image is passed through the deep learning model, the 
filters at each layer extract important information and 
pass it through the subsequent layers. The output from 
each convolutional layer is passed through a max-pooling 
layer which identifies the maximum value in each patch 
to form a downsampled image with dominant features. 
The process will be repeated with similar convolutional 
filters with various window sizes followed by a Rectified 
Linear Unit (ReLU) as activation function to convert into 
non-linear features and max-pooling layers for down
sampling. The whole image along with different band 

information is downsampled to form a single fully con
nected network of single pixels. This is passed through 
a softmax function layer which provides a label based on 
the land use/landcover layer learnt through training. The 
output label is compared with the reference label and the 
difference between them is used as a loss to improve the 
network in learning weights and bias. This forms the 
overall architecture of the convolutional deep learning 
classification models. There are different deep learning 
models which vary based on the architecture and the 
functions used for the learning process. This includes 
popular models like Very Deep Convolutional 
Networks by Visual Geometry Group (VGGNet) 
(Simonyan & Zisserman, 2015), Deep Residual 
Learning network (ResNet) (He et al., 2016) and 

Figure 3. A) Coal Mines image patches b) No Coal Mines image patches.
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Densely connected convolutional networks (DenseNet) 
(Huang et al., 2012), all of which have proved their 
performance in various classification tasks. This study 
uses a simple VGG architecture that reduces the training 
time by decreasing the number of learning parameters.

VGGNet

The VGG model can learn directly from scratch but this 
requires large amounts of training data for the model and 
much higher training duration. Since we have a limited 
number of images for training, transfer learning is pre
ferred. Transfer learning is a commonly used method 
where the model is first trained with a very large dataset 
to learn the initial weights and bias. Here, the model is 
initially trained with ImageNet dataset and the weights 
learnt by the model at different convolutional layers are 
stored. The learnt weights are loaded for certain fixed 

number of layers only while excluding the input layer, the 
first convolutional layer and the final layers. In this study, 
the frozen weights and biases are initialised from the 
ImageNet dataset and the initial layer, along with the 
final classification output layer are trained with the coal 
mine dataset. This reduces computational time as it helps 
the model in learning the images faster due to pre-defined 
weights.

RESULTS AND DISCUSSIONS

EXPERIMENTAL ANALYSIS

Many different experiments are carried out with the 
model to determine the optimal approach that pro
vides good accuracy. Initially, the problem was 
approached by adding the coal mine dataset as the 
11th class in the EuroSAT dataset which already has 

Figure 4. Overall Methodology.
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10 land use/land cover classes. The results from such 
an 11-class classification are noisy and deviate from 
the primary objective of the study, which is to identify 
coal mines only. To focus only on the identification of 
coal mines, it is decided to use just two classes “coal 
mines” and “no coal mines”. Also, the size of the image 
patches is doubled to 128 × 128 pixels from the origi
nal 64 × 64 pixels to understand whether more spatial 
information can increase accuracy. However, this 
increased the computation time drastically and also 
puts very high demands on the system memory capa
city. Due to these practical difficulties, the size of 
image patches is kept at 64 × 64 pixels. Experiments 
are also conducted to find the CNN network architec
ture with the best performance from three selected 
CNN models. Along with VGG, two other network 
architectures, ResNet (He et al., 2016) and DenseNet 
(Huang et al., 2012), are trained and tested on the 
same dataset. Both ResNet and DenseNet have 
a larger number of layers and a deeper architecture 
than VGG. These three models are chosen based on 
many other image classification studies and their per
formance in it. Whereas this led to increased compu
tational time for ResNet and DenseNet, there is no 
noticeable improvement in accuracy to justify the 
increased computational costs. Hence VGG is pre
ferred. To understand the role of spectral combina
tions, the model was trained with the entire 13 bands 
and then with selected bands with spectral cues for 
coal mine identification based on Zeng et al. (2017). 
The results show that although the 13-band combina
tion requires more memory, the accuracy is signifi
cantly better than the 5-band combination and hence 
13-bands are used. Based on these experiments, a two- 
class classification using 64 × 64 pixel image patches 
and 13-band combination trained with a VGG archi
tecture is performed and the results are presented in 
the next section.

RESULTS

The results from the VGG deep learning model 
trained for identifying two classes, Coal Mine and 
No Coal Mine, are shown below. The model took 
around 6 ~ 7 hours for training with a system of 
NVIDIA Quadro GPU of 4 GB memory capacity. 
The VGG19 model showed a classification accuracy 
of 98.3% on our validation dataset of two classes with 
13 spectral bands.

For testing the model performance on unseen (by 
the model) satellite images, Sentinel-2 tiles with coal 
mines are selected from different countries and classi
fied with the trained model. Sentinel-2 tiles of size 
40 × 40 km2, one tile each from India, Australia, 
West Europe (Germany), East Europe (Poland) etc., 
are tested. The testing area consists of different land 
use/land cover features like barren land, waterbodies, 

built-up area, vegetation, agricultural fields, etc. In 
addition to testing on unseen images from countries 
that contributed to the training dataset, the model is 
also tested on an image from China where no image 
patches are included during training. The test image 
selected from China is similar to the one used by Zeng 
et al. (2017) to compare their results with our 
approach. This is done to explore whether the dataset 
and the model are applicable on a global scale or 
limited to the regions from which training image 
patches are chosen. To find the accuracy of the classi
fied map, coal mines are identified visually and 
mapped manually using high-resolution images from 
Google Earth. Results from the model classification for 
various regions along with manually identified coal 
mines and comparison between the two are shown in 
Figure 6. The following accuracy metrics are used for 
measuring the accuracy of the classification. The over
all accuracy gives us the proportion of pixels of coal 
mine sites accurately classified. The producer accuracy 
refers to the percentage of pixels from the ground 
truth that has been correctly classified and the user 
accuracy refers to the percentage of pixels identified as 
coal mines by the model that are actually coal mines. 
The kappa coefficient determines how well the classi
fication has been performed in comparison with an 
arbitrary assigning of values. The confusion matrix 
along with overall accuracy, user accuracy, producer 
accuracy and kappa is given in Table 2.A-2.E.

The classification results from Figure 6 show the 
classification by the deep learning model and its com
parison with visually identified coal mine classifica
tion. Moreover, the model is capable of identifying 
coal mines not just in regions from which training 
image patches are used (Australia, India, West 
Europe and East Europe) but also in regions on 
which the model was not trained (China). This 

Table 2: a) Confusion matrix for accuracy assessment of Coal 
mine and No coal mine-Blackwater, Australia

Reference (km2)

Classified Blackwater, Australia Mine No Mine Row Total

Mine 80.02 19.1 99.12
No Mine 0.65 500.1 500.75

Column Total 80.67 519.2 599.87

Overall accuracy=95.2%; Producer accuracy=99.1%; User 
Accuracy=80.7%; Kappa=0.81

Table 2: b) Confusion matrix for accuracy assessment of Coal 
mine and No coal mine-Zeitz, Germany

Reference (km2)

Classified Blackwater, Australia Mine No Mine Row Total

Mine 50.04 3.32 53.36
No Mine 0.245 356.6 356.845

Column Total 50.285 359.92 410.21

Overall accuracy=98.8%; Producer accuracy=99.4%; User 
Accuracy=93.7%; Kappa=0.96
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shows that the training dataset is representative of the 
coal mines around the world and hence the model can 
be applied at a global scale. However, it is still possible 
that deep learning models may not be able to identify 
coal mines that are drastically different from those 
found in the training dataset.

It can be observed that there is much higher mis
classification of No Coal Mine class as Coal Mine 
class (false positives) whereas there is little or no 
misclassification of a Coal Mine class as No Coal 
Mine class (false negatives). The false positives 
occur systemically in and around the external bound
aries of the surface coal mine area. This may be due 
to the low resolution of the classification, which is 
based on image patches of size 64 × 64 pixels. Also, 
small areas of land that are spectrally similar to sur
face coal mines are misclassified as coal mines. The 
land use/land cover features which are mostly mis
classified are barren lands and dried river beds. To 
try to reduce the false positives, the model is re- 
trained by adding patches that are misclassified as 
coal mines to that of the no coal mine class dataset. 
While this improved the performance slightly, 
including more and more misclassified patches in 
no coal mine class led to overfitting of the model 
and adversely affected the accuracy. Fortunately, 
there are other ways to reduce the misclassification. 

For example, the false positives are further reduced 
by filtering out all coal mine classifications that are 
less than 64 × 64 pixels (640 m × 640 m) in size as it 
is unrealistic to have a surface coal mine to be of such 
a small size.

The accuracy of the model classification is evalu
ated by considering the visually identified coal mines 
as ground truth. All the tested images showed an 
overall accuracy of more than 95%, ranging from 
95.2% for Blackwater, Australia to 99.2% for 
Belachatow, Poland. The producer accuracy varies 
from 98.4% to 99.4% while the user accuracy varies 
between 80.7% and 97.5%. The high values of produ
cer accuracy and relatively low values of user accu
racy bring out the fact that there is a predominance 
of false positives over false negatives in the model 
misclassification. It is possible to filter some of these 
out using additional constraints. On the other hand, 
if there are coal mines that are completely missed by 
the model then the model is not fulfilling its objec
tive. Hence, the false positives are more tolerable in 
this case as they can be removed by imposing further 
constraints. The kappa for all tested images ranged 
from 0.81 to 0.97. The region shown in Figure 5(e) is 
classified for surface coal mine areas by Zeng et al. 
(2017) using an object-oriented decision tree 
approach based on three spectral indices whose 
results are comparable with that of the results pro
duced by our deep learning model.

Comparison with a traditional maximum 
likelihood classifier

To compare our results with traditional supervised 
classification techniques, the classification task for the 
same test images is also performed using a maximum 
likelihood classification technique. For each test region, 
around 10 training samples for both Coal Mine and No 
Coal Mine are selected and used for maximum like
lihood classification. To maintain consistency, the clas
sified coal mine patches of size less than 64 × 64 pixels 
are removed from the maximum likelihood classifier 
also as is the case with the results of the deep learning 
model. Figure 7 shows the results from the two methods 
and Table 3 compares the overall accuracies for the 
tested images obtained from these methods.

It can be seen from Table 3 that the results from 
maximum likelihood have lower overall accuracy than 
the deep learning method for all the tested images. The 
deep learning model is better at distinguishing between 
coal mines and other spectrally similar land use/land 
cover features than the traditional maximum likelihood 
classifier approach. The results show that the deep 
learning model produces classification results that are 
closer to visually identified classification and is also able 
to generalise this with a representative dataset.

Table 2: c) Confusion matrix for accuracy assessment of Coal 
mine and No coal mine-Neyveli, India

Reference (km2)

Classified Blackwater, Australia Mine No Mine Row Total

Mine 100.59 13.6 114.19
No Mine 1.16 326 327.16

Column Total 101.75 339.6 441.35

Overall accuracy=96.6%; Producer accuracy=98.4%; User 
Accuracy=88.1%; Kappa=0.91

Table 2: d) Confusion matrix for accuracy assessment of Coal 
mine and No coal mine-Belachatow, Poland

Reference (km2)

Classified Blackwater, Australia Mine No Mine Row Total

Mine 68.7 1.74 70.44
No Mine 1.05 415.68 416.73

Column Total 69.75 417.42 487.17

Overall accuracy=99.2%; Producer accuracy=98.4%; User 
Accuracy=97.5%; Kappa=0.97

Table 2:e). Confusion matrix for accuracy assessment of Coal 
mine and No coal mine-Ordos, China

Reference (km2)

Classified Blackwater, Australia Mine No Mine Row Total

Mine 94.8 11.73 106.53

No Mine 0.885 332.6 333.485
Column Total 95.685 344.315 440

Overall accuracy=97.1%; Producer accuracy=99%; User 
Accuracy=88.9%; Kappa=0.91
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DISCUSSIONS AND CONCLUSIONS

The main aim of this study is to determine whether 
a deep learning model can be used for identifying 
surface coal mines from Sentinel-2 data. This study 
gives an outline about the dataset preparation for sur
face coal mine identification, CNN architectures sui
table for our task and the evaluation over various 
regions along with a traditional classifier comparison.

In our study, we created a coal mine dataset with 
Sentinel-2 image patches of size 64 × 64 pixels from 
various regions are created to train deep learning mod
els to identify coal mines. The resulting VGG-based 
deep learning model trained with the coal mine dataset 
can be applied over different regions for identification 
of surface coal mines. Adding misclassified patches into 
the training dataset and retraining and filtering out 
patches that are much smaller than a typical coal mine 
are done to increase the performance of the model. The 
model produced an overall accuracy of more than 95% 
for all the tested images. The model also produces better 
overall accuracy than traditional methods like the max
imum likelihood classifier approach.

The model consistently gives higher producer accu
racy than user accuracy, meaning that the misclassifi
cation is mostly of No Coal Mine class into Coal Mine 
class which are false positives. For our purpose, being 
the preparation of a dataset for future screening of 
high methane concentrations in TROPOMI images, 
false positives, although unwanted, are less of 
a problem than false negatives. The reason is that 
false positives simply add a limited number to the 
locations to be screened but will not lead to a less 
complete identification of methane hotspots. On the 
other hand, false negatives may cause an important 
surface coal mine to be missed and can lead to losing 
out some coal mine methane emissions.

It should be noted that other mineral mines like 
copper mines, which have similar spectral and textural 
features as coal mines, with a large open pit and 
industrial settings may possibly be misclassified. In 
order to overcome this, a pre-screening mechanism 
can be applied whereby the testing of Sentinel-2 tiles is 
limited to areas of geological formations that have the 
potential for coal mine extraction (Facts about coal 
and minerals, 2016) or, in other words, where coal 
layers are present in the subsurface.

This study contributes towards understanding the 
performance of deep learning models in identifying or 
classifying spectrally complex objects similar to coal 
mines at a global scale.

Outlook

We aim to apply our selected Coal mine detection 
model over a larger area, e.g., a continent or large 
country like India. The identified coal mines from 
our model will be used for identifying methane 

Figure 5. VGG architecture. Adapted from “Simonyan and Zisserman (2015). Very Deep Convolutional Networks for Large-Scale 
Image Recognition 1–14”.

Table 3. Classification accuracy of each region by deep learn
ing model and maximum likelihood classifier.

Country
Deep learning model - 

Overall accuracy
Maximum likelihood classi

fier-Overall accuracy

Blackwater, 
Australia

95.2% 90%

Zeitz, 
Germany

98.8% 87%

Neyveli, India 96.6% 91%
Belchatow, 

Poland
99.2% 93%

Ordos, China 97.1% 89%
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emissions from coal mines from space. A major ques
tion to be answered in this next step will be if the 
opencast mines contribute significantly to methane 
emission or if mainly underground mines are impor
tant emitters. Regardless, a robust and reliable identi
fication of surface coal mines using satellite images 

will be relevant for other research applications such 
as land use change detection and development.

In preparation of the above, a preliminary further 
test is done where the model was applied on a larger 
scale for a part of India. Screening entire Sentinel-2 
image tiles is computationally demanding. In order to 

Figure 6. Classification results tested over different regions.
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reduce the number of images to be tested, a pre- 
selection based on the available coal bed resource 
(Trippi & Tewalt, 2011) is applied which identified 
around 50 image tiles as potential coal mine sites in 
India. These tiles are downloaded and the model is 
then tested over the entire tile. This was done for three 
tiles. We compared the result with a test image over 
Germany and Poland and observed that the number of 

false positives in the temperate region is significantly 
less than that of a tile from India. Satellite images from 
India tend to have a lot of dry, barren lands which 
contribute to false positives due to similar spectral 
properties as that of coal mine stripping areas. To 
reduce such false positives in dry regions we are plan
ning to make use of the fact that opencast coal mines 
generally have a steep slope. Using a Digital Elevation 

Figure 7. Different Classification results tested over various regions.
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Model (DEM), an additional constraint can be 
imposed which filters out areas that do not have 
a steep gradient. This constraint is decided based on 
the initial results from India, where the overwhelming 
majority of false positives are dry, barren, flatland. 
Similarly, while testing on a global scale, the approach 
can be modified based on the region and other region- 
specific constraints can be developed to reduce false 
positives.
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