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CHAPTER 1

Introduction

1.1 Motivation

Physical security is a pressing issue as activities of intelligent adversaries targeting
infrastructures and high value assets yield harmful effects to today’s society. For
instance, natural reserves are often victim of illegal fishing or poaching [97, [T06]; high
value assets like airports and public markets [63] need to be protected against adversary
attacks and national borders need to be monitored in order to regulate the movement
of people and goods [B, [I16]. Although these security problems are quite different, they
all involve the need to use the often scarce security resources in the most efficient way
taking into account intelligent adversaries. In the literature, such security problems
have received increasing attention and some of them are tackled using mathematical
modeling (e.g., [3, 34] 113, (125, 127]).

In many of these papers, game theory is used to model the interaction between the
security forces and the adversary. Although several of these papers take uncertainty
in the adversary type and strategies into account, most studies consider determinis-
tic input parameters. We present new modeling approaches for the efficient use of
the available security resources that combine two essential elements: adaptivity of
adversary behavior and uncertainty.

When protecting a certain area such as the sea, intelligent adversaries observe the
security forces to find out their strategies, for example, where they are patrolling.
Moreover, the advances in communication enable adversaries more than ever to com-
municate with each other and obtain information about the strategy of the security
forces. Thus, the adversary is able to predict and react on the security forces’ actions,
in a cat and mouse game. Therefore, it is important to take into account the adaptive
behavior of the adversary when developing models. We tackle this adaptive behavior
by incorporating game theory into the modeling.

In practice, the behavior of adversaries is often unknown: when and where they
will attempt to attack. Additionally, there can be uncertainty about the performance
of the own security forces. For instance, the sensors of the security forces may not
always be able to detect or produce false detections. This results in uncertainty about
the adversary’s position and thus the location of a possible attack. The environment
might be subject to uncertainty, for example when weather conditions and seasonal
fluctuations yield potential changes on the preferable attacking location. Therefore,
when modeling security problems, uncertainty needs to be taken into account explic-
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itly to derive realistic models that better mimic reality. We will address uncertainty
explicitly by using several stochastic models.

In this thesis, we address the optimal deployment of (scarce) security forces taking
into account the adaptive behavior of the adversary and the uncertainty that arises in
these problems by combining game theory and stochastic modeling.

1.2 Background

In this section, we provide the mathematical concepts used in this thesis. First we
give an introduction of game theory and discuss different game types used in security.
We also give a short introduction about other techniques used in this thesis.

1.2.1 Game theory in the security domain

Many real world problems can be modeled using game theory. In this thesis, we ap-
ply game theoretical models to various security problems, resulting in agent-intruder
games. Game theory provides a framework to model situations in which two or more
players have some interaction [96]. All players compete over the value of the game,
which depends on the actions of all players and each player commits to a strategy
in order to optimize his or her payoff. Game theoretical models are used to analyze
optimal strategies and the most likely outcomes. We only consider non-cooperative
games, which means that all players commit to a strategy individually without coop-
erating with other players. By modeling the security forces (agent) and the adversary
(intruder) as separate players, the adaptive behavior of the intruder is taken into ac-
count. In the rest of this thesis, we will refer to these games as agent-intruder games.
The agent represents the security forces such as the coast guard or airport patrols
and the intruder represents the adversary such as terrorists, enemy submarines, illegal
fishermen or smugglers.

In a security game, both the agent and intruder can choose different actions re-
sulting in the game value. The challenge is to find optimal strategies for the agent.
A strategy for a player is a plan that gives in each situation the actions that have
to be played. A best response strategy is an optimal strategy given the strategies of
all other players. In general, we are searching for an equilibrium solution, which is a
combination of strategies for all players where none of the players have the incentive
to change strategies. So, in an equilibrium, all players play a best response strategy.
There are several concepts available to analyze equilibrium strategies. In this thesis,
we mainly focus on finding Nash equilibria [I04]. In a Nash equilibrium, all players
commit to a strategy that cannot be improved by deviating from the equilibrium strat-
egy, given that the other players do not deviate from their strategy. All players have
multiple actions to choose from and in an optimal strategy, it is allowed to randomize
over these actions. A strategy that randomizes over multiple actions is called a mixed
strategy, while a strategy that only picks one actions is called a pure strategy.

Another equilibrium concept that is common for security games, originates from
Stackelberg games. While for Nash equilibria, it is assumed that both players make a
move at the same time, players move sequentially in Stackelberg games. In a Stackel-
berg game, the agent commits to a strategy and thereafter, the intruder decides on a
best response to this strategy [104]. In contrast to a Nash equilibrium, the strategy of
the intruder in a Stackelberg equilibrium is a pure strategy since the agent’s strategy
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is already known. Therefore, the game value for Stackelberg equilibria can be different
from the game values for Nash equilibria. However, in this thesis, we mainly consider
zero-sum games (in which the gain for one player equals the loss for the other player)
and for these games, the game value and agent’s strategy coincide [133].

In the following example, we give a basic security game to explain the different
game elements.

Example 1.1 (Basic security game). Consider a patrolling game on a part of the
North Sea which can be divided into two areas A and B. Since this is a protected
area, it is not allowed to fish in A and B. However, in both areas, there is a lot of
fish available, so these are popular places for fishermen (intruder) to fish illegally. To
prevent illegal fishing in both areas, the coast guard (agent) has one patrolling ship
available. This ship is able to patrol and protect one area from illegal fishing each day.
At the beginning of a day, the intruder chooses one area to fish. When the intruder
fishes successfully, i.e., without being caught by the agent, he obtains a gain. Assume
that fishing in B is better than in A: the gain of successfully fishing in area A equals 3
and for area B, the fisherman’s gain equals 5. The gain for the intruder equals the loss
for the agent if he is patrolling the area where the intruder is not fishing. However,
when the agent is patrolling the area where the intruder is fishing, the intruder is
caught and the gain for the agent equals 1 (which is also the loss for the intruder).

The game above can be described in a matrix displaying the actions and payoffs
for all players. In this game, the matrix is given by:

Intruder
fishin A fishin B
patrol A 1/-1 —5/5
Agent patrol B -3/3 1/-1

By analyzing this game, the optimal strategy for the agent (and the intruder) can
be found. Intuitively, one could argue that patrolling area B will be better, since the
loss for the agent is the highest in that area. However, when the agent always patrols
B, the intruder will adapt his strategy to always fishing in A, guaranteeing a gain of
3 (and a loss of 3 for the agent). The optimal mixed strategy is to patrol area A with
probability % and area B with probability % This results in an expected loss of 1%
for the agent, which is better than a loss of 3. O

1.2.2 Different game types

In this thesis, we use different game theoretical models to analyze various security
problems. We briefly introduce different types of games. Early work considering
security problems, for example the protection of networks in [36] [129] [131] or searching
for a moving target in [31], only approaches the problem from the agent’s perspective.
Thus, possible reactions of intruders to the agent’s strategy are not taken into account.
However, to model intelligent intruders who know of and react to the strategy of an
agent, game theoretic models have been developed (e.g., [2], 4, 18| 118, [126]). For
example, Washburn [126] introduces a two-person zero-sum interdiction game that
explicitly models the interaction between agents and intruders.

An important class of security problems is network interdiction. Generally speak-
ing, network interdiction involves two sets of players which compete over the value of
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the network: the intruder and the agent. The intruder tries to optimize the value of
the system, for example by (1) computing the shortest path between a source node
and a sink node [I4], [36], [59]; (2) maximizing the amount of flow through the network
[18, [76l, 113]; (3) maximizing the probability of completing a route [29] 02, 93], 101].
The agent attempts to intercept the intruder before the goal is achieved.

Another type of games are search or patrolling games in which the goal of the
agent is to find a hidden intruder by patrolling an area. This area can be modeled as
a graph: the intruder can attack one or multiple nodes in this graph while an agent
is searching this graph to prevent the attack. An overview of models for this type
of problems is given by Hohzaki [58]. It is possible that the intruder is hidden at a
fixed node (e.g., [4, [78, [95]), or moves through the network (e.g., [55, 120]). Neuts
[95] introduces a search game in which the intruder hides in one node, while the agent
must search in a set of nodes.

The problem of protecting vulnerable targets from attackers using limited security
resources manifests in many real world applications. To this end, Stackelberg security
games are introduced (e.g., [0, 11,69, 118, [132]). In a security game, an agent is usually
protecting a set of targets that are threatened by one or multiple intruders. Many
search, patrolling or interdiction games are also modeled as a Stackelberg security
game.

1.2.3 Mathematical models

In this thesis, we address various security problems. To solve these problems, we use
different mathematical models, which we briefly introduce in this section.

A matrix game as introduced in Example can be solved using linear program-
ming [T04]. In this thesis, several variants and extensions of a linear programming
formulation for a standard matrix games are used to solve the proposed models. We
briefly describe this linear program.

Consider a zero-sum game between an agent and an intruder. The action set of
the agent is A4 and the action set of the intruder is A;. The payoff matrix of this
game is M where m;; is the payoff when actions ¢ and j are played, i € A4, j € Ar.
A strategy for the agent is given by p, where p; is the probability that the agent picks
action ¢, and similarly, the strategy for the intruder is q. The optimal value of the
game, where the agent is maximizing this payoff and the intruder is minimizing the
payoff is found by:

V =maxmin pl Mgq

P q
s.t. Z pi = 1,
€A
> oa=1,
JEAI
p,q =0,

where the objective equals the game value and the constraints ensure that p and ¢
follow a probability distribution. By using duality, this maxmin formulation can be
rewritten as a single maximization problem which can be solved efficiently [104].

To model the uncertainty in the security environment, we use several stochastic
models. We give a short description of the models used in this thesis.
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1.3 Thesis outline

Queueing theory Queueing theory is a mathematical framework to study the be-
havior of waiting lines [T12]. Analyzing the arrival and service process of these models
gives insight in the expected queue lengths, waiting times etc. In this thesis, we use a
network of queues, where one queue represents a small area.

Approximate dynamic programming Approximate dynamic programming pro-
vides an algorithmic framework to solve large scale Markov decision processes (MDPs).
Markov decision theory provides a framework for decision making [I08]. A single player
is sequentially making decisions in an environment where outcomes are uncertain but
depend on these decisions. In an MDP, one reasons about optimal strategies depending
on the possible actions, the state of the system and transition probability.

Stochastic game theory A stochastic game is an extension of an MDP concerning
two or more players [96]. A stochastic game consists of the same elements as an MDP,
but takes into account more players, and the outcomes of the game depend on the
actions of all players. When developing an optimal strategy, each player does not only
have to take into account the current state and the transition probabilities, but also
the possible actions of the other players.

Next to these models, we use several concepts from probability theory, such as condi-
tional expectations and Bayes’s rule and probability constraints.

1.3 Thesis outline

In this thesis, we develop and analyze various models concerning the optimal deploy-
ment of security forces. To deal with the adaptive behavior of an intruder, we use
game theoretical models to determine agent’s optimal strategies. We apply different
techniques of stochastic modeling, such as queueing theory, approximate dynamic pro-
gramming and Bayesian beliefs, to take uncertainty into account and combine these
techniques with game theory.

This thesis consists of three parts. In the first part, we discuss games which are
played on a queueing network. By modeling the area on which the game takes place as
a queueing network, stochastic arrivals and travel times can be taken into account. The
second part of this thesis considers dynamic games where new information becomes
available during the game. In practice, both the agent and intruder do not have
complete information about the state of the system. However, if the game takes place
over multiple time periods, new information becomes available. Therefore, we discuss
such games and consider strategies which depend on this new information. In the third
part of this thesis, we discuss games in which the agent’s strategy space is restricted
as in many situations, the agent’s strategies have to satisfy extra conditions. For these
situations, we introduce new models that model such conditions explicitly. A more
detailed overview of all chapters is given below.

Part I

In Chapter |2| we introduce an interdiction game on a queueing network including
multiple intruders and agents who have stochastic travel or service times. Game the-
ory is used to model the interaction between the intruder and the agent. Queueing
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theory models the dynamic flow and time-dependent interdictions in a stochastic en-
vironment. The strategies of the intruders and agents influence the queueing system.
This approach enables the modeling of the flow of intruders and the timing of the ac-
tions of the agent. We show that there exists a unique optimal solution for these types
of games. Moreover, we introduce analytical formulas and algorithmic approaches to
find optimal solutions for special network structures.

In Chapter we introduce a new game where multiple players route through
a Jackson queueing network. Each player decides on an optimal routing strategy to
optimize its own sojourn time. We consider two cases: the game with continuous
strategy space where the players can distribute their arrival rate over a set of fixed
routes and the game with discrete strategy space where each player is only allowed to
pick a single route. We discuss the existence of a pure Nash equilibrium for several
variants and describe an algorithmic approach to find such a Nash equilibrium.

Part 11

In Chapter [4) we consider partially observable agent-intruder games (POAIGs). We
deviate from the traditional stochastic game assumption that both players have full
information about the position of the other. Instead, we consider the situation one
encounters in reality, where players only have partial information about the others
position. These problems, where both players do have partial observable information
about the position of the intruder, can be modeled as a dynamic search game on a
graph between security forces and an intruder. In this chapter, we prove the existence
of e-optimal strategies for POAIGs with infinite time horizon. We develop an ap-
proximation algorithm based on belief functions that can be used to find approximate
solutions for these games. To prove existence of e-optimal strategies for POAIGs with
infinite time horizon, we use results obtained for POAIGs with finite time horizon. For
POAIGs with finite time horizon we show that a solution framework, common to solve
extensive form games, can also be used effectively. As security forces often are faced
with partial information, (solving) POAIGs provides decision support for developing
patrol strategies and determining optimal locations for scarce resources like sensors.

Chapter [5| describes anti-submarine warfare games where an enemy submarine
(intruder) attempts to attack a high value unit and an agent is allocating frigates and
helicopters to detect this intruder. We allow time dependent strategies for the agents
in order to deal with moving high value units. We use two separate approaches for the
anti-submarine operations. It is usually assumed that the location of the frigates is
known to the intruder since they are easy to observe. We first model this as a game in
which the frigate path for the complete time period is known to the intruder. In this
case, both the agent and the intruder construct optimal strategies in advance, since
no new information arrives. Second, we describe a model where the frigate’s location
becomes available during the game. So at the start of each time interval, the intruder
gets new information about the frigate’s position and can adjust his strategy to this
information.

Part II1

In Chapter [6] and Chapter [7] we discuss security games with restrictions on the
agent’s strategy. The coast guard is responsible for patrolling the coastal waters. Pa-
trolling strategies should be unpredictable, cover the entire region, and must satisfy
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operational requirements for example on the frequency of visits to certain vulnerable
parts of the region (cells). We develop a special security game dealing with the protec-
tion of a large area in which the agent’s strategy set is restricted. This area consists
of multiple cells that have to be protected during a fixed time period. The agent has
to decide on a patrolling strategy, which is constrained by governmental requirements
that establish a minimum number of visits for each cell. A static version of this model
is discussed in Chapter [6] where a strategy for the complete time period is identified
before the game starts. The requirements are modeled such that they are met with
high probability by introducing a mathematical program with probability constraints.
In Chapter [7] we consider a dynamic approach to the security game with restricted
strategies in which the agent decides on his strategy for each day taking into account
expected future rewards. This allows finding a more flexible strategy for the agent,
where current payoffs and number of visits to each cell can be taken into account. By
formulating this model as a stochastic game, the agent is able to adjust the strategy
to the current situation and actions that already have been chosen in the past. We
approximate optimal solutions of this game via an approximate dynamic programming
approach adjusted to stochastic games.

In Chapter [8] we discuss Stackelberg security games with a large number of pure
strategies for the agent. An optimal mixed strategy typically randomizes over a large
number of these strategies resulting in strategies that are not practical to implement.
We propose a framework to construct strategies that are operationalizable by allowing
only a limited number of pure strategies in a mixed strategy. However, by restricting
the strategy space and allowing only strategies with a small support size, the solution
quality might decrease. To investigate the impact of this restriction, we introduce the
price of usability, which measures the ratio between the optimal solution and the oper-
ationalizable solution. The concept of operationalizable strategies is applied for threat
screening games, a special variant of a security game. For these games, we develop
a heuristic approach to find operationalizable strategies efficiently and investigate the
impact of these restrictions.

Finally, in Chapter [9] we give a general conclusion and provide some directions
for futere research based on the findings of this thesis.
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Queueing and game theory






CHAPTER 2

An interdiction game on a queueing
network with multiple intruders

The results in this chapter were published in [75].

2.1 Introduction

Security forces are deployed to protect networks that are threatened by multiple in-
truders. To select the best deployment strategy, we analyze an interdiction game
that considers multiple simultaneous threats. Intruders route through the network as
regular customers, while agents arrive at specific nodes as negative customers.

In the field of network interdiction, a wide variety of models have been proposed.
Wollmer [129] was one of the first authors to consider a network interdiction model
on a network defined by a set of arcs and nodes. In this model, the agent can remove
arcs from a network in order to minimize the maximum flow the intruder can obtain
from a source node to a sink node. Several papers generalize this work by accounting
for the agents resources [I31], which they can use to remove arcs from the network.
The resource cost for such an action depends on the arc itself. These problems are
shown to be NP-complete by Wood [131], even when the costs are equal for all arcs.

Most of the literature focuses on deterministic network interdiction (e.g., [126, 129]
131]). However, many network properties, such as travel time or detection probability,
are uncertain in practice. Cormican et al. [27] consider a max-flow interdiction model
in which interdiction success is a random variable. Moreover, extensions are made in
which arc capacities are also considered to be stochastic.

In this chapter, we introduce an interdiction game on a queueing network includ-
ing multiple intruders and agents which have stochastic travel or service times. In
literature, there is limited research combining queueing theory and game theory in the
security domain. Wein and Atkinson [127] combine game theory, dynamic program-
ming and queueing theory to intercept terrorists on their way to the city center. A
game theoretic approach is used to determine the sensor configuration and to calcu-
late the detecting probabilities. The outcome of the game then becomes input for the
queueing model.

Our model is developed to find an optimal deployment strategy for the agents that
inspect the network nodes, i.e. which nodes should be inspected more often than
others. Intruders enter the network at a certain node modeled as a queue and, after

11
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having received service, route through the network to their target node. The routing
strategies of the intruders can be modeled in a fixed or probabilistic manner. In the
case of fixed routing, upon arrival at the network, intruders select their complete route
to the sink node. In the case of probabilistic routing, intruders decide their next step
at each node according to a certain probability. At the same time, agents inspect
nodes of the network to prevent the arrival of intruder at the target nodes. When an
agent inspects a node in which an intruder is being served, the intruder is removed
from the network. In this context, the value of the network can be represented by the
throughput of the intruders. Multiple intruders and agents compete to maximize and
minimize this value respectively.

To model the intruders and agents, we use the concept of negative customers,
which is introduced by Gelenbe et al. [41]. These authors describe a network of single
server queues that includes positive and negative customers. Positive customers join
the queue with the intention of getting served and then leave the system. Upon arrival
of a negative customer, a positive customer (if present) is removed from the queue.
We construct a game on this network to find the optimal deployment strategy for the
agents. These strategies are reduced to choosing arrival rates for inspecting the nodes
of the network. The intruders are modeled as the positive customers of the network,
and the agents as the negative customers.

Our approach of an interdiction game on a queueing network combines two areas
of research: game theory and queueing theory. Game theory is used to model the
interaction between the intruder and agent. Queueing theory models the dynamic
flow and time-dependent interdictions in a stochastic environment. The strategies of
the intruders and agents influence the queueing system. This approach enables the
modeling of the flow of intruders and the timing of the actions of the agent. The
network itself may represent a region that the intruder is required to traverse before it
can reach its destination. The queues then have service times that correspond to the
stochastic travel times. Alternatively, routes in the network may represent sequences
of tasks an intruder must complete before it is able to reach its target node.

This chapter is organized as follows. In the next section, we introduce the problem
for fixed routing and analyze the proposed interdiction game on a queueing network. In
Section [2:3] we determine optimal strategies for this game and provide some examples.
Next, in Section [2.4] we discuss the game with probabilistic routing and show that
these games are closely related. Finally, in Section [2.5] we present conclusions and
provide directions for future research.

2.2 Game on a network with negative customers

This section introduces an interdiction game on a queueing network with negative
customers and fixed intruder routing. Each node in the network represents a queue-
ing system in which the intruders (positive customers) are served by a single server
according to a first-in-first-out service discipline. Intruders enter the network at the
source node and travel through the network to the sink node. After service completion
at a node, the intruder follows its route to another node in the network. If the intruder
is not interdicted at some intermediate node (neither the sink nor the source node), he
successfully reaches the sink node. Agents (negative customers) arrive at the network
nodes to search for intruders. If the agent arrives at an empty node, he leaves the
network immediately. If an agent arrives at a node and finds an intruder being served,
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then he removes the intruder and leaves the network. Because handling an intruder
requires extra effort and time, we assume that only the intruder in service is removed.

The players of the interdiction game, the intruders and the agents, are constrained
by a budget. This limits the rates at which they arrive at the network: the agent has to
determine arrival rates at nodes for inspecting the queueing systems and the intruder
determines arrival rates at the routes. This repeated interplay results in probabilities
of interdiction at nodes and ultimately yield intruder arrival rates at the sink node.
The value of the game is therefore defined as the rate of intruders arriving at the sink.

In the following sections, we introduce a network with intruders and agents in which
fixed routing of intruders is considered. After that, we give the game formulation and
prove the existence of optimal strategies.

2.2.1 Network with fixed routing of intruders

Consider a queueing network with a source node 0, sink node N + 1 and intermediate
nodes C' = {1,2,..., N}, on a connected and directed graph G. Intruders want to travel
through the network undetected from source to sink, while agents try to intercept them
at nodes in C'. The source node 0 is linked to a non-empty set Cs C C' of start nodes,
while there is a non-empty set of target nodes C'r C C' linked to the sink node N + 1.
There is no direct link between the source and sink, but it is possible that CsNCr # 0.
In addition, we assume that each node in Cs has just one incoming link (from the
source); likewise, we assume that each node in Cr has just one outgoing link (to the
sink). An example of such a network is shown in Figure

Given this queueing network, we consider the set of all routes from node 0 to node
N + 1, in which a route follows the links in the network. This set may be (countably)
infinite, due to cycles in the network. We consider a finite subset K of the set of all
routes without cycles. A route k € K (in which we do not take into account nodes 0
and N + 1) is given by rp = [r(k,1),r(k,2),...,7(k, Ni)], where r(k, s) identifies the
s-th node on route k£ and Ny is the length of route k. The set of nodes contained in
route k is denoted by Cj. In Figure 2.ID] an example network with three routes is
given.

© O—Q
O—0 ©
O—0 ©

(a) Underlying graph. (b) Network with three routes.

Figure 2.1: Example graph G with N = 9.

Intruders arrive at the source of the network according to a Poisson process with
rate A, and choose route k& with probability ps; i.e. the arrival rate of intruders
following route k is given by Ar = prpA. Therefore, they enter at node s € Cg with
arrival rate \g = ZkeK,r(k,l):s Ak

When intruders arrive at node ¢, they receive service or join the queue. The service
time at node 7 is equal for all intruders and is exponential with rate p; > 0. The service
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time of each node is independent of the service time at other nodes.

Agents arrive at the network according to a Poisson process with rate A~ and select
node ¢ with probability p; , such that they arrive at node ¢ € C' with rate A, = p; A™.
Upon arrival of an agent, the intruder in service (if present) is removed from the node.
If the agent arrives at an empty node, he immediately leaves the network.

Intruders routing through the network leave a node either because of service com-
pletion or because of interdiction while being served. Intruders are served at node i
with exponential service rate u; and agents arrive independently according to a Pois-
son process with rate A; . This implies that intruders are interdicted with rate A; .
Due to the memoryless property of the exponential distribution, the probability that
an intruder leaves node i because of service completion corresponds to the probability
that the service is completed before an agent arrives at node i:

Hi (2.1)
pi + A
and the probability that the intruder leaves node i (and is removed from the network)
due to interdiction equals:

AT

1

i+ A7

These steady state probabilities are independent of the presence of other intruders
in the network and of the time the intruders have spent in the queue. Route k is
completed if an intruder completed service at each node of the route and reaches
the sink node without being interdicted. Therefore, the probability that an intruder
actually completes route k is given by:

Hr(k,s)

P(intruder completes route k) = (2.2)

s=1 Hr(k,s) + A;(k,s)

2.2.2 Game description

To model the interaction between intruders and agents, we create an interdiction
game on the queueing network described above. The intruders and agents compete
over the value of this network, which is the arrival rate of intruders at the sink node,
or equivalently, the sum of departure rates at nodes in Cp. This is a zero-sum game
in which the intruders try to maximize their throughput by deciding on their routes,
while the agents aim at minimizing this throughput by deciding on the inspection
rates at nodes in C.

The intruders select their route by choosing Ay for each route k, constrained by
the total arrival rate A. Thus, the action set of the intruders given the set of routes
K, is given by:

AI:{A‘ZAk:A,AkZO,keK}, (2.3)

keK

where A = (A, : k € K).
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The agents select the inspection rate, which is given by A; for all i =1,..., N, and
the total rate is limited by a nonnegative interdiction budget A~. So the action set of
the agents is given by:

N
AA:{)\‘ZA;:A,A;EO, i:l,...,N}, (2.4)

=1

where A7 = (AL, ..., Ay)-

The payoff function of this game is the throughput (or arrival rate) of the intruders
at the sink node, and is obtained by multiplying the arrival rate for each route k by
the probability of completing the given route (see Equation (2.2))) and summing over
all possible routes:

N

oA =D M ]] — folen) (2.5)

keK s=1 /’Lr(k:,s) + )\;(k:,s)

2.2.3 Game analysis

In this section we analyze the interdiction game and prove the existence of pure optimal
strategies.

Strategies for the intruders and agents are measures F' and G defined for the sets
Ar and A4, such that F(A;) =1 and G(A4) = 1. We define the expected payoff by:

EWw(F,G)) = / (A AT)A(F x G).
A[ X AA
A pure strategy for the intruder is a strategy F' such that F'(A) = 1 for a particular
A € Aj. This pure strategy then is denoted by A, and is chosen with probability one.
Likewise, pure strategies for the agent are represented by A\~. The existence of pure
strategies can be expressed by the following theorem:

Theorem 2.1. Consider the interdiction game on a queueing network. The game has
a saddle point \* and A\™* in (optimal) pure strategies. Moreover, for the agent this
strategy is unique. The value of the interdiction game is given by:

v = maxminv(A, A7) = minmax v(A, A7).
A A~ A

Proof. Define the following two values:

vy = supinf E(v(F, G@)), vrr = inf sup E(v(F, G)).
F G G F

The payoff function v(A, A7) is continuous, and the action sets Ay and A4 are compact.
Therefore, sup inf and inf sup may be replaced by max min and min max respectively,
and vy = vy; = v and there exist optimal strategies (see Section IV.3 in [96]).

The existence of optimal pure strategies can be shown through the following func-
tion:

fo =11+

iy M A
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The Hessian A2 f(x) is positive definite, implying that f(z) is strictly convex. The pay-
off function v(A, A7) is therefore strictly convex in A~ for each A. Moreover, v(A, A7)
is a linear, and thus concave, function in A for each A~. Thus, both the agent and
the intruder have an optimal pure strategy and the value is given by v (see Section
IV.4.1 in [96]). Because the payoff function is strictly convex in A, the strategy for
the agent is unique. |

2.2.4 Optimization model

Given that optimal pure strategies exist, we formulate a minimization problem to find
the optimal strategy of the agent. Let K be a fixed, finite set of routes from source to
sink through the queueing network. The following optimization problem finds optimal
strategies of the intruder and the agent:

N
. Hr(k,s)
v = min max M || ——————— (2.6)
ATA k:EZK s=1 Hor(k,s) + )\r(k,s)
N
st Y AT =A", (2.7)
j=1

K
> A=A, (2.8)
k=1

A, Ak

3

Y
o

, i=1,..,N,keK. (2.9)

Note that the value v is the arrival rate of intruders at the sink node N+ 1. In case
A =1, it also corresponds to the fraction of intruders that reach their destination, and
thus the probability of reaching the sink node.

The optimal strategy of the agent can be found by solving the optimization problem
as described in the next lemma.

Lemma 2.1. For the interdiction game on a queueing network, the value of the game
and the optimal strategy for the agent are found by solving the following convex mini-
mization problem:

v= r&l{n w (2.10)

s.t. A r(k.s)

——————<w, keK, (2.11)
s=1 /’LT(’QS) + A?'(k,s)

N

DA =AT, (2.12)
j=1
A7 >0, i=1,..,N. (2.13)

Proof. The probability of completing route k is given by Equation (2.2)), so the through-

put in the case where the intruder always chooses route k is AJ[, %
T Hr(k,s) T AR (K, s)

Given any interdiction strategy A~, the worst case for the agent is when the intruder
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chooses to assign his full budget A to the set of routes with maximal completion prob-
ability. The agent tries to minimize this worst case, which can be achieved by solving
the non-linear program in (2.10)-(2.13). From the proof of Theorem we know
that Constraints (2.11]) are convex in A7, so (2.10))-(2.13) yields a convex optimization
problem. |

Depending on the graph structure, the number of constraints in Lemma [2.I] can
grow exponentially. This is certainly the case for a complete graph.

Note that w is the maximum payoff the intruders can obtain for any available
route, given the choice of A~ of the agents. In the following section, we solve this
model for networks with special structures, such as networks with only parallel or
only tandem nodes. These are the networks in which routes do not intersect. Because
the payoff-function is continuous in A™, the probability of completing a specific route
in these networks must be the same for each route. We also provide numerical results
for networks with a general network structure.

2.3 Finding optimal strategies

In the previous section, we described an interdiction game in which intruders and
agents compete over the throughput of the intruders. In this section, we derive an-
alytical expressions and algorithms for finding optimal strategies, for three special
cases. In these cases, we let K equal the set of all possible routes. Finally, we use
the analytical expressions to speed up the solving process for general networks and
provide numerical results.

2.3.1 Network of parallel nodes

Consider a network of parallel nodes as shown in Figure The length of each route
k equals one. There are N possible routes such that r, = [k] for k = 1,..., N. The
payoff function of the game is given by:

N
- Hi
v(AMAT) = Ap————.
’; e+ A
The value and optimal strategies of this game are given in the following theorem.

Theorem 2.2. Consider the interdiction game on a network of parallel nodes. For
the agents, the unique optimal strategy \™* is given by:

A= = A, foralli=1,..,N. (2.14)
Zj:l 127
The value of the game is:
N
Yy D=1 M (2.15)

N _
Zj:l i+ A
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Proof. According to Theorem there exists an optimal pure strategy and the value
is given by v = max) miny- v(A,A7). Through Lemma we know that optimal
strategies for the agents can be found by solving:

min  w
=
s.t. AL_ <w, i=1,..,N,

Hi + A
N (2.16)
2N =A%
j=1
A7 >0, i=1,..N.

Given this network of parallel nodes, the agent must ensure that the probability of
completing a specific route will be the same for each route. Thus, for an optimal A™*:

v=A—t" =1, N (2.17)

i + Ay
By combining (2.17) with the interdiction budget constraint Zjvzl A; =A™, we obtain
the optimal strategy A~ and the value of the game. |

Equation ([2.14)), shows that inspection rates increase with node service rates. Given
Equation ([2.15)), it follows that the value of the game is dependent only upon the sum

of the service rates p; and not upon how these rates are assigned to the nodes. Thus,
from a game-theoretic point of view, a network of parallel nodes is equivalent to a
single queue with service rate equal to the sum of service rates.

o0 06

(a) Network of parallel nodes. (b) Network of tandem nodes.

Figure 2.2: Two networks for which an explicit value of the game can easily be derived.

2.3.2 Network of tandem nodes

Consider a network of tandem nodes as shown in Figure There is only one route
with length N and rate A. Therefore, the value of the game only depends on the
strategy of the agent. The payoff function of the game is given by:

N

- Hi
=1 F4 T
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For technical purposes, we introduce a relaxation of the optimization model described
in Section In this model, only the budget constraint is taken into account,
relaxing the non-negativity constraints . The value and optimal solutions of this
relaxation model with the objective function are given by the following lemma.

Lemma 2.2. Consider the relaxation problem on a network of tandem nodes. The

optimal solution \™* is given by:

A+
ATF = # — i, i=1,..,N, (2.19)

and the value of this relaxation is:

N
N 11
v = A = —. (2.20)
i=1 Zj:l wyi+ AT
. A7+Z§V:1 Hj : ;
Moreover, if —=F=— > max; u;, the optimal solution and the value of the relaz-

ation problem are equal to the optimal strategies and the value of the original interdic-
tion game.

Proof. The value v" of the relaxation can be found by solving the following optimiza-
tion problem:

N

v" =min A L_,
AT i=1 ‘LLq, + )\Z

N
st > A=A
i=1

In order to derive v", we use a Lagrangian approach. The Lagrangian of this problem
is given by:

N N
L) = AT —Eo= 4w | XA A
i1 Mt A j=1
Taking the partial derivatives with respect to A; and v, and rewriting, enables the
— N .
calculation of the optimal solution of the relaxation. If LN]:MJ > max; i, then

A7 >0foralli=1,..,N. In that case, it is also a feasible solution to the original
game and v” is an upper bound for the value v of the original game. Because there are
fewer constraints in the relaxation model, v" also gives a lower bound for v. Combining
the lower and upper bound, gives v" = v and the resulting solution is also an optimal
strategy for the original game. |

Equation (2.19) shows that the inspection rate increases as the service rate de-
creases, contrary to the case for parallel nodes. This equation also suggests that if
the service rate of a particular node ¢ is very high, it is optimal to set A\, = 0 before

A7+Z§'V:1 i
N

hand. To be more precise, suppose that < max; i;. Then there is a node

i such that A, < 0 and the value of the relaxation does not correspond to the value
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of the original game. To find a feasible solution for the original interdiction game, we
introduce an algorithm that, starting with the solution of the relaxation, sequentially
removes nodes for which A; < 0. In every step of the algorithm, the state space is
reduced by adjusting the value of A;” that violates . By using this relaxation and
iterative approach, we eventually find the optimal pure strategy for the agent for the
original game.

Algorithm 1
Let C’ be a subset of the set C, and N’ = |C"|.
1: Set C' =1, and N' = |C"].
2: Calculate for all i € C”:

_ AT Y ey
- ey, (2.21)

If \; > 0foralli e C': STOP, A\~ is given by (2.21) and the value of the game is
given by:
N i
v=A .
ieC’ >jecr i+ AT
Else: Go to next step.
3: For all ¢ such that A, < 0: Set A\, = 0, remove ¢ from C’ and update N’. Return
to step 2.

Theorem 2.3. Algorithm/[]] finds the optimal strategy for the agents and the value of
the interdiction game on a network of tandem nodes.

The proof of Theorem [2.3] can be found in Section [2.6]

2.3.3 Networks without intersecting routes

In this section, we consider networks in which the set of routes K is restricted to routes
that do not intersect. An example of such a network with three routes is shown in

Figure 23]
(O—O—)
(o-0-0)
No-0-0

Figure 2.3: Network of parallel tandem nodes: the number of nodes per route may
differ.

Consider a network of N nodes with routes K that do not intersect, in which route
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k consists of N nodes. The value function of this game is given by:

-3 N H S 1) N (2.22)

hek sl Hr(hs) T A

As before, we first consider the relaxation model such that A\;” < 0 is allowed. A, is
defined as the interdiction budget assigned by the agent to route k:

Ay = Z)\T(k o kEK,
- = Z Ay (2.23)
kEK
The optimal solution and the value of this relaxation are given by the following lemma.

Lemma 2.3. Consider the relaxation problem with objective function (2.22)) on a
network without intersecting routes. The value v" of this model can then be found by
solving:

N Ng
_ Z j: N [ A s=1 Mr(k,s
=1

keK

Moreover, the budget assigned to route k in the optimal solution, is given by:

VA r(k,s
A]:*:NkN M Z,urktt)

Proof. If we knew the interdiction budget A, , Lemma could be used to obtain
the value of the relaxation, and its optimal budget assignment to individual nodes on
route k. The throughput of intruders over route k is:

k
N
of = Ap H Elr (ko) (2.24)
Zt 1 Br(k,t) + A

Therefore, similar to the approach followed in Lemma the optimal solution and
value v" in this relaxation can be found by solving:

min  w
Ay
Ny,
N ™ S
st AT] bllrks) <, ke K, (2.25)

Nr =
o1 2ot Py T A
S A=A
keK
Solving ([2.25)) yields the optimal strategy A=* for the relaxation. As routes do not

intersect, for an optimal A, *:

N

o' = A H Nkﬂr(k,s)
- N, — %
521 2t Mty T A

, forallke K, (2.26)
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implying:

A s S
A" =Ny S/—HS L (ko) Zur(m) (2.27)

Combining ([2.23)) and ( - yields:

Al N AHNk Hor(k,s)
_ o 3 s=1 Mr(k,s
ISR TR DRV (=) (229)
i=1 keK
The value v" can be found by solving Equation (2.28]) iteratively. |

The optimal strategy is one in which the probability of completing a particular
route, is the same for each possible route. It may happen that for some route k,

A
M < maxjer, Mj, in which case the value of the relaxation model is not nec-

ebsarlly equal to the value of the original game with inequality constraints. Therefore,
we introduce an algorithm to find a feasible solution. The core of this algorithm is
similar to Algorithm set A, to zero if it violates the inequality constraints and
recalculate optimal strategies for the relaxation without these nodes.

Algorithm 2

Let C’ be a subset of the set C, let Cy, = {i € Ci € r} and C), a subset of C.
Moreover, let N’ = |C’| and N}, = |C}.|.

1: Set ¢' =C, N' =|C'|, and C}, = Cy, N, = |C}| for all k € K.

2: Obtain v" from:

AT+ = K 7260/ Nip

eC” keK

3: For all k € K, let:

’ A 1 s
Ay =N Alliec, b -
1€Cy,

4: For all k € K and for all i € C}, let:

o A+ > iccr M
- # . (2.29)

If \; >0forall k=1,..., K and for all i € C}: STOP, A~ is given by and
the value of the game is given by v".

5: Else: Go to the next step

6: For all k € K and for all ¢ € C}:

7 If A7 <0 and p; = maxjeo; p; (i € C): Set A; = 0 and remove i from C” and
C}.. Then, go back to Step 2.
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Theorem 2.4. Algorithm/[3 finds the optimal strategy for the agents and the value of
the interdiction game on a network of parallel tandem nodes without intersections.

The proof of Theorem [2.4] can be found in Section

Remark 2.1. The algorithm can be more efficient by replacing Step 5 of the algorithm
with:

e For all k € K and for all i € C}:
If \] < 0: Set A\, " =0 and remove ¢ from C’ and C}.. Then, go back to Step 2.

Due to its length, a proof that the adjusted algorithm also finds an optimal solution
is omitted.

2.3.4 General network

In the previous sections, we obtained analytical expressions and algorithms to find
optimal strategies for special networks, which do not contain intersecting routes. In
this section, we discuss the general network case.

The optimal strategy for the general network case is obtained using Lemma 2.1
The previously introduced results can be used to speed up the process of solving
general networks. In particular, utilizing Lemma may decrease the number of
general network variables with equal service rates in the following way. Each route
can be split into a set of intersection nodes C{ (nodes that are also part of another
route) and, between these intersection nodes, segments of tandem nodes C,? = C \C,g .
Constraints in Lemma can then be rewritten as follows:

123 Hi
AH _H — <w, forall keK.
ieC,{ /u’2+>\z Z‘EC,? H”L+A7,

Given the interdiction rates A\~ and a route k, the order of the nodes in this route
has no impact on the game value. Therefore, route k can be seen as a sequence of
intersection nodes Clg and one separate tandem queue with nodes C’,?. Let A, be the
total budget that is assigned to the tandem nodes in route k, i.e., A = >, or pg. If
/~\; is known, it is optimal to divide this budget over the nodes using Lemma , as

this can be seen as a separate tandem queue. So, by Lemma the constraints can
be replaced with the following constraints:

T
A H Hi [ I — <w, forallke K. (2.30)
iEC,ﬁ 273 + )\1 1160,? ZJ'EC;? 1221 + Ak

Remark 2.2. Lemma [2.2] gives a value for the relaxation, which equals the value of
the original game only if no negative interdiction rate is assigned to one of the nodes.
This is always the case if all nodes have an equal service rate because nodes with
equal service rates always have the same interdiction rate. The constraints in
can also be used to solve networks with unequal service rates. Then, by analogy with
Algorithm [2] the nodes with a negative interdiction rate can be removed from the
network and the resulting non-linear program must be solved again.
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2.3.5 Numerical examples

We have developed an interdiction game with intruders and agents and derived optimal
strategies. In this section, we first consider the computational efforts of our algorithms.
Then, we present two illustrative examples.

Computational efforts

This section explores the computational efforts required to obtain the optimal strat-
egy. To this end, Table below presents the running times for randomly generated
networks both for a direct implementation of Lemma and invoking the structural
results of Section [2:3.4] based on Lemma [2:2] For the results of Table 2.1 we con-
structed random routes in a network whose underlying graph is complete, and all
nodes have service rate one. For each case, we generated ten random instances and
show the average values and 95%-confidence intervals in Table The average length
of the routes equals the square root of the number of nodes, and in general it holds
that if the number of routes is small, the number of intersection nodes is also small.

To find optimal strategies, we used CVX 2.1, a package for solving convex programs
[28, 46], in Matlab version R2014b [84] on an Intel(R) Core(TM) i7 CPU, 2.4GHz, 8
GB of RAM. To this end, we reformulated Constraints such that they comply
with the ruleset of Disciplined Convex Programming (DCP) [47] as follows:

Ny, N -1
A H For (ke s) H (“T(’f»s) + >‘;(k»s)> =
s=1

s=1

which can be rewritten as:
Ny
-1
Cll vy <.
s=1

where C = Al_[i\[:k1 Hr(k,s) 18 @ constant and v,y ¢) = Hr(k,s) + )\;(k7s). Invoking the
function prod_inv from the CVX library, the reformulation of the convex program of
Lemma meets the requirements of the DCP ruleset [47]. With this formulation,
CVX finds the optimal solution of the problem.

From Table we observe that the running time for networks of reasonable
size remains acceptable for practical purposes. The network structure exploited in
Lemma|2.2| considerably reduces the running time for networks containing a relatively
low number of routes.

Networks of parallel and tandem nodes

First, we compare a network of parallel nodes with a network of tandem nodes. Both
networks consist of ten nodes with service rate one. The results are shown in Figure
For a network with tandem nodes, the throughput is much lower than for the
network with parallel nodes. This is an intuitive result because the intruder must be
served at all nodes within a tandem node network, while in the network with parallel
nodes, intruders are only required to complete service at one node.

Second, we investigate whether it is better to design a network with one node or
with multiple nodes, i.e. the optimal locations for protection against intruders. In
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Table 2.1: Running times for solving Lemma with and without implementation of

Lemma @

Number | Number | A | Running time Running time Game

of of with without value

nodes routes Lemma Iﬁl (sec) | Lemma Iﬁl (sec)

1000 10 5 | 2.44 (£ 0.13) 4.03 (£ 0.16) 0.38 (& 0.02)
1000 50 5 | 13.66 (£2.99) | 14.07 (£ 2.81) | 0.69 (& 0.02)
1000 100 5 27.39 (£ 1.21) 27.41 (£ 1.32) 0.78 (£ 0.01)
5000 10 10 | 4.17 (£ 0.46) 12.53 (£ 0.62) 0.20 (£ 0.03)
5000 50 10 | 25.13 (£ 1.10) | 36.11 (£ 1.47) | 0.56 (& 0.02)
5000 100 10 | 66.95 (+ 5.10) 72.94 (£ 4.50) 0.68 (£ 0.01)
25000 10 20 | 8.81 (£ 1.79) 63.52 (£ 2.16) 0.06 (£ 0.02)
25000 | 50 20 | 55.66 (£ 3.97) | 121.96 (& 5.08) | 0.39 (& 0.02)
25000 100 20 | 273.56 (£ 19.42) | 553.85 (£ 62.16) | 0.54 (£ 0.01)

a network with parallel nodes, we see that the value of the game increases in the
number of nodes because intruders can choose between multiple paths (see Theorem
. Therefore, in order to obtain the same value in a network with multiple nodes,
the service rate must be smaller in proportion to the number of nodes, e.g., the services
rate must be halved if the number of nodes is doubled.

Now, consider a tandem network in which the intruders are required to complete
service at all nodes. We compare one and two node cases. In the two node case the
intruder is served twice as fast. Figure shows that for a low interdiction budget,
it is better to have one node, while for a high interdiction budget, most intruders are
intercepted if multiple nodes are considered. These examples not only illustrate that
our model can be used to determine optimal deployment strategies of the agents, but
they may also help in the design of an effective network topology.

- == 1 node with rate 1

0.9 —— 2 nodes with rate 2

value
T
value
T
I

0 I I I L L L 0 I I I I I L L
0 1 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10 12 14 16 18 20

inderdiction budget inderdiction budget

(a) Compare parallel and tandem nodes. (b) Different network design.

Figure 2.4: Illustrative examples.
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General network

Consider the network in Figure with six intersecting routes ri1,72,...,76. These
routes have six intersection nodes iy, 1s,...,7¢ and 35 tandem nodes. For each node,
the service rate equals one. We solved our model in Matlab for different values of A~.
The total arrival rate of the intruder A equals one. The value v and optimal strategies
A~ and A~ for the agent are shown in Table The rates for all intersection nodes
are given by A; ..., A, and 11;1, - A,Tﬁ are the rates for all tandem nodes of one route.

The results are summarized in Table 2.2

T6

1
.t
1
1

I'4o-=90==2==

-
-

1

Figure 2.5: Example of a general network.

Table 2.2: Agent strategies for the general network of Figure

| [A~ =05 [A~ =1 [A~ =5 [A~ =10 [ A~ =50 |

v 0.8512 0.7321 0.2818 0.1162 0.0012
Y - 0.16 (3.2%) | 0.68 (6.8%) | 2.18 (4.4%)
A, | 0.07 (14.1%) | 0.14 (14.1%) | 0.50 (9.9%) | 0.83 (8.3%) | 2.78 (5.6%)
A, | 0.10 (19.5%) | 0.20 (19.7%) | 1.05 (20.9%) | 1.79 (17.9%) | 4.36 (8.7%)
A, | 010 (19.5%) | 0.20 (19.7%) | 0.78 (15.6%) | 1.18 (11.8%) | 2.84 (5.7%)
A | 0.07 (14.1%) | 0.14 (14.1%) | 0.72 (14.4%) | 1.10 (11.0%) | 2.73 (5.5%)
A | 0.07 (14.1%) | 0.14 (14.1%) | 0.73 (14.7%) | 1.29 (12.9%) | 3.11 (6.2%)
A - - - - 3.19 (6.4%)
A |- - - 0.11 (1.1%) | 3.74 (7.5%)
A | - - 0.30 (5.9%) | 0.83 (8.3%) | 6.24 (12.5%)
A5 |- - - 0.30 (3.0%) | 4.77 (9.5%)
AL |- - 0.01 (0.1%) | 0.40 (4.0%) | 5.54 (11.1%)
Ay | 0.09 (18.8%) | 0.18 (18.2%) | 0.76 (15.2%) | 1.48 (14.8%) | 8.54 (17.1%)

We would expect that the interdiction budget is evenly spread over the routes to
make sure that the maximum completion probability is minimal. Table 2:2] shows
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the expected spread of interdiction budget over the routes. For example in the last
case (A~ = 50), all routes get around 24% of the total budget. From Lemma we
expect that nodes in shorter routes (routes 3, 5 and 6) would have higher interdiction
rates than nodes along longer routes. This can also be seen in Table Table
also shows that if the interdiction budget A~ is low, most budget is assigned to the
intersection nodes because multiple routes can be protected simultaneously from these
nodes. However, if the total interdiction budget increases, more budget remains for the
tandem nodes. Moreover, more budget is assigned to intersection nodes where more
routes intersect, such as i3, because more routes can be protected from the same point.
Also, routes with a small number of intersection nodes, such as rg, have more budget
allocated on the tandem nodes to ensure that these routes are sufficiently protected.
In this example, the total route budget is almost the same for each route. This doesn’t
have to be the case if the lengths of all routes are very different or the service rates
are unequal.

2.4 Probabilistic routing of intruders

In Section [2:2] we described an interdiction game on a network with fixed routing of
intruders. In that game, intruders select their route upon arrival at the network by
choosing from a fixed set of routes. We can also model probabilistic routing of the
intruders. In this case, intruders decide their next step at each node according to a
certain probability. In this section, we describe the game with probabilistic routing of
intruders and show that the results coincide with those for fixed routing of intruders.

2.4.1 Network with probabilistic routing of intruders

Consider a network, similar to the network of Section 2.2.1] but now with probabilistic
routing of the intruders. Intruders arrive at the network according to a Poisson process
with rate A and route through the network using a probability matrix P = (p;;),
i,j € {0,1,...,N,N + 1} where p;; is the probability of routing to node j after
service completion at node 7. This probability p; ; is only allowed to be positive if
there is a link between node ¢ and node j in the queueing network; the set of all
possible links is given by E. Intruders arrive at node 7, 7 € C's, with probability pg ;,
so the arrival rate at node 4 is given by A\; = po;A. If i ¢ Cg, \; = 0. Asi € Cp
has just one outgoing arc (to N + 1), the probability of leaving the network after
service completion at node ¢ € Cr is given by p; y+1 = 1. Note that a P matrix may
introduce routes with an arbitrary number of cycles.

Let R be the (possibly infinite) set of all possible finite routes through the network,
in which r(k, s) is the s-th node of route k € R and Nj, is the length of route k (in
which 0 and N + 1 are not accounted for). We let r(k, N + 1) = N + 1. Then, given
matrix P, the probability that route k is chosen by the intruder equals:

P(route k is chosen) = pg (k1) H Dr(k,s),r(kys+1) - (2.31)

s=1

The probability that intruders leave node i because they finished service is given
by Equation (2.1)) and the probability that route k is actually completed without
interdiction is given by Equation ([2.2)).
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2.4.2 Game description

Consider the interdiction game with the probabilistic routing of intruders. Instead of
intruders selecting arrival rates Ay for route k, intruders select a routing matrix P.
Therefore, the action set of the intruders, see Equation (2.3)), is replaced by:

N+1
Ap=qP|Y pij=1,i=0,.,Nip;; >0,p;; =0if (i,j) ¢ E
j=1

The agents action set remains the same as in the fixed routing scenario, see Equa-
tion (2.4]). The payoff function is replaced by the corresponding payoff function, which
defines the arrival rate of intruders at node N + 1:

Ny,

_ _ Hor(k,s)

U<Pa)‘ ) = )"r‘(k,l) Pr(k,s),r(k,s+1) = (232)
;;z 1;[1 fir(k,s) + Ares)

with Ay (e,1) = Por(e,n) A

2.4.3 Relation between optimal strategies

In Section we described methods to find optimal strategies for the interdiction
game on a network with fixed routing of intruders. In this section, we discuss the
relationship between the optimal strategies for a network with probabilistic routing of
intruders. We first show that for each network with probabilistic routing, there exists
a network with fixed routing of intruders such that the average arrival rates are equal
and vice versa.

Lemma 2.4. Take \~ fized. For every network with probabilistic routing of intruders
and given A\, there exists a network with fized routing of intruders, such that the average
arrival rate at each node is the same in both networks. Furthermore, for every network
with fixed routing of intruders and given X, there exists a network with probabilistic
routing of intruders, such that the average arrival rate at each node is the same in
both networks.

The proof of Lemma [2.4] can be found in Section [2.6

We use Lemma, to prove that optimal strategies also exist in the case that
intruders use probabilistic routing. Consider a network with N intermediate nodes,
a source node and a sink node. Moreover, let Fi,q be the finite set of all possible
fixed routes without cycles between the source node 0 and the sink node N + 1. For
that case, an optimal strategy for the intruders and agents can be calculated by the
optimization model in Sectionm These strategies are given by A* and A™* and the
optimal value is given by v. We show that the value of the game with probabilistic
routing of intruders exists and is the same as the value of the game with fixed routing
of intruders. Moreover, optimal strategies of the agent are the same for both games.

Theorem 2.5. Consider the interdiction game on a queueing network with probabilis-
tic routing of intruders. There exist optimal strategies P* and A\™* and the value of the
game with probabilistic routing of intruders equals the value v of the game with fized
routing on Fyopqr. Moreover, the strategy of the agent is also optimal for the game with
fixed routing.
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Proof. Take an arbitrary routing matrix P that describes a strategy of intruders for
a network with probabilistic routing of intruders. Suppose that the agent chooses the
arrival rates according to the optimal strategy A\™* of the game with fixed routing of
intruders on Fyyq;- By Lemma and given \™*, we can construct a network with
a set of fixed routes F' and strategy \ such that the average arrival rate at each node
is the same for the network with probabilistic routing and fixed routing of intruders.
Because the payoff of both games, see Equations [2.5] and is given by the arrival
rate at the sink node, it follows that:

oA A7F) = 5(P,A7). (2.33)

The set of fixed routes F', derived from probabilistic routing may be infinite. This is
due to the fact that probabilistic routing may induce cyclic paths. We show that for
our model with fixed routing, cyclic routes can be eliminated. To this end, suppose
that the intruder assigns a positive arrival rate to a cyclic route k: Ax > 0. By arbi-
trarily eliminating detours in the cyclic route, we obtain a non-cyclic route k such that
P(route k is completed) > P(route k is completed) (by Equation (2.2)). Transferring
the rate Ay to Az results in an improved strategy for the intruder.

So, let F’ be the set of routes derived from P, with all cyclic routes eliminated and
let X' be the corresponding improved strategy for the intruder, so:

v(AATF) < u(N, A7), (2.34)

Also, because \* is the optimal strategy of the intruder for the case that all possible
fixed routes without cycles are allowed, it follows that

vV, A7) < oA AT = . (2.35)
Combining Equations (2.33)), (2.34) and ([2.35]) yields:
o(P,A™") <w, forall P. (2.36)

We now complete the proof by showing that there exists a P* such that o(P*, A7) >
v, for all A~. Given optimal strategies A* and A™* from the game with fixed routing,
a routing matrix P* can be constructed according to Lemma[2.4] Because the average
arrival rates are the same, the average arrival rates at the sink node are also equal and
the values of the payoff functions of both the game with probabilistic routing and the
game with fixed routing are equal. Therefore:

G(P*, A7) = (A, A7) = v (2.37)

Consider an arbitrary strategy A~ for the agent. Using the same argument, we know
that:

G(P*, A7) = (A, A7) > o, (2.38)

as \* is optimal for the intruder.
Combining (2.36) and (2.38)) proves that the value exists and is given by v. More-
over, the optimal strategy of the agent remains the same. |
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Remark 2.3. For a network with probabilistic routing, the construction of the network
with fixed routing as in Lemma also ensures that the probability of following a
specific route is the same for both networks. This means that for every network with
probabilistic routing of intruders, there exists an equivalent network with fixed routing
of intruders.

However, the reverse is not necessarily true. In fact, consider a network with fixed
routing of intruders; it is not always possible to construct an equivalent network with
probabilistic routing of intruders as the next example shows. Consider a network with
two routes and one intersection node. If two routes intersect, there may exist more
routes in the network with probabilistic routing than in the original network with fixed
routing, due to combinations of the original routes.

Although it is not always possible to create a probabilistic network that is equiva-
lent to the network with fixed routing, one can introduce multiple intruders to ensure
that the probabilistic network contains the same routes.

The question now becomes: how many intruder types are necessary to construct
a network with probabilistic routing which is equivalent to the network with fixed
routing? Below we describe how to find an upper bound for the number of types we
need.

Consider a network with fixed routing and K possible routes. To find an upper
bound for the number of customer types, we construct a graph G, that has K nodes.
All nodes correspond to a route, and two nodes are considered to be connected if the
corresponding routes intersect in the network with fixed routing. An upper bound for
the number of types equals the chromatic number x(G). The nodes that do have the
same type in the vertex coloring do not intersect, so they are allowed to have the same
intruder type in the probabilistic network. This upper bound cannot be improved for
the general case. However, fewer types will be enough in many specific situations, such
as when routes only intersect at their last node. O

Remark 2.4. Note that the network with probabilistic routing is known to have a
product-form solution [40]. We do not need this to calculate the intruders’ probability
of completing a specific route because we can rely on the fact that intruders are only
removable from the queue if they are in service and that agents arrive at the network
according to an independent Poisson process. O

2.5 Concluding remarks

In this chapter, we have described an interdiction game on a network with intruders
and agents. The interdiction game is played within a queueing network where intruders
are the regular customers and the agents are the negative customers. For the case that
the routing of the intruders is considered fixed, we designed a network game that has
optimal pure strategies and we found analytical expressions for special cases, such as
networks with only tandem or parallel queues. Also, for a network without intersecting
nodes, we introduced an algorithm to find optimal strategies for the agents.

For general networks, we showed that the analytical results can be used to speed
up finding optimal strategies, by dividing the network into a set of intersection nodes
and separate tandem nodes. Moreover, if there is a subnetwork of the network, that
only consists of parallel routes which do not intersect, then the optimal strategy of the
agent is such that the completion probability is the same for each of these routes. Also,
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if the network contains a part that only consists of tandem nodes without intersections,
the nodes with a lower service rate must be inspected more often.

In this chapter, we also considered modeling the routing of intruders in a probabilis-
tic manner. We showed that in this case, optimal strategies for agents and intruders
also exist. Moreover, the value and optimal strategies of the agent of this game equal
the value and optimal strategies of the agent of the corresponding game with fixed
routing of intruders. So, the intruders cannot improve their strategy by deciding to
use a probabilistic routing strategy.

There are several possible extension of our model. Instead of modeling agents that
arrive at a specific node for inspection and then leave the network, it could be more
realistic in some cases to model routing of agents. In this approach, agents not only
inspect the nodes, but also route through the network. Another possible extension
concerns each node as a single server queue with exponential service time. For further
research, it would be interesting to study different types of queues, for example with
multiple servers or a different service discipline.

2.6 Appendix

Proof of Theorem[2.3 Rewrite the optimization problem for the original game as:

N
min A s
AT iy i A
N
S.t.Z/\i_ —-A" =0,
i=1
—A; <0, i=1,...,N.

The KKT-conditions can be used to prove optimality of a solution in a non-linear
program (see Section 4.3 in [I3]). In order to prove optimality, we show that the
KKT-conditions hold for the solution A™* obtained by Algorithm [1|. Thus, o and
must be found such that:

-1
— oA ) +a—-8=0, i=1,..,N, 2.39
) B (2.39)
N
AT -AT =0, (2.40)
j=1
BN =0, i=1,..,N, (2.41)
Bi>0, i=1,..,N. (2.42)

Let C" = {i € C|A\;* > 0} and let N’ = |C’|. The equality condition (Equation (2.40))
holds by construction of the algorithm:

N — _

. Z iccr Hj +A Z iccr Hj +A _
E)‘i :E (jN’_Mi :N/JT_E i = A
i=1

ie€C’ ieC’
Moreover, from (2.41]), we know that 5; = 0, for all i € C’, so (2.39)) gives:

mv()\_*) +a=0, forallie(C.
g 1
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Therefore, using (2.21)):

1 N’
a=—— A\ )=
Zjec/ M] +A7

= — v
Hi + A
IfA* =0 (forallie C\C), (2.39) gives:

-1 . N’
=
Hi ZjEC’ py + A

N’ 1
== — = a7,
g (Zjec’/ g+ A Nz‘) vAT)

By proving that 3; > 0 for all 4, the proof that the KKT-conditions hold is completed.
Note that the value of the function v(A~™*) is positive by definition, Moreover, by
construction of the algorithm, we know for any i € C'\ C":

(A7)

(A\) = Bi =0,

ZjGC’U{i} py AT

< .
N/+1 —/1’17
ZjeC'/‘j+A7 N’
< i
N' +1 N +1
!
N 1 > 0.

djecr i AT

Therefore, 8; > 0, for all ¢ € C and the KKT-conditions hold for the solution found by

Algorithm[I} Furthermore, because of the convexity of the value function and linearity
of the constraints, the KKT-conditions are sufficient, which completes the proof. W

Proof of Theorem (2.4l The value of route k is defined as the payoff of the game if the
intruders choose to use only route k, so A\, = A. In an optimal solution, the value
for each route should be equal. If this is not the case, the strategy of the agent can
be improved by shifting the arrival rate A™*, such that more interdiction budget is
assigned to the route of minimal detection probability. To prove optimality of the
algorithm, (1) the value over each route must be equal, (2) the algorithm must find a
feasible solution, and (3) the arrival rates that are set to zero by the algorithm, must
also be zero in the optimal solution.

The last condition is necessary because of the following. If for a certain node the
agent’s arrival rate is set to zero in the optimal solution, then the probability of ser-
vice completion at this node equals one. In essence, this node has no impact on the
total throughput of the intruders. Therefore, ignoring these nodes in the optimization
model, which is done for the relaxation in the last step of the algorithm, gives the same
solution. If solving this relaxation without these nodes also yields a feasible solution,
the solution of the relaxation also is a solution for the original game.

The first condition holds because of construction of the algorithm: the optimal strat-
egy is calculated under this assumption (by Equation ) The second condition
holds because the algorithm stops if all arrival rates are larger than or equal to zero.
We will prove that the arrival rates that are set to zero by the algorithm, are also
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zero in the optimal solution. Let C be the set of all nodes and let Cy be the set of
nodes that are in route k. Moreover, let C' = {i € C|\; > 0, by algorithm} and
let COPT = {i € C|\;* > 0, in optimal solution}. We must therefore prove that
C" = COPT . Let v be the value found by the algorithm, let v9FT be the value of the
original game and let v* be the value of the relaxation calculated during iteration ¢ in
step 2 of the algorithm.

We first prove that C' O COFT. Take i ¢ C’ such that i is removed during the
first iteration and p; = maxjec, p; for some k. Because v' is the value for the re-
laxation without any inequality constraints, we know that vOFT > v'. Let A ! be
the budget assigned to route k during the first iteration and let A;OP T be the budget
assigned to route k in the optimal solution. Consider two cases:

1 A—l > A—OPT,
AT > A :
Thus, in the optimal solution, route k receives a smaller or equal amount of
budget. The arrival rate A; is obtained from Equation (2.29) and is increasing
in A, . Since it is optimal to use Algorithm (1| to assign the budget to the nodes
of one tandem, the same formula must hold for A, * in the optimal solution. So
if A,;l > A,;OP T A; " would also be zero in the optimal solution and therefore,

i ¢ COPT.

2. At < ALOPT

Assume that i € COPT so A\;* > 0. Because of maximality of j;, all j € C}, are
in COPT. Because for all j € Cg, A; * > 0 and the value of the game equals the
value for each route (Lemma , vOPT is given by with A, = A, 977
and A\ = A. Moreover, during the first iteration, C’ = I, so v! is given by
with A, = A,;l. Equation is decreasing in A,  and therefore, vOPT < ol
but this contradicts with v9FT > »!. So, our assumption is not correct and
: ¢ COPT.

Therefore, if ¢ ¢ C’ such that 4 is removed during the first iteration, it follows that
i¢ COFT,

Now assume that for all i ¢ C’ that are removed until iteration ¢t — 1, i ¢ COFT.
Take j ¢ C’ such that j is removed during iteration ¢ (t+ > 1). Let C = {i €
C|i not removed before iteration t} and COFT = {i € C|\;* > 0, in optimal solution}.
By induction, we know for all i € C'\ C that i ¢ COFT. So, running the algorithm
with C' gives the same solution as running the algorithm with C. By this logic, the
above argument can be used to prove that if ¢ ¢ C’ such that 4 is removed during the
t-th iteration and p; = max;jcc, pt; for some k, then i ¢ COPT. In general, if i ¢ C’
then i ¢ COPT and ¢’ D COFT.

We now prove C/ C COPT by contradiction. Assume that ¢’ ¢ COPT. Because we al-
ready proved C’ D COPT it follows that C’ D COPT. The values v and vOFT are the
solutions of the optimization problem (Lemma under the additional constraints
A7 =0, forall i ¢ C" and A\; =0, for all i ¢ COFT respectively. If C' D COPT | there
exists at least one i’ € C’ such that i’ ¢ COPT. Therefore, A}, > 0 for the first case
(A7 >0, for all i ¢ C’), but \;; = 0 for the second case (A; = 0, for all i ¢ COTT).
This results in a worse solution for the second case and v/ < v, This also contra-
dicts with optimality of v©FT, thus the assumption was incorrect and C’ C COFT,
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Combining €’ O COPT and C' C COFPT gives ' = COPT | which completes the
proof. |

Proof of Lemma[2.4]. Consider a network with probabilistic routing of intruders with
arrival rates of intruders A; and agents A;, and service rates yu; for all i € C. R is
the set of all possible routes induced by P (R may be infinite). Now, we construct a
network with fixed routing of intruders with arrival rate of intruders \; for a route k.
Define for each route k € R the arrival rate of intruders following fixed routing by:
Ak = Ar(k,1)Pr(k,1),r(k,2)Pr(k,2) r(k,3) - -Pr(k, Ny ), N1 (2.43)

This is the arrival rate at the first node multiplied by the probability of following this
route, given P. For the network with probabilistic routing, the mean arrival rate «;
at node ¢ is given by the traffic equations:

1)
J J J

For the network with fixed routing, the mean arrival rates are defined by:

vy = Z Zai(k,s),

kER s=1
where

t)+)\7‘(k* t)

py %, if r(k,s) =1,
i(k’s)_{ Mot (5,9

0, otherwise.

Substituting the definitions (2.43) and (2.44)), and rearranging terms yields:

4 &l
TN +Z/\jpgz)\_7]+zz)‘hph’]p“)\ —i—uj)\ + pp *

The same expression can be found for &; by rewriting the traffic equations for the
network with fixed routing and substituting the definition of a;(k, s). Thus, by con-
struction, the average arrival rates at each node of the network with intruders following
fixed routing equal the average arrival rates of the network with intruders following
probabilistic routing.

Now consider a network with fixed routing of intruders with rates A\, and A\~. We
can construct a network with probabilistic routing of intruders such that the average
arrival rates are equal. For every route k, we have r(k,1),r(k,2),...,r(k, N;) and
arrival rate \j, at node 7(k,1). The probability p;,; that an intruder is going to node
j after completing service in node i can be calculated by dividing the flow from ¢ to j
by the total flow out of :

SR SN, (R, )
Ek:l 2521 ai(k, s)

Pij; =

)



2.6 Appendix 35

where:

(k) = {Afw i r(k,9) =4,

0, otherwise,

bi,j (k, 8) =

. g, if r(k,s)=iand r(k,s +1) =7,
0, otherwise.

Also, the arrival rates at node 4 for the network with probabilistic routing are given
by:

K
A= ai(k, 1).

k=1

Now, we can readily show that given A~ the average arrival rates at each node of
the network with fixed routing equal the average arrival rates of the network with
probabilistic routing. |
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CHAPTER 3

Non-cooperative queueing games on a
Jackson network

This chapter resulted in [74].

3.1 Introduction

In this chapter, we introduce and analyze a new type of queueing games: non-
cooperative games on a Jackson network. The game takes place on a Jackson queueing
network, where multiple players compete to minimize their own expected sojourn time.
All players decide on a routing strategy through the network by distributing their ar-
rival rate over a fixed set of routes. First, we analyze the game with continuous
strategies, where players can split their total rate over several routes. Second, we
consider the game where each player is only allowed to pick a single route from the
source to sink node. This game is a special variant of a weighted congestion game
[I11]. In this case, there does not always exists a Nash equilibrium in pure strategies,
but we discuss several cases for which there does exist one.

In the literature, there are several papers combining game theory and queueing
models. For example in communication networks, game theory is used to determine
optimal routing strategies (e.g.,[0]) and in security, queueing is used to model stochastic
elements in interdiction games (e.g., [I27] or Chapter [2). In [53], the authors give a
broad overview of models of rational behavior in queueing systems. In [24], the authors
discuss a queueing game where Braess’ paradox also occurs on a queueing network.

In this chapter, we discuss a game on a Jackson network. The cooperative variant
of Jackson games is introduced by Timmer and Scheinhardt in [121], [122]. This game
is played on a network of M/M/1 queues and each server in this network is considered
as a player. In [I2I], the authors analyze the game where the players are allowed to
cooperate by redistributing their service rates over the nodes in order to minimize
the lung run expected queue length. In [122], a similar game is considered where the
players cooperate by redistributing the arrival rates of the customers. We introduce
the non-cooperative variant of this sgame and analyze for several cases the existence
of a Nash equilibrium.

This chapter is organized as follows. In Section[3.2] we give a general description of
the non-cooperative game on a queueing network. In Section [3.3] we consider the game
with continuous strategy space, where each player is allowed to distribute his total

37
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arrival rate over the set of fixed routes. We prove the existence of a Nash equilibrium
and discuss an algorithm to find optimal solutions. In Section we discuss the game
where players route their total arrival rate over a single route. We discuss for several
variants whether pure Nash equilibria exist or not. Finally, we give some concluding
remarks in Section

3.2 Model

In this section, we introduce the game on a Jackson network. By adjusting the con-
straints on the strategy space, both the continuous and discrete case are given by the
same model.

Consider an n-player game on a queueing network with N nodes. The set of all
players is A and the set of all nodes is C. Each node ¢ represents an M/M/1 queue
with service rate p;, ¢ = 1,..,N. The arrival rate, \;, of each node depends on the
routes chosen by each player. The total arrival rate for player j is A), which has to
be divided over a given set of routes RY), j = 1,...,n. A route r € RY) is given by a
set of nodes. Each player decides on the arrival rate to each route in order to minimize
its own total expected sojourn time. The strategy of player j is given by the vector
p\9), where pgj ) is the probability that route r € R\ is selected. So the arrival rate
for player j to route r is pgj)A(j). Let p = {p(l)7 ...,p(”)} be the strategy of all players
and p_; = {pV), ..., pu=1 pU+D " p(M} the strategy without player j's strategy.

In this game, the objective of all players is to minimize their own expected sojourn
time. The mean sojourn time of a single node ¢ depends on the strategy of all players
and is given by:

1
Hi — )\i’
where \; = 2701 3" i er0) PP A0 is the total arrival rate for node i. The total
weighted mean sojourn time for player j is:

N

i Z’r‘:i r,r () pgj)
fOl(p) = =renre i (3.1)

P i — A

and the total weighted mean sojourn time of all players is:
f)=>_f9(p).
j=1

Consider the game with continuous strategy space and thus, each player is allowed
to split the arrival rate over all possible routes. Each player only minimized their own
expected sojourn time. Given the strategy p_;, the optimal strategy for player j can
be found by solving the following linear program:

N

)
min Z ZT:ZET,TER(J) p (32)

) P — A
p i=1 i )

st h=> Y pAD iec, (3.3)

J=1rier,re R(G)




3.3 Game with continuous strategies 39

Ai < g, ieC, (3.4)
> =1, (3.5)

reR()

p¥) > 0. (3.6)

By solving - simultaneously for all players j gives the value of p in a Nash
equilibrium. By replacing Constraint by pgf ) ¢ {0,1}, the game with discrete
strategies where players can only select a single route is modeled.

In the next section, we analyze the game with continuous strategy space and there-
after in Section we discuss the game with discrete strategies.

3.3 Game with continuous strategies

In the previous section, we described non-cooperative games on a Jackson network. In
this section, we analyze the game where continuous strategies are considered, so where
pgj) e0,1,j=1,..,n,r¢€ RY). This means that each player is allowed to split his
arrival rate over the set of fixed routes. We prove that there exists a unique pure Nash
equilibrium for this game and discuss approaches to find this Nash equilibrium.

3.3.1 Existence of pure Nash equilibrium

We first prove convexity of the payoff function for each player separately, such that
the strategies of the other players are fixed. Let ) (p) (Equation (3.1])) be the payoff
function of player j.

Lemma 3.1. The payoff function f9)(p) is strictly convex in pY) for p € P, p =
(pW),p_;), where:

P={n > pP=1p0>0eN Y S pIND < iecC) (3.7)

rire R() Jj=1rierreRr®@

Proof. First, we rearrange f@)(p) such that it is a function of p(?). Since p—; is fixed,
we can subtract the total arrival rate at a node by all players but j from p;. Let
f®) = 2o m, where p = pU). Moreover, p € P describes the probability

that node 7 is selected by player j and fi; = p; — Zke/\/\j D oricrre R psﬂk)/\(k), which
is a constant number since p_; is fixed. P is the subset of P where p_; is given:

P={lp =Y > pieCjeN.peP}

J=1ruerre RG)

We construct the Hessian of fU)(p), which is given by the following entries:

af fi
959 (3 — G2’ ied,
D (i1 — p; )
af? 2/ \9)
/ K 1€ C,

o 0p (i = pAD)?
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of? .
813(./)'];132.7) = O7 1, ke C.

]
Since only the diagonal elements have non-zero numbers which are non-negative for
all p € P, it can easily be seen that the Hessian is positive and therefore, fU)(p) is
strictly convex in p@). |

Using Lemma (3.1} we can show that there exists a Nash equilibrium for the non-
cooperative game on a Jackson network.

Theorem 3.1. The non-cooperative game on a Jackson network has a unique pure
Nash equilibrium if the set P is non empty, where P is given as in (3.7)).

Proof. A continuous game has a unique pure Nash equilibrium if the strategy space
is bounded and convex and the payoff function is continuous and strictly convex for
each player (see Theorem 1 in [I10]). It can be easily seen that the strategy space is

bounded since pt9) > 0 and Y e RO pgj) = 1. Moreover, the set is convex since it
is constructed with linear (in)equalities. From Lemma it follows that the payoff
function is convex for each player. Also, since fp 5 is continuous for each p where
i — pA > 0, the payoff function is continuous on P. Therefore, it follows that there

exists a unique pure Nash equilibrium. |

3.3.2 Finding pure Nash equilibria

In this section, we discuss methods that can be used to find optimal solutions.

To find an optimal Nash equilibrium, Equations — have to be solved for
each player j. One method to find the exact solutions of these mathematical programs
simultaneously is by using Lagrange multipliers. However, as we show in the following
example, this results in solving a system of nonlinear equations.

Example 3.1. Consider a network with 3 nodes. There are two players with routes
RW = {{1},{2}} and R® = {{2},{3}}. The payoff functions for player 1 and 2 are
given by:

£y R 1—p)
11— pOAD " — (1= pOIAD — (1 = p@)AD”

15— PPN | i — (1= pO)AD — (1 = p@ON’

where p(!) is the probability that player 1 selects node 1 and 1 —p(*) is the probability
that he selects node 2. Similar, p(?) is the probability that player 2 selects node 3 and
1 — p® is the probability that he selects node 2.

We solve this network using Lagrange multipliers. We assume that pq > A,
ps > A3 and pp > XD 4 \?)

The Lagrangians for both players are:

»® 1= p®
=D s — (1= pWAD — (1 = p@AD
+ap™ — ap(1 - pM),

Ll(p(1)7 a17a2) =
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) | @
Lo(p(® — p D
2P, B o) 15— pOAD Ty — (1= pWAD — (1= p@AD

+ Bip!® = Ba(1 - p@).

An optimal solution for p") and p® can be found by solving the following
(in)equalities:

oL, 11 - pio — pAIA? ot =0
OpM (g —pOAD)2 (g — pOAD — p@p@)2z P T
OLo N M3 . M2 _p(l))‘(l) — B+ B2=0
8p(2) o (/1,3 _p(2))\(2))2 (/1,1 — p(l))\(l) — p(2))\(2))2 L 2=
alp(l) = 07

as(1—pM) =0,

ﬁlp@) = 07

ﬁ2(1 _p(Z)) = 07

0<p® <,

0<p@ <1.

Solving this set of equations gives an optimal solution where p(t) = p(2 = 0.39 if
AD =22 =1 and py = p3 = 3 and py = 4. (]

The approach described above can be used to find a Nash equilibrium for the non-
cooperative queueing game. However, already for such a small game, this results in
(in)equalities that are difficult to solve. Therefore, we use an iterative approach to
find a Nash equilibrium.

A common approach to find Nash equilibria is by a best-response approach where
all players iteratively search for there best-response:

Algorithm 3 Best-response algorithm

1: Initialize: construct a feasible solution for p(), j € A/,

2: Select a player j € A such that pl9) is not a best response to p—;. Update p\9) to
a best response of j to p_;.

3: If p is a Nash equilibrium then stop. Else, go to Step 2 with p.

Following [100] and [I14], the best response algorithm always converges to the
Nash equilibrium under the same conditions as needed for the existence of a pure Nash
equilibrium. Therefore, following the same arguments as in the proof of Theorem [3.1]it
can be shown that this best response algorithm always converge to a Nash equilibrium.

Theorem 3.2. Algorithm[3 converges to a pure Nash equilibrium for the non-cooperative
games on a Jackson network with continuous strategies.

3.4 Game with discrete strategies

In the previous section, we discussed the game with continuous strategies. This section
considers the game where each player is only allowed to choose discrete strategies. That
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is, each player can only select one route resulting in a finite set of strategies for each
player. For this game, there always exists a Nash equilibrium in mixed strategies [94].
However, we are interested in the case where players are not allowed to randomize over
the possible routes. We first explain how this game translates to a weighted congestion
game and thereafter, we discuss the existence of pure Nash equilibria for several cases.

3.4.1 Weighted congestion games

Games on a Jackson network with discrete strategies are a special variant of congestion
games. In congestion games, multiple resources are available and each player selects a
subset of these resources minimizing their own cost. The cost of each resource depends
on the number of players selecting that resource. In a traditional congestion game, all
players are equivalent and have the same influence on the cost of a single resource. For
these games, it can be proven that there exists a Nash equilibrium in pure strategies
[111].

The game discussed in this section is a special variant of a weighted congestion
game. In weighted congestion games each player has a weight and the cost for each
resource depends on the weighted sum of the players that pick that resource. Here, the
weight translates to the total arrival rate of each specific player. In general, weighted
congestion games do not always possess a Nash equilibrium in pure strategies (for
example in [50} ©0]).

However, there are several cases for which Nash equilibria do exist. For example, for
games in which the underlying matrix is a matroid, it can be proven that there exists a
pure Nash equilibrium [I]. Also for for games with affine or exponential cost functions,
pure Nash equilibria exist [50]. In [123], the authors prove that weighted congestion
games where players can split (integers only) their total weight over the resources have
a Nash equilibrium when the cost functions are convex and monotonically increasing.
Also for Shapley network congestion games where the players split the cost of a shared
edge (e.g., [7, 23] [68]), pure Nash equilibria exist when at most two players can share
an edge or when all players have the same source and sink node.

Motivated by [50], we illustrate by means of an example that for the games on
a Jackson network discussed in this chapter, there does not necessarily exist a pure
Nash equilibrium.

Example 3.2 (Pure Nash equilibrium need not exist). Consider a Jackson game with
two players with arrival rates () = 1 and A(®) = 2. The game takes place on a network
with 6 nodes and both player 1 (blue) and player 2 (red) have two possible strategies
(Figure. The strategies of player 1 are 7’51) ={1,2,3} and rél) = {4,5,6}, and for
player 2 the strategies are r§2) = {1,2,4} and 7‘52) = {3,5,6}. Moreover the service
rates are given by u; = po = us = pe = 6 and uz = ug = 4.95. A matrix representing
the expected sojourn time of both players for this game is:

Player 2
T§2) 7“52)

(1)
Player 1 1, 0.920/1.006 | 0.913/1.013
r$ 10.913/1.013 | 0.920/1.006

As can be easily seen in this matrix representation, this game does not have a pure
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Nash equilibrium since at each entry, at least one of the players has the incentive to
switch to another strategy (row/column).

Figure 3.1: Counter example.

3.4.2 Existence of pure Nash equilibria

There are several subclasses of games that allow for a pure Nash equilibrium. If the
arrival rates of all players are identical, this game translates to a traditional congestion
game that has a pure Nash equilibrium.

Theorem 3.3. The n-player non-cooperative game on a Jackson network with equal
arrival rates \9) = X for all players j, j € N, has a pure Nash equilibrium.

Proof. We will show that the n-player non-cooperative game on a Jackson network
with equal arrival rates AU) = X for all players j is a congestion game. The result then
follows from [IT1], since a congestion game has a pure Nash equilibrium.

(4)

Consider a strategy profile p for all players. Let a,”’ (p) equal 1 if node ¢ is used by

player j in profile p, and 0 otherwise. Then z;(p) := E?Zl az(fj)(p) = #(players using node 7).
Under strategy profile p, the sojourn time (3.1]) of player j is

(4) .
f(j)(p) _ iv: E{r:iEr,TERU)}pTJ _ N agj)(p)
i=1 Hi — A — i — N
and
Ai = Z PN = Zagj)(p))\(j) — ()
Jj=1{rierreR@} j=1

Let the delay function d; : N — R be defined as

1
fi — T\
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In its domain {z|x < p;/A}, d;(x) is positive and monotone increasing. Note that
x;(p) < pi/X is required for strategy profile p to be feasible. This implies that the
n-player non-cooperative game on a Jackson network with equal arrival rates is a
congestion game. |

If the service rates at all nodes are identical in a 2-player non-cooperative game on
a Jackson network, then the game has a pure Nash equilibrium.

Theorem 3.4. For a two-player game with p; equal for each node i, i € C, there
always exists a pure Nash equilibrium.

Proof. In [50], Theorem 3.12, the authors prove that there exists a pure Nash equilib-
rium for any two-player game where the cost function for each resource (node) can be
written as am(z) + b, where m(z) is a monotonic function and a,b € R. Since u; = u
for each i € C, we can choose m(z) = uiz’ which is a monotonic increasing function
for ;1 > x. Then for every node, the cost function equals m()\;) and can therefore be
written as a am(z) + b. So, this game has a pure Nash equilibrium. |

From Theorems and it follows that two-player games with equal A or u
have a Nash equilibrium in pure strategies. However, this is not the case in general
as Example [3.2] shows. The following theorem discusses 2-player games on a Jackson
network on an A x B grid. The network has AB nodes that may be represented by
their coordinates (z,y), z =1,..., A, y =1,..., B. Customers may only route to the
neighboring nodes (z — 1,y), (x + 1,y), (x,y — 1) and (z,y + 1) provided these nodes
are part of the grid. Let u; be the service rate of node i, i = (z,y), and let A) be
the arrival rate of customers for player j, j = 1,2. All routes of the players start at a
node at the side of the grid and end at a node on the side of the grid. Furthermore,
we only allow routes of minimal length, i.e., containing the minimum number of nodes
required to move from source node to sink node so that the length of the possible
routes for player j is fixed, say NU) for player j, j = 1,2. Once again, each player’s
goal is to minimize its expected sojourn time.

If the source and sink nodes of the players are such that their routes r¢) for player
4, j = 1,2, intersect in at least one node, i.e., r) Ny ¢ (), then a strategy profile p
is feasible if () 4+ A(?) < 1. The mean sojourn times of the customers of the players
are

1 1
1) _
D) = > PO > — (0 1 A@)

fierrey 1 fiermnry i

1 1
AR D B D Dy s S (c) s

{ier@\rM} Hi {ierMnr2} Hi

For the case y; = i, i € C, if A\ 4+ A\ < 1 according to Theorem the game
has a pure Nash equilibrium. For this Nash equilibrium the intersection of the routes
will be in a single node: N7 = {4}, since sharing multiple nodes clearly increases
the mean sojourn time of the customers of both players. The following theorem shows
that the game has a pure-strategy Nash equilibrium when we vary the service rates
wi € {p, kp} for k sufficiently small to guarantee that routes will intersect in a single
point.
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Theorem 3.5. The 2-player game on a Jackson network on a grid with p; € {u, ku},
fork > 1,4 € C, and \V) = mA\, X? = X\ m < 1, such that (m + 1)\ < p and
ku < p+ mA, has a pure Nash equilibrium.

Proof. The condition ku < g4+ mA guarantees that routes will intersect in at most 1
node, because then

1 - 1 - 1
ku—(m+DXN " p—=X" p—m\

Let player 1 select a route 7(1) that minimizes the sojourn time of its customers, and
let player 2 select a route () that is a best response to the route of player 1. If these
routes do not intersect, then the strategy profile selecting these routes is a pure Nash
equilibrium.

Now assume these routes intersect in node i € (") N r(?). There are two possible
values for the service rate at the intersection of the routes: (1) u; = p and (2) p; = kp.
For each case we will consider player 1’s best-response /(1) to the route of player 2,
which will also intersects with () in one node. Let that be node 7’ € /() N (),

Case (1): pu; = p. If i = ¢’ then the original route profile (r™) r(?)) is a pure
Nash equilibrium. If ¢ # 4’ assume first that p;; = p. Note that player 2’s payoff
is unaffected. Because the original route selected by player 1 was optimal without
considering the influence of customers of player 2, the part of the route of player 1
that does not intersect with the route of player 2 cannot have a smaller sojourn time.
Hence, the payoff of player 1 using route /(") cannot be below that of using (! and
it will also not be larger because it is a best-response. Hence, the profile (r/ @, 1"(2)) is
a pure Nash equilibrium.

Second, assume j;7 = kp. This contradicts the optimality of (1 if such a node 7’
is part of player 1’s best response, then it should also have been part of the original
route. So, this cannot happen.

Case (2): p; = kp. We will show that under the conditions of the theorem these
routes yield a pure Nash equilibrium.

If i = i’ then the original route profile (r("), () is a pure Nash equilibrium. If
i # 1’ then assume first that pus = kp. This will not affect the sojourn time of player 2.
Following similar arguments as for case (1), the part of the route of player 1 that does
not intersect with the route of player 2 cannot have a smaller sojourn time. Hence,
the route profile (r'(),7(?)) is a pure Nash equilibrium.

Second, assume j;7 = p. For player 1, the new route (! only results in a reduced
sojourn time if the other nodes compensate for the increased sojourn time in node
i’. Observe that the original route of player 1 was optimal. Therefore, the new route
for player 1, that intersects in node i’ with service rate yy = u, cannot contain more
nodes with high service rate kp than the original route. If the new route has one node
with low service rate more than the original route, than the sojourn time of player 1
should have increased. This contradicts our assumption of /(1) being a best-response.
If the new route has the same number of nodes with high service rate, and therefore
(1 \r(z) contains one extra high service rate node, the difference in sojourn times
for player 1 (') — (1) ig

1 1 1 1
AFD) — _
/ <u—(m+1))\+k‘u—m)\> <k’u—(m+1))\+u—m)\>’
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which can readily be seen to be positive for k > 1, and (m + 1)\ < p. But a positive
difference means an increase in sojourn time. This contradicts the assumption that
the new route is a best response to player 2’s route. Hence, this situation cannot
occur. -

Observe that the assumption AV < X2 = X is without loss of generality. The
restriction p € {u, ku} in Theorem is a sufficient condition to guarantee the exis-
tence of a pure Nash equilibrium. However, experimental results show that pure Nash
equilibrium exists in most of the random networks we constructed.

3.5 Concluding remarks

In this chapter we have considered a new type of games: non-cooperative games on a
Jackson network, where multiple players route through a network while they are all
minimizing there own sojourn time. We have considered two cases: the game with
continuous strategy space and the game with discrete strategy space.

In the continuous case, each player is allowed to distribute his arrival rate over
multiple fixed routes. This results in a convex game with continuous strategy space
for which it can be proven that a pure Nash equilibrium exists. This Nash equilibrium
can be found by using a best response algorithm.

In the discrete case, all players are only allowed to select one single route resulting
in a game with finite strategy space. This game is a special variant of a weighted
congestion game. When the arrival rates of all players are equal or, for two-player
games, when the service rates are equal, we can prove that a Nash equilibrium always
exists in pure strategies. However, for the general case, we give a counter example to
demonstrate that a pure Nash equilibrium does not always exist. We show that one
can construct instances on a grid with unequal arrival and service rates for which pure
Nash equilibria do exist.
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CHAPTER 4

Solving partially observable agent-intruder
games with an application to border
security problems

This chapter resulted in [73].

4.1 Introduction

Security forces, like coast guards, have to protect areas or high value assets against
intruders that may have malicious intentions. Unfortunately, drug smuggling or illegal
fishing units often have the means to prevent detection, and patrols or border controls
of security forces will affect their course of action. In turn, security forces may use
sensors or other information sources to locate intruders and to adjust their patrols,
resulting in a chain of reactions and counter reactions. For both players, operating
in an optimal way taking into account possible reactions of the other player is of
paramount importance. For the security forces this means that patrol strategies or
border control strategies at possible entry locations have to be found, in order to
intercept the intruder or to prevent the illegal crossing of borders.

Several game-theoretic models have been developed to provide solutions for these
kinds of problems (e.g., [62] [8T] [78,[99]). In this paper we deviate from the traditional
stochastic game assumption that both players have full information about the position
of the other player. Instead, we consider the realistic situation where players only
have partial information about the other player’s position. These problems, where
each player has partially observable information about the position of the opponent,
can be modeled as dynamic search games on a graph between security forces and an
intruder, where the possible border entry points, the area or high value assets that
require protection are represented. The intruder is trying to either cross the border
or to attack the high value assets (target nodes in the graph) while the security forces
(agents) are aiming to prevent this. By modeling this as a partially observable agent-
intruder game (POAIG), strategies can be identified to efficiently deploy the scarce
security systems and personnel, while taking into account the intruder’s behavior.

Game theoretical models with incomplete information have been developed to
model intelligent adversaries and uncertainty about states or actions. For example
n [48], the authors describe a hider-seeker game with incomplete information about

49
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the starting position of the hider. This game is modeled as a Bayesian game where
both players choose a path at the start of the game. Bayesian games are often used
when one has incomplete information about the other player’s type (e.g., [82, [T0T]). In
contrast, we consider the game in a dynamic setting where decisions have to be made
during multiple time steps.

The POAIG shows similarities with a partially observable stochastic game (POSG).
A POSG is an extension of a partially observable Markov decision process (POMDP),
which is a generalization of a Markov decision process (MDP) where the agent does
not have full information about the state of the system [I17]. In [31], for example,
the author uses a POMDP to model an agent searching for a moving intruder, whose
movements follow a known Markov process. In a POMDP, the agent does not observe
the state, but makes observations after each action. These observations give some
information about the state of the system and using this information, the agent can
construct a belief about what the true state of the system is. By transforming a
POMDP with a finite state space to an MDP with a continuous state space, where
the state space is the set of all probability distributions over the original state space,
it can be shown that there exists an optimal value for the POMDP and that optimal
strategies exist [30].

In the literature, different formulations of POSGs can be found. In [44], the authors
introduced a POSG where both players observe the state. All actions and observations
in previous steps are common knowledge for both players. By analogy with the proof
of [30], the authors show that a Nash equilibrium exists for this game by transforming
the POSG into a stochastic game with complete information and a continuous state
space. Since the state space of the constructed stochastic game is continuous, finding
a Nash equilibrium is not possible using standard methods for stochastic games, since
these methods enumerate over all states.

The POAIG considered in this paper is different from the POSG described in [44]
as they assumed that both players have complete information about the observations
and actions of all players in the previous steps. As such, each player knows the actions
and observations of the other players in contrast to the POAIG where the intruder’s
position and actions are not known by the security forces. In [I2], the authors also
assume asymmetric information of both players, but the players do not play the game
simultaneously, while they do in our game.

In [32] [49, [83], several solution methods for POSGs are introduced. In [49], the
authors propose a dynamic program to solve the finite time POSGs using the normal
form representation. However, the size of the strategy set is double exponential in
the time and, even after deleting dominated strategies, only games with a small state
space or a short time horizon can be considered. In [32]. the authors propose an
approximation algorithm to solve POSGs in which both players solve a Bayesian game
during every time step, assuming complete information in the next step. In that
paper, the authors only discuss POSGs with common payoffs, which can also be seen
as decentralized POMDPs (dec-POMDP) ([I5]). A difference between a dec-POMDP
and the POAIG that we describe in this paper, is that we consider games in which
both players have opposite goals while in dec-POMDPs the players have a common
goal. As a consequence, it might be beneficial for the players in a POAIG not to be
observed by their opponent while this is not the case for dec-POMDPs. In [83], the
authors suggest a transformation from POSGs to a traditional stochastic game and
suggest to solve these by discretizing the state space. In this paper, we will describe



4.2 Model description 51

a solution approach using the sequence form representation of games in order to solve
POAIGs efficiently.

In [54], the authors introduce a partial-information game on a Markov chain similar
to the POSG in which the players have their own observations but without information
about the previous actions of their opponent. In [54], both players only do observa-
tions, but the observations can be modeled such that the player’s own position is
contained in the observations. The authors prove the existence of a Nash equilibrium
for games with a finite time horizon and give a necessary and sufficient condition for
a pair of strategies to be a Nash equilibrium. In [I6], a similar model for multiple
players is considered and the existence of a Nash equilibrium for a finite time horizon
is proven. The POAIG described in this paper is closely related to this game in the
sense that the players know their own position and observe the position of the other
player.

The main contribution of this paper is proving the existence of e-optimal strategies
for POAIGs with an infinite time horizon. We develop an approximation algorithm
based on belief functions that can be used to find approximate solutions for these
games. To prove the existence of e-optimal strategies for POAIGs with an infinite
time horizon, we use results obtained for POAIGs with a finite time horizon. For
POAIGs with a finite time horizon we show that a solution framework, common to
solving extensive form games, may also be used effectively. To this end, the game
is reformulated as a sequence form game [67] and the column generation approach is
applied to speed up the solution process [17,[48]. As security forces often are faced with
partial information, POAIGs provide decision support for developing patrol strategies
and determining optimal locations for scarce resources like sensors. A set of illustrative
examples underpins the potential of our approach.

The paper is organized as follows. In the next section, we give a model description
of agent-intruder games with complete information and introduce the POAIG. Section
describes how to find Nash equilibria for POAIGs with a finite time horizon. In
Section we consider POAIGs with an infinite time horizon. Next, in Section
we consider several applications of POAIGs and show numerical and computational
results. Finally, in Section [£:6] we present our conclusions.

4.2 Model description

This section gives a description of the partially observable agent-intruder game (POAIG).
This game originates from the traditional stochastic game in which the state of the
system is known to both players. The agent-intruder game (AIG) with complete infor-
mation is presented in Section [£.2.1] Section [£.2.2] extends this game to the POAIG.

4.2.1 Agent-intruder game

The AIG is modeled as a traditional stochastic game ([96], Chapter 5) with complete
information.

Definition 4.1. An agent-intruder game AIG = (S, A, P, R, s1) is a stochastic game
defined as follows:

e The state space is S = S x S@) where S is the finite state space for player
i, 1 = 1,2. In state s = (5(1),8(2)) € S, s records the position of player i,
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i=1,2.
e The action set is A(s) = AM(sM)) x A (s s = (s s?)) € S, where
A (5()) is the finite action set for player i in position s, i = 1,2. In action

a = (aM,a®), al is the action of player 4, i = 1,2.

e The transition probabilities are P(5]s,a) = P (5(0|s(1) (1))
PP)(52)52) @) where P™ (50|50 a)) is the probability of a transition
from position s to position 5% given action a(® for player i, i = 1,2.

R (s,a) is the finite reward for player i in state s = (s(!),s(?)) given action
a=(aM,a®),i=1,2.

o 5 = (sgl), 552)) is the initial state.

The AIG defines a stochastic process: Let s; and a; be the random variables describing
the state and action respectively at time ¢, t > 1. O

Remark 4.1. For the AIG, optimal strategies exist and can be found using an iterative
approach (see Section 5.3 in [96]). A stochastic game has a finite value if the game
ends within finite time with probability one [96]. This is achieved by introducing an
absorbing state or by stopping the game after a finite time T":

e Adding an absorbing state ss to the state space means that the game ends
when the absorbing state is reached. In state s, when taking action a, the game
makes a transition to the absorbing state and ends with probability P(sals, a).
If P(sals,a) >0, for all s € S, a € A(s), the game ends after a finite number of
steps with probability one. When introducing the absorbing state, the transition
probabilities can be changed in two different ways: ensure that P(*) or P(?) are
defective or introduce a stopping probability ¢. In the first case, P(sals,a) =
1 =3 ses\s, P(8ls,a). In the second case, P(sals,a) = ¢ and P(5]s,a) = (1 -
q)P(5]s,a), where P is the transition matrix without the absorbing state.

o If we abort the game at finite time 7', we introduce a termination reward Rg).
At time t < T, the reward of player i is R()(s,a) and at time T the reward of
player i,i = 1,2, is Rgf)(s, a) in state s = (s(1), s(?)) given action a = (a(V), a(?).
O

4.2.2 Partially observable agent-intruder game

In a POAIG, each player has complete information about his own state, but partial
information about the state of the other player. To this end, we introduce the ob-
servation set O() and the observation function Q¥ (0®|s), o) € 0¥, i = 1,2, that
describes the information that player i has on the state of the other player. The
POAIG with a finite time horizon is a special case of the game described by [54]. In
our game, the players also know a part of the state, namely their own position.

Definition 4.2. A partially observable agent-intruder game POAIG
= (S,4,0,P,Q, R, s1,u) is an AIG with the additional elements O, Q and p defined
as follows:
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e The observation set is O = O™ x O where O is the finite set of all possible
observations of player i, i = 1,2. In observation o = (oM, 0(?), o ¢ O®
records the observation of player i, ¢ = 1, 2.

e The observation function is Q®, where Q) (0(|s) is the probability that player
i observes 0! in state s € S, i = 1,2.

o 1= (uW, u?) is the initial distribution of states, where p(*) is a probability
distribution over all possible positions of the other player j(# i), i = 1, 2.

The POAIG defines a stochastic process. Let s;, o; and a; be the random variables
describing the state, observation and action respectively at time ¢, ¢ > 1. O

Remark 4.2. We assume that both players have complete information about the ob-
servation set and the observation functions of the other players. O

At the end of this section, we give an example of a finite POAIG to illustrate the
various ingredients. For more examples on infinite time POAIGs, we refer to Section

The goal for both players is to find strategies that optimize their rewards. In
the POAIG, the strategies depend on all the previous observations and actions of
the player. Let ]-"t(i) = J(sg),og),a%),l <n<tl<m<t),i=12 be the
o-field containing all information about all possible states, actions and observations.
]:t(i) contains all possible history sequences at time ¢ and F*) denotes the set of
all possible ]-'t(i),t e {1,..,T}. Ft(i) = {sgi),o?),aﬁ“, ...,agi_)l,sgi),ogi)} € ]—"t(i) is the

realized history sequence at time t. The strategies and payoffs are defined as follows:

e The strategy of player i is 7( € II(Y), where II¥ is the set of all possible
strategies of player i, i = 1,2, and 7 (a(® |1, F") is the probability of action a(?
given the initial distribution p and the history F\” € F® i=1,2,t=1,..,T,
FY e F@.

e The payoff of the POAIG, given the initial distribution p and strategies 7(*),
1=1,2,is:

T
V,T(EZ)’,T@) () = EZ(1>,7r(2> Z R(l)(sta ay), (4.1)
t=1

where T" might be infinite.

*(2)

A pair of strategies 7*(1) 7 is said to be optimal if:

1 1
VO ) 2V (), for all 7 € IO,
and similarly for player 2. The value of the game for player i starting with the initial
distribution  is V;zzmm*@) (n), i=1,2.

For a POAIG with a finite time horizon T', it can be shown that optimal strategies
exist [54]. The optimal strategies are mixed strategies that can be found by enumer-
ating over all possible combinations of actions and observations. We discuss this in

Section .31
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Example 4.1 (Border security). Consider the game on the graph depicted in Fig-
ure Player 1 is the agent and player 2 the intruder. The intruder starts at node
1 and aims to cross the border (nodes 12, 13, 14, 15 and 16). The agent starts at the
border and tries to prevent the intruder from crossing the border. The game stops if
the intruder reaches the border at T' = 4. The intruder is caught if the intruder and
agent are at the same node. The POAIG is described as follows:

start intruder
1
/ N\
@ 3
/ N/ N\
4 6
/N / \
7 8 9 10 11
| NN TN
12-13-14 -15-16 border

Figure 4.1: Example border security with sensors at nodes 2 and 5.

e The state space of the agent is S() = {12,13,...,16} and the state space of the
intruder is S = {1,2,...,16}.

e At each step, each player moves to an adjacent node while the agent is also
allowed to stay at its current node. The intruder only moves to the border and
the agent moves along the border. The action set of each player depends on the
current state and the actions uniquely determine the next state. For example,
AM(13) = {12,13,14} and AP (5) = {8,9}, where actions correspond to states
that can be reached in one step.

e The transition probabilities are:

if 50 — 400
S

)

PO EO 50 g0y = I

’ 0, otherwise,

e The reward for the agent equals 1 if the agent catches the intruder and 0 if the
intruder reaches the border without being caught.

1, if s = 5@ g € AD(s0)
R(l) , — ) ) 9
(s,a) 0, otherwise.

e The agent can observe the intruder at one of the sensor nodes, 2 and 5, or
observes nothing, which is denoted by @, so O = {§,2,5}. The intruder
can observe the agent at every node with a small probability, for example by
information given by other intruders or by using a camera, or observes nothing,
so O = {p,12,13, ..., 16}.

e We assume that each of the agent’s sensors detects the intruder with probability
0.9, while the intruder can see the agent with probability 0.1, resulting in the
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following observation functions:

0.9, if oM =52 52 ¢ {2 5},
0.1, if o =0,5? € {2,5},

MW (D) = 4.2
Q (0 |3) 1, if o) — @75(2) ¢ {2,5}, ( )
0, otherwise,
0.1, if o® = s,
QP (0P|s) =409, if o® =9, (4.3)
0, otherwise.
e The initial state distribution is:
1, if s=(14,1)
Mgy = ;D)= 7 il
() =) {O, otherwise.
O

4.3 Nash equilibrium for finite POAIGs

In this section, we present different formulations to find optimal strategies for the
POAIG with a finite time horizon. From now on, we only consider zero-sum games
where the agent is maximizing and the intruder is minimizing the payoff, so R(s, a;) =
RW(s4,a;) = —RP (s4,a¢), and the game value is Ve e (). Without loss of gen-
erality, we assume that the rewards are always positive. Following [564], a Nash equi-
librium can be found by constructing the normal form of this game. In Section [£:3.1]
we describe how to construct this normal form by enumerating over all possible pure
strategies. Optimal strategies can then be found using linear programming (LP). Since
the size of the resulting matrix grows exponentially fast in the number of states, ob-
servations and actions, we use a column generation method. Finally, in Section
we address the sequence form representation, which provides a different formulation
with smaller game matrix. In Section we combine both formulations with column
generation to speed up the solution process.

4.3.1 Nash equilibria by using the normal form representation

Solving POAIGs with a finite time horizon is computationally intractable as discussed
in [49]. To find the optimal value of a finite POAIG, a straightforward approach is to
enumerate over all possible combinations of observations and states. We construct the
normal form of this game with all possible pure strategies for the intruder represented
in the rows and all possible pure strategies for the agent represented in the columns.
A mixed strategy can be found by solving the resulting matrix game. Since the state
space, action sets and time horizon are finite, our game boils down to a finite matrix
game and thus there always exists a mixed strategy Nash equilibrium (see [96], Chapter
2). Moreover, in [54] it is shown that the mixed strategies of this constructed game
coincide with the strategies of the finite time horizon POAIG.
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The normal form

We describe how the normal form is constructed. A pure strategy 7(9 € II() is a
strategy such that, for every Ft(l) e F@ t=1,..,T, and given initial distribution p,
7@ (a® |p, F(i)) € {0,1}. Thus, in every pure strategy a unique action is specified
for each possible history. Let H( ) c I be the set of all possible pure strategies for
player i, i = 1,2. M = [fn;;] is a matrix of size [IT(V)] x [I1®| with all pure strategies of
the agent in the rows and all pure strategies of the intruder in the columns. The initial
distribution of the states is p. Since we consider a finite POAIG, the number of pure
strategies, and therefore M, is also finite. The entries of M give the expected payoff
for the policies 7(!) € M and 7@ e I of the agent and intruder respectively, so

M) = Vi) o2 (@), by Equation (4.1).

Example 4.2 (Normal form strategy). Reconsider the border security problem de-
scribed in Example[4.1] The size of a single pure strategy is illustrated by the following
part of a pure strategy of the agent: start at node 14; during ¢ = 1, move to node
13 (nothing is observed); during ¢ = 2, move to node 12 if the intruder is observed at
node 2 and stay at node 13 if nothing is observed; during ¢ = 3, move to node 14 if
the intruder is observed in node 2 and 5, and the agent stayed at node 13 if ¢t = 2.
The complete strategy is rather lengthy but can be completed in a similar way. O

The number of pure strategies can be very large. If for player ¢ the number of
states, actions and observations in each state are given by N\, N and NV, i = 1,2,
respectively, the number of elements in F) is:

i (N())

t=1
For given time horizon T', the number of pure strategies is:

O] = (ND)Za (V) W) (N

Thus, the matrix grows exponentially in the number of states, observations and actions.
Therefore, in Section [4.3.2] we describe the sequence form to decrease the matrix size.

4.3.2 Nash equilibrium using the sequence form representation

In the previous section, we described how the normal form of the game, with all possible
pure strategies, may be constructed. In this subsection, we describe a different way
of representing the strategies in order to decrease the matrix size. This is called
the sequence form representation and was introduced to find a Nash equilibrium in
extensive form games by [67] and [124]. In a sequence form game, we do not consider all
possible pure strategies, but instead consider all possible sequences of positions, actions
and observations of each player. To find optimal strategies for the original game, we
consider the realization probability of occurrence of each sequence. In Section
we discuss the advantage of the sequence form representation over the normal form
approach.
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The sequence form

Recall that the initial state distribution is y. Let (9 be the set of all possible sequences
for player i, i = 1,2. A sequence o € 2() is defined as an ordered list of positions,
observations and actions of player i, i = 1,2. A sequence o e X always ends
with an action. The length of a sequence is defined by its number of actions, thus a
sequence of length ¢ is:

{51 701 ’al)v" St 70t vaf )}
and ) denotes the empty sequence. For notational convenience, we omit the superscript
() for the states, actions and observations since they always have the same index as
o, 2§’> is the set of all possible sequences for player i, i = 1,2, with length ¢. Let
S@ (@) and OW (o)) be the sets of all possible positions and observations that can

follow after sequence o). Let aﬁf) be the sequence o(* with additional position s(?)

and observation o) and let agf))a be the sequence o§? with additional action a(®.

Example 4.3 (Sequence form representation). Reconsider the border security prob-
lem described in Example [£.2] The agent starts at node 14 and the intruder at node
1, so the state at ¢ = 1 is given by sgl) = 14 and sél) = 1. The agent observes
nothing in the first step and suppose that the agent decides to move to node 13. The
corresponding sequence o(!) is then {14,0,13}. Now suppose the agent observes the
intruder in node 2 and decides to move to node 12. Then, the corresponding sequence
is {14,0,13,13,2,12}. Compared to the normal form representation (see Example
, the strategies in the sequence form can be expressed more compactly. In this
example, the present state equals the action taken in the previous time step. That
need not be true in general. O

To find optimal strategies, realization probabilities are introduced. The realization
probability (9 (¢(")) is the probability that player i plays the sequence of actions in
o under the assumption that the observations and positions are as given in o).
Only sequences that are compatible with the actions and the observations of the other
player are added in the sequence form game. The realization probabilities need to
satisfy the following constraints:

e The realization probability of the empty sequence equals one:

r® () = 1. (4.4)

e For each combination of positions and observations following sequence (¥, the

sum of realization probabilities r(i)(agio)a) for all a € A®(s) equals r (o(?):

re) = Y Dl =0, (4.5)
a€ A (s(1)
where 00 € () s() ¢ §O) (5D o) € 00 (¢(),

Given a set of realization probabilities 7(*) that satisfy (4.4) and ., a strategy
7" can be constructed in the following way:

L , (@) (oD L
70 (@@, FO) = T (709 @)y S g (4.6)
7’(1) (0’(1))
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where F() = (). 1f r() (c@) =0, 7 (a®D|p, FD) equals 1 if a() is the first ele-
ment of A®) and 0 otherwise. The strategy 7(*) follows from the constraints on ().
Note that gives a one-to-one correspondence between strategies and realization
probabilities.

Example 4.4 (Realization probabilities). Reconsider the border security problem
described in Example The agent observes nothing in the first step and suppose
that the agent’s strategy is to move to node 13 with probability 0.5 and to stay at
node 14 with probability 0.5 each. Then the realization probabilities of the sequences
{14,0,13} and {14,0,14} are 0.5. Suppose that the agent has moved to node 13
and observed the intruder in node 2 at t = 2. If his strategy is moving to node 14
with probability 0.3 and moving to node 12 with probability 0.7 then the realization
probabilities of the sequences {14,(,13,13,2,14} and {14,(,13,13,2,12} are 0.15 and
0.35 respectively. O

In a sequence form game, the payoff function g is the expected payoff for each
combination of sequences. The payoff function ¢ : (V) x ¥ — R is defined such
that g(c™,6()) is the expected payoff of o) € X(1) and 0(® € ). The expected
payoff of two sequences at(l) and O’EQ) of the same length equals:

1) (2 1), 2), (2 1), (1 2), (2
9(0t",0) = R((s" (o), 5 (01)), (af" (01), i (0))) - D0 o0y (&)

l(l) (1))

(oy l(i) (cr,gi)) are the last position and action in sequence agi) and

where s and a

Py(D 52) is the probability that the observations and states are as given in O't(l) and

e

t t

Py = ils1) [T Plowlsy—v,av-1) [T QW0 Isi)QP (01, (4.8)

t'=2 t'=1

where sy, oy and ap, ' = 1,...,t, are determined in the sequences Ut(l) and Ut@). The
matrix M of size |Z(V| x |£?)| contains the expected payoffs for all combinations of
sequences with all sequences of the agent and the intruder represented in the rows and
columns respectively.

Example 4.5 (Payoff functions). Consider the border security problem described
in Example The reward of two sequences is positive only when the length of

the sequence is T'. For all other sequences, it is not possible that the agent and the
(1) (2) (1 (2

intruder are at the same node. If in such sequences a;’ = ay’ then g(oy’,077) =1
and otherwise g(a;l), 05,2)) =0. 0

Given the (feasible) realization plans of both players, the expected payoff of the
game is given by (r(l))TM r(). Applying linear programming, as discussed in [67], a
Nash equilibrium for the sequence form game can be found. Moreover, using the next
lemma, it follows that the value of the sequence form game coincides with the value
of the POAIG described in Section

Lemma 4.1. A Nash equilibrium for the sequence form game corresponds to a Nash
equilibrium for the POAIG with a finite time horizon, with the same value.

All proofs can be found in Section [4.7.1
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4.4 Approximate solutions for infinite POAIGs

In the previous section, we considered POAIGs with a finite time horizon. In this
section, we consider infinite time horizons. First, we prove the existence of e-optimal
strategies in Section [4.4.1} Since there are no algorithms to find exact solutions of
POAIGs with an infinite time horizon, we introduce in Section [4.4.2] a new approach
to approximate optimal strategies.

4.4.1 Existence of e-optimal strategies

In [44], it is shown that there exists a Nash equilibrium for POSGs. That proof is by
analogy with the proof of the existence of a value for POMDPs. However, POAIGs
differ from POSGs because, contrary to POSGs, the belief functions are not common
knowledge for POAIGs. In this section, we prove that there exist e-optimal strategies
for the POAIG with an infinite time horizon.

To ensure that the game stops after a finite number of steps with probability one,
we introduce an absorbing state s 4. Let My, ¢ < T, be the matrix with the expected
payoff for all sequences with length ¢. M; has size |Z§l)| X |Z§2)|. A finite POAIG can
be formulated as a sequence form game as described in Section [4.3.2)

t=1 t=2 - t=T

t=1 [ M 0 ... 0
t=2 0 M, ... 0
M= . ) i . )
t=T\ 0 0 ... My

Since M is a finite matrix, this game always has a Nash equilibrium, which can be found
by solving a linear program. Moreover, if 7() and 7(?) are realization probabilities

corresponding to M, then r,gl) and rt(2) are the parts of the realization probabilities

that correspond to M;. The following lemma gives an upper bound for (Tﬁl))TMtrt(z).

The proof is provided in Section [.7.1]
Lemma 4.2. Let My be the expected payoff matriz for sequences of length t and let rﬁl)

and rt(2) be the corresponding realization probabilities. The expected payoff obtained at

time t is bounded as follows:

1 2 —
() My < (1= poy)™F max R(s,a), (4.9)

where ps, = ming , P(sals,a).

Lemma [£:2] can be applied to prove the existence of e-optimal strategies for the
POAIG with an infinite time horizon. Let M., be the operator defined by:

t=1 t=2 --- t=T
t=1 My 0 0
t=2 0 My ... 0

t=T 0 0 ... My
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Since the general existence theorem of Nash equilibria in matrix games only applies to
finite matrices, games with an infinite matrix representation do not necessarily have a
Nash equilibrium. We prove that there exists a e-equilibrium for this matrix game. In
an e-equilibrium, none of the players can improve their payoff more than e by deviating
from there current strategy. The proof can be found in Section [£.7.1]

Theorem 4.1. There exist e-optimal strategies for the POAIG with an infinite time
horizon.

Note that it is more intuitive to prove the existence of a Nash equilibrium in analogy
with the proof for POMDPs in [30] and POSGs in [44]. However, in [30] and [44], the
authors transform the model to a complete information model with a continuous state
space. The new state is then the belief over the original state and in the POSG the
belief state is the same for all players. In our model, both players have a different
belief state and they do not know each other’s belief. Therefore, we cannot follow the
proof of [30] and [44].

4.4.2 Calculate optimal strategies

As discussed in the previous section, finding optimal strategies by enumerating over
all possible pure strategies is computationally intractable. Moreover, this method is
restricted to POAIGs with a finite time horizon. In this section we introduce an
algorithmic approach to approximate optimal solutions in each step of the game using
the belief of the players. The belief of a player is a probability distribution over the
state space S. The idea of a belief state was introduced to reformulate the POMDP
as an MDP with a continuous state space [117]. We first provide a description of the
belief functions and then introduce the approximation algorithm.

Belief functions

In the POAIG, neither player has complete information about the state of the system,
since they only know their own state and not the state of the other player. As such
we will introduce in this section the player’s belief which provides for each player
a probability distribution over all possible states of the other player. As the name
suggests, the player’s belief models the player’s conviction of what the true state is,
based on their own position, the observations they have made so far and the initial
distribution. Let utz) be the belief of player ¢ at time ¢. The belief at time 1 is the
initial distribution pu = (™, u(?)), which is common knowledge. The belief ugi)(s) of
player 7 is the probability P(st\og), kE=1,..tagk=1,..,t—1) that the state is s
given the previous observations o,(;) and actions ag, k = 1,...,t — 1. After each action
and new observation, the belief of player ¢ is updated according to the last observation
of player i, i = 1,2. The belief at time ¢ relates to the believe at time ¢ — 1 in the
following way:

ugl)(st\og), k=1, ta,k=1,..,t—1)
PV, Plsilser,a )i (sealof k<t — 1 ap, k<t —2)
Zs; P(Ogl)‘sé) Zst—l P(Sglstflvatfl)uﬁi)l(stfl'();cl% k S t— 17 g, k S t— 2),
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where P(si|si—1,a:-1) = P(s"[s{?), a{)) P(s{?[s*)), a*))) and P(ofV]s;) =

QW (ogl) |s¢). This belief function is derived using Bayes’ rule. The complete derivation
is given in Section 7.2

In games with complete information, players also take the behavior of other players
into account while optimizing their own payoff. As the belief of the other player is not
known, we are also interested in the belief of the other player to predict his strategy.
Since the observations of the opponent are unknown, each player makes a guess about
the observation of the other player and uses this to make a guess about the other
player’s belief, which we call the counter belief. The counter belief, ,u( )( ), is what
player i believes that player j’s beliefs about state § are. The counter belief at time
1 is the initial distribution and it follows that at that point the belief of one player
equals the counter belief of the other player. The set of possible observations and the
observation functions are common knowledge; these sets are used to construct and
update the counter belief. After ¢ = 1, in each round the belief and counter belief are
updated by each player by using their own observations and actions. For the actions,
they make a guess based on their belief and counter belief as described in Section
The counter belief of player 1 is defined as:

~gl)(st|0k),k<t ag, kb <t—1)
- ZZP 2)|5t Ngl)(5t|0§cl),k <t,ar,k<t—1)

(2) st
. P(0{?13) Y, , P(3ul3i—1, a1) iy (3im1lof”  k <t — Lag,k <t —2)
S P15 Y, Psilai—r, ar )i (3ol k <t — Loag k <t —2)

and similarly for player 2.

Note that we assumed for the definition of the belief and counter belief functions
that the actions are known. However, when updating the belief and counter belief
functions the players do not know the exact actions of their opponent. What is required
is a strategy which gives a probability distribution over the actions; the approximation
algorithm described in the next section provides this strategy. This can be taken into

account by replacing the actions agi)l, i = 1,2, in the belief and counter belief functions

by strategy Wt(i_)l and P (5|59 a ) by:

PO(sD50 70y = 3 PODI50, 02 )m(, (1),
at—1€A
where 7T§i_)1, i = 1,2, is the strategy of player i at time ¢t — 1. In the next section, we
discuss how the belief and counter belief can be used to find these strategies.

Approximation algorithm

In this section, we introduce an algorithm to approximate optimal strategies for infinite
time horizon POAIGs. This algorithm constructs during each time step a Bayesian
game based on the belief functions and payoffs obtained from the complete information
game. This algorithm is an extension of the algorithm proposed by [65] as we explicitly
consider actions when updating the belief functions.
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Algorithm 4 Approximation for games with an infinite time horizon by using belief
functions

1: Calculate the values for the agent-intruder game, using an iterative algorithm as
explained in [96]. Let A®") be the payoff matrix if the intruder is in state s and
the agent in state r using the values from the game with complete information.

2: Set t =0, ui D= [ng) 1.

3: Calculate the optimal strategies for the agent for the Bayesian game with payoff
matrix A and probability distributions pu; ), il for the agent and the intruder
respectively by solving the following LP:

max Z ,u(2 v(2

s.t. Za(r ) (2) (2)(7') > vg2), Vi, s,

Zx&”(r) =1, v,
;vz(-Q) (r) >0, Vi, r,

where x( )( ) is the probability of choosing action i if the agent is in state r and

vg ) is the maximal payoff for the agent if the intruder is in state s. Calculate the

optimal strategy of the intruder by analogy to that for the agent.
4. Update the belief and counter belief using the functions from the previous section.
Stop if an absorbing state is reached, otherwise return to Step 3

The idea of the Algorithm [4]is based on the approach in [32]. At each step, a one-
step Bayesian game is solved. In a Bayesian game, there are multiple types and the
players do not know against which type they are playing. They do have a probability
distribution over all types of the other players. In our case, the types are all possible
positions of the other player and the probability distribution over these types are the
beliefs and counter beliefs which we have introduced in Section [£.4.2]

The payoff matrices for each step at the incomplete information game are unknown.
Therefore, we approximate the payoff matrix for each combination of types by the
payoff matrix of the game with complete information. Using this payoff matrix assumes
that after one step, there is complete information. Since the payoff of the complete
information game is used instead of the real payoff matrix, Algorithm [] provides an
approximation of the optimal strategy. In Section we discuss the quality of this
approximation. The Bayesian game can be solved at each step by standard techniques
via construction of an extensive form game [51] and solving the corresponding matrix
game using the LP approach of [105].

In the next section, we discuss the quality of this algorithm by comparing it with
the POAIG with a finite time horizon for which the exact optimal strategies are known.

4.5 Applications and computational results

In the previous sections, we introduced the POAIG and methods to find a Nash equi-
librium for POAIGs with a finite time horizon and approximate e-optimal strategies
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for the POAIG with an infinite time horizon. In this section, we provide numerical
and computational results of different applications for finite and infinite time horizon
POAIGs.

4.5.1 Finite time horizon POAIGs

Consider the border security problem described in Example We first give compu-
tational results for the solution concepts introduced in Section [£.3] and describe how
this approach can be used to determine optimal sensor locations for the agent.

Benefits of the sequence form game

In this section, we show the benefits of the sequence form representation compared to
the normal form representation as described in Section The results in this section
are implemented in Matlab version R2016b [85] on an Intel(R) Core(TM) i7 CPU,
2.4GHz, 8 GB of RAM. Table shows the running times for the network given in
Figure[d.1] with different sensor locations. Since the intruder always moves towards the
border, this game stops after a finite number of steps (T' = 4). The first set of columns
gives the sensor locations of the agent and the intruder, the second set of columns gives
the computation time in seconds and the matrix size when considering the normal form
and the third set of columns gives the computation time and the matrix size when
considering the sequence form game. The last column gives the game value. Except
for the locations of the sensors, the game elements are as described in Example
Some instances cannot be solved, which is given with a dash. Table shows that
the matrix size and computation time decrease significantly when using the sequence
form game. Also, larger instances can be solved after implementation of the sequence
form.

Table 4.1: Normal form versus sequence form.

Sensor locations Normal form Sequence form Game
Agent \ Intruder \ Time \ Size \ Time \ Size Value
0.199 69x17 0.324 | 107x32 0.200

2,5 621.821 | 101481x17 0.148 | 398x32 0.244
8,9,10 4.106 1635x17 0.065 | 314x32 0.322
14 2206.080 | 69x109997 0.200 | 107x179 0.200

8,9,10 | 12,...,16 | - 1635x109997 || 0.361 | 314x1421 0.291
2,...,11 | 12,..,16 | - - 2.748 | 2765x1421 || 0.314

This example also shows how the intruder can gain from the observations. In Table
only observing node 14 by the intruder does not change the game value (also see
the fifth row), but when all nodes at the border can be observed, the game value
decreases slightly from 0.322 to 0.291. The intruder observes the agent in an early
stage which may enable the intruder to move to a node that is not reachable by the
agent.
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Applying column generation

In this section, we use a column generation approach to deal with the exponentially
large number of pure strategies. In a Nash equilibrium, often only a limited number
of pure strategies are used by the agent and the intruder. Therefore, we do not
have to take all strategies into account. We first construct a restricted game with
only a limited number of strategies and solve this game using linear programming.
Thereafter, we calculate for both players the pure best response strategy against the
other player’s strategy computed in the restricted game and add these pure strategies
to the restricted game. This is repeated until the outcome of both players cannot
be improved by adding extra strategies. A proof of the optimality of the column
generation algorithm for games can be found in [87].

In the sequence form game, complete strategies as used in the normal form are not
taken into account. Therefore, the column generation approach is slightly adjusted.
This method is developed by [I7] to find optimal strategies for extensive form games
with imperfect information and a similar method is also used to solve large zero-sum
security games by [60]. In order to apply this method developed by [17] to POAIGs,
we have made some adjustments described below

For sequence form games, it is not possible to create a restricted set by randomly
selecting sequences, since the removal of a sequence also influences other sequences.
If sequences are picked at random, it may happen that the outcome of the restricted
game does not yield a strategy for each information set. Moreover, it may happen that
a sequence in the restricted game is not feasible since the observations in a sequence
of one player also depend on the positions in the sequences of the other player. The
first problem is solved by using default strategies, such that the first action is chosen
for information sets that are not contained in the restricted game.

In [I7], the authors use a game tree representation for extensive form games where
temporary utility values are assigned to nodes that are not end nodes (an end node is
a node where the game ends). We do not use this tree representation in POAIGs and
therefore, we do not use temporary utility values to solve the problem of infeasible
sequences. Instead, we construct the restricted set such that only feasible sequences
are included. This is done by choosing the initial restricted set and by choosing the
realization probabilities such that they comply with the default strategy (recall )

We compare the computation times with and without the column generation ap-
proach for networks with different time horizons as depicted in Figure For exam-
ple, for T'= 6 the border consists of nodes 32 through 38. The first three columns in
Table [d:2) contain the time horizon, the number of nodes in the network and the matrix
size of the sequence form game respectively. The following columns contain the sensor
locations, the computation time for the sequence form game with and without the
implementation of column generation and the value of the game. The rest of the game
elements are as given in Example Table shows that the computation time
decreases significantly due to the implementation of the column generation approach.

Using POAIG to find optimal sensor locations

Consider the border security problem in Figure with time horizon T = 5. The
agent starts at node 27 and moves along the border, and the intruder starts at node
1. Except for the sensor locations, the game elements are the same as in the example
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start intruder
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3 border T'= 6
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41 42 45 46 47 border T'=7
/ \ \ \/\ / \ / /// /\
48 49 51 52 54 56 57 border T'=38

Figure 4.2: Example networks for T'=5, ..., 8.

Table 4.2: With and without column generation.

T || Nodes || Size Sensors Comp. time (sec) || Game
Agent [ Intr. With [ Without Value

6 38 59596 23568111214 | 3537 || 29 384 0.25
x5545 16 19 20 25 28 30

7 || 47 206684 23568141920 | 43 44 | 430 17207 0.20
x108565 || 25 28 30 34 37

8 || 57 642299 23568192028 | 5457 || 1018 | - 0.20
x62290 30 34 37 43 44 46

described above. By modeling this game as a POAIG, we can decide how a given
number of sensors have to be placed to optimize the game value for the agent. Table
gives optimal sensor locations for the agent for 0,1,2,3,4 or 5 sensors. There are
multiple optimal sensor configurations resulting in the same value: Table shows
one of these configurations. The results also show, for this game, that considering
more than 4 sensors does not have added value, as 0.333 is the maximum game value
that can be achieved. This can easily be explained by the fact that from node 21 three
edges can be used to reach the border.

Note that the solution of the sequence form game also gives the strategy for the
agent and the intruder as a probability distribution for each possible history. For
example, in the game with one sensor node an optimal strategy for the agent is to
move randomly between nodes 23 to 27 if the intruder is observed in node 2 and
between nodes 26 and 31 otherwise. Full display of the optimal strategy is lengthy
due to the size of the history space.
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Table 4.3: Optimal sensor locations.

# sensors | Sensors Game

Agent Value
0 - 0.111
1 2 0.167
2 212 0.200
3 2721 0.250
4 271021 0.333
5 2471621 | 0.333

4.5.2 Infinite time horizon POAIGs

In this section, we consider two applications for infinite time horizon POAIGs. First,
we consider a game on a grid in which an intruder is moving towards a target and
the agent has sensors at specific nodes. Second, we discuss a similar model without
sensors in which the agent is able to observe the nodes in his environment.

Search game on a grid

In this section, we consider a search game on a grid with fixed sensors for the agent.
We use this game to test the quality of the approximation algorithm and describe how
optimal sensor locations for the agent can be found.

Consider a dynamic search game on a grid between an agent and an intruder, in
which the intruder aims to reach a target node from the set of target nodes while the
agent aims to prevent and/or delay the intruder’s attempt to reach one of the target
nodes. At each step, both players may stay at their node or move to an adjacent
node and the game stops if either the intruder reaches the target node or the agent
catches the intruder, which occurs if they are at the same node at the same moment.
In this case the agent receives a payoff of 1. The intruder is subject to breakdown, for
example due to a limited amount of fuel or a malfunctioning system. A breakdown
may occur with probability 0.05 at each step. If a breakdown occurs, the intruder
reveals its position and is caught by the agent, resulting in a payoff of 1 for the agent.
As a consequence, delaying the intruder increases the likelihood of breakdown and is
beneficial for the agent, which is modelled via a payoff of 0.1 for the agent for each
time step the intruder is delayed.

The POAIG on a grid of size 4 x 4 is described as follows. The state spaces for the
agent and the intruder are S = {1,2,...,16,584}, i = 1,2, where s4 is an absorbing
state which is reached when the agent and intruder are at the same node, when the
intruder is at one of the target nodes or when the intruder breaks down. The action set
for each player depends on the current state, for example, A (1) = {1,2,5}, i =1,2.
The transition probabilities are:

0.95, if s =4 ;=1,2,
P(5|s,a) = { 0.05, if 5) =s,4,i=1,2,

0, otherwise.

The reward for the agent equals 1 if the agent catches the intruder, -1 if the intruder
reaches one of the target nodes, 4 and 13, and 0.1 otherwise. The rewards of the agent
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and the intruder sum to 0. The reward for the agent is:

1, if s =53 aqe AW (sM) or s() =54,i=1,2,
RW(s,a) =< -1, ifs®@ e {4,13}, 50 #£ 5@ g € AM(sM),
0.1, otherwise.

The agent can observe the intruder at one of the sensor nodes 2 and 5, so O =
{0,2,5}. The intruder does not observe the agent, so O = {§}. The observation

function is given by (4.2) in Example

1 @ 3 @
o b1
EL 1‘0 1‘1 1‘2
o 1 15—

Figure 4.3: Example searching an intruder with sensors at nodes 2 and 5 and targets
at 4 and 13.

Approximation algorithm for infinite time horizon POAIGs We cannot com-
pute the exact solution of the infinite time horizon game, therefore we will compare the
performance of approximation Algorithm [] with the exact solution of the correspond-
ing finite time sequence form game. For both the exact solution and the algorithmic
approximations, we use a finite number of time steps, even if the intruder is not caught
or did not reach the target node. This comparison provides insight into the quality
of our approximation algorithm. To calculate the expected average game value when
using the approximation algorithm, we generated 1000 sample paths using discrete
event simulation, following the steps of Algorithm [d] The results for different initial
distributions of the states are given in Table[d.4] The results in the table show that the
approximation algorithm gives a good approximation if the initial position is known
(Case 1), if there is a large probability that the initial position of the intruder is known
(Case 2), or if the initial position is narrowed down to a small area (Cases 4 and 5).
If the initial states may be far apart (Case 3) the approximation algorithm results in
an error in the game value.

Table 4.4: Comparison of approximation with exact solution (7" = 5).

case | Initial distribution Game Value
approximation ‘ exact
1 w((6,1)) =1 0.1976 0.2233
2 w((6,1)) = 0.9, u((6,16)) = 0.1 | 0.109 0.110
3 w((6,1)) = 0.5, u((6,16)) = 0.5 | -0.170 0.067
4 w((6,1)) = 0.9, u((5,1)) = 0.1 0.226 0.255
5 1((6,1)) = 0.5, u((5,1)) = 0.5 | 0.269 0.313
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Using POAIG to find the agent’s optimal start position with fixed sensors
Now assume that there are sensor nodes for the agent at nodes 2, 7, 9 and 15. Using
approximation Algorithm [d] we can determine an optimal strategy for the agent. The
game values are given in Table

Table 4.5: Optimal start position of the agent.

| Initial distribution | Targets | Starta [ Value |
p@(1)=0.2,122)=0.3,226)=0.3,.2(10)=02 [416 3 0.183
p?(5) =01, (6) = 0.3 ;ﬁ >(13) =05,u?(14)=0.1 | 416 12 0.431
pP(5)=0.1,426) = 0.3, 13) = 0.5, 4 (14) =0.1 | 38 6 0.913

The game value and optimal strategy depend on the starting position of the agent.
In Table the agent’s start position that gives the highest game value is displayed,
given different initial distributions and targets for the intruder.

Since the strategies of both the agent and the intruder depend on all previous
observations and states, we cannot display the full strategies of the players. However,
Table shows that it is good to start close to (one of) the target nodes or between
the target nodes and the expected position of the intruder. When nothing is observed,
the agent moves in the area around the targets and when the intruder is observed,
the agent will move in the direction of this observation. Also, when the possible start
locations of the agent and the targets of the intruder are close to each other, as in the
last row of Table the game value for the agent is higher.

Optimal agent’s strategy with moving sensors

As a final example of the infinite time POAIG, we consider a game with moving
sensors. We will use two different observation functions for the agent to show the
effect on the agent’s strategy.

Consider a game on a grid of size 5 x 8, similar to Figure [4.3] with nodes labeled
from 1 in the upper left corner to 40 in the lower right corner. The agent cannot place
sensors at nodes, but is only able to observe the nodes that are reachable by the agent
in one or two time steps, so the (sensor) observations depend on the agent’s location,
which is natural for sensors (e.g., helicopters) based on a ship. The state space, action
space, transition probabilities and reward functions are constructed similar to those
in Section 4.5.2] The target node of the intruder is node 38. The intruder can take
one step and the agent is allowed to take one or two steps each time unit.

The intruder always observes the agent, which yields O = {1,...,40}. The agent
can observe the intruder if the intruder is in one of the adjacent nodes, which also
yields O = {0,1,...,40}. However, the agent observes the intruder in the adjacent
nodes with probability 0.75, and in the nodes two steps away with probability 0.25,
so the observation functions are:

0.75, if o) = 52 52 e D, (sM),
0.25, if o) = s 52 € Dy(s(V),
Q(l)(0(1)|s) =1¢0.25, if o =0,5? € Dy(sM),
0.75, if o) = 0,52 € Dy(sM),

0, otherwise,

(
(
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if 0@ = 51,

@ (@ — b
@7 s) {0, otherwise,

where D;(s(!)) and Dy(s)) are the nodes with distance 1 and 2 from node s,
respectively. The intruder starts at node 2, 3 or 4 with equal probability and the
agent starts at node 33, close to the target node.

Due to the large number of possible states and actions, it is infeasible to present
the strategy in a table. Therefore, we provide a description of the optimal strategies
for the agent and the intruder. From Algorithm [ we find that the agent’s optimal
strategy is to move a few steps towards the starting positions of the intruder and then
search in that area until the intruder is observed. If the intruder is observed, the agent
moves in the direction of this observation. The intruder’s strategy is to move in the
direction of the target and wait if the agent is close by. If the intruder manages to
pass the agent, we find that the intruder reaches the target node with high probability.
We generated 1000 sample paths using discrete event simulation, following the steps
of Algorithm [4] The intruder is caught by the agent with probability 0.65.

In a second experiment, we reduced the observations of the agent by only allowing
observations at nodes with distance 1, but now the intruder is observed with proba-
bility 1. In this case, the agent’s strategy is similar to that in the first experiment,
but now the agent’s movements will be more wide spread because he can only observe
the intruder in the nodes next to him. We generated 1000 sample paths using discrete
event simulation, following the steps of Algorithm [ The intruder is caught by the
agent with probability 0.78. Thus, the probability of catching the intruder is higher
when the sensor has a smaller reach, but with a higher detection probability. This can
be explained since not only the intruder is always observed with probability 1, but
also that not observing anything indicates that the intruder cannot be in any of the
nodes with distance 1, which gives additional information about the possible locations
of the intruder.

4.6 Concluding remarks

In this paper, we have introduced a partially observable agent-intruder game (POAIG)
to model problems related to security of borders or areas. The POAIG is closely
related to a traditional stochastic game, but, in our case, the players only have partial
information about the game state. These types of games can be applied to model
border patrolling or search games. The proposed model can be used to find an optimal
strategy for the agent as well as to find the optimal sensor locations for a given number
of sensors. To illustrate the presented approaches, three different border security and
search games are discussed.

We have applied a solution method, which combines a sequence form representation
and a column generation approach to find Nash equilibria for POAIGs with a finite
time horizon. By using the sequence form, the matrix size of the game is reduced
and we are able to solve larger instances of the game. We have introduced a column
generation approach to solve even larger instances of the POAIG.

For the POAIG with an infinite time horizon, we have shown the existence of
the e-optimal strategies. Moreover, we have introduced an approximation algorithm
based on belief functions to find strategies for the infinite time horizon POAIG. This
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algorithm approximates the payoff of the POAIG by the payoff for the game with
complete information.

4.7 Appendix

4.7.1 Proofs

Proof of Lemma [/ Let M (2 be realization probabllltles corresponding to a Nash
equilibrium in the sequence form game and 7(1) and 7(?) are constructed according to
(4.6). The value of the sequence form game is:
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t—1
1 1 1 2 2 2
% Hﬂ() ()|N F( )) ()( ()|N F() rr(1> W(Q)ZRSmat

t'=1

The first equality follows from the definition of M and the second equality follows from
(4.7). For the third equality, we separate the last position, observation and action from
each sequence such that the length of o, 03 is ¢t — 1 and we use . The fourth
equality follows because of ([4.6]). The fifth equality is obtained by repeatedly applying
and use of . Finally, the last equalities follow from rearranging terms and
by definition of the expectation.

Following the steps above, we can rewrite the value of the sequence form game with
strategies r) and r(2), to the value of the POAIG Ve 2@ (1) as in and, due to

the correspondence between strategies and sequences, vice versa. Moreover, (1) and
7(2) can be constructed according to It follows that if »(1) is a best response
to 72, then 7} is also a best response to 71(2) and vice versa. Thus if »(*) and r®
are the strategies in a Nash equilibrium of the sequence form game, 7(!) and 7(?) are
strategies in a Nash equilibrium in the original POAIG and their values coincide. B

Proof of Lemmal[{.2 Using the definition of the payoff matrix, an upper bound on the
expected payoff at time ¢ can be obtained using the following steps:
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where E,E ), = 1,2, IS the set of all sequences that do not contain s4. The first

equality follows from 7) according to the same reasoning as in Lemma The
second equality is obtained by rearranging terms. The third equality is true because

the probability that something is observed is always 1. Moreover, E,@l, i = 1,2
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can be replaced by iﬁ?l

or P(s|(sl(1)(0(1))7sl(2) (0®)),a) equals zero. The first inequality is true because the
reward is always smaller than the maximal reward and all the other terms are less
than or equal to 1. The last inequality is obtained as follows:
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where S = S\s4. The first three equalities follow from rearranging terms and using
and . The first inequality is true because the probability that something is
observed is always 1 for each state and all other term are less than or equal to 1. The
second inequality is true because the probability of a transition to a state that is not
s4 is less than or equal to 1 — ps;. The last inequality can be obtained by repeating
the above-mentioned arguments ¢ — 2 times. |

because for all sequences that contain sga, either p, ),

Proof of Theorem[/.1} First consider a finite POAIG with payoff matrix M and with
time horizon T' < co. Let z* and y* be the strategies in a Nash equilibrium for the
agent and intruder. The value of the game is given by v* = (2*)T My*.

Now consider the infinite POAIG with payoff matrix M. Let 2% = [z* Zoo] and
Y5 = [U* Joo) and T, and P can be any vector such that they comply with
and . M, can be written as:

M 0
My = 0 Mry - | = (Z\g 0 )
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The payoft for the infinite POAIG with strategies z% and y¥ is:

o = (25) T Mooyl = (¢7) T My" + (Too) " MoGoo-
Using Lemma 2, the following holds:
Vi = 0"+ (Too) | Mooloo

<ov*+ Z —ps,)' max R(s,a)

a€A,seS
t=T+1
1— T
<v*4+ max R(s,a)- d=p)
ac€A,seS Ps

Since max,ca ses |R(s,a)| < oo and ps > 0, T can be chosen such that

maxgca,ses R(s,a)- (pa)” < e for each € > 0. Since all elements of Muo, Zoo and Joo

are non-negative, we also know that vl > vt
We claim that x%  and yZ are e- optimal strategies for the POAIG with payoff
matrix Moo, where z% = [2* Too] and yi, = [y* Too], and 2™ and y* are the strategies
in the Nash equilibrium for the finite matrix M with 7" such that for any Z., and ¥uo:
(Zoo) Moo < €.
This means that for all o, and Yuse:

(To0) " Mooyle < (25) T Mooyl + €,
(€5) T Mooyoo = (5) T Mooy, — €.
We prove this claim by contradiction. Suppose that %, and y}, are not e-optimal

strategies and there exists a strategy o, such that (z.0) " Mooy, > (27) T Mooy’ +e.
Let Zo = [* Too], such that a has the same size as the number of rows in M:

(Too) ' Moot = (2) " My* + (Zoo) T Moo Bioo
> (28,) Mooy + €
>0* + e

Since (ZToo) ' Muoloo < €, it follows that (x)" My* > v*. However, this is in con-
tradiction with the fact that z* is a Nash Equilibrium strategy for the finite game
with payoff matrix M. Therefore, our assumption is incorrect and (7o) Mooy, <
(x:o)TMooy;o +e.

A similar argument holds when assuming that y? is not € optimal. Combining
these two results, gives that x%  and y}  are indeed e-optimal strategies. Moreover,
the value, v% , of the infinite game is bounded by v* < vi < v* +e. |

4.7.2 Derivation (counter) belief
The belief function is constructed as follows:
i (selo k< tyag, k <t —1) = P(sifol” k< t,ap, k <t—1)

_ P(0$V]s1)P(s¢]ol" ,ak,kzgt—l)
>, Plof”|s)) P(silof”, an, k <t —1)
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P(o{V]s) Y, P(stlse—1,a1)P(si1lof) k <t —Lag, k<t —2)
TS POMs) Y., P(silsi—,a) P(se—ilof) k<t — Lag k<t —2)

P(o{V]s) Y, Plselse—1, a1ty (sealof” b <t — 1 ak, bk <t —2)
TS PO Y., Plsilsi—ra )iy (setlof) k<t~ Lag k<t —2)]

The first equality gives the definition of the belief. In the second equality, we use
Bayes’ rule. In the third equality, we condition on the previous state and observing
that a;_1 occurs after observing state s;_; and can therefore be removed from the
conditioning argument in the last conditional probability. Finally, the last equality
follows from the definition of the belief function.

The derivation of the counter belief is given by:

AV (30 k < tyar, k <t —1) = P(3:]ol") k < t,an, k <t—1)

_ZZP 2>|st st|o Jk<tapk<t—1)

(2) sy
XP(st|o(2) o,(cl),k: <tyar,k<t—1)
—ZZP (2)|st st|o(1),k§t,ak,k§t—1)

52) s}
P(O<2>|=§t) 25 8¢—1 (&\ém,atfl)P(&sfl\o;f), k<t—1ark<t-—2)
» :
S P15 S5, Plstlset,ar1)P(5alol b <t —Tax, k <t —2)

_ZZP 0PV (110l k < tyar, k <t —1)

gz) s}

P15 3., PGelse—1,ac-1)iiy (3i-1lof” b <t — 1 an,k <t —2)
X b
S P 1s) s, P(silse1, a0 )i (5ialol b <t —1ak k <t —2)

where P(Og)\st) =Q® (0§1)|st) and P(8;|8:—1,at—1) follow the same distribution as
P(s¢|8t—1,at—1). The first equality gives the definition of the counter belief. In the
second equality, we condition on the last observation of player 2 and on the real state.
For the third equality, we use Bayes’ rule and condition on the second to last belief
state. Finally, we plug in the definition of the counter belief.



CHAPTER 5

Optimal deployment for anti-submarine
warfare operations with time dependent
strategies

This chapter resulted in [72].

5.1 Introduction

In this chapter, we discuss a model to optimize anti-submarine warfare (ASW) opera-
tions. There are different ASW operations, for example area search operations, barrier
search operations and transit operations. In area search operations, an area has to be
cleared of enemy submarine threats, for example before another operation takes place
in that region. The goal of a barrier search operation is to make sure that an enemy
submarine is not crossing a certain barrier. Finally, a transit operation is an operation
in which one or multiple high value units (HVUs) are performing a transit operation
moving from one side of the area to the other side. During this transit operations the
HVUs have to be protected from attacks of enemy submarines. In this chapter, we
focus on transit operation where one or multiple HVUs have to be protected. However,
by adjusting the input parameters, the proposed model can also be used for (barrier)
search operation.

The game discussed in this chapter is a special variant of a search game (e.g.,
11, 37, 58|, [78] 05, 120]). In search games, an intruder is attacking one or multiple
cells in a graph while an agent is searching this graph to prevent the attack. An
overview of search games is given by Hohzaki in [58]. The main difference with these
traditional search games is that we consider an agent that is able to deploy multiple
assets of different types (frigates and helicopters), while in the traditional search games
only a single asset type is used.

Several ASW models are discussed in literature (e.g., [19, 56, O] ©2] 109, 119]).
In [91], the authors give an overview of research related to ASW problems and they
describe several issues, such as dimensionality of the resulting model and coordination
of multiple assets, that are encountered in these kind of problems. In [I19], the
author described different models for the planning of multiple ASW platforms for the
protection of a HVU. The coordination of multiple platforms is considered using a game
theoretic approach to take into account the intruder’s behavior. In [56], the authors

75
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consider the patrolling at choke points. By patrolling at choke points, the enemy
submarine is deterred or has to take a longer route. They develop an interdiction
game to determine the optimal randomized allocation of resources to different choke
points.

In this chapter, we consider two approaches for ASW operations, a simulation
framework from TNO and a game theoretical model introduced in [I9], and extend
several aspects of these approaches to overcome their limitations.

The underwater warfare testbed (UWT) is a detailed simulation framework for
underwater warfare, developed by TNO [64]. It can be used to develop and evaluate
operational tactics and future concepts for underwater operations. The UWT accepts
many existing or parametric platforms and underwater systems which can be used
to test several tactics and concepts. However, the modeling of the enemy submarine
(intruder) is limited by two strategies: a kamikaze-like approach in which the subma-
rine chooses the shortest path towards the HVU and a cautious approach in which
the submarine tries to avoid detection. In order to better model the intruder as a
intelligent intruder taking into account the strategies of his opponent, we use game
theoretic modeling.

In [19, 02] the authors describe a game theoretical ASW model for the protection
of a single HVU. The intruder chooses a path from outside the area to the HVU. The
agents can deploy multiple assets: frigates, helicopters or submarines. The intruder
can observe the frigates, so it is assumed that the location of the frigates are fixed
and common knowledge. The allocation of the helicopters and submarine follows a
probability distribution. The work of [19, [92] only models a fixed HVU and a static
strategy of the agent. However, usually the HVU is moving from one point to another
and also the frigate should be able to patrol at several points over time. Therefore,
we extend the static model by adding a time aspect. The HVU is moving over time
and the strategies of both the agent and the intruder are time dependent. This allows
us to model more realistic instances and better react to a moving intruder.

In [I9], ©2], it is assumed that the frigate’s location is known and can be observed
by the intruder, while the current position of the helicopters and submarines is not.
Therefore, for the static model, the frigate can only be assigned to a position with
probability zero or one. However, the position of the other assets is unobservable
to the intruder and is allowed to follow a probability distribution. When modeling
this problem as a dynamic model, two different strategies are used. First, similar to
[19,92], it is assumed that the frigate’s location is known for the complete time window.
Second, we develop a model where the frigate’s current location becomes known to
the intruder at the start of each time interval. Therefore, the frigate’s location is also
allowed to follow a probability distribution in this case. For both models, the agent
always aims at maximizing the probability that the intruder is detected.

The rest of this chapter is organized as follows. In Section[5.2] we consider the game
with complete information about the frigate’s position. First, we shortly describe the
static game model and thereafter, we develop the model used for dynamic allocation of
assets where the strategies are time dependent. In Section[5.3] we consider a sequential
game approach in which the location of the frigate is known to the intruder at the
beginning of each time interval. In Section[5.4] we give computational results and show
results for different instances and in Section [5.5] we give some concluding remarks.
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5.2 Complete information of frigate’s location

In this section, we describe the game in which the frigate’s location is known for each
time step. We first describe the static model as introduced by [I9] in Section
and describe the extended model with time dependent strategies in Section [5.2.2

5.2.1 Previous work: protection of a static HVU

The static game is modeled as a zero-sum game where the agent is maximizing the de-
tection probability for each route that the intruder, representing the enemy submarine,
can choose. For the agent, different assets (frigates, helicopters and submarines) are
modeled and the detection rates are specified for each asset. We only consider frigates
and helicopters for the agent; submarines are modeled similar to the helicopters.

The game is played over a network with cells C. The set of possible start cells of
the intruder is C's and the target cell is C'r. The strategy set of the agent is the set of
all possible allocations for the frigates and helicopters. For the frigates of the agent,
there is a decision variable 2" that specifies the probability that the frigate is located
in each cell. Because the exact location of the frigates is assumed to be known to the
intruders, these probabilities are only allowed to equal 0 or 1. There are N frigates
and the variable z! . is 1 if frigate m, m = 1,.., N¥" is located at cell i, i € C, and
0 otherwise. Additionally, for each frigate m, there are NI helicopters. The exact
location of the helicopter is not known in advance for the intruder. The allocation of
the helicopters is given by a variable :z:ﬁm»j that specifies for each cell ¢ the probability
that helicopter n, corresponding to frigate m allocated in cell 7 is allocated to cell j.

By choosing the allocation of frigates and helicopters, the detection rate at each
cell d;, i € C, can be decided. Let Df; be the detection rate in cell ¢ of a frigate that
is located in cell j and ng the detection rate in cell ¢ by a helicopter corresponding
to a frigate in j that is located in cell k. The intruder chooses a route over a set of
routes with minimal detection rate. Let v; be the expected detection rate from a start
point to cell i for the intruder. B! gives the possible moves of the intruder where Bin
equals 1 if cell j is adjacent to cell ¢, 0 otherwise. The time to move from cell ¢ to cell
Jj for the intruder is 7;;.

The agent’s strategy can be found by solving (see [19]):

xF xH
s.t Exffn»zl, m=1,..,NF,
i
2 : H _ . F _ F _ H
xmnij Linis m*]-a"'aN 7n*1a 7N )

F_F H H ,
di = ZDijwmj + Z Dijkmnjk, t € C,

Jm i,5,m,m
d; +d; . )
v; < +Tij¥ +(1- BZIJ)M, jeC\Cs,i€C,
’Ui:O7 iECS,
2 € {0,1}, m=1,..,NF' iecC,

«f >0, n=1,.,N% ieC.
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The first constraint ensures that each frigate is only assigned to one location.
The second constraint makes sure that all helicopters are assigned to a cell such that
helicopters corresponding to a frigate in a specific cell can only be assigned if the
frigate is in that cell. The third constraint calculates the total detection probability
for each cell. The fourth constraint is used to calculate for each cell the probability of
detecting the intruder when that intruder is choosing a route to that cell. Here, it is
assumed that the intruders will always choose the route to that cell minimizing this
detection probability. M is a large number used to ensure that only possible routes
are chosen by the intruder. The fifth constraint says that this detection probability is
zero for the starting cells of the intruder.

The agent wants to maximize the probability of detecting the intruder. The agent
is only interested in maximizing the detection probabilities over the routes that end
at the target cell Cr.

5.2.2 Dynamic game with time dependent stategies

In this section, we extend the static model of Brown et al. [I9] as described in Section
by modeling a moving HVU and time dependent strategies for both the agent
and the intruder. The HVU is moving during the game and the position of the HVU
is known in advance to both the agent and the intruder.

For the agent’s strategy, we only consider frigates and helicopters. Other assets
such as submarines, can be added in a similar way. At each time step, the agent can
decide on a new position for the frigates and the helicopter similar to the static game.
The location of the frigates is limited to the speed of the frigates. As in the static
game, the location of each frigate is known to the intruder, while the exact locations
of the helicopters are not. The intruder is representing the enemy submarine that is
aiming at attacking the HVU. The intruder’s strategy also changes compared to the
static game. The intruder is still allowed to choose any path starting in one of the
staring locations. Additionally, it might be optimal for the intruder to wait at a cell
for a fixed amount of time.

Model description

The game takes place over a network of N + 1 cells. The set of possible cells is given
by C = {0,1,..., N}. The possible start cells for the intruder are Cg, the frigate can
start at every cell. During the game, both the frigates of the agent and the intruder

follow a route. The time it takes for a frigate to move from cell i to cell j is 7£ and

J
similar for the intruder TlIJ For modeling convenience, we assume that the time is
discrete and that the game takes place during a fixed time window 7. By choosing
the length of each interval small enough, the real time can be approximated.

The HVU follows a fixed path that is known to both the agent and the intruder.
For each time t = 0,1, ..., T, the target cells (corresponding to the HVU’s location)
are given by Crp(t).

The actions of the agents consist of two elements: the allocation of the frigates,
which is known to the intruder, and the allocation of the helicopters, which is random-
ized. There are N frigates and N helicopters for each frigate m. For each frigate,
the agents decided on a fixed route. The time it takes for a frigate to move from 7 to

j is given by 7'5 . The frigates are only allowed to move between connected cells given
by the matrix BY, where Bi}; is 1 if 7 and j are connected and 0 otherwise.
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The location of the frigates during each time window is given by zZ ... so that

equals 1 if frigate m is in cell i during time ¢ and 0 otherwise. The frigate’s location
has to be chosen such that it complies with 7'5 and BT, which will be taken into
account by the construction of the mathematical program.

Each frigates has a number of helicopters that can be deployed. An action of a
single helicopter is a probability distribution over the cells depending on the frigates
location. Let xgm»jt be the probability that a helicopter n corresponding to frigate m
located in cell ¢ is deployed at cell j during time window ¢. The strategy space of a
single helicopter n corresponding to frigate m is given by:

{xH|$gm’jt 2 07 Zzgnzjt = an@it’j € Oat = 07 7T} (51)
J

The action of the intruder is also given by a route through the network. Similar
to the frigate, the time to move between cells is given by Tin, and possible moves are
displayed in the matrix B!, where B{jt equals 1 if the intruder is allowed to move
from cell ¢ to cell 7 during ¢ and 0 otherwise. The routes of the intruder are given by
2! such that xfjt equals 1 if the intruder moves from 4 to j during ¢. Similar to the
frigate, the intruder’s location has to comply with Tin and B!,

The detection rate of the frigates and helicopters is given by D and D respec-
tively, where ij is the detection rate in cell ¢ if the frigate is in cell j and ng is
the detection rate in cell ¢ for a helicopter that is located in cell j corresponding to
a frigate in cell k. The total detection rate d;; can be different for each time period
depending on the allocation of the frigates and helicopters

diy =Y Dfal + Y Diall . i€C t=0,..T, (5.2)

Jm Jm,n,k

Cell 0 is a fictive cell where both frigates and intruders start. Also the intruder
moves to this cell as soon as one of the targets is reached. The detection rates D" and
DH at this cell equal 0. The frigate can start at every possible cell, such that cell 0
is adjacent to all : € C' and Bé[; equals 1 for each j € C. The intruder can only start
from the start cell, so Béjt equals 1 for all j € C, t = 0. Moreover, the intruder can
move to cell 0 after reaching a target cell, so Bl = 1 if i € Cr(t).

Given the detection probabilities d;; and an intruder’s strategy 2!, the game value,
which is the total detection rate, is:

fda') = S S dual,, if 3i€ Cp(t) st xl, =1,
’ 00, otherwise.

The agent is maximizing this function by choosing the routes for the frigates and
allocations for the helicopters, while the intruder is minimizing this by deciding on a
route.

Construction of the integer linear program

We write maxy min,¢ pr f(d,r!) as a mathematical program by constructing the num-
ber of cells and matrices Bf and B’ of the agent and intruder such that the travel time
to each possible cell takes exactly 1 time step. Note that by adjusting the number of
cells, different travel times can be modeled. We show this with the following example.
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Example 5.1. Consider the original ASW game with a single frigate. The frigate
moves twice as fast as the intruder, so 75 = 1 and 7; = 2 for each ¢, j € C. BF and B’
give the possible movements of the frigate and intruder respectively. Now we construct
a new game such that ?5 = ﬂlj = 1. To ensure that this game is equivalent with the
original game, we construct C, BY and B!. in the following way. The number of cells
is twice as large as the number of cells in the original game, so C' = {0,1,2,...,2N},
where each second element corresponds with an element from C', so i € C corresponds
with /2 in C. Bg equals 1 if 7 and j are even and B5/2)(j/2) =1, and 0 otherwise.
Finally, BZIJ equalNS 1if4 is~0dd and j = ¢4 1 or when ¢ is even and B(Ii/2)((j+1)/2) =1.
By constructing BY and B' in this way, the frigates only move between the even cells
and the intruder always has to travel through one additional (odd) cell. Therefore,
the intruder needs two times steps to move between cells corresponding to the original
game. O

Consider the agent’s allocation of the frigates and helicopters to determine the
detection rates d;;. The strategies of the agent can then be found by solving the
following maxmin formulation:

. I
Jnax min fd,z")

sty ah, =1, m=1,., NV t=0,..,T,
i

T < (U —ahy)+ Bhi, ijeCt =t—1t=1,..T,

mit —

2 H F H
xmnijt = 1, m=1,..,N ,n:1,..,Nm,
J

ieCt=0,..T,
dit = ZDf;xfijt

Jsm
+ > Dl i€ Cit=0,..1T,
Jym,n,k
xFle{Ol} m=1..NF icCt=0 ..T
mat i ) yenn s , sy T
Tomijt 2 0, m=1,..N"icC t=0,..T,

where the first three constraints ensure that each frigate follows a feasible route and
each helicopter is scheduled with probability one. With the fourth constraint, the total
detection rate for each cell and each time step is calculated.

Intruder’s program To construct a linear program, we formulate the intruders
program min,: f(d,z!) separately. Thereafter, we can show that relaxing the integer
constraints gives the same value. By taking the dual of the resulting LP, we can rewrite
the maxmin problem as a maximization problem. Given the detection probability d;;
the intruder’s strategy can be determined by:

: I
min E djiig (5.3)
Tije gt
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sty =3 alhy, i€Ct =t+1,t=0,.,T-1, (5.4)
J J
> al=1, i=0,t=0, (5.5)
j€Cs
vl < Bl i,jeCt=0,.,T, (5.6)
iy €{0,1}, i,jeC,t=0,..T.

The first constraint ensures that the flow into a cell equals the flow out of a cell.
The second constraint makes sure that the intruders start at one of the start cells.
The third constraint ensures that only allowed routes are chosen by the intruder.

Theorem 5.1. The matriz corresponding to Constraints (5.4)-(5.7) of the intruders
problem is totally unimodular.

Proof. To show that A is totally unimodular, we use the following property. A matrix
is totally unimodular if (1) each column contains at most two nonzero elements and
(2) there is a subset R of the rows of such that (2a) if a column has two non-zero
elements that with the same sign, one of these elements is in K and the other not or
(2b) if the two non-zero elements have opposite sign then they either both contained
in R or both not contained in R.

For each combination of ijt, i, € C, t > 0, there is a column in A. Consider
the submatrix A of A which consist of the rows corresponding to Constraints (5.4).
We first show that A is totally unimodular. For the first rows representing Constraint
, each combination of ijt, i, j € C and t appears at most one time on the left hand
side and one time on the right hand side. So there are at most two non-zero elements
in each column and if there are exactly two, they have opposite signs. Therefore, Ais
totally unimodular.

Now consider A consisting of A and one additional row representing Constraint
. Only columns representing i = 0 are contained in these constraints. Note that
these columns have at most one non-zero element from Constraints with positive
sign. Now, at most one non-zero element is added also with positive sign. By choosing
the last row as R, the conditions for total unimodularity are still satisfied.

To prove that A is totally unimodular, we use the following property. Total uni-
modularity is preserved under the following operation: adding a row or column with at
most one non-zero entry. This is exactly what is done by adding the Constraints
to A. So, it follows that A, representing Constraints — is totally unimodular
which proves our theorem. |

Complete integer linear program From Theorem [5.I] we know that relaxing
the integer constraints of xfjt still gives an integer solution. Therefore, we can take
the dual of the relaxed intruders problem to reformulate the maxmin formulation.
By replacing the intruder’s problem of the maxmin formulation with the dual, the
maxmin formulation can be rewritten as a single maximization problem. Then, the
agent’s strategy can be found by solving the following ILP, where Equations[5.8] [5-13}
correspond to the dual formulation:

max y(2) + Z yfjt) Bint (5.8)

y,af zH -
1,5,
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stE:@mrf m=1,.,NF t=0,..,T, (5.9)
£ﬁ<(L—%MJ+B£WLjeaﬂ:t—Ltzlwwﬂ (5.10)
menz]t m]ta m:]-,"vNFvn: ]-»HvN?{;Ia

ieCt=0,..T, (5.11)

zt—ZD m]t

+ Z Dzjkzmnjktv 1eCit=0,..,T, (5.12)

ij,m,n,k

g =y ) <dj. djecit=1,...T -1,

t'=t-1, (5.13)

Yy + ) < dj, i,jeCt=1, (5.14)
— oy +yl) < dje, jeCt=T1t =t—1, (5.15)
y Dy @ <qy i=0jeC,t=0 (5.16)
zk . €{0,1}, m=1,.NFieCt=0,.,T, (5.17)
el >0, m=1,.N2 icCt=0,.,T (5.18)
) <o, ieC,t>0. (5.19)

Theorem 5.2. Solving (5.8)-(5.19) to optimality is NP-hard.

Proof. We give a reduction from the set covering problem. The decision problem of
set cover is NP-hard and described by the following. Given a universe U = {1,...,n},

a set of sets S such that for each S; € S holds that S; € U and Ugl S; = U, and
an integer k, does there exist a subset of S with at most k elements such that the
universe is covered by the union of this subset? We show that each instance of the
set covering problem with universe size n, sets S and integer k£ can be reduced to an
instance of the ILP used to found a strategy for the agent. This proves that finding
an optimal strategy for the agent is NP-hard.

The ILP instance is constructed as follows. Let N¥ =1 and N = 0. The game is
played on a network of nk—+|S|+1 cells, C = {1, .., nk,nk+1,...,nk+1|S|,nk+|S|+1},
over a time period k. The HVU is always at the same target cell, so Cr(t) = nk+|S]|,
t =0,...,7. For each element 7, ¢ = 1,...,n from the universe there is a path from
a start point (¢ — 1)k + 1 to the target cell nk + |S|. For example, for i = 1, there
is a path 1,2,...,k,nk + |S|. B! is constructed according to this, so Bi[jt equals 1 if
j =1+ 1 and 0 otherwise. Additionally, there is a cell nk + ¢ corresponding to each
element 7,7 = 1, ..., |S| from the set S and all these cells are connected for the frigates,
SO Bf;» =1 for all 4,5 = nk + 1,...,nk + |S|. Finally, construct D¥ in the following
way: for each j € nk+1,...,nk+ |S| corresponding to a set S; let D sequal 1ifiis a
cell in the path correspondlng to an element from the universe that i 1s also contained
in .S;, and 0 otherwise.

Solving this instance of the ILP with parameters described above gives a solutions
for the decision of the set cover problem. If it results in a solution with value larger
than 0, this means that for each path at least one time the detection probability was
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larger than 0 and thus there exists a set cover with at most k element. If the optimal
solution equals 0 then there is no set cover with k sets. |

To overcome the complexity of the ILP and to speed up the solving process, we
use a branch and price approach. The branch and price algorithm is a combination
of column generation and branch and bound, where first the relazation of the ILP is
solved using column generation and then branch and bound is applied to create integer
solutions (see [I0]). To be able to apply column generation, we introduce fixed routes
for the frigate. The variables z¥" that describe the movement of the frigate in each
time interval are replaced by a set of fixed routes that considers the frigate’s routes at
once. Let S be the set of frigate’s routes. A route s is given by the parameters #£

mits

similar to the variables xf ., such that % ., equals 1 if in route s frigate f is in cell

i during t and zero otherwise. To construct the ILP with routes, Constraints (5.9),

(5.10) and (5.17) are replaced by:

'T’I};Lit = Zq‘si’f:@ity 2,] € C,t = O, ...77_‘7

qu = 1>
gs € {0,1}, se s,

If S is the set of all routes, this ILP finds the agent’s optimal strategy. However,
since the number of routes is exponential in the number of cells and therefore, we
approximate the optimal solution using branch and price. Computational results are
given in Section [5.4]

5.3 Sequential game approach

In the previous section, we assumed that the frigate’s route is completely known to
the intruder at the beginning of the game. In this section we consider the case where
the frigate’s position is only known at the beginning of each time step. This game
can be modeled as a sequential game, where the intruder decides on his next move
at the beginning of each time interval. Since the agent does not get any information
about the intruder’s action during the game, he can decide on a complete strategy at
the beginning of the game. The intruder’s strategy depends on the movement of the
frigate. Therefore, the variable 2/ depends on the position of the frigate. For this
model, we assume that there is only one frigate, but the model can be easily extended
in a similar way for multiple frigates.

The agent’s strategy consists of the route for the frigates and the allocation of
the helicopters. In contrast to the approach discussed in the previous section, the
agent is allowed to randomize over the routes of the frigates. Similar as in the column
generation method described in the previous section, the agent can choose a route for
the frigates out of a the set of all possible routes S, where ZZ .= equals 1 if in route s
frigate m is in cell i during ¢ and 0 otherwise. The set S and values of %, are given.
Additionally, we introduce for each s the parameter ox:s which equals 1 if the frigate
is observed in k, k € C, by the intruder during ¢ and 0 otherwise. This parameter is
used to determine the intruder’s strategy for each s.
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Since the helicopters allocation and detection probability depends on the frigate’s
route, the total detection rate d;;s and the helicopter’s allocation ;vf,{lmjts depend on
the route s. The probability that route s is chosen by the agent is given by ¢s. So,
the agent’s decision variables are g, and zZ .. = which results in a value for d;.
Similarly to the approach used in Section a linear program can be formulated

by first considering the intruders problem separately.

Intruders problem The intruder’s strategy z! depends on the location of the
frigate. Let x” we equals 1 if intruder moves from 4 to j after observing the frigate
at k during time ¢. The route that is eventually chosen by the intruder depends on
the the route s and is determined by oy,. Let &7 jts be the intruders route if the agent
selects route s. The intruder’s optimization problem with d;;s and g5 is:

_ min E qSE d]tsz”ts

I 1
Tijts Tijkt

ijt
s.t. Oktel’”ts Sa:mkt, i,j,keCit=0,..,T,s €S,
injkt:L ikeC,t=0,...T

z:ww Ezﬁm,ieat:QwT—Lﬂ:t+Lse&

Z il =1, i=0,t=0,s€8,

jECS

ils < Bly, i,jeC,t=0,..,T,s€cS,
Blire Thine > 0, i,j,keCit=0,..,T,s€S.

The route that is actually executed is #/ and depends on z!, which is the intruder’s
strategy. The first constraint ensures that z! corresponds with the choice of #/ and
the second constraint ensures that for each possible combinations of locations and
observations a choice is made. The third, fourth and fifth constraints ensure that the
executed routes also satisfy the flow equations and only possible routes are chosen.

Complete linear program By taking the dual of relaxation of the intruder’s prob-
lem, the complete mathematical program to find the agent’s strategy is given by:
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This mathematical problem can be linearized by introducing the variables

d?,, = qsdjis and 7 replacing the first two constraints by:

jts mnzyts = gsT mnz]ts’

F H .
memﬂs xmﬂsqé7 m=1,., N ,n=1,..,N,,i1€Ct=0,...T,s€S,

dl, ZDumetsqs + Z D”kmmn]km, ieC,t=0,..,T.

j.m,n,k

In the sequential game approach, the probability that a route is chosen, ¢, is
allowed to be non integer. This is in contrast with the approach used in the pre-
vious section, because there the complete frigate’s path is assumed to be known by
the intruder in advance, while this is not the case for the sequential game approach.
However, since the number of routes grows exponentially in the number of cells, this
linear program is still difficult to solve. Note that we cannot apply column generation
to this LP, since the allocation of the helicopters also depends on the chosen route.
Therefore, we use the routes generated by using column generation for complete in-
formation games as input for this LP. Computational results are given in the next
section.

5.4 Results

In this section, we evaluate the models introduced in this chapter and we give results
for several instances. First, we consider the model described in Section where
the complete path of the frigates is known to the intruder. For small instances, we give
the optimal agent’s allocation of the frigate(s) and the helicopter(s) and we describe
the intruder’s strategy. Since finding the optimal agent’s strategies is NP-hard, we are
unable to solve the model for larger instances efficiently. Therefore, we use a branch
and price algorithm to approximate optimal solutions and evaluate the quality of this
algorithm. Second, we give results for the second method described in Section
using the sequential game approach. Finally, we compare the results obtained by our
model with the UWT simulation of TNO.
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5.4.1 Complete path frigate known

In this section, we evaluate different instances for the game with complete information
of the frigate’s location. All figures can be found in Section [5.6

Small examples for different asset configurations

We test our model on a small instance for different asset configurations. Consider
a game on a bHxb grid and a time horizon T = 12. There is an intruder that can
start at any bottom cell in the area (see Figures , which is also known to the
agent. We test the model for three asset configurations: one frigate (Figure [5.1)), two
frigates (Figure , and one frigate and one helicopter (Figure . The frigate is
twice as fast as the intruder meaning that the frigate can move one step per time
interval and the intruder can only move one step per two time intervals. The frigate
has a detection probability of 0.75 if the intruder and frigate are located at the same
cell. The helicopter is able to move two steps from the frigate and has a detection
probability of 0.5 if the helicopter and intruder are at the same cell. The optimal
solutions are displayed in Figures in the following way. Each subfigure gives
the allocations of frigates and helicopters during one time interval. The letter F' gives
the position of the frigate and the gray circles give the helicopter allocation. The
larger the circle, the higher the probability that the helicopter is allocated to that cell.
Given the frigate’s and helicopter’s allocation of the agent, an optimal strategy for the
intruder can be calculated. This route is given by the letter I. Note that the intruder
always stays at least two time steps at the same node, since the intruder is twice as
slow as the frigate. In the previous sections, we have used with detection rates in order
to make it easier to add the rates over for different cells and time windows. In this
section, these rates are translated to equivalent detection probabilities. The detection
probabilities and running times can be found in Table [5.1]

Table 5.1: Results for different asset configurations.

’ Instance \ Detection probability \ Running time (sec) ‘
1 frigate 0.68 56
2 frigates 0.95 574
1 frigate, 1 helicopter | 0.93 33

One can see in Figures[5.I}{5.2] that the frigate starts in or nearby one of the possible
start locations of the intruder and then moves towards the HVU while scanning a large
number of cells. Since the intruder can only start at one of the lower cells, it is not
possible for the intruder to already attack the HVU in the beginning. Therefore, the
agent can use this time to actively search the intruder and since the frigate is faster
than the intruder, the frigate is able to move towards the HVU before it can be reached
by the intruder. As to be expected, two frigates will have a higher detection probability
and are able to cover both one side of the area as can be seen in Figure [5.2] Also,
when an additional helicopter can be deployed (Figure , the detection probability
will increase. However, this increase is slightly smaller than when an additional frigate
is used, since the frigate is more flexible and has a higher detection probability.
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Realistic sized example

We now investigate a larger instance of the ASW model to illustrate a strategy for a
moving target. Consider a grid of 7x10 with a HVU that is moving over a time window
of 16 (see Figure . The detection probability of the frigate is 0.5 if the intruder
is in the same cell. The helicopter can be located two steps from the frigate and
observes the intruder with probability 0.5. The possible start locations of the intruder
are given by an X in the first subfigure of Figure The agent’s optimal strategy is
displayed in Figure and this results in a total detection probability of 0.61. Again,
the frigate and the helicopter are first searching the area where the intruder could be
and are thereafter moving in the direction of the HVU. In Section [5.4.3] we use this
example to compare our method with the UWT simulation.

As the problem is NP-hard by Theorem the running time increases expo-
nentially as the number of cells increase. To solve the instance on a 7x10 grid, the
running time is more than two weeks on an Intel(R) Core(TM) i5 CPU, 2.2GHz, 8
GB of RAM.. We use a branch and price algorithm to speed up the solving time.
With this algorithm, we are able to find an approximate solution with an error of
14.1% within a couple of hours. We have tested the branch and price algorithm for
smaller instances and from these tests, it follows that the approximate solutions is
always within 15% of the optimal solution and for several instance, the optimal so-
lution is found. However, due to the number of routes and the fact that only one of
these routes is used in an optimal solution, it is not possible to always guarantee a
high solution quality. For the examples with different asset configurations considered
in Section an approximate solution within respectively 14.2%, 3.2% and 3.1% of
the optimal solution is found by the branch and price algorithm.

5.4.2 Sequential game approach

In Section we deviated from the assumption that the intruder has complete infor-
mation about the position of the frigate during the complete time interval. Therefore,
the agent is allowed to randomize over the different frigate’s routes and will be less
predictable, resulting in a higher payoff. However, since the number of routes is ex-
ponential in the number of cells, the number of variables is large and the LP to find
optimal agent’s solutions cannot be solved efficiently. Therefore, we only optimize over
a limited set of routes and we use the column generation method explained at the end
of Section to determine these routes. However, even with a limited number of
routes, the number of variables is very high because for each route, we need separate
variables for the helicopter’s allocation, detection probability and the corresponding
intruder’s routes.

First, we give a small example to show what the impact of this sequential approach
can be. Thereafter, we compare the sequential game approach to the instances with
complete information.

Example 5.2 (Small sequential game). Consider a game on a 3x1 grid with the
target at cell 2. The possible start cells of the intruder are 1 and 3 from where he can
immediately move to the target cell. The agent has a single frigate available with a
detection probability of 1 if the frigate is at the intruder’s location and 0 otherwise.
All possible strategies for the agent are starting at cell 1, 2 or 3. When the complete
location of the frigate is known in advance for the intruder, the intruder can always
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start at a cell where the agent is not present and the total detection probability equals
0. However, if the frigate’s location is not known to the intruder in advance, the
optimal strategy of the agent is patrolling cell 1 with probability 0.5 and patrolling
cell 3 with probability 0.5 resulting in a total detection probability of 0.5.

In the above example, we described an extreme case where the sequential game
approach will lead to a significant higher detection probability than the game in which
complete information of the frigate’s location is considered. We now investigate the
impact on a more realistically sized instance.

Consider the instance on a 5x5 grid discussed in Section We test the same
asset configurations, but with the sequential game approach. We use the first 20 routes
that are generated using column generation for the model with complete information
about the frigate’s location.

Table 5.2: Impact sequential approach.

Instance | Game value | Running time (sec) |
1 frigate 0.79 1077
2 frigates 0.96 3472
1 frigate, 1 helicopter | 0.95 2201

As these results show, the agent’s detection probability increases a lot for the first
instance, since the agent can also randomize over the frigate’s position and is therefore
less predictable. However, since the number of variables is very large as the number
of cells increase, the running time increases quickly and we are not able to solve this
model for larger instances.

5.4.3 Comparision with UWT approach

The instance with one frigate and one helicopter was simulated in the UWT (Under-
water Warfare Testbed) as well, to find out whether the optimal path that was found
in the game theoretical approach yield a higher performance in the UWT simulation

The UWT is a simulation model developed by TNO [64]. It can be used to develop
and evaluate operational tactics and future concepts for underwater operations. In the
model, platforms that are part of an underwater operation, such as frigates, helicopters,
submarines, mines, torpedoes and unmanned systems are modeled as agents. They
are equipped with sensors and possibly separate weapons.

The behavior of the platforms (agent) is modeled in two ways. First, they follow
a predefined pattern, e.g., defined by way points, through the modeled operational
area. When an agent detects an adversary, it can react by attacking or avoiding this
adversary, or ignoring it. Agents of the same side can coordinate their actions. These
reactions are scripted (e.g., reduce speed to v when a helicopter sonar is detected
within R nautical miles).

For the detection of a contact, several levels of detail exist. The simplest model is
using a cookie-cutter sensor with fixed detection ranges. The sensor detects a contact
as soon as it is within its sensor range. The most advanced model is calculating the
acoustic propagation through the environment and translating this into a probability
of detection. Several intermediate levels of detail are also possible. For the comparison
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in this chapter, it assumed that the sensor can detect a contact with probability p when
it is within the sensor range and not if it is outside the sensor range.

Typically the waypoints that are followed, depend on the tactic that is chosen.
Usually a set of tactics is defined in close cooperation with operational experts, tak-
ing into account operational requirements and limitations (e.g. the tactic is not too
complicated and can be carried out during an operation). The effectiveness of each
tactic is determined with the simulation. The main outcome of a simulation run is
whether the defense against the incoming submarine was successful or not. Monte
Carlo simulation provides an estimation for the probability of success. Other output
of the model include ranges at which platforms were detected and by which agents,
number of possibilities to launch an attack.

Because of this approach, the UWT does not automatically determine the optimal
tactic. The definition of several different tactics is the task of the analyst. After
execution the simulations, it can be determined which of these tactics as the highest
performance. This might lead to a new set of tactics that are analyzed or an advice
about which tactic to prefer. For this advice the outcome of the simulation might not
be the only factor.

For the intruder, two types of behavior are available: a kamikaze-like approach
in which the submarine chooses the shortest path towards the HVU and a cautious
approach in which the submarine tries to avoid detection. It must be noted that both
types of behavior do not correspond exactly to the optimal path found in the game
theoretic approach. However, due to time constraints, it was decided to use both types
of existing behavior in the Monte Carlo simulation.

Detection of contacts in the UWT is modeled by the transmission of sonar pings.
Each ping can lead to a detection. The probability of a detection in the UWT sim-
ulation depends on the distance between sensor and contact. The grid cells are not
modeled explicitly in the UWT, but the speed of the HVU, frigates and intruders are
modeled in such a way that they correspond with the game model. Moreover, the
detection rates of the frigate and helicopter are modeled such that they correspond
with the game theoretic approach. However, since we use a square grid for our model
and a detection radius is used in the simulation, they are not exactly the same.

The behavior of the intruder and the way in which the detection process is mod-
eled, will cause a difference in outcome between the game theoretic approach and the
simulation with the UWT. Furthermore, tactics are input for the UWT instead of
output. Therefore, the optimal search pattern founded by the game theoretic models,
is compared to three other tactics (also see Figure [5.5)):

1. Frigate in front of the HVU covers the right part of the area in front of the HVU,
helicopter covers the left part.

2. Frigate moving from left to right and back in front of the HVU. Helicopter
dipping at positions near the frigate.

3. Frigate in front of the HVU covers the right path in front of the HVU, helicopter
covers the left part of the area before the HVU.

For the simulation, we used 55 different starting positions of the intruder to count for
the uncertainty in where the submarine starts its attack. For each starting point, we
simulated 25 runs. The average agent’s detection probability for the 2 tactics of the
intruder and 4 agent’s tactics are given in Table
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Table 5.3: Impact sequential approach.

] | Kamikaze approach | Cautious approach |

Optimal agent’s game tactic | 0.58 0.59
Tactic 1 0.43 0.50
Tactic 2 0.44 0.49
Tactic 3 0.47 0.68

Because of the modeling aspects mentioned above, it is likely that the performance
determined by the simulation differs from the performance of the optimal tactic as
determined by the sequential game approach. Therefore it is more useful to look at
the difference in performance between the selected tactics. It can be observed that the
optimal tactic of the game approach performs in most cases better than the alternative
tactics 1 and 2. Tactic 3 performs slightly better for the cautious intruder.

An advantage of using the game theory approach is that the analyst does not
have to define tactics in advance. In the approach of selecting tactics beforehand that
will be compared, it is very likely that the analyst limits himself to tactics that are
already well-known or widely accepted. The game theory approach can come up with
unconventional alternatives that might be difficult to carry out in practice, but may
lead to innovating ideas about new tactics. For example, the optimal tactic from the
game theory approach shows that it is advantageous to deploy frigate and helicopter
far upfront if it is known that the submarine did not have time to approach the HVU.
This enables early detection and warning. Later in the scenario, the submarine could
have come close to the HVU and the frigate and helicopter need to be closer to the
HVU to cover the area around the HVU to prevent an attack on the HVU.

5.5 Concluding remarks

In this chapter, we have introduced a new model for the protection of large areas
against enemy submarines. In this model, we address several limitations of current
models that are proposed for anti-submarine warfare (ASW) operations. By intro-
ducing a time aspect, we extend the model of [19] [02] such that also time dependent
strategies and moving HVUs can be modeled. Moreover, by using a game theoretic
approach, our model is able to model an intelligent intruder.

For modeling ASW operations with time dependent strategies, we have proposed
two different approaches: one with complete information about the frigates location
for the complete time interval and one sequential game approach where the intruder
only becomes aware of the frigate’s location during each time interval. The sequential
game approach gives higher solution quality for the agent, since the agent has the
possibility to randomize over frigate routes. However, since for every possible route a
helicopters strategy has to be specified, the number of variables is very large and we
are unable to solve realistically sized instances. Future research include investigating
methods to solve large instances efficiently.

For the approach with complete information about the frigate’s location, we are
able to solve large instances and compare these with the UWT simulation. However,
some aspects of ASW operations are modeled different in our game approach than in
the UWT and the exact outcomes are difficult to compare. In the UW'T approach,
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more parameters and features can be modeled than with our model. On the other
hand, we are able to model the intruder as an intelligent adversary with our game
approach. An advantage of our game approach compared with the UWT is that we do
not have to specify the agent’s tactics in advance. Therefore, our game approach gen-
erated unconventional tactics that may serve as a starting point for new simulations.
Simulating the optimal strategy in the UWT shows that the detection probability is
higher than when standard tactics are used. With our game approach we are able to
generate agent’s routes that may serve as a starting point for simulation and to give
insights to the structure of new tactics.

The running time of our model increases in the number of cells. Therefore, the
game theoretical approach not practically usable for large areas. In order to reduce
the computational time, we have introduced aa branch and price algorithm, which
generates solutions within 15% of the optimal solution. For future research, it would
be interesting to improve the approximation algorithms.

5.6 Appendix
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CHAPTER 6

Security games with probabilistic
constraints on the agent’s strategy

The results in this chapter were published in [70].

6.1 Introduction

The coast guard is responsible for patrolling the coastal waters. Patrolling strategies
should be unpredictable, cover the entire region, and must satisfy operational require-
ments on e.g. the frequency of visits to certain vulnerable parts of the region (cells).
We develop a special security game dealing with the protection of a large area in which
the agent’s strategy set is restricted. This area consists of multiple cells that have to be
protected during a fixed time period. The agent has to decide on a patrolling strategy,
which is constrained by governmental requirements that establish a minimum number
of visits for each cell. Some cells have to be visited more often than others because
these regions are more vulnerable. For example, cells close to a port have to be visited
more often

In this chapter, we consider a static version of this problem. In the next chapter,
a dynamic variant is considered. The problem can be modeled as a two-player zero-
sum game with probabilistic constraints, which requires that the conditions are met
with high probability. In practice, during the planning period, the payoff of attacking
the cells can change over time. Therefore, we also introduce a variant of the basic
constrained game in which the payoff may change over time.

In the literature there are several models considering patrolling games (e.g., [4 39]
77]). Also many models consider constraints on the agent’s or intruder’s strategy set.
For example in [I8] [45] [125], the authors require constraints on the agent’s strategy
because only a limited number of resources is available, and in [I30] the authors
consider constraints on both the agent’s and the intruder’s strategy set.

Often, linear constraints are considered in constrained games. For instance, in [22]
a two-person zero-sum game with linear constraints is introduced. More recently, [8§]
described a bimatrix game with linear constraints on the strategy of both players. In
[115], the author considers nonlinear ratio type constraints. Our security game models
situations where operational conditions have to be met with high probability, which
results in nonlinear probabilistic constraints.

An example application of our model lies in countering illegal or unreported and

99
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unregulated fishing. These illicit activities endanger the economy of the fishery sector,
fish stocks and the marine environment and require the monitoring of large areas
with scarce resources subject to national regulations. To support the development of
patrols against illegal fishing, a decision support system is developed in [52]. This
system models the interaction between different types of illegal fishermen and the
patrolling forces as a repeated game. Moreover, in order to cope with the uncertainty
on the adversary’s strategy a robust optimization approach is used. More recently,
[34] introduced a new game theoretical approach, the Green Security Games, wherein
a generalization of Stackelberg games is used to derive sequential agent strategies that
learn from adversary behavior. However, in these papers constraints, to the patroller’s
strategy are not considered.

The main contribution of this research is that we introduce a new model to cope
with the conditions on the agent’s random strategy that have to be met with high
probability. The agent has conditions on the number of visits to each cell over the
planning period. Because of the random nature of the strategies, it cannot be guar-
anteed that the conditions are always met. By introducing probabilistic constraints,
we assure that the conditions are met with high probability. In practice the payoff
matrices may change over time, in the fishery case, due to weather conditions, sea-
sonal fluctuations or other circumstances. Therefore, we introduce an extension of the
model to deal with multiple payoff matrices.

This chapter is organized as follows. In Section [6.2] we introduce the new security
game model with constraints on the agent’s strategy, wherein only a single payoff ma-
trix during the planning period is considered. In Section we present an extension
of the model in which multiple payoff matrices are considered. Finally, in Section
we give examples of the model and present some computational results, and give some
concluding remarks in Section

6.2 Model with constant payoff

This section describes the model assuming that the gain an intruder obtains by suc-
cessfully visiting a cell is constant over the planning period. We first provide a general
description of a constrained security game over multiple cells in Section [6.2.1] For
each cell, there is a condition on the minimal number of visits per time period for that
cell. We discuss the probability that these conditions are met for each cell separately
in Section [6.2.2] which gives a lower bound for the game value. In the application of
countering illegal fishing, governmental guidelines require that some cells should be
patrolled more than others because some regions are more vulnerable. The conditions
on the number of cells have to be met for all cells simultaneously. These simultaneous
conditions are discussed in Section [6.2.31

6.2.1 Constrained game

We consider a security game with constraints on the strategy sets (see [96], Chapter
3.7). Let C = {1, ..., Nc} be the set of cells that can be attacked by an intruder and
let R ={1,..., Ng} be the set of routes that can be chosen by the agent. The matrix B
indicates which cells are visited by each route, such that b;; equals 1 if route ¢ includes
cell j and O otherwise. Let M be the payoff matrix, such that m,; is the payoff for
the intruder if the agent chooses route 7 and the intruder attacks cell j, i = 1,..., Ng,
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j=1,...,Nc. If the agent’s chosen route 7 includes cell j chosen by the intruder, the
intruder is caught with probability d;. In this case the payoff is:

mij = ((lfdj)blj+(1fbw))gj, iil,...,NR, j:L...,Nc, (61)

where g; is the intruder’s gain if the intruder successfully attacks cell j.

The game is repeated Np times (e.g. days), our planning period. We assume that
only one intruder is present in the area. If that intruder is caught, then another will
replace him. The overall aim from an intruder’s perspective is to maximize the total
payoff over the time period.

Remark 6.1. Note that the model described in this section assumes that each intruder
attacks only one cell each day. By changing the payoff matrix M and the actions of
the agent and the intruder, the model can be extended to other matrix games. For
example, if we want to allow the intruders to sequentially attack multiple cells, e.g.,
one in the morning and one in the afternoon, the intruder’s action space becomes
C x C. If matrices A™ and A specify for each route which cells are visited in the
morning and afternoon, respectively, the payoff matrix can be adjusted to:

migry = (L —dj)ai} + (1 — b)) g; + (1 — dg)bi; + (1 — bir)) g,

t=1,....Ngr, j,k=1,..., No, where j and k are the cells attacked by the intruder in
the morning and the afternoon. O

The intruder attempts to maximize the payoff by choosing which cell to attack, s
the action set of the intruder is given by C. The agent tries to catch the intruder by
selecting a route, so the action set of the agent is given by R. The agent minimizes
the payoff by deciding on the probability p;, i = 1, ..., Ng, that route ¢ is chosen, while
the intruder maximizes the payoff by selecting the probability ¢;, j = 1,..., N¢, that
cell j is attacked. The strategy of the agent is constrained by the conditions f(p) > 0,
determined by the minimum number of times each cell is visited by the agent. In
Sections and we will elaborate on these conditions. The value of the game,
V', equals the expected payoff per day. Optimal strategies can be found by solving the
following mathematical program:

V = minmax p? Mg
P q

s.t. f(p) >0,

Ngr
sz = ]-7
2 (6.2)

N¢
d>a=1,
j=1

p,q > 0.

Taking the dual of the inner linear program max,{p’ Mg| Z;Vfl ¢; = 1,¢ > 0}, the
minmax formulation (6.2)) can be rewritten to obtain the value of the game and optimal
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strategies for the agent:

V =min =z
P,z

st. eTz > pTM,
f(p) >0,

=1
p=>0,

where e is the row vector with only ones. Note that there only exists a value for this
game if the set {p|f(p) >0, Zf\z p; = 1,p > 0} is not empty.

Remark 6.2. For clearness of presentation, we model the game as a zero-sum game.
Note that a similar model applies if we consider a bimatrix game in which the agent
and the intruder have different payoff matrices. In bimatrix games, the game value is
calculated using quadratic programming (see for example [104], Chapter 13.2) instead
of linear programming, but the probabilistic constraints can be implemented similarly.

In addition, in the same manner, conditions on the intruder’s strategy set can be
added. O

6.2.2 Conditions on the number of visits to a cell

In this subsection, we consider conditions on the number of visits for each cell sepa-
rately to obtain a lower bound for V. Let Np be the number of days in the planning
period. The strategy of the agent is constrained by the minimum number of visits v;
to each cell 5, 7 =1, ..., N¢, over the entire period Np, that must be realized with at
least probability 1 — e. Given any strategy p, the probability that cell j is visited by
the agent is b;p, where b; is the row vector of the j-th column of B.

Let X;, 7 =1,..., Nc, be the random variable that records the number of visits to
cell j during the planning period. The probability that cell j is visited equals b;p. As
there are Np successive days, X; is binomially distributed with parameters Np and
b;p. The constraint on the number of visits then reads P(X; > v;) > (1 —¢), i.e,,

Np Np!
kz iy ) b)) = 1 e

which can be implemented in by choosing f(p) = (f1(p), f2(p), ..-fne (p)) with
filp) = P(X; 2 v;) — (1 —e).

For large Np, the binomial distribution becomes intractable for implementation.
Therefore, we use the following approximation. For large Np, the binomially dis-
tributed X; can be approximated by the normally distributed Xj with mean Npb;p
and variance Npb;p(1 — b;p) (see [I12], Chapter 1.8):

P(X; > vj) =1~ P(X; <v;) = 1 = P(X; < vy),

yielding

_ v; — Npb;p
filp) =e-@ < Nobo 0 b) bjp)> ; (6.4)
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where ®(z) is the cumulative distribution function for the standard normal distribu-
tion.

Considering the conditions for each cell separately gives a relaxation of the orig-
inal conditions, where the minimum number of visits has to be obtained for all cells
simultaneously. If we replace f(p) in by the constraints in (6.4), we obtain the
following lower bound for the game value V:

Vi, =min =z
D,z
stelz>pT'M,

( ’Uj — NDbjp

vV Npbjp(1 = b;p)
Nr
sz = ]-a
i=1

p>0.

) §€7 j:]‘""’NC7

In order to linearize these constraints, we determine for each cell j all possible values
of b;p such that e — P(X; <wv;) > 0. This is illustrated in the following example:

Example 6.1. Suppose the planning period is Np = 100, v; = 40 and € = 0.05. We
are interested in all values of b;p such that:

o ( v; — Npb;p ) <
VNpbip(1 —b;p)
Using the table of the standard normal distribution, this is the case when
v; — Npb;p
Npbjp(1 —b;p)

<—1.65 = bp>04T72,

O
As described in the example above, the constraints in (6.5 can be replaced by the

linear constraint pT A > l~), where b; is determined by the minimum probability for
each cell such that the conditions are met with probability 1 — e.
Visits to cells are correlated via the routes. Therefore, we are interested in the

joint probability:
P(Xl Z U17X2 2 V2, ~"7XNC Z UNc)u

that we will discuss in the next section.

6.2.3 Conditions on all cells simultaneously

In this section, we discuss the conditions on the minimum number of visits for all cells
simultaneously. Let Y;, i = 1, ..., Ng, be the random variable that specifies the number
of times that route i is selected. Y = (Y1, Y2, ..., Yi,,) is multinomially distributed with
parameters Np and p:

.

Ngr Vi

p,
P(Yl:'U17}/2:U2,...,YNR:UNR):ND!I| l".
i=1 v
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For large Np, Y can be approximated by the multivariate normally distributed Y
with the following expectation, variance and covariance (see [I12], Chapter 1.8), i =
1, oy NR,Z

E( l) NDpZa
(YuK ) = —Nppipir.

The number of times cell j is visited, X}, can then be expressed as:

Ngr
X; = Zbini,
i=1

and using the approximation Y for Y, X j can be approximated by a normally dis-
tributed X; with expectation, variance and covariance (see [112], Chapter 1.4), j =
17 bl NC7:

E(X;) = Npb;p,

Var(f(j) = Npb,p(1l — b,p), (6.7)
Nr Ngr o

COU( Z Z bz]bz ]’COU Yyyi’)- (6.8)
1=11=1

The probability that the conditions are met for all cells is:

P(Xl > v, X9 > v, ..., XNC > ’UNC) P(X1 > Ul,XQ > 'U27~~~7XNC > UNC)

e~ (vmm)'3" (“*“)vac...dvl, (6.9)

~vme o Lo

where ¥ is the covariance matrix and p is a vector with all expected values. This can
be implemented in (6.3)) by choosing f(p) as

f(p) = P(Xl Z 1}1,)22 Z V2, ...,XNC Z UNC) - (1 - 6). (610)

The constraint described above is not linear and cumbersome to implement in a
mathematical program. To simplify the model, we use a lower bound for the proba-
bility that the conditions are met and implement this lower bound.

A lower bound for the probability that the conditions for all cells are met is:

P(X) > v, X3 > v,y Xne > UNG)

21—P()~(1 < v \/Xg <U2\/-~-VXNC <1}Nc)
Nc

>1-Y P(X; <) (6.11)
j=1

This lower bound can be used to simplify the mathematical program as follows:

o Ve Ui — NDbjp
W) =c- ; ® ( Npbjp(1 =b;p) ) (612
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Replacing f(p) in (6.3)) by a lower bound in the condition, results in an upper bound
for the game value V:

Vy =min =z
P,z

st. elz>pt'M,

Nr
Zp’b = 1a
=1

(6.13)

Z ® v; — Npb;p > e,
= \VNpbjp(l—b;p)
p=0,

Combining this upper bound and the lower bound obtained in Section [6.2.2] we readily
obtain the following result:

Lemma 6.1. For Vi given in (6.5) and Vi given in (6.13) we have:
V<V < Wy

In Section we investigate the impact of this approximation modeling approach
on the game value.

Remark 6.3. We may linearize this program by approximating the normal distribution
for each cell j by a piecewise linear function h; with Np breakpoints b;, [ =1,...,Np
(see [128], Chapter 9.2):
min 2
P,z
st. ez > pTM7

Nr
Zpl = 17
=1

Bp =c,

A Sy + Y1) j=1,...,Ng,l=1,..., Np,

Ny
Zylj:17 jzla"wNC’a
=0
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p7>‘ Z 07 Yij € {071}7 ]: 1;"'aNCal = 17~-~7NBa

where h;(b) = ® — i Npey ) However, we use the mathematical program stated
Npej(1—c;)

in (6.13)) in the result section since this model is still solvable for realistic instances.[J

6.3 Generalization: multiple payoff matrices

The previous section considers games with constant payoff. This section considers a
generalization to situations where payoff can change over time due to, e.g., weather
conditions or seasonal fluctuations resulting in multiple payoff matrices.

6.3.1 Constrained game

Consider the game with multiple payoff matrices M*)| k =1, ..., Ny, of size N x N
Let 1®) be the probability that the payoff matrix is M®*) with Ziv:Ml p) = 1.

Moreover let ¢*) and p(®) be strategies of the agent and the intruder when the payoff
matrix is M®*). The value of the game is the expected payoff per day and can be
found by solving the following optimization problem:

N
V = min max Z ) (pNT pp (k) g (k)
pooa =

s.t. f(p) >0,

Ngr
S =1, k=1,..,Nu, (6.14)
=1

N¢
qu(k) = 1, k‘ = 1, ...,N]y[,
i=1

p,q >0,

where pT = (p), ..., p"™)) and ¢T = (¢, ...,¢™™)). In the next section, we discuss
how the constraint f(p) > 0 changes if multiple payoff matrices are considered.

6.3.2 Conditions for games with multiple payoff matrices

The conditions on the minimal number of visits for all cells during the planning period
can be constructed following the same reasoning as in Section Now, the number
of visits for cell j is the sum of the number of visits for cell j for each payoff matrix.
Let Xj(k), j=1,..,N¢g, k=1,..Ny, be the random variable describing the number

of visits to cell j when the payoff matrix is M}, and let X ](-k) be the approximation of

Xj(-k). Nj(jk) is the number of periods that the payoff matrix is M(*). We are interested
in the following probability:

PXD 4+ X > 0, X 4+ XV >, XG4+ XY > o),
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with E( ) Var(X( )), and Cov(Xj(k)) calculated as in Section (Equations

.—. , but with Ngc) and p®) | instead of Np and p. Since Xjk and )~(J(,k) are
independent if j # j/, we have:

N
vyl k
) = ZNJ(J)bjp(k)
k=1

N

Var(X;) = > Ny bp® (1 —b;p®),
k=1
Ny Ny
Cov(X Z Z Cov(X k X(k ).
k=1k'=1

To make sure that the conditions are met with high probability we define,
f(p) = P(Xl > Ul,XQ > V2, ...,XNC > UNC) — (1 _ 6),

where P(Xl > U]_,XQ > Vo, ..., XNC > un, ) equals with ¥ and p the covariance
matrix and expected value as described in the above equations. Similarly as in Section
a lower bound for this probability is given in . Taking the dual of the
inner LP of and using this lower bound, optimal strategies for the agent and
the intruder can be found by:

N
Vr = mi (k)
i )

s.t. e z(k) > ,u( )( (k))TM(k), k=1,....Np.
Nc , NM (k) (k)
1Np7b
Uiz D 2iP > e, (6.15)
\/ YN (k)b;p(’“>(1 —b;p®)
Zp(k)_]- k:].,...,NM,
p;q >0,

where z = (z(l), s Z(NM)). In the next section, we will show some examples to illus-
trate this model.

6.4 Results

In this section, we give computational results and examples to illustrate our models.
In Section [6.4.1] we compare the models discussed in this chapter to investigate the
approximation error introduced in Section [6.2.3] Thereafter, we give two examples
that illustrate our model in Section [6.4.21

6.4.1 Computational results

This section investigates the error introduced by using the lower bound in (6.11)).
Solving (6.3) with f(p) given in (6.10)) numerically is computationally intractable for
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networks with more than two or three routes and cells. Therefore, we have compared
the relative difference between the lower and upper bounds of V, see Lemma
We have randomly generated 100 payoff matrices, conditions and routes for different
network sizes. Table shows the average relative difference between the upper and
lower bound with 0.95%-confidence interval between brackets. The last columns gives
the average running time in seconds for . The results are implemented in Matlab
version R2016b [85] on an Intel(R) Core(TM) i7 CPU, 2.4GHz, 8 GB of RAM. As the

Table 6.1: Average relative difference between upper bound Vi and lower bound V,
(e =0.05).

’ # Cells \ # Routes \ Error \ Running time ‘
10 5 0.8% (£ 1.0%) 0.217 s
20 15 1.9% (+ 1.8%) 0.347 s
30 25 2.2% (£ 1.4%) 0.819 s

results in Table show, gives a good approximation of the game value V' and
can be solved in reasonable time. The size of more realistic examples, as encountered
in the patrolling against illegal fishing context, is comparable to the size of these
randomly generated instances.

6.4.2 Illustrative examples

In this section, we present some examples to illustrate the models described in this
chapter. The results in this section are obtained by implementation of and
. Consider an area with 12 cells and 9 routes. The routes are chosen such that
the cells are evenly spread over all routes, see Figure Suppose Nj; = 2 and the
payoff matrices are constructed using , where d; = 0.9, j =1,..., N¢c and g® is
the intruder’s gain. Figure depicts payoff matrices M, M@ and two example
routes, Routes 1 and 8. The white cells have a gain of 1, the light gray cells have a
gain of 2 and the dark gray cell have a gain of 3.

’ Routes \ Cells visited by route ‘

1 1,59, 10
12 2 2,3,8,12
3 3,7,6,10

11 4 4,7,6,9
5 1,2, 3,4

0 6 3,4,7,12
| 7 2,5,6,9
o1-514-1-1l 9 [ 5 |1 g L7112
9 2,5, 10, 11

Figure 6.1: Payoff matrices and routes.
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Constant payoff matrix

Consider the games with payoff matrices M) and M) separately. Suppose that
the planning period for both payoff matrices is Np = 100. Table shows the
game values for different conditions. For example, a condition of 0.1 means that the
minimum number of visits equals 10. The second and the third column give the game
value of both games for the conditions specified in the first column. The first row
shows the value of the game without conditions on the number of visits to the cells,
the second row considers the game in which all nodes must be visited at least 10 times,
and the third row considers the game in which nodes 1-4 must be visited at least 30
times and the other nodes at least 10 times.

Table 6.2: Expected payoff per day for different conditions (e = 0.05).

’ Conditions (fraction) \ Payoff M@ Payoff M) \ Average \ Combined ‘

None 1.10 1.58 1.34 1.34
All nodes: 0.1 1.23 1.64 1.44 1.34
1-4: 0.3, 5-12: 0.1 1.23 2.14 1.69 1.35

Table indicates that if more conditions are imposed on the agent’s strategy,
the game value will increase. However, the increase of the game value depends on the
payoff matrix. For example, the extra condition on nodes 1-4 does not increase the
game value for payoff matrix M| since the intruder’s gain for these nodes is high
and the agent is already patrolling these cells more often, as the results below indicate.

Figure displays the agent’s strategy for the different payoff matrices without
conditions. The color of each cell is determined by the gain of the intruder and the
number within each cell shows the fraction of the time period that the cell should
be visited. The agent’s strategy is shown by the circles in each cell. The probability
that a cell is visited is proportional to the radius of the circle in that specific cell. For
example in Figure the probability that cell 3 is visited equals 1 for M) and 0.24
for M. Figure displays the agent’s strategy when conditions as given in Table
[6:2 are considered. For all cases, it is clear that cells with a high gain for the intruder
are visited more often.

B

o | o [lo oo | o

Figure 6.2: Agent’s strategy for the game without conditions.
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0.1 | 01

- [
‘ 0.1 . 0.1 | 01 | 0.1
01 | 0.1 | 0.1 0.1 | 0.1 | 01

(a) All nodes: 0.1

o1 | o1 |@8)| NGB 02
‘. 0.1 | 03

‘ 0.1 ‘ 0.1 | 01 |03

01 | 01 |03 01 | 0.2 | 03

0.1

(b) Nodes 1-4: 0.3, nodes 5-12: 0.1

Figure 6.3: Agent’s strategy for different conditions.

Multiple payoff matrices

The previous example considers the game with a constant payoff matrix such that for
each game the conditions on the minimum number of visits have to be met. Now,
we consider multiple payoff matrices simultaneously. Suppose that the total planning
period Np = 200 and both payoff matrices M) and M3 have equal probability, so
pM = 4 = 0.5. Again, routes and conditions are given in Figure and Table
A condition of 0.1 means that the total number of visits is 20, but it is, for
example, allowed that there are only 5 visits when the payoff matrix is M) and 15
when the payoff matrix is M (). This is the benefit of playing the game repeatedly
and considering multiple payoff matrices simultaneously. In the last column of Table
the value of the game in which the conditions are combined for multiple payoff
matrices is shown. If there are no conditions on the number of visits to the cells, the
game value is just the average of both games with constant payoff, which is shown in
the second last column of Table However, when conditions are considered, the
value of the combined game is lower than the average of both games with constant
payoff, because the agent has more flexibility in meeting the conditions.

Figure [6.4] shows the agent’s strategy for the combined game with conditions given
in Table Comparing the results with those in Figure [6.3] reveals that the agent
has more flexibility in meeting the constraints when multiple payoff matrices are con-
sidered. Indeed the agent visits a cell less often when the gain is low and compensates
this lack of visits when the gain of that cell is high.
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0:1 | 0:1 .

0.1 ‘. 0.1 | 0.1
‘ 0.1 | 01 ] 0.1
0.1

@

01 | 01

0.1 | 0.1 | 01

(a) All nodes: 0.1
l 0.1 | 0.3
0.1 ] 01 ] 03

0:1 | 0:1 |03 0.1 | 01 | 0.3

(b) Nodes 1-4: 0.3, nodes 5-12: 0.1

0:1

0:1

0.1

Figure 6.4: Agent’s strategy if multiple payoff matrices are considered simultaneously.

6.5 Concluding remarks

Patrolling a region with conditions on the frequency of visits to specific parts of that
area while taking into account the optimal payoff of the intruder or agent can be
modeled as a zero-sum security game with probabilistic constraints on the agent’s
strategy. These constraints prohibit exact solutions for large (realistic) instances.
Therefore, we have developed a model yielding an upper bound and a lower bound
for the game value. Computational results reveal that the relative difference between
the upper and lower bound for the instances considered is less than 2.5% and that
instances of realistic size can be solved within seconds.

In practice, the agent’s strategy is constrained by existing guidelines. Numerical
examples show that as the number of conditions increases, the agent’s loss will increase.
However, if multiple payoff matrices are considered, the agent has more flexibility in
meeting the conditions and the loss of the agent is reduced.

In this chapter, we have assumed that only one intruder is present in the area, that
the payoff of intruders is known and that the agent decides on a strategy in advance.
For future research, it would be interesting to investigate the case where not all payoff
matrices are known in advance and multiple intruders attack simultaneously. Also,
considering a more dynamic strategy of the agent, for example by taking into account
extra information about the payoff and cells that already have been visited, should be
pursued.
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CHAPTER 7

Security games with restricted strategies:
an approximate dynamic programming
approach

The results in this chapter were published in [71].

7.1 Introduction

In the previous chapter, we considered a special case of a security game dealing with
the protection of a large area for a given time period where the agent’s strategy set is
restricted. The large area consists of several cells containing assets to be protected. An
intruder decides on which cell to attack, while the agent needs to select a patrol route
that visits multiple cells. The agent’s strategy is constrained by existing governmental
guidelines that require that some cells should be patrolled more often than others.
This problem is modeled as a two-player zero-sum game with probabilistic constraints,
which requires that the conditions are met with high probability.

The model described in Chapter [0]is a static version of the problem, where a strat-
egy for the complete time period is identified before the game starts. The requirements
are modeled such that they are met with high probability. However, that model does
not allow patrolling strategies adjusted to the current situation. In this chapter, we
consider a dynamic approach to the security game with restricted strategies in which
the agent decides on his strategy for each day taking into account expected future
rewards. This allows finding a more flexible strategy for the agent, where current
payoffs and number of visits to each cell can be taken into account.

We model the dynamic variant of the security game with restricted strategies as
a finite-time stochastic game in which the state depends on both the current payoff
matrix and the remaining minimum number of visits left to each cell. The direct
reward is given by the intruder’s payoff and at the end of the time period a penalty
is given if the operational requirements are not met. Solving stochastic games can be
done by iterating over all states and time periods. However, the state space grows
exponentially in the number of cells and we are unable to solve realistic sized games.
Therefore, we develop an approximate dynamic programming (ADP) approach to find
approximate solutions.

Due to the curse of dimensionality, many stochastic optimization models cannot

113
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be solved by iterating over all possible states. ADP is a technique that can be used to
solve large scale Markov decision processes (MDPs). We develop an ADP framework
to find approximate solutions for our stochastic game. A brief introduction to ADP
can be found in [I07] and various examples are given in [§9]. In the ADP framework,
the optimal solutions are not found using standard backward dynamic programming,
but by using a forward dynamic programming approach over only a fixed number
of iterations. In this forward approach, different value function approximations can
be used. In this chapter, we use multiple aggregation levels of the state space to
approximate the value functions as discussed in [43]. In the basic ADP algorithm,
only a very limited number of states will be updated during each iteration. In our
method using aggregation of the state space, multiple value function approximations
are updated at the same time, possibly with different weight for different aggregation
states. In this way, the value functions are updated more often and will converge
faster.

Although most of the research in ADP focuses on solving MDPs, some models focus
on solving games. In [I03], the authors consider the error propagation for different
approximation schemes of zero-sum stochastic games. However, this paper does not
provide a clear procedure that can be used to solve stochastic games using ADP. A
solution technique that is very similar to ADP is reinforcement learning (RL), see for
example [2I]. The main difference between ADP and RL is that RL is considered
to be model-free, which means that information about transition probabilities is not
necessarily required. In the field of RL, there is also limited research about applications
to stochastic games. In [79], the authors use RL to approximate unknown rewards and
use an iterative algorithm to find a policy for both players, while we are interested in
calculating this policy using approximation algorithms.

The main contribution of this chapter is twofold. First, we develop a model to solve
security games with restrictions on the agent’s strategy. Formulating this model as a
stochastic game enables the agent to adjust the strategy to the current situation and
actions that already have been chosen in the past. Second, we approximate optimal
solutions of this stochastic game via an ADP approach. We adjust the standard
ADP model that is often used to solve large scale MDPs to analyze stochastic games.
Experimental results show that this method gives better payoffs for the agent than
using a static approach where strategies are fixed for the complete planning period.

The remainder of this chapter is organized as follows. In Section we introduce
the model and give the elements of the stochastic game. In Section we first
give a brief introduction to ADP and then describe our formulation for stochastic
games. In Section [7.4] we give computational results and compare the static and
dynamic approach. Finally in Section[7.5| we summarize the main findings and provide
directions for future research.

7.2 Model description

In this section, we give the formulation of the security game with restrictions on the
agent’s strategy. We first describe the basic model in Section In Chapter [6]
we have explained the solution method that is used to solve this game with a static
strategy for the complete time period. In Section [7.2:2] we describe a new stochastic
game approach which is used to analyze strategies over the entire planning period.
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7.2.1 Basic model

The game is played between an agent and an intruder over a time period of Np days.
The area is given by a finite set of cells C' = {1,..., N¢}. Each day, an intruder
selects one cell to attack while the agent chooses a route from a finite set of routes
R ={1,...,Ng}. The agent and intruder choose their actions simultaneously. Routes
consist of multiple cells where the agent is allowed to move between adjacent cells.
The matrix B indicates which cells are visited by each route, such that b;; equals 1 if
route 4 visits cell j and 0 otherwise.

The risk of a cell is displayed in the payoff matrices. Cells with a high risk have
higher payoffs than low risk cells. This payoff is interpreted as the intruder’s gain:
the higher the gain for the intruder, the higher the probability that the intruder will
attack there. The payoff matrix can change over time, due to, e.g., weather conditions
or seasonal fluctuations, resulting in multiple payoff matrices. We assume that we
have some information about how these payoff matrices change. Let M*) be the k-th
payoff matrix of size Np X N¢ out of a finite set of payoff matrices, k = 1, ..., Nj;. The
element mgf) is the expected payoff if the agent uses route i and the intruder attacks
cell j, i =1,....,Ng, j = 1,..., No. We consider the payoff given by the intruder’s
expected gain:

where d; is the detection probability for cell j and gék) is the intruder’s gain if the
intruder successfully attacks cell j. If the agent successfully intercepts the intruder,
the payoff is 0.

There are operational requirements on the number of visits to the cells: the agent’s
strategy is restricted by the requirements that impose a minimum number of visits v;
for each cell j, j = 1,..., No. During the time period, the agent has to decide on his
actions such that cell j is visited at least 7 times.

Note that the model described in this chaper only describes a basic security game
with one intruder. The methods developed in this chapter may be applied to ex-
tensions to matrix games obtained by changing the payoff matrices, such as including
more (cooperating) intruders or detection probabilities depending on the cell or chosen
action.

7.2.2 Dynamic approach

When considering a dynamic approach, strategies can change during the time window
depending on the current payoff matrix and the number of times each cell already
has been visited. We model this as a finite-time zero-sum stochastic game. We now
describe the elements of this game.

The state space S of the game is given by the current payoff matrix and the number
of visits that are still required for each cell:

S = {S|S = (/f,'L_)l,...,’l_)I\/'C)7 k=1,...,Ny, 0<Z v; <wj, J€ C}

The action space of the agent and intruder are given by A4 and A;. The intruder
attempts to maximize the payoff by choosing which cell to attack, so the action set of
the intruder is given by C. The agent tries to catch the intruder by selecting a route,
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so the action set of the agent is given by R:
Ap=R, A;=C.

The matrix P gives the transitions between the payoff matrices. These transitions
do not depend on the actions of the agent and the intruder. If the current payoff matrix
is M(¥) then with probability tj; the next payoff matrix is M®. The transition matrix
of the game P depends on both P and the action i of the agent:

pri, if v = max{v; — b;;,0}, for all j € C,
P(s'|s,i) = Pl i {v; = bij, 0} J
0, otherwise.
where s = (k, 1, ...,0n.) and s" = (1,07, ..., V), ) and i is the agents action.
The direct reward is given by R(s, (i,7)) and depends on the agent’s strategy i,
the intruder’s strategy j and the current payoff matrix M *):
. k
R(s, (i,5)) = m{} .
To ensure that the requirements are met, we introduce a final reward which is a
penalty for the requirements that are not met. This can either be a penalty for each
requirement that is not met or one penalty if the requirements are not met. For the
results considered in this chapter, we consider the last option:

Ry(s) = B, if > jec i >0,
A 0, otherwise,

where B is chosen large enough such that it is never beneficial to violate one of the
requirements.

Optimal strategies can be found by solving the game iteratively (see [96], Chapter
V.3). Let V;(s) be the game value at time period ¢, when the game is in state s.

Vi, (s) = Val (M(k) + ) P(s]s, -)Rf(s’)> : (7.1)

s'eS

Vi(s) = Val (M(’“) + Y P(sls, .)ml(s')) , t<Np. (7.2)

s'esS

where s = (k, 01, ..., ), 50 My depends on the first element of state s, and P(s'[s, -)
is the matrix consisting of the values P(s’|s,4) for all agent’s actions. The expression
between brackets defines a matrix game. Val gives the value of this matrix game, so
this is the game value when both players choose a strategy corresponding to a Nash
equilibrium.

Solving equations and will give an optimal value of the game. However,
the size of the state space is exponentially increasing in the number of cells and con-
ditions and we are unable to solve these equations analytically. In the next section,
we present a model to deal with this large state space.
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7.3 Solution approach: approximate dynamic pro-
gramming

In this section, we present a method that can be used to overcome the large state space
of the stochastic game formulation in Section[7.2} Approximate dynamic programming
(ADP) is a technique that is often used to solve large scale MDPs. In Section|7.3.1] we
give a short introduction in ADP for solving MDPs based on [107]. In Secti
we develop ADP to solve our stochastic game.

7.3.1 Introduction to ADP

Consider an MDP over time horizon T, with states s;, actions a;, transition matrix
P, and cost functions Cy. The value of an MDP can be found by solving the Bellman
equations:

Vi(se) = min [ Cy(se, xe) + Z P(si1]se,2¢)Vig1(si41)
Zt

St41

When the state space is large, solving the Bellman equations is too time consuming.
The main idea of ADP is not to solve the model by enumerating over all possible
states but only over a limited number of states using a forward dynamic program-
ming approach over a fixed number of iterations N. For each iteration, the random
information is sampled using Monte Carlo experiments.

The random information that is revealed after action a; is chosen, is given by wy1.
Both the action and the random information define the next state. For ADP, the post-
decision state s{ is introduced. A post-decision state is the state after an action a; is
chosen, but before the new random information w;y; is revealed:

Vi(se) = H}litn (Ci(se,ae) + VE(s1)) s

Vi(st) = Z P(wis1)Vigr (Ses1]s, wesr).

Wt+1

By the use of the post-decision state, we only have to evaluate the possible outcomes
over w41 for each action and not over all possible states siy1. This decreases the
number of possible outcomes that have to be evaluated during each iteration signifi-
cantly.

The output of the algorithm is an approximation V;*(s¢) of the value of the post-
decision states. During each step, the approximation V is updated using the following
update rule:

Vit (s1) = {(1[_1“””1(8?) ot e s 3)
V"7 (8e)s otherwise.

where « is a step size between 0 and 1. In the next section, we discuss the value of «.
The basic structure of an ADP is given by the following algorithm.
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Algorithm 5 ADP algorithm

1: Initialize:

e Choose an initial approximation V,2(s¢) for each t.
e Set n =1 and choose an initial state s{.

2: Choose a sample path w™ = (wy, ..., w}).
3: Fort=0,..T

e Solve

o7 = min (Cy(sf, ar) + B (V7 (se]sf",w))

and let a be the action that solves this minimization.
e Update V;*(s;) using (7.3)).
e Compute the next state to visit from the action ay.

4: Set n =n 4+ 1 and go to Step 2.

This algorithm is a basic outline and will in general not always give good approx-
imation results. There are some methods for improving the algorithm, mainly in the
step of choosing the next state (random or not), the choice of « and in the steps of
the value function approximation. We discuss these methods in the next section.

7.3.2 ADP for a stochastic game

The ADP approach described in the previous section is used to solve large scale MDPs.
In this section, we describe the adjustments we make to the ADP to solve the stochastic
game in Section[7.2.2] The difference with MDPs is that we deal with multiple players.
Therefore, the Bellman equations are replaced by:

Vi(s) = Val (Mk + ) P(s]s, .)x/tﬂ(s')) .

s'es

As a consequence, we have to optimize over both the intruder’s and the agent’s ac-
tions. However, in our case, the next state does not depend on the intruder’s action.
Therefore we can use an ADP algorithm similar to the ADP algorithm which is used
to solve MDPs.

Due to the introduction of multiple players, we are not dealing with discrete actions.
Both agent and intruder choose a probability distribution over the action spaces at
each time step. Therefore, we are not able to calculate a value for each combination
of actions and states. We modify the formulation and use of the post-decision state,
which in our case only depends on the agent’s actions. Let s! be the post-decision
state at time ¢t and state s when the agent chooses pure strategy i € R:

N
Vi(sh) = ZﬁletH (T, (s¢(2) = bin) T, oo, (¢ (Ne + 1) = bine) 1))
=1

where s = (k, 1, ..., Ung )-
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We now describe the basic ADP algorithm adjusted to our game:

Algorithm 6 ADP algorithm for stochastic game

1: Initialize:
e Choose an initial approximation V,2(s;) for each ¢, s;.
e Set n =1 and choose an initial state s{.

2: Choose a sample path w™ which describes the payoff matrices.
3: Fort=0,...Np—1

e Construct M, such that:
mi; =my; + Vi (s}), t<Np,

m”:mf]—FRf(Sé), t:ND.
e Solve
0y = Val (M),

and let 7" be the agent’s strategy that solves this minimization.

e Update V;*(s;) using (7.3)).
o Compute the next state to visit: w.p. 3 decide on the next state using 77"
and with probability 1 — 8 choose a random action.

4: Set n =n+ 1 and go to Step 2.

We now discuss the choice of @ and 8 and introduce aggregation, which can be
used to speed up the convergence of the algorithm.

Choice of @ The value of the step size a can be chosen in different ways. A review
of different step sizes that are used in literature is given in [42]. Two popular step
sizes that are often used are the harmonic and the polynomial step size [I07]. We use
a harmonic step size where o depends on the iteration n:

a
Q, = maxi ———, Qp
n {a+n_17 }7

where the value of «,, decreases in the number of iterations. In Section [7.4] we con-
ducted experiments to decide on the value of a and ag.

Choice of f 1In Step 3 of the ADP algorithm, the next state is chosen. If the next
state only depends on the strategy w, it is possible that some states will never be
visited and the algorithm does not converge to the best possible value. To avoid this,
a random action is chosen with probability 1 — 8. In Section [7.4] we also show the
results of experiments with the value of 5.

Aggregation To have a good approximation of the value function of a state, this
specific state has to be visited often enough. During one iteration, the value function
of only one state is updated and when the number of states is large, a lot of iterations
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are necessary to ensure a good approximation. There are different methods that can
be used to speed up the convergence by updating multiple states per iteration. Two
methods that are commonly used are aggregation and the use of basic functions [T07].
We use aggregation with multiple aggregation levels which is proven to work well for
large scale MDPs [43]. An example of an aggregation level is to only consider the
requirements and not the payoff matrix.

Let G be the number of aggregation levels and S9), g = 0, ..., G, be the state space
corresponding to the g-th aggregation level (S(O) = S). The state 59 is the state
corresponding to s in the g-th aggregation level and V(9)(5(9)) is the value function
approximation for this state. The value function approximation of each state s is given
by a weighted combination of the value functions of all the corresponding states for
the different aggregation levels:

G
Vi(s) = Z w@™ ()79 (509)),

g9=0

where w(9™ (s) is the weight of the g-th aggregation level for state s. We choose the
weight by inverse mean squared errors as described in [43] using the bias and variance
of each estimator:

1

5(9)(s))2 ~ ’
(Iifé(f’))) +(Mgg))2

w(g’")(s) ~

where (9)(s))? is the sample variance of all the observations corresponding to the
estimate V(9)(5(9)), N9 is the number of all these observations and ;129) is the bias
from the true value V(9 (s). A detailed description of these computations can be found
in [43]. Experiments with different aggregation levels can be found in Section

In this section we have described a framework to enable us to deal with large scale
dynamic games. In the next section, we show computational results to illustrate the
performance of the ADP framework.

7.4 Experiments

We have developed a model and solution approach to solve a dynamic variant of se-
curity games with restrictions on the agent’s strategy set. In this section, we perform
experiments to see how our model performs. First, we compare the static and dynamic
approach in Section [7.4.1} In Section [7.4.2] we experiment with different input vari-
ables of the ADP approach and give computational results. Finally, in Section
we explore the model for an instance of realistic size.

7.4.1 Benefits of the dynamic approach

To show the benefits of the dynamic approach studied in this research, we compare it
with the static approach as described in Chapter [6}

Consider a game with 9 cells and 8 routes as described in Figure [7.1] In this
example, the routes are chosen such that the agent moves right, left or diagonal. The
numbers are the cell numbers and the colors of the cells correspond to the intruder’s
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gain. The darker the color, the higher the intruder’s gain: white cells have a payoff
of 1, light gray cells have a payoff of 2 and dark gray cells have a payoff of 3. The
restrictions are given by v which gives for each cell the minimum number of visits.
The transition probabilities for the payoff matrices are:

0.7 0.3
r= {0.3 0.7]'

This means that on average both M) and M®) occur with equal probability, so
pu = 13 =0.5. The time period, Np, equals 80.

’ Routes \ Cells visited by route ‘
1 1,5,9

0~ O Uk W N
=W == o
TTUT O N 00 W
© MWD

Figure 7.1: Payoff matrices and routes.

In Table the second and third columns show the game value for both the static
and dynamic approach for different requirements on the agent’s strategy. The value
that is given is the expected value per day. The last column gives the running time for
the stochastic game. The static game always runs within a second. All experiments in
this section are implemented in Matlab version R2016b [85] on an Intel(R) Core(TM)
i7 CPU, 2.4GHz, 8 GB of RAM.

Table 7.1: Expected payoff per day for different requirements.

Requirements Static Dynamic

Game value | Game value Time (sec)
None 1.45 1.45 1.01
v=1(0, 0, 40, 0, 0, 0, 0, 0, 0) | 1.64 1.55 10.38
v=(0, 30, 0, 0, 0, 0, 20, 0, 0) | 1.88 1.52 143.81
v = (0, 30, 40, 0, 0, 0, 20, 0, 0) | 2.31 1.58 6513.91
v=(0, 0, 40, 0, 0, 0, 30, 0, 0) | - 1.85 275.19

Both the static and the dynamic game are played over a time period of Np days.
Note that the strategies from the static game, can always be recreated using the
dynamic approach. When there are no restrictions, the dynamic game gives almost
the same strategies as the static game because previous actions do not influence the
outcome and, when Np is large enough, the number of times each payoff matrix
appears is approximately the expected value p as used in the static game. As can be
seen in Table[7.1] the dynamic game approach gives better results for the agent when
there are restrictions. This is because the agent has more flexibility in planning his



122 7. Security games with restricted strategies: an ADP approach

strategy. The agent does not have to plan his complete strategy in advance anymore
and can adjust his strategy depending on which routes were chosen before.

Moreover, using the stochastic game approach, it is guaranteed that the require-
ments are met. Another advantage is that we do not have to require that each payoff
matrix occurs often enough because we do not need to apply the law of large num-
bers. Also, some requirements give an infeasible solution for the static approach, while
they can be met for the dynamic case. This follows from the fact that for the static
approach we use randomized strategies that are the same for each time period. To
meet the requirements with high probability, the cells have to be visited more often
on average than required. This is not necessary for the dynamic approach, since the
strategies can be adjusted to the number of visits in the past. The disadvantage of
the stochastic game approach is that the running time increases exponentially in the
number of required visits.

7.4.2 Computational results ADP

In this section, we explore the performance of the ADP approach for the dynamic game.
Also, we test different input parameters and multiple aggregation levels. Consider the
game as described in Sectionwith the requirements v = (0, 30, 40, 0, 0, 0, 20, 0, 0).
This example will be used to illustrate our experiments.

The running times of the experiments in this section depend on the level of ag-
gregations: the more levels of aggregations, the higher the running time. For the
case without aggregation, the running time of the experiments is approximately 1000
seconds. The running time for the case with four levels of aggregation, the running
time was approximately 1500 seconds. For all the experiments, we used 3000 as the
number of iterations.

First, we test the model without aggregation for different input parameters: the
step size parameters, a and aq, and the probability that a random action is chosen
1 — 3. The value function approximation of the initial state is displayed in Figure [7.2]
for a selection of different combinations of these parameters without aggregation. The
ADP algorithm gives value function approximations for each possible state. Also, for
each possible state, a strategy is calculated in Step 3 of the algorithm. We test this
strategy by simulating the game after different numbers of iterations. The game is
simulated 100 times, where the value approximations and strategies obtained by the
ADP algorithm are used.

Tables [L.3H7.6] in Section [L.6] show the results for the model with and without
aggregation. Tables [7.3| and show the percentage that the requirements are met.
In general, it holds that the better the value function approximations are, the higher
the probability that the requirements are met. For the dynamic game, it is guaranteed
that the conditions are met if this is feasible and the penalty is high enough. However,
when using the value function approximations to decide on the strategies, this is not
always guaranteed if the approximations are still too far from the optimal values.
Tables and show the average game value for the case that the requirements
are met. These tables show that 8 = 0.75 gives the best results for all different step
values. For the value of the step size, the results are less conclusive. However, higher
step sizes give better value function approximation. The choice of g is hereby more
important than the choice of a. This can also be seen in Figure

In Figure the value function approximation for the starting state is shown for
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Figure 7.2: Convergence of ADP for different values of aig and a and 3, no aggregation.

both the ADP with and without aggregation (a = 750, ap = 0.75, 8 = 0.75). For the
case with aggregation, we use 4 aggregation levels. The first level considers the state
without payoff matrix, the second level considers the state with only an even number
of visits left, the third level considers the state with the number of visits divided and
rounded to the nearest integer above and the fourth level only considers the total
number of visits. We use the first level for the case with one level, the first two for the
case with two levels, etc.

--=- No aggregation
-==1 level
2.8 2 levels
- -==-3 levels
o '.:“‘(‘ ------ 4 levels
= 26
£
a 24
5
E
T 22
&
2
1.8

=

500 1,000 1,500 2,000 2,500 3,000

Number of iterations

Figure 7.3: Convergence of ADP for different aggregation levels.

Figure shows that more aggregation levels give faster convergence. However
in this example, the differences between the different aggregation levels are small.
This can be explained by the fact that this is a relatively small problem and the
convergence for the case without aggregation is already fast. In the next section, we
discuss a larger instance where it can be seen that the algorithm with aggregation
converges significantly faster than without aggregation.

Recall the results in Section as shown in Table [7.1] For the game with
requirements v = (0, 30, 40, 0, 0, 0, 20, 0, 0), the game value for the static approach
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is 2.31 and for the dynamic approach 1.58. In this section, we approximated the
dynamic approach solution by using ADP, where we were able to obtain game values
of 1.92 (see Table [7.6). These results show that the expected reward of using the
ADP approach is higher than the optimal value of the stochastic game. However, it
still outperforms the static approach. Moreover, this method can be used for larger
instances where the stochastic game approach is too computationally expensive.

We tested the ADP approach for different instances, which gave similar results.
The ADP approach usually outperforms the static approach, but not always in the
cases where the game value of the static and dynamic case are close. This can be
explained by the fact that in these cases, the requirements do not have a large impact
on the optimal strategy, so the static game already gives a solution close to the solution
of the dynamic game. Since some approximation error is made in the ADP approach,
it might occur that the static game gives a better value. Also, the optimal choice of
input parameters vary a bit for different instances, so these have to be chosen carefully
depending on the instance. From our computational results, we can say that a high
value of 8 always gives good results and that the value of a needs to be chosen higher
for larger instances.

7.4.3 Numerical results for a realistic sized instance

In this section, we give numerical results of a larger instance of the security game for
which we cannot solve the stochastic game to optimality. The size of this instance is
comparable to real world sized problems. However, we still consider a limited number
of payoff matrices such that we can compare the game values with the game value of
the static game as described in Chapter [6]

Consider the game as described in Figure [7.4] with two payoff matrices and with
requirements on cells 1-5: v = (10, 30, 30, 30, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O,
0, 0, 0, 0). The time period, Np, is 100. The transition probabilities for the payoff
matrices are:

0.3 0.7
= {0.4 0.6} ’

which means that on average, the payoff matrix is M(Y) with probability 0.36 and
M@ with probability 0.64. Solving the static game gives a game value of 2.57.

We ran the ADP algorithm with 4000 iteration with multiple aggregation levels in
different configurations. We used the same aggregation levels as described in Section
with one additional aggregation level. The fifth aggregation level only considers
the maximum number of visits over all cells.

The results for a selection of aggregation level configurations are shown in Figure
This figure shows that aggregation ensures convergence a lot faster in this game.
For this instance, the best convergence is obtained with levels 1, 2 and 4 combined.
With these levels combined, the problems converge faster than without aggregation
levels. This can also be seen in Table [7.2l However, not for all aggregation configu-
rations outperform the algorithm without aggregation. For example, only using levels
3, 4 and 5 decreases the convergence speed. This can be explained by the fact that an
error is made when aggregation multiple states. Aggregating many states will speed up
the convergence, but may also lead to approximations far from the optimal solution.
The right choice of aggregation levels depends on the instance and has to be chosen
carefully.
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Figure 7.4: Payoff matrices and routes for realistic sized scenario.
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Figure 7.5: Realistic sized scenario with and without aggregation.

Table 7.2: Percentage and average realistic sized scenario (8 = 0.75,a = 150,a9 =

0.75).

No aggregation 3 levels
Iterations | Average Percentage | Average Percentage
1000 — 0% 2.47 98%
2000 — 0% 2.33 100%
3000 2.08 83% 2.25 100%
4000 2.03 82% 2.17 100%
5000 2.01 98% 2.07 100%
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7.5 Concluding remarks

In this chapter, we have developed a model for the dynamic decision making of an
agent when his strategy is restricted by operational requirements. We have formu-
lated the problem as a stochastic game and have shown that the use of a dynamic
formulation outperforms the model in which strategies cannot be adjusted to the cur-
rent situation: better game values for the agent can be obtained. Also, the stochastic
game formulation can yield a feasible solution when more operational requirements
are considered.

The disadvantage of the stochastic game formulation is that the solution time
grows exponentially in the number of cells with requirements. This means that we
cannot solve the game to optimality for real world instances. For that reason, we
have developed an ADP approach to find approximate solutions. ADP is often used
to solve large scale MDPs. With a limited number of adjustments, we have been able
to develop a similar approach for our stochastic game.

Experimental results show that the game value which is found by the ADP algo-
rithm is about 25% worse than the optimal solutions. However, using this algorithm,
we are able to solve larger instances than when using the full stochastic game. We
also compared the ADP approach with a static approach and this showed that the
ADP approach outperforms the static approach in our computational experiments.
Although experimental results show that the dynamic approach gives better payoffs
for the agent’s than using a static approach, static strategies can be found faster.

For large instances, the convergence of the value function approximation can be
slow, because states have to be visited multiple times before a good approximation can
be given. We have used state space aggregation to speed up this convergence. For small
instances, we do not gain a lot from this aggregation, because the algorithm without
aggregation is already fast. However, for large instances, the speed of convergence is
increased considerably with this aggregation.

The convergence of the ADP algorithm also depends on different input parameters
which define the step size and the level of randomness. The optimal value of these
parameters can vary for each instance and may also depend on the aggregation level.
From our computational experiments, we can say that a large step size and a small
number of randomness performs the best for our instances.

In this chapter, we have assumed that the evolution of the payoff matrices is defined
by a given transition matrix and that at the beginning of each day, the payoff for that
day is known. For future research, it would be interesting to investigate the case where
not all payoff matrices are knows and only predictions for each day are given.
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Table 7.3: Percentage requirements satisfied, no aggregation.
a 250 750 1500
B Iter/ao | 0.25 0.5 0.75 | 0.25 0.5 0.75 0.25 0.5 0.75
1000 1% 0% 1% 1% 2% 0% 2% 2% 4%
0.25 2000 4% 8% 5% 9% 5% 15% 16% 6% 6%
3000 13% 8% 7% 17% ™% 5% 30% 14% 4%
1000 0% 9% 3% | 3% 1% 1% 4% 1% 4%
0.5 2000 2% 11% 9% 13%  20% 7% 29% 20% 3%
3000 6% 20% 26% | 18% 11% 68% 4% 18% 4%
1000 0% 25% 80% | 9% 8% 43% 94% 34%  44%
0.75 2000 7%  89% 63% | 40% 91% 100% | 99% 58%  98%
3000 88% 100% 96% | 99% 100%  99% 100%  99%  100%
Table 7.4: Average game value, no aggregation.
a 250 750 1500
B Tter/ap | 0.25 0.5 0.75 | 0.25 0.5 0.75 | 0.25 0.5 0.75
1000 1.73 - 1.76 | 1.87 2.04 -— 1.92 1.84 2.11
0.25 2000 1.84 1.87 198 | 1.97 199 193 | 197 193 1.82
3000 193 191 192 199 190 186 | 194 192 1.85
1000 — 2.04 201|209 201 189 | 2.05 202 2.05
0.5 2000 194 197 193|200 199 198|199 204 1.95
3000 1.97 198 193|200 199 198|194 197 197
1000 — 2.20 217 | 217 2,07 222 | 216 222 216
0.75 2000 2.23 213 206 | 2.13 214 2.07 | 207 2.15 2.06
3000 2.16 212 2.00 | 2.13 2.09 2.00 | 200 2.10 2.00
Table 7.5: percentage requirements satisfied, with 3 aggregation levels.
a 250 750 1500
B8 Iter/ao | 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
1000 0% 0% 2% 2% 0% 3% 2% 2% 2%
0.25 2000 3% 9% 3% 7% 1% 9% 2% 5% 11%
3000 18% 1% 9% 20% 9% 20% 10% 20% 21%
1000 3% 1% 8% 4% 1% 1% 4% 2% 3%
0.5 2000 24% 29%  57% 14% 9% 6% 33% 27% 49%
3000 48% 60% 88% 23% 27% 12% 62% 31% 2%
1000 83% 35%  84% 76% 85% 86% 32% 99% 80%
0.75 2000 98% 94% 100% | 41% 100%  100% | 95% 100%  99%
3000 100% 99%  99% 100% 100% 100% | 100% 100% 100%
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Table 7.6: Average game value, with 3 aggregation levels.

a 250 750 1500
B Iter/ap | 0.25 0.5 0.75 | 0.25 0.5 0.75 | 0.25 0.5 0.75
1000 - - 2.06 | 2.04 — 1.97 | 1.89 2.06 1.93

0.25 2000 1.85 188 186 | 198 191 197|193 191 1.98
3000 1.91 197 190 | 201 192 201|196 199 192
1000 2.03 219 201|201 213 210|204 212 204
0.5 2000 2.03 198 200|199 207 187|197 202 195
3000 202 199 193|200 197 191|198 2.01 1.93
1000 226 221 211|216 218 213|219 212 2.17
0.75 2000 216 2.09 198 | 206 2.08 198 |2.09 2.01 2.03
3000 211 2,00 192 | 203 201 192|207 194 1.99




CHAPTER 8

The price of usability: designing
operationalizable strategies for Stackelberg
games

The chapter is based on the results in [86].

8.1 Introduction

In this chapter, we consider models that require strategies that are easy to implement.
We consider Stackelberg games with a large number of pure strategies for the agent. An
optimal mixed strategy typically randomizes over a large number of these strategies.
This may result in strategies that are not practical to implement. We propose a
framework to construct strategies that are operationalizable by allowing only a limited
number of pure strategies in a mixed strategy. However, by restricting the strategy
space and allowing only strategies with a small support size, the solution quality
might decrease. To investigate the impact of these restrictions, we introduce the
price of usability, which measures the ratio between the optimal solution and the
internationalization solution.

Several papers discuss the construction of strategies with a small support size
in games. Most of these papers are focused on the existence of approximate Nash
equilibria and the complexity of finding these. In [35], the authors obtain results
for which in general no alpha-approximate equilibria exist when the size of the mixed
strategies is smaller than a certain number. In [66], the authors discuss the existence of
small support mixed strategies in extensive-form games. The authors use the fact that
in extensive-form games, a lot of information that is captured in the mixed strategies
will never be used since these nodes will not be reached. They prove that there exist
a strategy where the support equals at most the size of the game tree. In [80], the
authors prove the existence of epsilon-Nash equilibria for two player games where the
support is logarithmic in the number of pure strategies. They prove the existence of
epsilon equilibria, using uniform strategies, and give a quasi-polynomial algorithm to
find such strategies. In [8], the authors prove NP-hardness results for finding epsilon-
approximate Nash equilibria with smaller support than in [80].

For Stackelberg games, only limited research concerning small support strategies is
available. However, in many papers, the fact that only a small number of pure strate-

129
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gies are in the support is exploited (for example in column generation algorithms). In
[38], the authors consider Stackelberg games and in particular security games. The
authors discuss for different games the minimum support size that is required to still
obtain optimal strategies. Another paper where Stackelberg games are considered is
[102]. Here, the authors construct equilibrium strategies with limited support size and
develop algorithms to solve these strategies efficiently.

The research in this chapter is motivated by security games and in particular by
threat screening games (TSGs), which tackles the challenge of screening passengers at
airports or military control posts. For TSGs, each pure strategy can be viewed as a
separate security protocol. These are different configurations and numbers of screening
equipment. Thus, mixed strategies with large support sets can be problematic to
operationalize as they require security agents to be familiar with a large variety of
protocols to execute them all properly. These types of complex tasks increase the
cognitive load in individuals [67] increasing the likelihood that mistakes are made
[98, 26] and making the system vulnerable to exploitation.

The results in this chapter are different from most papers on small support sized
strategies in the sense that we restrict ourselves to a maximum number of pure strate-
gies that can be used in the mixed strategy. We discuss what the price of this restriction
is, while most papers described above study the minimum number of strategies that
is necessary for finding approximate equilibria.

While usability concerns have always been present in deployed security games, these
have often been addressed in an ad-hoc fashion, and not explicitly discussed in the
literature. For example, the US Coast Guard limited the number of pure strategies
used in the Staten Island Ferry security game to avoid cognitive overload for boat
operators [33] [Fang private communication 2018]. To the best of our knowledge, [102]
is the only paper that explicitly discussed limiting the number of pure strategies in
security games; although they only handled small games (100s pure strategies), and
they did not consider the impact of such restriction on solution quality.

The contributions of this chapter are twofold. First, we develop the concept of
operationializable strategies for Stackelberg games and introduce the price of usability
as a measure for the cost of the restrictions on the strategy space. We give results
for the complexity of finding operationalizable strategies and discuss (computational)
bounds on the price of usability. Second, we apply this framework on TSGs and
develop algorithms to find operationalizable strategies efficiently for this game. We
also extend the T'SG game by simultaneously optimizing over the planning of resource
teams and the allocation of passengers to resources.

The rest of the chapter is organized as follows. In Section [B:2] we discuss oper-
ationalizable strategies in Stackelberg games, introduce the concept of usability and
give complexity results. Section [8.3] introduces the SORT-TSG problem. In Section
we give a heuristic approach for finding operationalizable strategies in general and
specifically in SORT-TSG. Finally, in Section [8.5] we give computational bounds on
the price of usability in general and discuss results for the SORT-TSGs.

8.2 Usability in Stackelberg games

In this section, we introduce operationalizable strategies for Stackelberg games and
give a definition of the price of usability. We first sketch the framework by using
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zero-sum Stackelberg games, but these concepts can be applied to general Stackelberg
games in a similar way.

8.2.1 Operationalizable strategies in Stackelberg games

Consider a zero-sum Stackelberg game. In a Stackelberg game, the agent first commits
to a (randomized) strategy and then an intruder chooses the best response to this
strategy. The (finite) set of actions for the agent is A4 and for the intruder A;. Each
action is a pure strategy. The payoff matrix is given by M, such that m;; is the
payoff when the agent plays action ¢ and the intruder plays action j. The agent is
maximizing this payoff, while the intruder is minimizing. The strategy for the agent
is a probability distribution p, where p; is the probability that the agent plays his i-th
pure strategy. The agent is maximizing the payoff by solving the following LP:

U(p) =max =z
p
st 2 < Z pimi;, j € Ar,
i€EAA
> pi=1,
1€EAA
Di Z O, s AA-

In Stackelberg games with a large number of pure strategies, many of these pure
strategies can be used in an optimal mixed strategy. To ensure strategies that are
easy to implement, we restrict the number of pure strategies that are in the support
of any mixed strategy. To this end we introduce the definition of k-operationalizable
strategies.

Definition 8.1 (k-Operationalizable mixed strategy).
A mixed strategy p is k-operationalizable if the cardinality of the support of p is limited
to k, i.e. ‘{ZEAApZ>O}|Sk U

An optimal k-operationalizable strategy for the zero-sum Stackelberg game can be
found by solving the following ILP:

U(p) =max =z

p
st. 2 < Z pimij, Jj € Ar,
€A
Z i = 17
1€EAA
x; > Di, 1€ AA,
Z Zq S kv
1€EAA
Di 2 0; 1€ AA7
x; € {0,1}, 1€ Aq.

However, solving this ILP is computationally unattractive.
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Theorem 8.1. Finding optimal k-operationalizable strategies is NP-hard.

Proof. We use a reduction from the set covering problem, which is defined as follows.
Given a set of elements U = {1,...,n}, a collection of sets S = {51, ..., Sy} and an
integer k, does there exist a subset C of S with size less or equal than k such that the
union of all elements from C equals U7

Given an instance for the set covering problem with ¢, & and k, construct an
instance of a Stackelberg (security) game that solves this set covering instance in the
following way. Let G be a game with a number of targets & = {1,...,n}. The pure
strategies for the agent are S where in the j-th strategy, i € U is patrolled by the
agent if ¢ € S;. Each target has value V, so that the agent receives a utility of —V" if
the target is unprotected and a utility of zero if the target is protected. Let x; be the
probability that target ¢ is covered by a resource. The agent’s expected utility is then
E,[U] = —max;ey V(1 — z;). If there exists a k-operationalizable solution to G with
expected utility E,[U] > —V that means that it is possible for the agent to cover all
the targets with some probability using only k pure strategies. These pure strategies
in the support of the k-operationalizable strategy then give a set cover of size k (or
less). Therefore if the corresponding game has an optimal objective value greater than
—V there exists a set cover C C § such that |C| < k. |

Remark 8.1. We introduced operationalizable strategies for zero-sum stackelberg games.
However, for general Stackelberg games, a similar model can be formulated. Consider
a general sum Stackelberg game with two players with actions and strategies as defined
before. The payoff matrix of the agent is given by M4 and the payoff matrix of the in-
truder is given by M’. Both players are maximizing their payoff. The optimal agent’s
strategy can be found by solving an LP for each intruder’s strategy [25]. Similarly,
an optimal k-operationalizable strategy Stackelberg game can be found by solving for
each j € Ay the following ILP:

5 A
U(p) = max Z pims;
1€EAA

I I
s.t. Z pimi; > Z pimi;, J € Ar,
i€AA 1€AA

Z i = 17
1€EAQ
T > Pi, i€ AA’
Z X S ka
i€Aa
pi > 0, i€ Aa,
X; € {0,1}, 1€ Ay,
This ILP might be infeasible for some intruder’s strategy but must be feasible for some

j. Among these, pick the intruders strategy that maximizes the value of the LP. The
corresponding p is the optimal strategy for the agent.

8.2.2 Price of usability

When restricting the support size of the mixed strategies and developing strategies
that are better usable, the solution quality might decrease. To measure the price of
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this restriction, we introduce the price of usability. The price of usability gives a ratio
between the payoff in the optimal solution and the payoff with a solution restricted to
only k pure strategies.

The price of usability is defined for the agent and we assume that the agent’s
payoff is always non negative and that the agent’s goal is maximizing the payoff.
Equivalently, when the agent is minimizing, the payoff is non positive. Note that this
can be assumed without loss of generality since every game can be transformed in an
equivalent game with non negative payoff, by adding a constant to each element in
the payoff matrix. The price of usability is defined as follows.

Definition 8.2 (Price of usability). Let G be a Stackelberg game with optimal mixed
strategy solution p for the agent and utility U(p). Let p* be a k-operationalizable
mixed strategy solution to G. We define the price of usability (PoU) as the ratio
between the utilities of p and p* so that PoU := g(;pk)). (]

The higher the price of usability is, the higher the cost of operationalizable strate-
gies are. It is possible to construct examples such that the price of usability is very
high. However, in practice, the price of usability is quite small as we will demonstrate
in Section

8.2.3 High-level algorithmic approach

From Theorem it follows that finding k-operationalizable strategies is NP-hard,
while the original problem is not. Therefore, an algorithmic approach is used to find
k-operationalizable strategies. In this section, we only give a high-level description of
this approach.

Our solution approach is based on the two following ideas: (1) we allow the k pure
strategies to form a multiset (so that a single strategy may appear multiple times) and
(2) we restrict the mixed strategy to be a uniform distribution over the multiset of k
pure strategies. A similar approach is also used in [I02] for general sum Stackelberg
game.

The intuition behind this approach is that the multiset allows us to approximate
any optimal mixed strategy P using multiples of the fractions % Ifp; > % (probability
of playing strategy i), then strategy ¢ will appear multiple times in the multiset, and
thus will be played with probability # where a is the number of times it appears. If
pi < %, then, as k grows large enough, the loss in utility from not playing strategy 4
becomes negligible. This intuition is formalized in Theorem 1 of [80] which stipulates
that we can compute approximate equilibria (with approximation error €) for any
choice of k by fixing a uniform distribution over the multiset of k pure strategies as
long as k > %&H"), where n is the number of pure strategies.

For SORT-TSGs, we use this idea as a starting point, but we need some different
techniques that are formalized in Section In Section [8.5] we experiment with this
algorithmic approach for SORT-TSG and give results on the impact of the price of
usability for a general-sum security game and for SORT-TSG.

8.3 Introduction to SORT-TSG

The concept of operationalizable strategies is motivated by threat screening games
(TSGs). TSGs are a special variant of security games developed in [20]. We extend this
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model by also planning resources simultaneously and introducing k-operationalizable
strategies. In this section, we first present (1) the model of Simultaneous Optimiza-
tion (SORT) for TSGs and second (2) the problem of computing operationalizable
strategies for TSGs. We assume a zero-sum game. Throughout this section we use
the example of passenger screening at airports, but emphasize that the TSG applies
to generalized screening problems.

8.3.1 Problem Description

A TSG is a game between the screener (agent) and intruder over a finite planning hori-
zon W consisting of W time windows. The agent is operating a checkpoint through
which screenees (passengers) arrive during each time window. Each screenee belongs
to a category ¢ € C where a category ¢ := (p, f) consists of components which are
controllable and uncontrollable. In the airport security domain, the controllable com-
ponent f corresponds to a flight type, dictated by the intruder’s choice of flight to
attack, while the uncontrollable element p describes the risk level assigned to each
passenger (i.e. if they are TSA (transportation security administration) pre-check).
It is assumed that the number of passengers of category ¢ arriving during each time
window, N/, is known.

The intruder attempts to pass through screening by disguising himself as one of
the screenees. He has a choice of flight to attack, and thus can choose his flight type
category, a time window w to arrive in and an attack method m € M. The intruder
cannot control his risk level p and we assume a prior distribution P, over the risk level
of the adversaries.

At the checkpoint, the agent has a set of € R resources which are combined into
teams indexed in the set 7 to which incoming passengers are assigned. If a passenger
is assigned to be screened by a team ¢ € 7, they must be screened by all resources
R(t) C R in that team. The efficiency of a team, E; ,,, denotes the probability that
an intruder carrying out an attack of type m be detected when screened by team t.
This efficiency depends on the resources in that team: Ej,, = 1 — ], cr(l — erm),
where e, ,, is the efficiency of resource r against attack method m.

Each resource r € R has a fixed capacity C, for the number of passenger which
it can process in any time window. In the case that it is not possible to screen all
passengers in a single time window, we allow these passengers to be screened in the
next time window by their assigned resources, at a cost ¢, per passenger overflowing
to the next window. Each resource r maintains an overflow queue oY corresponding
to the number of passengers waiting to be processed by that resource at the beginning
of time window w.

To speed up processing, the agent can increase the number of resources of each type
that are available in a particular window (e.g., by opening up more lanes). However,
the number of resources of each type r that can be operated at any given time is
limited by the number of resources of that type that are available in the arsenal of the
agent, denoted by M, € R, and by the number of operators that are working in that
window. Specifically, to operate each resource of type r, A, screeners are needed. The
workforce of the agent consists of S screeners and the agent can decide on the number
of screeners available in any window. However, the screeners must follow shifts: they
can start in arbitrary time windows but must work for § consecutive time windows.
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8.3.2 SORT-TSG Problem Formulation

We now formulate the SORT problem for TSG as a mixed-integer linear optimization
problem. For convenience, we first introduce the pure strategy spaces related to the
strategic and tactical decisions of the agent, respectively, and then go on to formulate
the optimization problem which randomizes over these strategies.

The core strategic decisions of the SORT-TSG problem correspond to the number
of resources of each type r € R to operate in each window, which we denote by
y% € NT. They also include the number of screeners b* € NT to start their shift in
window w and the number of screeners s available in window w. The space of pure
strategic strategies can then be expressed as:

min(w,W—35+1)
sV = Z bw,, wE W,
w’=max(1l,w—3§+1)
W—d6+1
v <
Y=<y:3(,s): Z =S
Z ywA < s reR
recR
y:'USMTa weW,T‘ER,
Yy bv, sv e Nt weW,reR,

The first constraint above counts the total number of screeners with shifts cur-
rently in progress at time window w. The second constraint stipulates that the total
number of screeners assigned to each shift cannot exceed the size of the workforce. The
third and fourth constraints enforce that in each time window there must be enough
screeners to operate each resource, and that the number of operating resources cannot
exceed the maximum number available for each type.

The core tactical decision variables of the SORT-TSG problem correspond to the
number of passengers of each type ¢ to screen with team ¢ in window w, denoted by
ni’.. For any choice y of strategic decisions, the space of pure tactical strategies is
expressible as:

anjt:Ngv, weW,ceC,
teT
X, = : Zcht_ —o" P 4o weW,reR, )
tTGRt)(‘
ny., o € NT, teT,ceC,weW,reR,

where the two constraints above stipulate that all arriving passengers must be assigned
to be screened by a team and enforce the capacity constraints on each of the resource
types. Note that the capacity is determined by the number of operating resources of
each type. The full agent pure strategy space can be expressed compactly as:

Q={(y,n,0):y€), (n,0) € X,}.

Next, given the probability distribution as the agent’s mixed strategy, we denote
by E,|] the expectation operator with respect to p (the mixed strategy). Thus, the
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expected number n{’. of passengers in category c screened by team ¢ in time window
w and the expected number o of passengers waiting to be screened by a resource of
type 7 in time window w are given by:

S
Ey[n) = pint, (8.1)
=1
S .
Eylo¥] = pioy. (8.2)
i=1

The utility of the agent is linear in the pure strategies, so the agent’s optimization
problem can be expressed as:

maxy Zp PPGP - Zw Zr ¢7’EP [O;U]

s.t. 0, <2¥,UF +(1—22,)Uz-, meM,ceCiweW, ()
Zem :ZtEt,mEPJE?J’t]a meM,ceC,weW,
peP,

where 2., is the intruder’s detection probability for an intruder of type ¢, using attack
m during w and 6, is the expected utility when the passenger’s risk level is p. We
denote this formulation of the SORT-TSG as problem & .

8.3.3 Operationalizable Strategies for SORT-TSG

The SORT-TSG problem admits additional usability concerns; not only can the mixed
strategy have a very large support, but the number of resource configuration (teams)
types used by any pure strategy may also be very large (as the number of team
types grows combinatorially with the number of resources). This can also pose the
same operationalization issues, hence we also propose to limit the number of possible
resource configurations that may be used in any pure strategy. Formally, we say that
a mixed strategy solution to a SORT problem is operationalizable if the following
property holds.

Definition 8.3 ((k, 7)-Operationalizable Mixed Strategy). A mixed strategy p is said
to be (k,7)-operationalizable if the support size of p is less than k, and each pure
strategy uses no more than 7 unique teams, i.e., if [; is a binary variable indicating
the formation of a team of type t then Zthl I <. O

We can compute operationalizable strategies for the TSG problem by constructing a
new set of allowed pure strategies Q, by adding the following additional constraints to
the set Q which enforce that each pure strategy may use no more than than 7 resource
configurations:

T
> <, (8.3)
t=1
7\;; <1, teT,ceCiweW, (8.4)

I, € {0,1}, teT. (8.5)
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Where the second constraint enforces that [, = 1 if a strategy uses team ¢ at any point,
ie, if Jw,c,t : ny, > 0. We then enforce that the support of the mixed strategy
has maximum cardinality k& by replacing Equations (8.1) and (8.2)) with:

K
Eylny)=> pinty, teT,ceCweW, (8.6)
=1
k .
E,lor] = Zpioif’”, teT,ceCweW, (8.7)

such that p € P ={p; > 0,i=1,..., k, Zle p; = 1}. Lastly, for the TSG problem it
is undesirable to have many different schedules for staff members and have employees
work different shifts throughout the week. For this reason we specifically enforce that
the scheduling decisions s should be the same across all k pure strategies i.e.,

These additions (2,3,4) to & , define the operationalizable SORT-TSG problem, we
refer to the problem as k.

8.4 Solution approach SORT-TSG

In this section, we develop a heuristic solution approach to find optimal solutions for
the SORT-TSG problem. The SORT-TSG problem can be modeled as a mixed integer
linear program (MILP). However the resulting operationalizable problem 2k is non-
linear, with bilinear terms introduced in and . Since the domains of n and
o are finite we can express each integer variable n and o as a sum of binary variables,
and the bilinear terms can be easily linearized using standard optimization techniques.
However, the resulting program has a number of binary variables which grows with
the number of passengers, making the full MILP formulation intractable to solve.
Other standard approaches for dealing with these types of problems, such as column
generation, also do not work well as we show in Section [B:5] In the following, we
provide our new solution approach for efficiently solving Zk.

For convenience, we define the following notation. Let &2 be an optimization
problem with integer variables z; € N Vi. We denote the LP relaxation of & ,
i.e., the problem obtained by letting z; € R Vi, as & P, Additionally let the
LP relaxation of a problem & with respect to a single variable z;, i.e., the problem
obtained by letting x; € R, be denoted by&? LP:j  Let the marginal value of z; (i.e.,
the expectation E,[z;]) be denoted %;. Lastly we denote the problem with a fixed
variable z; as & |z;.

Our solution approach is based on the idea described in Section [8.2.3] By fixing
p= %, Pk can be solved directly as an MILP without the creation of extra binary
variables. Algorithm [7] outlines this process. To speed up computation, we first solve
the full relaxation 2k ¥ to get marginal values § and 7 (line 2). We then round
these to get integral values y" and n” (line 3), which we then use as a warm start to
solve the MILP (line 5).

For any choice of k, we can then compute an e-equilibrium and show that in practice
this approach performs well. Additionally, it provides a general framework from which
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Algorithm 7 k-Uniform Strategies

1: procedure k-UNIFORM
2 §,1,0 « Pk P

3: y",n", 0" < Round(g,n, o)

4: pepi:%,izl,...,k

5 y,m, 0 + WarmStart( 2k |gg,y",n",0")
6 return y,n,o

we can build more sophisticated and scalable algorithms which we demonstrate in the
next section.

While the approach described in Algorithm [7| provides guarantees by [80], in prac-
tice the problem can still be slow to solve, as it requires solving an MILP at each step.
Thus, we provide a heuristic approach which can be solved more efficiently and still
yields high solution quality in practice.

The novelty in our approach comes from exploiting the hierarchical structure of the
SORT variables, as well as an optimized rounding procedure to decompose marginal
solutions into an operationalizable set of k integral strategies.

The tactical variables (n, 0) are dependent on the strategic variables y and so, start-
ing from marginal solution to the LP relaxation, we first impose the operationalizable
constraints on the strategic variables, keeping the tactical variables unconstrained.
This gives us a set of k strategies with integral y, from which we can compute the
corresponding integral tactical variables n for each of the k strategies. Both of these
steps use an optimized rounding procedure. Because our objective is a function of the
expected value of n and o, it becomes important to optimize over the used rounding
process. Ideally we would like to be able to exactly reconstruct the marginal val-
ues obtained from the LP relaxation in order to maximize our objective. Arbitrarily
rounding the marginal variables to generate k integral strategies does not take into
account the value of the resulting marginal and may result in suboptimal solutions.
Instead we compute an optimal rounding to compute feasible solutions, which take
into account the value of the resulting marginal with respect to our objective.

Algorithm [§outlines the steps of this solution method. We start by solving the full
relaxation 2k P (line 2) to obtain a marginal solution for the strategic variables .
We then decompose this marginal solution into a set of k integral pure strategies (line
3) using an optimized rounding procedure (which we formalize in the later section)
which computes the best & roundings of the marginal § (keeping a marginal 7n; for
each strategy 4, ¢ = 1,...,k). We then compute the best integral assignment n; and
corresponding overflow o; for each resource configuration y; (line 4) using the same
optimized rounding procedure on the marginals n;, 1 = 1, ..., k.

Algorithm 8 Multiple Hierarchical Relaxations
1: procedure MHR
2 §,1,0 + Pk P
3: Yi,Ni,0; 1= 1,..., k < Strategic(2Zk L |q, §)
4
5

YisMiy0; @ =1,.., k < Tactic(Lk |y,n)
return y,n,o0

Strategic Variables: Resource Configurations At this stage (line 3) we determine
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what the k£ optimal integral variables y; are assuming no integrality constraints on
the n; variables, i.e. we solve the problem 2k LF» equivalent to letting E,n{.] =
S pingy and Eylof] = Yo pio’, where ﬁ;’f, oWt are in the integer relaxation of
X,,. Unfortunately, the following theorem shows that 2k L is still intractable to
solve.

Theorem 8.2. Problem Pk L js NP-hard to solve.

Proof. We use a reduction from the knapsack problem with unbounded items, which is
NP-hard. The knapsack problem with unbounded items is described as follows. Given
a set of n types of items, where v; is the value of each item and w; is the weight of
each item, find an allocation of items to the knapsack such that the minimum value
over all knapsacks is maximized.

Given an instance of the multiple-knapsack problem with n types value v; and
weights w;. This can be reduced to the following instance of 2k LF». Let n + 1 be
the number of resources. The number of time windows, passenger types and attack
methods equal 1, so we omit the indices w, ¢ and m. Also, we choose k = 1.

Construct for each resource a team consisting of that resource. The efficiency of
each team, F;, corresponding to resource t equals the value v¢, t = 1,...,n. Addition-
ally, we have one team with resource n+ 1 and the efficiency of this team FE,, ;1 equals
0. The capacity of each team, C,., equals 1.

The number of people required to use one resource, A,, is given by v, r =1,...,n
and A, 41 is chosen to be 0. The maximum number of resources, M, is chosen such
that M, > Ai

We choose the number of passengers arriving, N, such that it can never occur that
all passengers can be send to resources » = 1,...,n. The remaining passengers can be
send to resource n + 1. Different choices of N are possible, we choose N = max, M,.
The utility of a successful attack, U™, is chosen as N and the utility of an unsuccessful
attack, U, is 0.

Finally, we choose the value of ¢, so high that the overflow variables are always
chosen as 0. Note that this model always gives a feasible solution since all remaining
passengers are send to the team with resource n + 1.

Solving 2k L with the parameters described above gives an optimal solution for
the knapsack problem with n types of items, where the resources scheduled corresponds
to the items assigned to the knapsack. The optimal value of 2k L equals the optimal
value of the knapsack problem. This can be seen as follows. If a specific resource (item)
r, 7 =1,...,n is scheduled, then 1 out of N passengers will be send to that team. So,
this resource adds I]EV (= %) to the total value of z. Since z is multiplied by U*
(= N), this resource add v, to the total value of that time window. ]

To approximate this problem, similar to Algorithm [7] we assume a uniform distri-
bution for the mixed strategy. Given Pk L |p, we compute a multiset of k integral
solutions y;, ¢« = 1,...,k, from the marginal § using the following optimized round-
ing procedure. We make the change of variables y; = |§| + J; such that §; € N,
i = 1,...k. Solving £k IP»|p with this change of variables computes the best k
roundings of the marginal ¢ which we use as our k pure strategies. This subroutine is
outlined in Algorithm [9}

Tactic Variables: Passenger Allocations (line 4) We now have for each pure
strategy ¢, a marginal n;, ¢ = 1,..., k. In this step, we again apply the same optimized
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Algorithm 9 Determine resource allocations

1: procedure STRATEGIC(Zk 1P |p, )
2: p(—pi:%,izl,...,kj
3 y<«y=\9l+6, eNT i=1k

4: return argmax Zk L |p
Y;n,0

rounding procedure to these variables to obtain integral values n;. Additionally, we
relax the constraint p; = % and allow the program to optimize over the distribution
over pure strategies.

Reintroducing the mixed strategy p as a variable reintroduces the bilinear terms
and in Zk. However, with our rounding procedure, we can efficiently
linearize these terms without creating a very large number of binary variables (as with
the full MILP). We let n; = |7n;| + ~; and are left with the bilinear terms p;(7;). To
linearize these, we make a change of variable z; = p;(v;) and can express Constraints

and as:

i=1
ngfj;’gp,;, 1=1,...,k.
zent 2 pi = (L =), i=1,..,k

This subroutine is outlined in Algorithm[I0} First, we make the change of variable for
the rounding procedure, and linearize the bilinear terms. We then solve the resulting
optimization problem for the fixed y and b solved in the previous stage of the algorithm
and finally return n and p which gives us a complete (k, 7)-operationalizable solution.

Algorithm 10 Determing Passenger type allocation ng

1: procedure TACTIC(Zk |(y,b), n)
2: n4n; = I_’FMJ + 6n;y On, eENt,i=1,..k
3: LinearizeTerms(Zk |(y,b))

4: return argmax 2k |(y,b)
n,p

8.5 Evaluation

In the previous, we introduced the concept of operationalizable strategies and the price
of usability. For the SORT-TSG problem, we have developed an algorithmic to find
operationalizable strategies efficiently. In this section, we investigate the impact of
operationalizable strategies. First, we consider a more general security game. There-
after, we evaluate our algorithms for the SORT-TSG problem en run experiments to
determine the price of uasbility.
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8.5.1 Illustrative examples for price of usability in Stackelberg
security game

First we give an example to show that the price of usability is unbounded.

Example 8.1 (PoU can be any number). Consider a zero-sum security game with n
targets. The agent decides which target to patrol and the intruders attacks one target.
If the intruder attacks a target successfully, the gain of the agent equals 1. Moreover,
if the intruder attacks a target that is patrolled by the agent, the gain for the agent
is c¢n, with ¢ a constant. A pure strategy for the agent is to patrol a single target and
a pure strategy for the intruder is to attack a single target. Without restrictions on
the number of pure strategies, the agent’s optimal strategy is to patrol each target
with probability % The intruder’s strategy can then be any strategy and the expected
payoff will be ”T:l + ¢~ ¢+ 1 (when n is large). However, when only k < n pure
strategies are allowed, there is always at least one target that will never be patrolled
by the agent. The intruder will choose such a target to attack and the expected payoff
will be 1, resulting in a PoA larger than c. O

From this example, it follows that the price of usability can not be bounded.
However, in many applications, the price of usability is low, which we will illustrate
by means of an example security general sum game. In the next section, similar
experiments are conducted for SORT-TSG.

To illustrate operationalizable strategies and how they look like, we consider the
robbery game which is described in [I02]. This is a Stackelberg security game between
an agent an a robber, where the robber is attacking a specific house and the agent is
able to patrol a set of houses during one night. Each house has a specific value for
both the agent and the robber. Catching the robber results in a reward for the agent
and in a cost for the robber. The agent visits multiple houses during one night and the
earlier he arrives at a specific house, the higher the probability of succesfully catching
the robber. There might be multiple robbery types, which all have different values
for each house. The agent only has a probability distribution over each type. In the
following example, we show the impact of operationalizable strategies.

Example 8.2. Consider a robbery game with 1 robber type, 5 houses and an agent
that is a able to patrol 2 houses during the night. For the robber, the houses have a
value of 4, 5, 6, 7, and 8 for a successful robbery. Getting caught by the agent results
in a gain of 0 independent of the house. If the robber is at the first house that is visited
by the agent, he will always catch the robber. If the robber attacks the second house
during his patrol, the robber is caught with probability 0.5. The agent receives a gain
of 3 if the robber is caught and 0 if the intruders is not caught. In an optimal strategy,
the agent randomizes over 4 pure strategies and the expected payoff for the agent
equals 2.24. However, when we require k-operationalizable strategies with k = 1,2, 3,
the game value equals 0, 1.50 and 1.91, resulting in a price of usibility of co, 1.49 and
1.17 respectively. (]

As this example shows, the price of usability can be very high for small &k, but
quickly decreases when k increases. The same trend can be shown for larger instances
of the robbery game. We investigate the impact of operationalizable strategies on
random instances of the robbery game. In Figure for different k the average
price of usability for random instances of the robbery game is shown. We have picked
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20 random instances with varying number of types, houses and visits, such that the
number of pure agent strategies is varying between 1000 and 10000. These results show
that the price of usability is small for these types of games, even when the number of
pure strategies is small.
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Figure 8.1: PoU for random instances of the robbery game

8.5.2 Results on SORT-TSG

In this section, we consider the SORT-TSG problem. We evaluate our algorithms on
several different sized instances of SORT-TSG. We use instances of three types: small,
moderate and large instance with time windows, passenger types and resources (W=1,
C=2, R=2), (W=5, C=10, R=5), (W=10, C=20, R=5) respectively. Each experiment is
averaged over 20 randomized instances of the remaining parameters.

The Price of Usability In this chapter, we proposed to mitigate the price of us-
ability (PoU) by computing (k, 7)-operationalizable strategies. We define the price of
usability similarly to the price of anarchy, as the ratio between the optimal solution
with no usability constraints and the operationalizable equilibrium, (i.e., &2 |2k )
so that when the operationalizable game £k has the same optimal objective as & |
the PoU = 1. In order to compare the operationalizable utility to that of &2 | we
use column generation to compute the optimal solution to the security game without
usability constraints. We do this for moderately sized games, as the column generation
method does not scale up to large instances. In Figure [8:2] we show that the PoU
shrinks to almost 1 with increasing number of pure strategies k£ and team types 7. We
note that the bump in runtime with increasing 7 is due to a phenomenon in security
games known as the deployment to saturation ratio [61].

Solution quality We evaluate the solution quality of our algorithms by comparing
to (1) the full MIP which optimally solves operationalizable security game £k and (2)
a column generation heuristic, which cuts off after I iterations. Figure a) shows
the comparison of our methods with the column generation (CG) baseline. When run
to convergence, CG optimally solves &2 | without operationalizable constraints. We
approximate &k by cutting off (CG) after I iterations. We see that for small I, CG
achieves very poor utilities compared to our algorithm, and that it takes up to 150
generated strategies (iterations) to match the solution quality of our methods.
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Figure 8.2: Here we show the empirical PoU, as well as the runtimes of both methods
with increasing k and 7 for both methods (left: 7 = 10, right: k = 2).

Additionally, we investigate the support size of the mixed strategies computed
by CG without operationalizable constraints. Figure [8.3|b) shows that number of
strategies used grows as we increase the problem size (here, the number of flight
types). We also compared to a second variation of the column generation method
where we pick the top k pure strategies, and compute the optimal mixed strategy
over these k strategies. This was done cutting column generation off after 10, 20, 50
columns as well as after full convergence. The results are shown in Figure We see
on average a 30% loss in PoU when using this baseline compared to our methods, and
in the worst case up to 100% loss with PoU ~ 2 for the baseline when compared to
our methods.

In Table we compare utility of our algorithms with the utility obtained from
solving the full MILP (which optimally solves &k ). The full MILP can only be
solved for small instances, with a maximum of £ = 3. For these instances, we see
that both methods produce near-optimal solutions and can be executed significantly
faster. For moderate and large sized instances, Table [B.1] shows that the k-uniform
algorithm outperforms the MHR heuristic, but the MHR heuristic can solve large
instances faster.

Scalability To evaluate the scalability of our algorithms, we compare the running
time for different time windows W and number of passenger categories C. Figure [8.5]
shows the running time for different values of W and C where the rest of the parameters
are fixed. This figure shows that the running time is only slightly increasing in W and
that our algorithms can be scaled up to a very large number of passenger types.
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Figure 8.3: a) Comparison of our algorithms with CG which is cut off after I iterations
(k =5, 7 =10). b) Support size of CG solutions for increasing problem size.
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Figure 8.4: Average case price of usability and b) worst case price of usability, for our two
methods (k-uniform and MHR) compared to a cutoff column generation baseline. Column
generation (CG) was cutoff after 10, 20 and 50 columns and after convergence.

Table 8.1: Runtime and utility «* of the k-uniform and MHR algorithm compared
with the solution of the full MIP (small: k¥ = 3, moderate,large: k = 4).

Small Moderate Large
’ [u¥ [rt(s) [u* [rt(s) [ u* | rt(s) |
k-uniform | -85.3 | 0.2 -543 | 48 -1258.8 | 219.4
MHR -87.0 | 0.1 -661 | 20.1 | -1315.8 | 91.2
MILP -85.2 | 1154.3 | - - - -

8.6 Concluding remarks

In this chapter, we have addressed the problem of usability in Stackelberg (security)
games and introduced the new problem of operationalizable strategies. We have devel-
oped a framework to find mixed strategies using only a small number of pure strategies.
To measure the cost of these operationalizable strategies, we defined the price of us-
ability. Although the price of usability can be very high, we have showed for security
game example that the price is low, even when only 3 or 4 pure strategies are used.
This research was motivated by threat screening games. For these games, we
have developed a single framework which reasons about the three levels of planning:
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Figure 8.5: Runtime for different values of W and C (k = 2, 7 = 5, left: C' = 10, right:
W =5)

strategic, operational and tactical level decision problems. Motivated by the important
problem of screening for threats, we provided algorithmic solutions to overcome the
computational challenges that arise when these planning problems are addressed for

TSGs and which mitigate the price of usability.
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CHAPTER 9

Conclusion and outlook

In this thesis, we have developed several mathematical models for the optimal deploy-
ment of security forces to protect large areas (e.g., land, water, air), infrastructures
and high value assets. One of the main challenges we have tackled, is the adaptive
behavior of an intelligent intruder and the uncertainty that arises in various model
parameters. To this end, we have extended several game theoretic models by incorpo-
rating stochastic modeling. We have showed that several modeling techniques, such
as queueing theory, approximate dynamic programming and Bayesian belief functions
can be used to model the random environment.

Taking into account the stochastic environment and new information that becomes
available during the game yields models that are closer to reality and will therefore
generate strategies of higher quality. However, it also increases the complexity of
the problem and might result in problems that cannot be solved to optimality for
realistic sized instances. In this thesis, we have focused on designing algorithms to
decrease the computation time of finding optimal strategies, for example by using
different game representations, implementing approximate dynamic programming for
games or exploiting the underlying structure of the problem. This enables us to solve
larger instances. Though, even with these techniques, we are limited in the size of the
instances that can be solved.

The last part of this thesis considers models in which the strategy space of the agent
is restricted, for example by governmental guidelines or by the intention to construct
strategies that are easy to implement. While these restrictions might occur in various
situations, there is limited literature available about how to take this into account. By
not taking into account these restrictions explicitly in the modeling, non-compliant
strategies are generated that need to adjusted in an ad-hoc manner, causing sub-
optimal solutions. By incorporating these restrictions in our model explicitly, optimal
strategies given the restrictions are found. However, also the additional restrictions on
the agent’s strategy increase the complexity of the problems significantly, which again
limits the size of the instances that can be solved to optimality.

There are several possible research directions that can be explored to overcome the
problem of being unable to solve the proposed models to optimality. One possibility
is to develop new methods or improve current methods and speed up the (approx-
imation) algorithms even more. However, the question is whether this is sufficient.
Nowadays, more and more information becomes available, increasing the complex-
ity of the problems. The suggested approaches might not be enough to solve these
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problems to optimality.

Another approach that should be explored further is whether or not all available
information should be taken into account. When optimizing certain security problems,
it might be attractive to take as much information into account as possible. However,
it can occur that some information does not help us to get better strategies and only
increases the complexity of the problem. For example, when patrolling a certain area,
it might not be useful to consider all information about areas that cannot be reached
in the next time step anyway. Therefore, it would be useful to study the need for
information and investigate which information contributes to a higher solution quality.
In some cases, it will be necessary to make a trade-off between high solution quality
and low computation time.

Most of the models developed in this thesis, make use of known probability distri-
butions as input. However, this input is not always known in practice. In the past
few year, more data has become available and is collected automatically. Therefore,
it would be interesting to investigate the combination of the models from this thesis
with the latest techniques in data science to better exploit the value of using extra
data and determine the input variables.
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Summary

In this thesis, we develop mathematical models for the optimal deployment of secu-
rity forces addressing two main challenges: adaptive behavior of the adversary and
uncertainty in the model. We address several security applications and model them as
agent-intruder games. The agent represents the security forces which can be the coast
guard, airport control, or military assets, while the intruder represents the agent’s
adversary such as illegal fishermen, terrorists or enemy submarines.

To determine the optimal agent’s deployment strategy, we assume that we deal with
an intelligent intruder. This means that the intruder is able to deduce the strategy
of the agent. To take this into account, for example by using randomized strategies,
we use game theoretical models which are developed to model situations in which two
or more players interact. Additionally, uncertainty may arise at several aspects. For
example, there might be uncertainty in sensor observations, risk levels of certain areas,
or travel times. We address this uncertainty by combining game theoretical models
with stochastic modeling, such as queueing theory, Bayesian beliefs, and stochastic
game theory.

This thesis consists of three parts. In the first part, we introduce two game the-
oretical models on a network of queues. First, we develop an interdiction game on a
network of queues where the intruder enters the network as a regular customer and
aims to route to a target node. The agent is modeled as a negative customer which
can inspect the queues and remove intruders. By modeling this as a queueing network,
stochastic arrivals and travel times can be taken into account. The second model con-
siders a non-cooperative game on a queueing network where multiple players decide
on a route that minimizes their sojourn time. We discuss existence of pure Nash equi-
libria for games with continuous and discrete strategy space and describe how such
equilibria can be found.

The second part of this thesis considers dynamic games in which information that
becomes available during the game plays a role. First, we consider partially observ-
able agent-intruder games (POAIGs). In these types of games, both the agent and the
intruder do not have full information about the state space. However, they do par-
tially observe the state space, for example by using sensors. We prove the existence
of approximate Nash equilibria for POAIGs with an infinite time horizon and provide
methods to find (approximate) solutions for both POAIGs with a finite time hori-
zon and POAIGs with an infinite time horizon. Second, we consider anti-submarine
warfare operations with time dependent strategies where parts of the agent’s strategy
becomes available to the intruder during the game. The intruder represents an enemy
submarine which aims to attack a high value unit. The agent is trying to prevent this
by the deployment of both frigates and helicopters.
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In the last part of this thesis we discuss games with restrictions on the agent’s
strategy. We consider a special case of security games dealing with the protection
of large areas for a given planning period. An intruder decides on which cell to
attack and an agent selects a patrol route visiting multiple cells from a finite set of
patrol routes, such that some given operational conditions on the agent’s mobility are
met. First, this problem is modeled as a two-player zero-sum game with probabilistic
constraints such that the operational conditions are met with high probability. Second,
we develop a dynamic variant of this game by using stochastic games. This ensures
that strategies are constructed that consider both past actions and expected future
risk levels. In the last chapter, we consider Stackelberg security games with a large
number of pure strategies. In order to construct operationalizable strategies we limit
the number of pure strategies that is allowed in the optimal mixed strategy of the agent.
We investigate the cost of these restrictions by introducing the price of usability and
develop algorithmic approaches to calculate such strategies efficiently.



Samenvatting

In dit proefschrift ontwikkelen we wiskundige modellen voor de optimale inzet van
beveiligingseenheden. De twee belangrijkste uitdagingen daarbij zijn het adaptieve
gedrag van de tegenstander en onzekerheid in het model.

We behandelen verschillende toepassingen die betrekking hebben op beveiliging
en modelleren deze als een spel tussen een beveiliger en een indringer. De beveiliger
vertegenwoordigt bijvoorbeeld de kustwacht, douane of militaire middelen. De in-
dringer vertegenwoordigt de tegenstander van deze beveiliger, bijvoorbeeld illegale
vissers, terroristen of vijandige onderzeeérs.

Om de optimale strategie van de beveiliger te bepalen gaan we ervan uit dat we
te maken hebben met een intelligente indringer. Dit betekent dat de indringer de
strategie van de beveiliger kan afleiden en zijn eigen strategie hierop aanpast. Om
met dit adaptieve gedrag rekening te houden, gebruiken we speltheoretische modellen
die zijn ontwikkeld om situaties te modelleren waarbij twee of meer spelers interactie
met elkaar hebben. Naast dit adaptieve gedrag speelt onzekerheid een rol bij verschil-
lende aspecten van beveiliging. Denk daarbij aan onvolledigheid in sensorwaarnemin-
gen, reistijd of onvoorspelbaarheid van risicolevels van gebieden. We modelleren deze
onzekerheid door speltheoretische modellen te combineren met stochastische modellen,
zoals wachtrijtheorie, Bayesian belief functies en stochastische speltheorie.

Dit proefschrift bestaat uit drie delen. In het eerste deel introduceren we twee
speltheoretische modellen op een netwerk van wachtrijen. Eerst ontwikkelen we een
interdictiespel op een netwerk van wachtrijen waarbij de indringer het netwerk bin-
nendringt als een gewone klant en zijn optimale route kiest naar een bepaald doel. De
beveiliger wordt gemodelleerd als een negatieve klant die de wachtrijen kan inspecteren
en indringers kan onderscheppen. Door dit te modelleren als een netwerk van wacht-
rijen, kan rekening gehouden worden met stochastische aankomsten en reistijden. Het
tweede model beschouwt een niet-codperatief spel op een netwerk van wachtrijen waar-
bij meerdere spelers een route kiezen die hun verblijfstijd minimaliseert. We kijken
naar het bestaan van zuivere Nash evenwichten voor spellen met een continue en dis-
crete strategieruimte en beschrijven hoe zulke evenwichten gevonden kunnen worden.

Het tweede deel van dit proefschrift gaat over dynamische spellen waarbij nieuwe
informatie zichtbaar wordt tijdens het spel. Eerst bekijken we spellen tussen een
beveiliger en indringer met beperkte observaties. In dit soort spellen hebben zowel
de beveiliger als de indringer onvolledige informatie over de toestandsruimte. Echter,
beiden nemen de toestandsruimte wel gedeeltelijk waar, bijvoorbeeld door sensoren te
gebruiken. We bewijzen dat er benaderingen van Nash evenwichten bestaan voor deze
spellen met een oneindige tijdshorizon en ontwikkelen oplossingsmethodes voor zowel
spellen met een eindige als met een oneindige tijdshorizon. Daarna bekijken we anti-
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onderzeeboot operaties met tijdsafhankelijke strategieén. Hierbij wordt tijdens het
spel een deel van de informatie over de strategie van de beveiliger beschikbaar voor de
indringer. De indringer vertegenwoordigt een vijandelijke onderzeeér die waardevolle
objecten, zoals vrachtschepen, probeert aan te vallen. De beveiliger probeert dit te
voorkomen door de inzet van zowel fregatten als helikopters.

In het laatste deel van dit proefschrift bespreken we spellen waarbij de strate-
gieruimte van de beveiliger beperkt is. We bekijken een speciaal geval van spellen
in het beveiligingsdomein waarbij de bescherming van grote gebieden gedurende een
bepaalde planningsperiode een rol speelt. Een indringer beslist welk deelgebied wordt
aangevallen en de beveiliger selecteert een patrouille die meerdere deelgebieden be-
zoekt, zodanig dat aan bepaalde operationele voorwaarden wordt voldaan. FEerst
wordt dit probleem gemodelleerd als een nul-som spel met kansconstraints, zodat
met hoge waarschijnlijkheid aan de operationele voorwaarden wordt voldaan. Daarna
ontwikkelen we een dynamische variant van dit spel door stochastische speltheorie
te gebruiken. Dit zorgt ervoor dat er strategieén worden geconstrueerd die rekening
houden met zowel voorgaande acties als de verwachte toekomstige risicolevels. In
het laatste hoofdstuk bekijken we Stackelberg-spellen met een groot aantal zuivere
strategieén. Om implementeerbare strategieén te construeren, beperken we het aan-
tal zuivere strategieén dat is toegestaan in de optimale gemengde strategie van de
beveiliger. We onderzoeken de kosten van deze beperkingen door de price of usability
te introduceren en we ontwikkelen een algoritmische methode om zulke strategieén
efficiént te berekenen.
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