

DETERMINING THE EFFECT OF SCREENS IN EXPOSURE TO AEROLS IN RESTAURANTS DR. ROBERTO TRAVERSARI

INDEX EVALUATION OF SPREADING AEROSOLS IN RESTAURANTS

01. INTRODUCTION

02. METHOD

03. RESULTS

04. CONCLUSIONS

DISCLOSURE

Dr. Roberto Traversari

> I have the following potential conflicts of interest to report:

- Consulting
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
- Other(s)
- I do not have any potential conflict of interest

BACKGROUND

PROBLEM

- > Reference setting is social distancing at > 1,5 meter (between different households)
- > Limiting the capacity of a restaurant
-) Can screens help to reduce the 1.5 distance in a safe way?
-) Is there a relation with the ventilation system and ventilation rate?

Main research question:

How to determine the effect of (protective) screens in a restaurant setting?

Project funded by the Dutch Ministry of Economic Affairs and Climate Policy

METHOD

- Method was based on the guidelines for operating rooms
 (e.g. ISO 14644-3, HTM-03, DIN 1946-4, VCCN guideline 7)
- > Emission of aerosols (particles) and measure particle levels
-) Measuring the concentration of particles with particle counters
-) Using $\geq 0.5~\mu m$ as guiding particles (airborne appr. < 5 $\mu m)$
-) Concentration at 1,5 meter was the reference
-) With and without screens

92 cm

Percentage of particles related to total amount (DURASYN)

EXPERIMENTS MOCK UP

-) Two ventilation systems
 - Inear diffusers
 - > swirl diffusers
-) Three "ventilation" rates (air with relative low particle level)
 - > Low (900 m³ h⁻¹, Dutch building act)
 -) Medium (1.700 m³ h⁻¹)
 -) High (2.500 m³ h⁻¹)
- > Three different setups (excluding the reference setup)

REFERENCE SETUP

SETUPS WITH SCREENS

Setup A, 6 full screens, one half screen, 13 tables, 32 chairs and 22 restaurant guests

> Setup C, 5 full screens, two half screens, 15 tables, 31 chairs and 23 restaurant guests

Setup B, 5 full screens, two half screens, 13 tables, 32 chairs and 22 restaurant guests

EXAMPLE OF THE MEASURED CONCENTRATION

RESULTS LOW VENTILATION RATE

CONCLUSIONS

- The amount of ventilation is the most determining factor for the total exposure and for the 100-fold recovery time. The higher the ventilation, the lower the total exposure and the faster the 100-fold recovery.
- The medium and high ventilation quantities result in a lower total exposure than the setup with the 1.5 meter protocol with a low ventilation quantity; the total exposure is on average 44% and 63% lower for the medium and high ventilation volume respectively. In addition, the 100-fold recovery is faster with a higher amount of ventilation.
- > The diffuser type (line diffusers or swirl diffusers) has no significant influence.
- With the low ventilation amount, the total exposure for the three setups with screens is lower than for the reference situation. However, this difference is not significant for setup A.

THANK YOU FOR YOUR TIME

ROBERTO.TRAVERSARI@TNO.NL

