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Abstract—Vehicle-to-vehicle communication is a solution to
improve the quality of on-road traveling in terms of throughput,
safety, efficiency and comfort. However, road users that do not
communicate their planned activities can create dangerous situ-
ations, so prediction models are needed to foresee and anticipate
their motions in the drivable space. Various prediction methods
exist, either physics-based, data-based or hybrids, but they all
make conservative assumptions about others’ intentions, or they
are developed using unrealistic data, and it is unclear how they
perform for trajectory prediction. In this work, we introduce and
demonstrate an optimal hybrid framework that overcomes these
limitations, by combining the predictions of several physics-based
and data-based models. Using on-road measured data we show
that this novel framework outperforms the individual models in
both longitudinal and lateral position predictions. We also discuss
the required prediction boundaries from a safety perspective and
estimate the accuracies of the models in relation to automated
vehicle functions. The results achieved by this method will enable
increased safety, comfort and even more proactive reactions of
the automated vehicles.

Index Terms—Autonomous driving, highway trajectory predic-
tion, hybrid, system knowledge.

I. INTRODUCTION

Cooperative Adaptive Cruise Control (CACC) is an exten-
sion of Adaptive Cruise Control that uses vehicle-to-vehicle
(V2V) communication to share intentions and form a platoon
of vehicles that can drive safely and save driver efforts [1].
Having V2V communication allows one to be immediately
aware of the preceding vehicle’s intentions, and has benefits
such as avoiding ghost traffic jams, reducing CO5 emissions,
and enabling higher traffic throughput on the same infrastruc-
ture [2].

When several V2V-enabled vehicles are platooning, the
inter-vehicle time gap is smaller than in typical ACC systems
(i.e. 1.5 sec), and having other road users interfere with
this platoon can lead to dangerous situations. To anticipate
dangerous maneuvers, e.g. cut-ins (nearby lane changes),
various prediction algorithms exist, either physics-based (PB),
describing the vehicle’s motion with kinematic equations [3],
data-based (DB), extracting vehicle’s behavior from past
observations [4], or a combination of both [5], referred to
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as hybrids. PB methods are based on simple assumptions,
such as constant velocity or acceleration, and perform best
in short prediction horizons (e.g. < 1 second), while DB
methods can capture non-linear or more complex on-road
behaviors and perform better in longer term prediction. Yet,
no method exists that offers qualitatively good results for short
and long term predictions. Moreover, it is unclear how well
these methods can predict trajectories when naturalistic driving
data is considered, and there is no established quantification
of which longitudinal and lateral prediction accuracies should
be achieved for different prediction horizons.

State of the art prediction methods either first classify the
type of maneuver (e.g. lane keeping, lane changing) and select
the most appropriate regression model, or use some deep
learning architecture that allows for direct regression without
explicitly making this distinction. However, these methods
usually have one or more of the following limitations: (i)
assume correct classification of target vehicle’s maneuver; (ii)
use idealistic data for the development and evaluation of their
methods, which is not realistic; and (iii) use partially erro-
neous or incomplete data. For instance, the Next Generation
Simulation (NGSIM) dataset has become the basis of many
studies [4], [6]-[10], despite it not being representative of all
driving behavior and containing unrealistic relationships that
are beyond repair applying post-processing techniques [11].

To overcome the aforementioned limitations, we propose
a hybrid framework for vehicle trajectory prediction that
effectively combines PB and DB models to produce more
accurate predictions, making no assumptions on other road
user’s intentions, and using real on-road vehicle’s data. The
proposed hybrid framework can be directly incorporated in the
architecture of a cooperative driving application, as shown in
Fig. 1, to better anticipate the trajectory of non-communicative
vehicles and react accordingly to dangerous maneuvers.

Key Contributions.: With our work, we present two
main contributions: (1) a thorough comparison of PB and
DB models for trajectory prediction on the highway, allowing
for a better understanding of the capabilities and limitations
of these methods when using naturalistic driving data; and
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Fig. 1: Overview of the components of our cooperative driving application for truck platooning. The proposed hybrid framework can be
directly integrated in the system architecture for improved trajectory prediction and anticipation of non-communicative vehicle maneuvers.

(2) a hybrid framework that presents improved trajectory
prediction accuracy without prior knowledge of the type of
maneuvers performed by other road users, which can be
directly incorporated in a cooperative driving application for
anticipation of dangerous maneuvers (see Fig. 1).

A. Problem Formulation

To develop a hybrid trajectory prediction framework that
combines several models and enables more accurate predic-
tions, first the motion of a vehicle needs to be described. For
this problem, all data is measured from on-board sensors of
the ego vehicle. Let the state of a vehicle, s, at any given time,
t, be characterized by a collection of variables,

S(t) = (x7y’ 0’0‘)71)’ a)? (1)

where x and y are the longitudinal and lateral positions of the
tracked vehicle; # and w are the heading angle and its rate
of change; and v and a are the velocity and acceleration, all
relative to the ego vehicle, as illustrated in Fig. 2. Furthermore,
let s(t1,t2) denote the states of the vehicle from time ¢; until
time ¢, and §,,,(¢1, t2) the predictions of model m between ¢,
to to. Similarly, let s¢(t1,t2) denote the real, measured value
of variable f, for any f € {z,y,0,w,v,a}, and 55, (t1,12)
the predictions of model m for variable f.

Given a set of state observations 7}, seconds in the past,
5(tnow—T, tnow), predictions for the next Tr,; seconds can
be made, 8., (tnow, tnow+Ty,,) by a collection of prediction
models, some of which may be PB, and some DB.

Finally, given a collection of prediction models, M, and
an error metric, €(s, $,,,), used to quantify the deviation of

predictions of model m; € M from the ground truth, we wish
to define a hybrid model H consisting of a combination of
models from M, such that €(s(;.y), 5(z,y)) is minimized.

II. BACKGROUND ON TRAJECTORY PREDICTION

To obtain a better understanding of the possibilities of
developing hybrid prediction models, an overview of the main
categories of forecasting models that can be used for trajectory
prediction is given in this section. Although not all of them
are currently being applied in the context of autonomous
driving, we distinguish three main categories: physics-based,
data-based, and hybrid models.

A. Physics-based models

In PB models, the behavior of the system is modeled
using known kinematic equations, in which their parameters
usually have physical meaning (e.g. the equation describing the
traveled x for a certain t). Their main advantage is that they
are interpretable. In the context of vehicle motion prediction,
various models exist, each with different assumptions. Several
of the most commonly used PB models are compared in [3],
such as Constant Velocity (CV), and Constant Turn Rate and
Acceleration (CTRA), with the latter being the preferred model
considering both accuracy and computational cost. In the CV
model, the vehicle state s at time t is represented by

s(t) = (z,y,0,v), 2

and the transition equation to compute the state of the vehicle
At seconds in the future is given by

s(t+ At) = s(t) + (v - tcos(f),v - tsin(h),0,0). (3)

In the CTRA model, the state space is represented as

Vehicle’s trajectory Lane 1 s(t) = (x,y,0,v,a,w), ()]
y Cut., Vehic, and the transition equation is given by
14 (t)‘ a({) e
D L YO s(t+ At) = s(t) + (Az,Ay,w-t,a-¢,0,0), (5
- " >
/L where Az and Ay are given by
D— I Lane 2 t
0 x@) ¥ Ar=UtO sin(6 + wt) + % cos(8 + wt) — v sin(f) — % cos(),
Ego vehicle w v (6)
Fig. 2: Example of a dangerous lane change maneuver, where a Ay = — vtat cos(6 + wt) + % sin(0 + wt) + z cos(f) — % sin(6).
vehicle on another lane performs a cut-in in front of the ego vehicle. w w w (7)
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B. Data-based models

With DB models, the behavior of the system is considered
unknown a priori, and an approximation is inferred from past
observations. These models can approximate complex behav-
ior, and therefore tend to be more accurate than PB models
for longer prediction horizons, N € (1, 3) seconds. However,
the quality of the models is heavily affected by the quality
and quantity of available observations (e.g. completeness, or
noise). Moreover, DB models could yield unrealistic (e.g.
physically impossible) predictions of the system state. Within
DB models, we distinguish two main categories: classical
statistical methods and machine learning methods.

a) Classical statistical methods: Examples of these
methods include Exponential Smoothing [12] or ARIMA [13].
Typically, these methods are more interpretable than machine
learning approaches, especially the ones based on large deep
Artificial Neural Networks (ANN). However, they require
statistical knowledge to apply them appropriately. Some ap-
proaches exist to automate forecasting with ARIMA models
and exponential smoothing methods [14], [15], for single-step,
univariate forecasting, but it is unclear they perform for multi-
step, multivariate forecasting. This makes them unappealing
for our problem.

b) Machine Learning methods: Two main types exist
depending on the nature of the problem: classification or
regression. In the context of vehicle motion prediction, classi-
fication is done computing the probability of a maneuver (e.g.
probability that a vehicle will turn left). On the other hand,
regression is done to predict the value of system state variables
for some time in the future (e.g. vehicle trajectories [4]).

C. Hybrid models

Hybrid models combine the predictions of multiple models,
benefiting from their strengths, but developing an optimal
combination is usually challenging. Hybrids are analogous
to ensemble methods [16], although ensemble methods is
a term used when referring to the combination of multiple
DB models. Thus, in this work the term hybrids is used to
emphasize that the model is a combination of PB and DB
models. Hybrid methods found in literature can be categorized
as follows.

a) Hard Constraining: Multiple models predict variables
of interest and the predictions are combined. This category can
be divided in two sub-categories depending on the variables
predicted by each model: (i) direct, when all the individual
models predict all the variables of interest [5]. The individual
predictions can then be aggregated, using for instance Kalman
filtering [17]; and (ii) piece-wise, when different models
predict different variables, e.g. some are predicted using a PB
model and others using a DB model [18].

b) Soft Constraining: A main model’s predictions are
influenced by secondary models. For instance, PB neural
networks: a physics-based term is added to the loss function
of a neural network to penalize unrealistic predictions [19],
[20].

¢) Residual Modeling: The predictions of a main model
are complemented by secondary models, which are used to
model, predict, and correct the main model’s errors. Sev-
eral combinations are possible depending on the assumptions
made about the system and the residuals, the type of models
used, and how predictions are combined. Table I presents an
overview of residual modeling hybrids found in literature.

TABLE I: Residual modeling hybrids found in literature, with differ-
ent assumptions, individual models, and prediction combinations.

Model Assumptions Comb-

Main Secondary System Residuals ination ‘ Reference
PB DB L/NL NL L [21]

DB DB NL L L [22]
(DBN) (ARIMA)

DB DB L NL L [23]-[25]
(ARIMA) (ANN)

DB DB L NL NL [26]
(ARIMA) (SVR)

L - Linear | NL - Non-linear | DBN - Deep Belief Network | SVR - Support
Vector Regression

III. CONSTRUCTING THE HYBRID FRAMEWORK

To predict the trajectories of non-communicative vehicles
and integrate them in platooning, the proposed framework,
its main components and its integration in the higher picture
(application) are depicted in Fig. 1. As shown in [5], the
hybridization of PB and DB approaches can benefit for short
prediction horizons, N € (0,1) seconds, from the accuracy
of the known vehicle dynamics, and for longer prediction
horizons, N € [1, 3] seconds, from the complexity that DB
models can capture. Following the same reasoning, to make
our hybrid, we first choose suitable PB and DB components.

a) Dataset: To benchmark the different methods and
develop an improved hybrid framework, naturalistic driving
data collected using our own ego vehicle equipped with several
sensors is used. This data, measured s(t) from Equation (1),
contains S-second trajectories of target vehicles, out of which
we consider T, = 2 and T',; = 3 for the observations and
predictions, respectively. Furthermore, maneuvers performed
in these trajectories may be of two types, but a majority
are lane keeping. To investigate the impact of optimizing our
approach with different types of maneuvers, four data splits
are created: keeps, containing trajectories where the tracked
vehicle stays on the same lane; changes, containing trajectories
where the tracked vehicle changes lanes; imbalanced, con-
taining a majority of lane keeping trajectories; and balanced,
containing the same number of lane keeping and lane changing
trajectories. The four data splits are summarized in Table II.
These splits are divided into training (90%) and testing (10%).

TABLE II: Different splits created from the available trajectories.

data split # trajectories % keeps % changes
keeps 28564 100 0
changes 2546 0 100
imbalanced 31110 91.82 8.18
balanced 5092 50 50
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b) Safety- and comfort-related performance metrics: In
platooning applications, as depicted in Fig. 1, the automated
vehicles drive close to each other, i.e. smaller time gaps, and
any other vehicle interfering with the string of vehicles can
pose a threat to the safety of the platoon. Detecting a cut-
in late can lead to harsh braking and driver discomfort, or
even to unsafe situations [1]. Although the need of having
trajectory prediction algorithms has been acknowledged [4],
so far no definitions exist of what is a good prediction error
for an automated vehicle to react safely and comfortably to
other vehicles. For example, intuitively it is more relevant
to have a good prediction 1 second ahead than 3 seconds
ahead. To clearly define these horizon-changing metrics for
longitudinal/lateral accuracy, the motion planning, control
algorithms, and the vehicle need to be in the loop. In this
work, we do not close this loop, we focus on highway
driving data where relatively high velocities are driven. For
this purpose, we define the acceptable error boundaries as
2 meters in longitudinal distance and 0.45 meters (1/8 of a
typical lane width) in lateral distance. Furthermore, to assess
the performance of the models we evaluate, we look at a large
range of N values, 0 < N < 3.

A. Hybrid Components

1) Physics-based component: To understand which PB
component is suitable to predict vehicle trajectories, we com-
pare two commonly used models [3]: CV and CTRA, as
introduced by (2)-(7). When using the CTRA model, the turn
rate, w, can be zero or very small. When w is close to zero
(w < 10™%), (6) and (7) are replaced by

Az =cos(f)(v-t+ %a -t2), 8)
Ay =sin(0)(v-t+ %a -t2), 9

to avoid zero division issues. When using realistic driving data,
as in our case, the noise in the data can make the predictions
very inaccurate. This noise is especially problematic for vari-
ables f € {0,w,v,a}. To compensate for this, the initial state
of the target vehicle for each variable f, so,, is smoothed using
a weighted average of the most recent observations, with more
recent observations having a higher weight, given by

S0, = sf(tnoiz) ] f € {(E,y}
! % Z:;o(l - %)Sf(tnow*i-r) fe {9,(,0, v,a}
(10)
where r denotes the inverse of the data sampling rate,
r = 12.5Hz~! = 0.08 seconds. Longitudinal and lateral posi-
tion are excluded from the smoothing process to use the latest
sensed target vehicle position.

Both CV and CTRA models are evaluated on the four
data splits. Independently of the type of maneuver at hand,
on average CV outperforms CTRA. This behavior is not out
of the ordinary for lane keeping trajectories, where the main
assumption is that the vehicle drives straight. However, for
lane changing trajectories one would expect CTRA to perform

Longitudinal position error Lateral position error
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Prediction horizon [s] Prediction horizon [s]

Fig. 3: Mean Absolute Error (MAE) of CV and CTRA predictions
for trajectories of the balanced test set. The vertical lines indicate the
standard deviation of the prediction errors.

better, which is not the case here due to the unreliability of
0 and w in the data. Fig. 3 shows their performance on the
balanced test set. For longitudinal position, after N = 1,
CTRA’s average longitudinal prediction errors, € ,, rapidly
increase compared to CV, which is to be expected since CTRA
assumes the target vehicle keeps turning. Furthermore, for the
lateral position average error, €, ,, the difference is small yet
significant, with higher variance after 1.5 seconds. Overall, on
realistic data, CV shows more accurate results.

2) Data-based component: To choose a DB model suitable
for vehicle motion prediction, the nature and complexity of the
maneuvers need to be considered. For this task, the authors
of [4] and [27] show that machine learning methods, such
as Long Short-Term Memory (LSTM) ANNs show potential.
This model is also chosen here since LSTMs are well known
for sequence to sequence mapping [28], hence also suitable
for our trajectory prediction problem, i.e. mapping a sequence
of (past) vehicle states to another sequence of (future) vehicle
states. In this work, an LSTM as shown in Fig. 4 is imple-
mented and compared to a Multilayer Perceptron (MLP).

Time-Distributed Dense‘

s(tnow—Za tnow) ] 3(tmzuh tnow+3)

LSTM Encoder
Compressed
Representation

LSTM Decoder

‘ Time-Distributed Dense‘

Fig. 4: Overview of the LSTM encoder-decoder architecture.

Althought MLPs are not particularly well suited for tempo-
ral data, we wish to verify that our LSTM model outperforms
a standard MLP, which despite being a basic deep learning
architecture, it is still widely used in practice (61% of the
workload in Google TPUs [29]). Since MLPs do not support
the extra temporal dimension of the data by default, our model
is developed to accept several inputs (entire time window of
state observations for each feature), and produces multiple
outputs (entire window of state predictions for each predicted
feature), as shown in Fig. 5.

Sf, (tnowf2 5 tnow) §f1 (tnoun tnow+3)

2
©
c
2
©
o
c
s}
(@]

Sf, (tnow—Q 3 tno’w) gf,l (tnouH tnow+3)

Fig. 5: Overview of the MLP architecture.
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Fig. 6: MAE of MLP and LSTM predictions for trajectories of the
balanced test set. Both models were trained on the balanced set.

A thorough comparison of the MLP and LSTM’s accuracy
was performed and it is clear that the LSTM is better suited
for this prediction task. As shown in Fig. 6, the non-recurrent
architecture of the MLP is completely unable to predict the
target vehicle’s longitudinal position accurately with €, , = 20
meters, and great variance. On the other hand, the difference
in €, with respect to the LSTM is not as large, but it
is unacceptable since a typical lane width is 3.6 meters.
Following this analysis, the LSTM is considered more suitable
than the MLP as the DB component of our hybrid framework.

Now that we have chosen a suitable DB component, we
perform an extensive analysis of the impact of training it
with maneuver-specific (keeps or changes data splits) vs.
mixed (imbalanced or balanced splits) trajectories. To predict
lane keeps, it is beneficial to train the model with some
lane changes, especially for longitudinal position prediction
when N > 1 second. By introducing noise as lane changes,
the model’s generalization capabilities improve, preventing
overfitting. However, if too many lane changes are introduced,
the model’s performance decreases significantly (Fig. 7). Sim-
ilarly, to predict lane changes it is beneficial to include some
lane keeping trajectories. For lateral position prediction, this
only holds for N < 1 second, while for longitudinal position
predictions it holds even for 1 < N < 3 (Fig. 8).

The performance of the LSTM trained on changes when
predicting lane keeps is very poor compared to the LSTMs
trained on either balanced or imbalanced (Fig. 9). This is
expected since the model has not seen any lane keeping

Longitudinal position error Lateral position error
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Fig. 7: MAE of the LSTMs trained on keeps, imbalanced and
balanced data splits, and tested on keeps data split.
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Fig. 8: MAE of the LSTMs trained on changes, imbalanced and
balanced data splits, and tested on changes data split.
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Fig. 9: MAE of the LSTMs trained on changes, imbalanced and
balanced data splits, and tested on keeps data split.
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Fig. 10: MAE of the LSTMs trained on keeps, imbalanced and
balanced data splits, and tested on changes data split.

trajectory during its training. However, the performance of
the LSTM trained on keeps when predicting lane changes
is not much worse than the LSTMs trained on balanced or
imbalanced (Fig. 10).

If the target vehicle’s intention was known a priori, to
predict lane changes we would, depending on the desired
N, use either the model trained on balanced, imbalanced or
changes. Not having this knowledge of the target’s intention,
the LSTM trained on balanced would be a conservative choice,
since although it does not yield the most accurate predictions,
it does not suffer a severe performance decrease in case of
misclassifications.

B. Hybrid Optimization

Since PB models perform well for NV < 1, and DB models
perform better for N > 1, we propose a hard constraining
hybrid that combines the predictions of all its individual
components with a weighted average. Given n prediction
models, M = {my,ma, ..., m, }, the predictions of the hybrid
model H for variable f at time t are given by

> Spmi () Whmts

m;EM

Sru(t) = (1)

where the weight of each model’s prediction for each variable
at a given time, wy ., varies with N depending on the
individual model’s accuracy, and to find the weights for an
optimal combination of the models, three approaches are
compared: an exhaustive grid search (GS), a per-time step
regression (Reg.), and a simple perceptron (Perc.), as shown
in Fig. 11.

As the PB component, CV is considered. As the DB
component, since there was no clear best model without having
any knowledge about the target vehicle’s intentions, all four
implemented models are considered. Thus, |M| = 5, with one
PB model and four DB models.
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on keeps Stepwise trajector
on balanced ] regression
DB: LSTM -
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Fig. 11: Optimal selection of hybridization weights: one PB model
and four DB models are combined with the best performing opti-
mization method, the grid search.

For the optimization of the weights, all three methods use
the training split of balanced, as to not favor either type of
maneuver. Fig. 12 depicts €., and €, , for N < 1 for all three
approaches, which achieve very similar performance, but for
longitudinal position prediction the grid search is marginally
more accurate.

Longitudinal position error Lateral position error

1.01 —}— Hybrid (GS) —}— Hybrid (GS)
}— Hybrid (Perc.) 0.4 {— Hybrid (Perc.)
'505 —— Hybrid (Reg.) 'g —J— Hybrid (Reg.)
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- -0.2
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Prediction horizon [s] Prediction horizon [s]

Fig. 12: Performance of the resulting hybrids using three methods to
find the optimal weights: GS, Reg., and Perc.

Fig. 13 depicts the weights resulting from the grid search
optimization. For longitudinal position, CV is consistently
the model with the highest contribution. For lateral position,
CV is only significant for a very short horizon, N < 0.2
seconds, and then it transitions to the LSTM trained on keeps
and finally the one trained on balanced, while still being
slightly influenced by the LSTM trained on changes. There
seems to be no benefit of introducing the predictions of the
LSTM trained on imbalanced for lateral prediction. Given no
prior knowledge of the type of maneuver at hand, the hybrid
optimized with the grid search performs better than any of its
individual components, as shown in Fig. 14. However, when
evaluating the performance of the hybrid separately on lane
keeps and lane changes, it is not always more accurate than all
of its components. For instance, when evaluated on changes,
for N > 1, the LSTM trained on changes yields more accurate
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0.7

°

0.6

£ £ T

0.5

5 ov Sos ov

[T <+ LSTM_keeps [} =+ LSTM_keeps

= —— LSTM_changes B —— LSTM changes
@031 My — . LSTM_imbalanced 04 — . LSTM_imbalanced
3 Al ,\ _imbalance 3 I_imbalance
Qo] /=N '_. - - LSTM balanced - o ~ - LSTM_balanced
= X : - 7 =

°
T
1
1
1
1
|
1
1
1
]
1
]
1

4

0.1

0.0

°

0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
Prediction horizon [s] Prediction horizon [s]

Fig. 13: Weights resulting from the grid search for each component
of the hybrid model.

lateral position predictions. This difference in performance
is expected, as balanced contains the same number of lane
changing and lane keeping trajectories.

The accuracy of the models increases significantly if the
type of maneuver is known a priori. However, this is an
assumption we wish to avoid, therefore it remains a future
research focus. Nevertheless, even without this assumption,
the hybrid’s predictions are highly accurate, having €, , <
1 meters for N < 2.5 seconds (see Fig. 14). Similarly,
€y, < 0.5 meters for NV < 1.5 seconds. This is a more
challenging requirement and could be improved by using
more, and optimally balanced training data.
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(d) Hybrid vs. LSTM trained on the imbalanced split
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Fig. 14: MAE of the proposed hybrid compared to each of its
individual components on the balanced test set.
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IV. CONCLUSIONS & FUTURE WORK

The contribution of this paper is two-fold. First, we intro-
duce an optimal hybrid method for trajectory prediction of
non-communicative on-road vehicles, and second we investi-
gate in detail the performance and selection of the independent
components that build this hybrid model.

We begin by performing a thorough analysis of the perfor-
mance of different physics-based (PB) (evaluating two of the
most commonly used models) and data-based (DB) models
in predicting trajectories using on-road measured data. This
analysis highlights the benefits of using PB models for short
term prediction horizons and DB models for longer term.
Furthermore, we investigate the impact of training our models
on maneuver specific vs. mixed trajectories and we conclude
that there is no clear best split of data to train this method if
there is no prior information about the vehicle’s intentions.
We introduce safety performance indicators for lateral and
longitudinal predictions and we show that the hybrid method
achieves good accuracy within the safety bounds. This method
is modular and easily extendable for predicting more on-road
maneuvers.

Future work will address analyzing the optimal ratio of lane
changes and lane keeps used during the training phase, and
developing and comparing more complex hybrid models to
improve the accuracy. Furthermore, to show the improvements
in safety and comfort, the prediction models will be integrated
with automated decision making.
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