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Abstract. A framework is presented for performing global sensitivity analysis of model
parameters associated with the Blade Element Momentum (BEM) models. Sobol indices based
on adaptive sparse polynomial expansions are used as a measure of global sensitivities. The
sensitivity analysis workflow is developed using the uncertainty quantification toolbox UQLab
that is integrated with TNO’s Aero-Module aeroelastic code. Uncertainties in chord, twist, and
lift- and drag-coefficients have been parametrized through the use of NURBS curves. Sensitivity
studies are performed on the NM80 wind turbine model from the DanAero project, for a case
with 19 uncertainties in both model and geometry. The combination of parametrization and
sparse adaptive polynomial chaos yields a new efficient framework for global sensitivity analysis
of aeroelastic wind turbine models, paving the way to effective model calibration.

1. Introduction

Aeroelastic models such as the Blade Element Momentum (BEM) models [I] play a critical role
in the design, development, and optimization of modern wind turbines. A large number of BEM
models have been developed to predict turbine responses such as structural loads and power
output [2].

As a consequence of the relatively strong model assumptions at the basis of BEM theory,
the results from BEM codes can be subject to significant uncertainties. For example, the effect
of sheared inflow [3] is not naturally accounted for in the theory and needs to be incorporated
via correction terms. Other major model uncertainties in BEM models are the time constant in
dynamic stall models, the wake correction factor, the tip loss model parameter, and the lift- and
drag-polars used to compute local aerodynamic forces. Especially for increasing turbine sizes,
these model parameters are likely not sufficiently accurate [4].

Recently, several papers have addressed the uncertainty in BEM model output by performing
uncertainty propagation and sensitivity studies, e.g. [5] 6l [7, 8, 9], 10]. In these studies, the focus
in mainly on uncertainties in the external conditions (wind parameters) and/or uncertainty in
the turbine specification (geometric parameters). Apart from understanding how uncertainty in
the output is related to the different uncertain inputs, such sensitivity studies are very useful
to reduce the number of parameters as needed for example in design optimization [6]. However,
the uncertainty in BEM model output as caused by uncertainty in the model formulation itself,
e.g. through the values chosen for model parameters, has been given little attention.

The goal of this work is to perform a systematic assessment of the uncertainty in model
parameters in BEM models. We approach this by performing a global sensitivity analysis based
on the Sobol expansion approach, which decomposes the total variance of the quantity of interest
(model output) into contributions from individual parameters and their combinations, similar
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to [6l [8, T1]. We will employ the uncertainty quantification toolbox UQLab [12], which computes
the Sobol indices based on a sparse polynomial chaos expansion. The main novelty of the work
lies in creating a generic framework that enables an advanced (global) sensitivity analysis of a
relatively high number of uncertain parameters (e.g. 10-20), including both model and geometric
uncertainties. The two key ingredients for this are efficient parameterization and the adaptive
sparse polynomial expansion. This framework for sensitivity analysis is part of the so-called
WindTrue project, in which the long-term goal is the development of calibrated BEM models.
Anticipating on this goal, we are using the NM80 wind turbine model from the Tjaereborg wind
farm, for which extensive measurement data is available through the DanAero project [I3] and
IEA Task 29 Phase IV (Phase IV is a follow-up of Task 29 Phase III [I4] that is built around the
DanAero experiment). The sensitivity analysis will make clear which of the model parameters
are to be used in the calibration phase.

This paper is structured as follows. First, in section [2] we give a short description of the BEM
model and associated geometric and model uncertainties. In section [3| the parameterization
of the uncertainties is described, and in section [4] the global sensitivity analysis methodology.
Section [b| discusses the results of the sensitivity analysis for the NM80 turbine test case, and
conclusions follow in section [6Gl

2. Aeroelastic model uncertainties

State-of-the-art wind-turbine models simulate the aeroelastic behavior of wind turbines by
combining the concept of momentum conservation of the flow (BEM theory) with the equations
of motion for the structure, possibly extended with the hydrodynamics of the sea and control
algorithms [2]. In this work, we concentrate on the first aspect, namely the prediction of flow
and blade forces as given by the BEM method. The particular BEM code that we use is
TNO’s Aero-Module [I5]. For the case of a rigid turbine, with a uniform inflow field, the main
uncertainties that arise in the BEM formulation are [16]:

e The use of (2D) airfoil polars; uncertainty arises not only because the actual flow along the
blade is 3D, but also because the 2D polars itself can be inaccurate, either when obtained
from measurements or 2D codes like XFOIL;

e The assumption of an azimuthally uniform induction distribution; this is typically corrected
via a tip loss model,

e Three-dimensional flow effects also cause stall delay at the root; this is typically modelled
via a 3D correction or rotational augmentation model;

e Yawed inflow is not naturally included and incorporated via a skewed wake correction.

In this paper we will focus on the first uncertainty — uncertainty in lift and drag coefficients —
but we stress that the framework and methodology are directly applicable to other BEM model
uncertainties as well. In a parallel paper, see [17], the effect of other uncertainties such as the
unsteady airfoil aerodynamics model will be investigated. Next to these model uncertainties we
will consider geometric uncertainties: the chord and twist distribution along the blade, to show
the generic applicability of the framework.

3. Parametrization of uncertain inputs

The chord, twist, lift coefficient, and drag coefficient are functions of the radial distance along the
blade, leading to a very high-dimensional number of uncertain parameters. In order to reduce
this number, we parametrize the variation along the blade by using Non-Uniform Rational
Basis Splines (NURBS) [1§]. In this way a limited number of control points can approximate a
large variety of curves, so that the resulting number of uncertain parameters is relatively small.
NURBS have already been exploited in several aerodynamics applications, for instance, design
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optimization of wind-turbine blades, e.g. [19] [20], and to parametrize chord and twist curves [6].
In the following, we briefly outline the procedure used to parametrize a curve using NURBS.

3.1. NURBS representation
A NURBS curve S(r) is expressed using a weighted sum of n basis functions (or B-splines):

= ZCiBi,p(T)a (3.1)
i=1

where ¢; is the weight of the i-th control point and B;,(r) is the value of the B-spline
corresponding to the i-th control point at radial location r along the blade, with p denoting
the polynomial degree. In our case, S(r) represents for example the chord length. A sequence of
non-decreasing parameters X = {ry,ra,...,m}, called the knot vector, determines the domain
in which any control point is active. A control point ¢; is said to be active at a location when
the corresponding B-spline B; () is non-zero at r. B-splines are recursive in polynomial degree:
quadratic B-splines follow from linear B-splines, cubic from quadratic B-splines etc. Starting
with a B-spline of degree 0 defined as

I rm<r<rip, 1=12..,m,
B;o(r) := 3.2
o(r) {O elsewhere, (32)

higher-order B-splines follow using the recurrence relation [21]:

B p(r) :=

iBiﬂp_l(r) n MBzﬂer—l(?")a p>1. (3.3)
Titp — T Titp+1 — Ti+1

Only a few nearby control points are active when computing the NURBS curve ; we use the
de Boor’s algorithm [21] for efficient construction. In Fig. |1} we show linear, quadratic and cubic
splines for r € [0, 1] with original knot vector X = {0,1/3,2/3,1}, padded accordingly with the
curve order, for e.g., for linear B-splines, we use the knot vector X = {0,0,1/3,2/3,1,1}.
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Figure 1: Examples of B-splines with original knot vector X = {0,1/3,2/3,1}.

In order to parameterize a given curve, e.g. the blade reference chord, we choose a degree p
and a number of knots X = {r; }?:1. The knots can be uniformly spaced or chosen heuristically
(for advanced knot selection approaches for knot selection see [22]). Next we sample Sycf(r) at
X and also compute B; p(r;), for i,j =1,2,...,n. We then formulate a linear system and solve
for the set of control points ¢ = {¢;}I" | as:

Bc = Srefa (3.4)

where S,y € R" is a vector containing sampled values of S,c¢(r) and B € R"*" is a matrix
with the j-th row consisting of values of n B-splines sampled at location r;. Once the control
points are obtained, the approximate reference curve S, (r) follows from . Fig. |2| shows
a parameterization of the chord curve using n = 9 control points and second-order (p = 2)
B-splines.
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Figure 2: Parametrization of chord using 9 control points and second-order B-splines.

3.2. Perturbing the NURBS curves

Given the reference values of ¢, it becomes straightforward to generate perturbed curves: we
sample a uniform random variable to perturb the baseline control points and use these to
compute a perturbed curve S(r):

S(r) = _&Biy(r) where & = ci(1+Ay), (3.5)
=1

and the perturbation is uniformly sampled as A; ~ U[—0.05,0.05]. Other distributions can
be specified in the framework; in future work we will further investigate how to choose these,
for example based on design standards. This equation is applicable to both twist- and chord
distributions: ¢; can denote either the value of the twist control points, Tw;, or of the chord
control points, Ch;. For the lift- and drag polars, we use the following parametrization:

n

S(r,a) = &(a)B;p(r) where () = creri(@) (14 A), (3.6)
i=1

where ¢;(«) can denote either the lift coefficient Cl; or drag coefficient Cd,.

4. Global sensitivity analysis

The objective of sensitivity analysis is to quantify the relative significance of individual inputs (or
their combination) and how variations in input values affect the output of interest. Sensitivity
analysis techniques can be classified as local and global [23]. In a local sensitivity analysis,
individual parameters are perturbed around their nominal values allowing for the description of
output variability only in a small neighbourhood around the nominal input values. Although
local approaches are widely employed due to their ease of implementation and low computational
cost, they are unable to quantify the global behaviour of nonlinearly parametrized models such
as aeroelastic models. Global sensitivity approaches, on the other hand, consider the entire
range of input values to compute output sensitivities, and will be employed in this work. As
this technique is still relatively new in the wind engineering community, we will describe it in
some detail in the following sections.
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4.1. Sobol analysis

We employ the variance-based Sobol decomposition to perform global sensitivity analysis and
quantify the relative importance of input parameters via Sobol indices. The total variance of the
output is expressed in term of contributions from individual parameters and their combinations.
Consider a generic BEM model f(z), depending on uncertain parameters z and returning a
quantity of interest Y (e.g. power, loads, moments):

Y = f(2), (4.1)

where z = [z1, 22, ..., 2p1] € D, € RM is a vector of random variables (parameters). For ease of
notation, we assume these input parameters to be uniformly distributed, i.e. z; ~ U(0,1), and
D, = [0,1]M where M is the total number of input parameters. The Sobol decomposition is
based on the following representation [23]:

f(217227"‘7 f0+Zfl ZZ + Z f’L] ZZaZ] + +f1,2, M (Z17227“'7ZM)- (42)

1<i<j<M

The zeroth-order function fy is the mean response of f, the first-order univariate functions
fi(z;) quantify independent contributions due to each random input, and second-order functions
fi,j(zi, z;) represent the effect of interaction between z; and z; on the response f:

f():/D f(Z)dZ, fz(zz) :/ B f(Z)dZN{i}—f(), (43)
Fulewzg) = [ F@dagigy — £iz) ~ £i(5) = o (1.4)
Dy

where the notation z.g; j) denotes the vector having all the components of z except in the set
{i,j}. Higher-order terms are interpreted in a similar manner. Note that (4.2)) is only valid for
independent input parameters. We consider a second-order expansion of hich is generally
sufficient for the purpose of this article.

As an example, Y can represent the power output of a wind turbine, with random inputs
windspeed (z1), wind standard deviation (z2) and rotational speed (z3). fo then represents the
mean power output, fi(z1) represent the independent contribution of windspeed on the power
and f1 2(21, 22) quantifies the interactions of wind speed and wind standard deviation on power.

Sobol indices are based on the decompositon of the variance [24], defined as:

D = Var[f(z)] = A f*(2)dz — f5, (4.5)

which is rewritten as

D= ZD+ > Dy, (4.6)

1<i<j<M

where the first- and second-order partial variances are defined via decomposition (4.2)) as

1 1 1
DZ' = / f?(zz)dzl, Dij = / / fi?j(zi, zj)dz,;dzj. (47)
0 0 JO

The first- and second-order Sobol indices are then computed as

= =2 4 j=1,2.., M. (4.8)
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The total effect of z; on the output Y can be quantified using the total sensitivity index
St, =8+ Zj]\/il Sij. The total sensitivity indices can be interpreted as an importance measure
for the parameter z;: a large S7, implies that z; has a strong influence on Y. The computation
of S7, requires the approximation of partial variances defined in . Using the Monte Carlo
method for computing these variances is computationally very expensive, and we therefore use
instead a Polynomial Chaos Expansions (PCE) based approach. As shown in [25], one can
compute the Sobol indices analytically by post-processing the PCE coefficients.

4.2. PCE-based Sobol indices computation
A PCE approximation f%(z) to the computational model Y = f(z) can be defined as a weighted
sum of multivariate polynomials in z [23]:

K
Y = f@)~ ) = 3 wli(a), (4.9)

k|=0

where k € N} is multi-index with magnitude |k| = k1 + k2 + ... + kas and Wy (z) a multivariate

polynomial basis, computed using a tensor product of univariate polynomials ¢,(;i) (z;), where k;
is the order of the univariate polynomial. The choice of univariate orthogonal polynomial v,
depends on the type of the random variable z;. For the uniform random variables appearing in
this work Legendre polynomials are employed. The total number of terms K in depends
on the truncation scheme; in this work, a hyperbolic truncation scheme is used [26]. The PCE
coefficients wy corresponding to Wy (z) can be computed using a pseudo-spectral approach by
using quadrature methods. For a small number of dimensions this is an efficient approach.
However, in the current work we will encounter more than 10 dimensions and quadrature
methods become too expensive as they suffer strongly from the curse of dimensionality. We
therefore focus on methods in which the sampling points can be chosen more freely and
adaptively: Ordinary Least Squares (OLS) and Least-Angle Regression (LARS).

4.2.1. Ordinary Least Squares The PCE expansion (4.9) can be expressed in terms of the
following vector-matrix product

K
Y = fR(z2) 4 ex = Z we Wi (z) + e = wl W (z) + ek, (4.10)
IK|=0

where w = {wg, w1, ...,wx}? is the coefficient vector, W(z) = {Uy(z), V1(2),..., Vi (z)}T is
the matrix containing multivariate polynomials in z, and e is the approximation error. The
least-squares minimization problem can then be formulated as:

W = argmin E [(WT\I;(Z) - f(z)ﬂ. (4.11)
w

The coefficient vector W can be computed using the Ordinary Least Squares (OLS) method.
Given N model evaluations Y = {f(z1), f(z2),..., f(zn)}, we can obtain the coefficients as
w = (XTX)1XTY, where X € RV*K is the design matrix where X; j = U;(z;), i = 1,2,...,N
and j = 0,1,2,..., K. Although the OLS method allows to compute the coefficients using a
limited number of model evaluations, it may result in a PCE model that consists of high-order
interaction terms leading to overfitting. For many engineering problems, low-order interactions
between the input variables are most important. Therefore, the least squares form in (4.11)) can
be regularized such that the minimization results in a low-order sparse PCE model, as discussed
next.
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4.2.2. Least Angle Regression The LARS algorithm [27] is one of the methods that can be
applied to compute sparse PCE models [26]. The key idea is to find the best set of polynomials
from a given candidate set that minimizes the regularized form of (4.11):

W = argminE |:(WT‘I’(Z) - f(z))ﬂ + A||w|1. (4.12)
W

The LARS algorithm in the context of PCE starts with all PCE coefficients set to zero, and
then iteratively selects polynomials based on the correlation with the current residual. After
every iteration an a-posteriori error, for instance the Leave-One-Out (LOO) cross-validation
error, is computed. The active set with the smallest LOO is then chosen as the best sparse
PCE model. One of the main advantages of the LARS algorithm is that it works well in cases
when the number of polynomials in the candidate set is much larger than the number of model
evaluations.

5. Results

5.1. Operating conditions

As a reference wind turbine, we consider the 2MW NMB80 onshore turbine from the DANAERO
project [13] with a blade radius of 38.8 m and a hub height of 57.19 m with the mean wind
speed at hub height set as 6.1m/s. Furthermore, the rotational speed is set at 12.3 rpm, the
blade pitch angle at 0.15 deg and the turbine yaw angle is zero.

5.2. Choice of uncertain inputs

The data for lift (C;) and drag (Cy) polars are available at four locations along the blade radius:
at 11.87 m, 17.82 m, 28.97 m, and 35.53 m. The lift and drag variables at these sections are
numbered CI1 - Cl4 and Cd1 - Cd4 respectively. The reference value of these polars is obtained
from the wind-tunnel experiment with 3D corrections. Random samples of chord, twist, lift- and
drag-polars are obtained by perturbing the control points with a uniformly distributed random
variable based on Latin Hypercube Sampling.

There are two ways to obtain perturbed curves: independently perturbing each of the control
points (local perturbation) or using a single random number to perturb all the control points
(global perturbation). We use local perturbation for chord control points Ch3 - Ch7 and twist
control points Tw2 - Tw7 control points, see Fig. 3| (a) - (b), respectively. The twist and chord
are perturbed following equation , whereas the lift and drag are perturbed according to
equation (3.6). Note that the multiplication of (1 + A;) with the unperturbed value (equations
, as some physical intuition (especially for the lift and drag curves), but causes
relatively large input uncertainty for the chord at the inboard sections (see dashed lines in figure
. Similarly, we tend to obtain small perturbations for control points with values close to zero.
Examples of the resulting lift and drag curves are shown in Fig. |3| (c) - (d), respectively. For
simplicity, we only consider uniform distributions for perturbing the control points, however, we
can also use other probability distributions for this purpose.

5.3. Verification of sensitivity analysis method

We perform a convergence study for both OLS and LARS in order to determine which method
converges fastest with increasing number of uncertain parameters and number of model runs.
For this purpose we only include uncertainty in the chord and set the power production as
the quantity of interest. The NURBS representation is defined by 9 control points, of which
a subset is taken uncertain (see Fig. [3[(a)). In Fig. [ we show for both OLS and LARS the
convergence behaviour of the total Sobol indices of the power output with increasing number
of model evaluations N (runs of the AeroModule), and with increasing number of uncertain
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Figure 3: Random realization of chord, twist, lift- (C12) and drag-polars (Cd2).

inputs M (4, 6 and 8 control points). We see that both methods scale well with increasing
dimensions, however, LARS exhibits faster convergence than OLS in high dimensions due to its
adaptive nature. This is consistent with results from literature [I2], and therefore LARS will be
the method of choice in the subsequent tests. For both OLS and LARS, we start with a small
N and double it with every iteration until converged values of Sobol indices are obtained.

5.4. Sensitivity analysis results

In Fig. ] and [6], we show the total order Sobol indices as a measure of the sensitivity of the
different geometric and model parameters on the power output and the axial force, respectively,
computed using LARS with M = 19 uncertain parameters chosen from Fig. [3] We found that
N = 1024 model evaluations were sufficient to achieve converged indices. In this case, we
observe that the uncertainty in model parameters is at least as important as the uncertainty
in geometric parameters. Furthermore, within the geometric parameters, the chord distribution
shows a significantly higher sensitivity than the twist variables. Lastly, we observe that the axial
force is basically only sensitive to the lift coefficient at the outward blade sections, whereas the
power is sensitive to both lift and drag coeflicients, also at the inward section of the blade. We
note that these findings are testcase-specific and might not generalize directly to other turbines
or other operational settings. Furthermore, the reported sensitivities depend on the variance
that is chosen for the uncertain parameters. For example, the large sensitivity of the power with
respect to uncertainty in Ch2 as shown in figure [5] is mainly due to the fact that the effective
input uncertainty is larger here than at the outboard stations because of the multiplication with
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Figure 4: Convergence of OLS and LARS with increasing number of uncertain inputs M (chord
control points) and model evaluations N.

the local chord value (see equation and figure . Similarly, the low sensitivity with respect
to twist as apparent in figures is due to the fact that the effective perturbation in the twist
is rather small: around 0.5 degree at the mid-span location. In future work we will relate these
perturbations to values known from design standards to arrive at more realistic predictions.
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6. Conclusions

In this paper we have developed a framework for global sensitivity analysis using Sobol indices
computed using adaptive sparse polynomial chaos expansions. The framework can be used
for high-dimensional global sensitivity analysis of both geometric and model uncertainties in
BEM models. The proposed framework is generic and can deal with many types of (parametric)
uncertainties, of which a few were investigated in this paper: twist, chord, lift coefficient and drag
coefficient. By using NURBS parameterizations of chord, twist, lift and drag as a function of the
blade radius, the number of uncertainties was limited but remains considerable (19 uncertain
variables). Our approach (adaptive sparse polynomial chaos expansion) is able to efficiently
quantify this high-dimensional problem. The results highlight amongst others the importance
of the lift coefficient, especially for the axial force prediction. The identified sensitivities will be
utilized in future work to develop calibrated BEM models with built-in uncertainty estimates,
as part of the WindTrue project, and used to better understand the differences between BEM
models and measurement data as studied in IEA Task 29.

Acknowledgements
The research was sponsored by the Topsector Energy Subsidy from the Dutch Ministry of
Economic Affairs and Climate.

References
[1] Burton T, Jenkins N, Sharpe D and Bossanyi E 2001 Wind Energy Handbook (John Wiley & Sons)
[2] Vorpahl F, Strobel M, Jonkman J M, Larsen T J, Passon P and Nichols J 2013 Wind Energy 17 519-547
[3] Madsen H A, Riziotis V, Zahle F, Hansen M, Snel H, Grasso F, Larsen T, Politis E and Rasmussen F 2012
Wind Energy 15 63-81
] Sayed M, Klein L, Lutz T and Kramer E 2019 Renewable Energy 140 304-318
| Petrone G, de Nicola C, Quagliarella D, Witteveen J and Iaccarino G 2011 ATAA 2011-544
[6] Echeverria F, Mallor F and San Miguel U 2017 Wind Energy 20 1601-1616
] Matthaus D, Bortolotti P, Loganathan J and Bottasso C L 2017 35th Wind Energy Symposium, AIAA
SciTech Forum, 9-18 January 2017, Grapevine, Texas
[8] Murcia J P, Réthoré P E, Dimitrov N, Natarajan A, Sgrensen J D, Graf P and Kim T 2018 Renewable Energy
119 910-922
[9] Robertson A, Sethuraman L, Jonkman J M and Quick J 2018 NREL/CP-5000-70445
[10] van den Bos L M M, Bierbooms W A A M, Alexandre A, Sanderse B and van Bussel G J W 2020 Wind
Energy 1 1-15
[11] Rinker J M 2016 Journal of Physics: Conference Series 753
[12] Marelli S and Sudret B 2014 UQLab: A Framework for Uncertainty Quantification in Matlab
[13] Troldborg N, Bak C, Madsen H A and Skrzypinski W 2013 DANAERO MW: Final Report Tech. Rep. DTU
Wind Energy E-0027
[14] Boorsma K et al. Final report of IEA Wind Task 29 Mexnext (Phase 3) Tech. rep.
[15] Boorsma K, Grasso F and Holierhoek J 2012 Enhanced approach for simulation of rotor aerodynamic loads
Tech. Rep. ECN-M-12-003
[16] Hansen A C and Butterfield C P 1993 Annual Review of Fluid Mechanics 25 115-149
[17] Caboni M, Carrion M, Rodriguez C, Schepers G, Boorsma K and Sanderse B 2020 Journal of Physics:
Conference Series this volume

[18] Rogers D F 2000 An introduction to NURBS: with historical perspective (Elsevier)

[19] Bottasso C L, Croce A, Sartori L and Grasso F 2014 Journal of Physics: Conference Series 524
[20] Ribeiro A F, Awruch A M and Gomes H M 2012 Applied Mathematical Modelling 36 4898-4907
[21] de Boor C 1978 Applied Mathematical Sciences

[22] Li W, Xu S, Zhao G and Goh L P 2005 CAD Computer Aided Design 37 791-797

[23] Smith R C 2013 Uncertainty Quantification: Theory, Implementation, and Applications (SIAM)
[24] Sobol I 2001 Mathematics and Computers in Simulation 55 271 — 280

[25] Sudret B 2008 Reliability Engineering & System Safety 93 964 — 979

[26] Blatman G 2009 Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand, France

[27] Efron B, Hastie T, Johnstone I and Tibshirani R 2004 Ann. Statist. 32 407-499

10



