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ABSTRACT
Missing data is a common occurrence in clinical research. Missing data
occurs when the value of the variables of interest are not measured or
recorded for all subjects in the sample. Common approaches to
addressing the presence of missing data include complete-case ana-
lyses, where subjects with missing data are excluded, and mean-value
imputation, where missing values are replaced with the mean value of
that variable in those subjects for whom it is not missing. However, in
many settings, these approaches can lead to biased estimates of
statistics (eg, of regression coefficients) and/or confidence intervals
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R�ESUM�E
Les donn�ees manquantes sont un ph�enomène courant dans le
domaine de la recherche clinique, qui survient lorsque les r�esultats
pour des variables d’int�erêt ne sont pas mesur�es ou consign�es pour
tous les sujets d’un �echantillon. Les approches courantes adopt�ees
pour pallier les donn�ees manquantes comprennent les analyses de cas
complètes, dans lesquelles tous les sujets pour lesquels des donn�ees
sont manquantes sont exclus de l’analyse, et l’imputation par la
moyenne, dans laquelle les valeurs manquantes sont remplac�ees par
la valeur moyenne rapport�ee pour cette variable chez les sujets chez
Missing data is a common occurrence in clinical research.
Missing data occurs when the values of the variables of interest
are not measured or recorded for all subjects in the sample.
Data can be missing for several reasons, including: (i) patient
refusal to respond to specific questions (eg, patient does not
report data on income); (ii) loss of patient to follow-up; (iii)
investigator or mechanical error (eg, sphygmomanometer
failure); and (iv) physicians not ordering certain investigations
for some patients (eg, cholesterol test not ordered for some
patients).

Before discussing different ways of addressing the presence
of missing data, it is important to understand the conditions
under which data are subject to being missing. Rubin devel-
oped a framework for addressing missing data and described 3
different missing-data mechanisms.1,2 Data are said to be
“missing completely at random” (MCAR) if the probability of
a variable being missing for a given subject is independent
from both observed and unobserved variables for that sub-
ject.3 If data are MCAR, then the subsample consisting of
subjects with complete (or nonmissing) data is a representative
subsample of the overall sample. An example of MCAR is a
laboratory value that is missing because the sample was lost or
damaged in the laboratory. The occurrence of such events in
the laboratory is unlikely to be related to characteristics of the
subject. Data are said to be “missing at random” (MAR) if,
after accounting for all the observed variables, the probability
of a variable being missing is independent from the unob-
served data. If physicians were less likely to order laboratory
tests for older patients and that was the only factor influencing
whether or not a test was ordered and recorded, then missing
laboratory data would be MAR (assuming that age was
recorded for all patients). Finally, data are said to be “missing
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that are artificially narrow. Multiple imputation (MI) is a popular
approach for addressing the presence of missing data. With MI, mul-
tiple plausible values of a given variable are imputed or filled in for
each subject who has missing data for that variable. This results in the
creation of multiple completed data sets. Identical statistical analyses
are conducted in each of these complete data sets and the results are
pooled across complete data sets. We provide an introduction to MI
and discuss issues in its implementation, including developing the
imputation model, how many imputed data sets to create, and
addressing derived variables. We illustrate the application of MI
through an analysis of data on patients hospitalised with heart failure.
We focus on developing a model to estimate the probability of 1-year
mortality in the presence of missing data. Statistical software code for
conducting MI in R, SAS, and Stata are provided.

lesquels ces r�esultats ont �et�e recueillis. Toutefois, dans de nombreux
contextes, ces approches peuvent donner lieu à des estimations
biais�ees des statistiques (p. ex. des coefficients de r�egression) ou à
des intervalles de confiance artificiellement �etroits. L’imputation mul-
tiple est une approche populaire pour rem�edier aux donn�ees man-
quantes. Selon cette m�ethode, des valeurs plausibles multiples pour
une variable donn�ee sont attribu�ees ou imput�ees pour chacun des
sujets pour lesquels les r�esultats pour ladite variable sont manquants.
Il en r�esulte la cr�eation de multiples groupes de donn�ees complètes.
Des analyses statistiques identiques sont effectu�ees à partir de cha-
cun de ces groupes de donn�ees complètes, et les r�esultats sont
regroup�es pour les diff�erents groupes de donn�ees complètes. Cet
article offre une introduction à l’imputation multiple, et aborde les
difficult�es li�ees à son utilisation, notamment l’�elaboration du modèle
d’imputation, le nombre de groupes de donn�ees imputables à cr�eer, et
les variables d�eriv�ees qui doivent être consid�er�ees. L’application de
l’imputation multiple sera illustr�ee au moyen d’une analyse des
donn�ees pour des patients hospitalis�es atteints d’insuffisance
cardiaque. Le modèle sugg�er�e aura pour objectif d’estimer la proba-
bilit�e de mortalit�e à 1 an en pr�esence de donn�ees manquantes. Les
codes pour les logiciels statistiques utilis�es pour l’imputation multiple
(R, SAS et Stata) sont fournis.
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not at random” (MNAR) if they are neither MAR nor
MCAR. Thus, data are MNAR if the probability of a variable
being missing, even after accounting for all the observed
variables, is dependent on the value of the missing variable. An
example of data that are MNAR is income, in which more
affluent subjects, even after accounting for other characteris-
tics, are less likely to report their income in surveys than are
less affluent subjects. Unfortunately, one cannot test whether
the data are MAR vs MNAR, so one must judge what is
plausible using clinical knowledge.4,5

Historically, a popular approach when faced with missing
data was to exclude all subjects with missing data on any
necessary variables and to conduct subsequent statistical ana-
lyses using only those subjects who have complete data
(accordingly, this approach is often referred to as “complete
case” analysis). When only the outcome variable is incom-
plete, this approach is valid under MAR and often appro-
priate.6 With incomplete covariates, there are disadvantages to
this approach.2,4,7 First, unless data are MAR, the estimated
statistics and regression coefficients may be biased.4 Second,
even if data are MCAR, with the reduction in sample size
there is a corresponding reduction in precision with which
statistics and regression coefficients are estimated. Accord-
ingly, estimated confidence intervals will be wider when using
complete case analysis than if all the data were used. More-
over, different analyses may use different subsets of the overall
sample, so that it is difficult to compare results even within
the same paper.

An approach to circumvent the limitations of a complete
case analysis is to replace the missing values of variables with
plausible values. Such an approach is called “imputation,”
because one is imputing a value of the variable for those
subjects with missing data on that variable. Historically, a
common approach to imputation was “mean-value imputa-
tion,” in which subjects for whom a given variable is missing
have the missing value replaced with the mean value of that
variable among all subjects for whom the variable is present.
Thus, subjects who are missing blood pressure have the
missing value replaced with the average value of blood pres-
sure among those subjects for whom blood pressure was
measured and recorded. A limitation of mean-value imputa-
tion is that it artificially reduces the variation in the data set.
For example, mean imputation will artificially lower the
estimated standard deviation of the variable that includes
imputed values.2 Furthermore, mean-value imputation ig-
nores multivariate relations between different variables in the
sample. For instance, older subjects may have, on average,
higher blood pressure than younger subjects. This correlation
between age and blood pressure is not taken into account by
mean-value imputation.

An alternative to mean value imputation is “conditional-
mean imputation,” in which a regression model is used to
impute a single value for each missing value.2 From the fitted
regression model, the mean or expected value, conditional on
the observed covariates, is imputed for those subjects with
missing data. Thus, assuming that the imputation model
regressed blood pressure on age and sex, the same value of
blood pressure would be imputed for all subjects of the same
age and sex. A modification of conditional-mean imputation
draws the imputed value from a conditional distribution
whose parameters are determined from the fitted regression
model. However, both of these approaches artificially amplify
the multivariate relationships in the data. Another limitation is
that the imputed values are treated as known with certainty
and treated on an equal footing with the values for the same
variable for other subjects for whom the variable was observed
and recorded and not imputed. Mean-value imputation and
conditional-mean imputation are recommended for handling
missing values of baseline covariates in randomised trials
only.6,8,9

A popular approach for addressing the issue of missing data
is multiple imputation (MI).1,10 MI imputes multiple values
for each missing value. This results in the creation of multiple
complete data sets in which the missing values have been filled



Table 1. Multivariate imputation by chained equations (MICE)
algorithm for multiple imputation

1. Specify an imputation model for each of the k variables that are subject to
missing data.

2. For each of the k variables that are subject to missing data, fill in the
missing values with random draws from those subjects with observed
values for the variable in question. Note that these initial imputed values
do not respect the multivariate relations in the data and will be overwritten
by better imputed values in later stages of the algorithm.

3. For the first variable that is subject to missing data:
a. Regress this first variable on all the other variables using those subjects

with complete data on the first variable and observed or currently
imputed values of the other variables.

b. The estimated regression coefficients and their variance-covariance
matrix (and the estimated variance of the residual distribution if a
linear regression model was fit for a continuous variable) are extracted
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in with plausible values. The analysis of scientific interest is
then conducted separately in each of these complete data sets
and the results are pooled across the imputed data sets. In this
way, MI allows the user to explicitly incorporate the uncer-
tainty about the true value of imputed variables.

The present paper provides an introduction to MI and
illustrates its application with the use of a cardiovascular
example. The paper is structured as follows. In the next sec-
tion we introduce MI and discuss several issues related to its
implementation. Then (Case Study) we illustrate its applica-
tion with an example of logistic regression to model mortality
in patients with heart failure. Finally (Discussion), we sum-
marise our brief tutorial and direct the interested reader to
more detailed and comprehensive discussions of MI.
from the regression model estimated in (a).
c. Using the quantities obtained in (b), randomly perturb the estimated

regression coefficients in a way that reflects the degree of uncertainty
arising from the data.

d. Using the set of perturbed regression coefficients obtained in (c), the
conditional distribution of the first variable is determined for each
subject with missing data on that variable.

e. A value of the variable is drawn from this conditional distribution for
each subject with missing data on the first variable.

4. Repeat step 3 for each of the variables that is subject to missing data. Steps
3 and 4 form 1 cycle of the imputation process for creating 1 imputed data
set.

5. Repeat steps 3 and 4 the desired number of times (suggested 5 to 20
cycles). The final imputed values are used as the imputed values in first
imputed data set.

6. Repeat steps 2-5 M times to produce M imputed data sets (the choice of
M, the number of imputed data sets, is discussed in the section HowMany
Imputations: How Large Should M Be?).
Multiple Imputation for Missing Data
In this section we provide an introduction to MI and

discuss issues related to its use.

Multiple imputation using multivariate imputation by
chained equations

Fully conditional specification is a strategy for specifying
multivariate models through conditional distributions. A
specific implementation of this strategy in which every vari-
able is imputed conditional on all other variables is now
known as the multivariate imputation by chained equations
(MICE)10-13 algorithm. In our description of the algorithm
we assume that there are p variables, of which k are subject to
missing data and p � k are complete. The algorithm is
summarised in Table 1. The process described in steps 3 and 4
is repeated for several cycles to create 1 imputed data set.
Standard software uses 5 to 20 cycles by default, and it is
rarely necessary to increase these values.10,11 The imputed
values obtained after the last cycle are used as the imputed
values for the first imputed data set. The entire process is then
repeated M times to produce M imputed data sets.

Multiple imputation for continuous variables with the
use of predictive-mean matching

The imputation process described above uses linear
regression and takes the imputed values as random draws from
a normal distribution. This has problems if the residuals from
the regressions are not normally distributed (eg, if data are
skewed) or if relationships are nonlinear (eg, height and age).
For example, a variable that can have only positive values (eg,
counts) may have imputed values that are negative. One op-
tion to address such problems is to transform the variable
before imputation so that the transformed variable is
approximately normally distributed. For example, the loga-
rithmic transformation, when applied to a positively skewed
distribution, can result in a distribution that is more normally
distributed. As a last step, one may wish to back-transform
imputations into the original scale. A second option to is to
draw imputations from the observed values by a technique
called predictive-mean matching (PMM).11 For a given sub-
ject with missing data on the variable in question, PMM
identifies those subjects with no missing data on the variable
in question whose linear predictors (created using the regres-
sion coefficients from the fitted imputation model) are close to
the linear predictor of the given subject (created using the
regression coefficients sampled from the appropriate posterior
distribution, as described above). Of those subjects who are
close, one subject is selected at random and the observed value
of the given variable for that randomly selected subject is used
as the imputed value of the variable for the subject with
missing data. Morris et al. suggest that identifying the 10
closest subjects without missing data performs well.14 Using
the terminology of Morris et al., we refer to the method
described in this section as parametric imputation, because the
imputed variables are drawn from a parametric distribution.14

This is in contrast to PMM, where the imputed variables are
drawn from an observed empirical distribution.

Analyses in the M imputed data sets

OnceM complete data sets have been constructed usingMI,
the statistical analysis of scientific interest is conducted in each
of the M complete data sets. That analysis would be the exact
analysis that would be conducted in the absence of missing data.
Thus, if the analysis model is a logistic regression model in
which a binary outcome variable is regressed on a set of predictor
variables, thatmodel is fitted in each of theM imputed data sets.
The statistics of interest (eg, estimated regression coefficients
and their standard errors) are extracted from the analysis con-
ducted in each of the M imputed data sets.

Rubin’s rules for combining estimates and standard
errors across imputed data sets

Once the statistics of interest have been estimated in the M
imputed data sets, they are combined using Rubin’s rules.1 Let
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q(i) denote the estimated statistic of interest (eg, a regression
coefficient) obtained from the analysis in the ith imputed data
set (i ¼ 1,., M). The pooled estimated of the statistic of
interest is q ¼ 1

M

PM
i¼ 1q

ðiÞ. The MI estimate of the statistic
is simply the average value of the estimated statistic across the
M imputed data sets.

Computing the variance of the estimated statistic is more
complex, as it requires accounting for the within-imputation
uncertainty in the estimated statistic and the between-
imputation variation in the estimated statistic. Let W(i)

denote the estimated variance (eg, the square of the estimated
standard error) of q(i). The average within-imputation variance
is defined as W ¼ 1

M

PM
i¼ 1W

ðiÞ. This is simply the mean
estimated variance of the estimated statistic across the M
imputed data sets. The between-imputation variance of the
estimated statistic is B ¼ 1

M�1

PM
i¼ 1ðqðiÞ � qÞ2. This quan-

tity reflects the degree to which the estimated statistic varies
across the M imputed data sets. The MI estimate of the
variance of q obtained with the use of Rubin’s rules is
varðqÞ ¼ W þ ½1 þ 1

M�B. This quantity reflects both the
average within-imputation variation and the average between-
imputation variation in q. Note that when using single
imputation, there is no estimate of B, so we are unable to
estimate the true variation in the statistic.
How many imputations: How large should M be?

An important question is how many imputed data sets
should be created. Early recommendations were that 3 to 5
imputed data sets were sufficient as long as the amount of
missing information was not very high,1,3 while others sug-
gested that often 5 to 10 imputations were required to be
sufficient.7 These early recommendations were based on the
accuracy with which the regression coefficient was estimated
compared with its accuracy had it been estimated with an
infinite number of imputed data sets. However, analysts are
interested not only in estimated regression coefficients (eg, log
odds ratios or log hazard ratios), but also in their associated
standard errors (which are used in deriving confidence in-
tervals and significance tests). Thus, one wants to estimate not
only regression coefficients accurately, but also standard
errors.

Ideally, one would select M such that the pooled estimated
regression coefficients and standard errors would not vary
meaningfully across repeated applications of MI (ie, if the
entire process was repeated with M new imputed data sets,
one would obtain estimates similar to those obtained using the
initial M imputed data sets). The term Monte Carlo error in a
given statistic (eg, a regression coefficient or a standard error)
refers to the standard deviation of that statistic across repeated
applications of MI. When focusing on a single statistic, the
Monte Carlo error can be computed as

ffiffiffiffiffiffiffiffiffiffiffi
B=M

p
.11 White

et al. suggested that, as a rule of thumb, the number of
imputed data sets should be at least as large as the percentage
of subjects with any missing data.11 They suggest that this will
result in estimates of regression coefficients, test statistics
(regression coefficients divided by the standard error), and P
values with minor variability across repeated MI analyses (ie,
the Monte Carlo error will be low). A more advanced method
for determining the number of imputations was developed by
von Hippel.15 Nowadays, computation is cheap and the use of
20 to 100 imputed data sets is common.

Which variables to include in the imputation model?

Investigators need to distinguish between 2 different sta-
tistical models: the imputation model and the analysis model.
The imputation model is used for imputing missing data. It is
not of direct interest and is only used to provide reasonable
imputations. The analysis model holds the quantities that are
ultimately of scientific interest and is the focus of the research
question. The rules for building imputation and analysis
models are very different. It is important to include in the
imputation model all the variables that will be included in the
analysis model. Failure to include these variables in the
imputation model usually results in estimates in the analysis
model being biased. The variables must also be included in
the imputation model in the right way: for example, Schafer
noted that if interactions are omitted from the imputation
model, then the estimated interactions in the analysis model
would be biased toward the null.7

It is especially important to include in the imputation
model the outcome variable for the analysis model.5,11 Failure
to do so usually results in estimated regression coefficients for
the analysis model also being biased toward the null. When
the outcome in the analysis model is a survival or time-to-
event outcome (eg, the outcome model is a Cox propor-
tional hazards model) then there are 2 components to the
outcome: a time-to-event variable denoting the time to the
occurrence of the event or the time to censoring, and a binary
indicator variable denoting whether the subject experienced
the event or was censored. The recommended approach is to
include both in the imputation model, with the time-to-event
variable transformed using the cumulative survivor function.16

In addition, the imputation model is improved by including
variables that are related to the missingness and variables that
are correlated with variables of interest. In longitudinal data,
when imputing a variable for a specific measurement occasion
(eg, on the second clinic visit), one also needs to include in the
imputation model future values of that variable (eg, the value
of that variable at the third clinic visit).

Imputing derived variables

The analysis model may include variables that are derived
from other variables. Examples include body mass index
(BMI, which is derived from height and weight), quadratic
terms for continuous variables (eg, age2), and interactions
between variables (ie, products of variables). When the
component variables required to create the derived variable are
missing (and therefore the derived variable is also missing),
there are 2 main options for imputing the derived variables.
The first option imputes the missing component variables and
creates the derived variable after all variables have been
imputed. Thus, for example, if height were missing, height
would first be imputed and then combined with weight to
create BMI. Von Hippel refers to this approach as “impute,
then transform.” This approach is appealing, as it leads to
derived variables that are consistent with the derivation rule.
The obvious problem with the approach is that the derived
variable is not part of the imputation model, so it may lead to
bias, as explained in the preceding section (Which Variables to
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Include in the Imputation Model?). The second option is to
treat the derived variable as simply another variable and to
impute this variable directly. Thus, if height were missing
(and thus BMI were also missing), height and BMI would be
imputed for those subjects for whom they were missing. This
approach is known as “transform, then impute”17 or “just
another variable.”11 Note that the “just another variable”
approach incorporates the components as well as the derived
variable in the imputation model. This approach is appealing
as it incorporates all necessary variables into the imputation
model. However, it can lead to quadratic variables with
negative values or BMI values that are inconsistent with the
height and weight of the subject. It has been shown that in
some settings the approach leads to accurate estimates of
regression coefficients in the analysis model, though it can fail
in others.18,19 Van Buuren describes some alternate strategies
for specific types of dependencies.10 Because no strategy
performs uniformly better, we may need some tailoring to the
type of derived variable.

Missing outcome variables

Multiple imputation is blind to which variables are out-
comes and which variables are predictors in the final analysis
model. When developing the imputation models, the
important issue is to include in the imputation models all of
the variables from the analysis model. This suggests that one
can impute values of the outcome variable (for the analysis
model) for those subjects for whom it is missing. However,
von Hippel provided evidence that excluding subjects who are
missing the outcome variable (for the analysis model) when
fitting the outcome model will tend to be a better strategy.20

He proposed a strategy that he referred to as “multiple
imputation, then deletion” (MID). Under MID, all subjects
are used in the imputation process. Values are imputed for all
missing data, including for those subjects who are missing the
outcome variable. However, subjects for whom the outcome
variable was imputed are then excluded when the analysis
model is fitted in each imputed data set. The MID approach
will tend to result in estimated regression coefficients for the
analysis model that are more efficient (have smaller variability)
than those obtained when fitting the analysis model in all
subjects. In addition, the method is robust against bad
imputation in the outcome. The MID procedure should not
be used if there are auxiliary variables that are strongly related
to the outcome (and not included in the analysis model) or if
the scientific interest extends to parameters other than
regression coefficients.11
Case Study
We use data on patients hospitalised with heart failure in

the province of Ontario to provide a case study illustrating the
application of MI. The analysis model of interest is a logistic
regression model in which death within 1 year of hospital
admission is regressed on 10 patient characteristics.

Data sources

We used data from the EFFECT (Enhanced Feedback for
Effective Cardiac Treatment) study, which was an initiative to
improve the quality of care for patients with cardiovascular
disease in Ontario.21 We used data on 8,338 patients hospi-
talised with congestive heart failure from April 1, 2004, to
March 31, 2005, at 81 Ontario hospital corporations. Data on
patient demographics, vital signs and physical examination at
presentation, medical history, and results of laboratory tests
were collected on these patients by retrospective chart review.
Subjects were linked to administrative health care data to
determine vital status.

For the purposes of this case study, we considered 10
baseline covariates: age, respiratory rate at admission, glucose
level, urea level, low-density lipoprotein (LDL) cholesterol
level, sex, S3 (third heart sound) on admission, S4 (fourth
heart sound) on admission, neck vein distension on admis-
sion, and cardiomegaly on chest X-ray. The first 5 are
continuous and the last 5 binary. The outcome was a binary
outcome denoting whether the patient died within 365 days
of hospital admission. Logistic regression models for 30-day
and 1-year mortality are often used in cardiovascular
research.22-24 Our purpose here in using these data is to
illustrate the application of statistical methods and not to draw
clinical conclusions. Accurate estimation of the association of
variables with cardiovascular outcomes in current patients may
require the use of more recent data and a more comprehensive
set of predictor variables. Furthermore, depending on the
objective of the intended study, a different regression model
may be more appropriate.

Descriptive statistics

Means and percentages are reported for the continuous and
binary variables, respectively, in Table 2. We also report the
percentage of subjects with missing data for each of the var-
iables. The percentage of missing data ranged from a low of
0% (age and sex) to a high of 73% (LDL cholesterol). Overall,
78% of subjects had missing data on at least 1 variable.

Comparison of subjects with and without missing data

We conducted univariate comparisons of those with and
without missing data. There are at least 2 reasons for these
comparisons. First, as noted above, the imputation model is
improved by including variables that are related to the miss-
ingness. These comparisons help to identify variables that
should be included in the imputation model. Second, these
analyses provide evidence as to the plausibility of the MAR
assumption. If those with and without missing data differ on
many observed variables, then it is plausible that they may also
differ on unobserved variables. Note that a lack of significant
univariate associations does not provide proof that the data are
MCAR or MAR.

There were meaningful differences in age, sex, and mor-
tality (the 3 variables that were not subject to missingness)
between those with complete data and those with missing
data. The average age of those with complete data was 73.7
years, and it was 77.5 years for those with missing data. Of
those with complete data, 43.4% were female, while of those
with missing data, 53.0% were female. Of those with com-
plete data, 23.7% died within 1 year of admission, while of
those with missing data, 33.9% died within 1 year of
admission. Patients with missing data tended to be older, were
more likely to be female, and more likely to die than those
with complete data.



Table 2. Descriptive statistics of case study data

Variable Mean (SD) or %
No. of subjects with

observed data
No. of subjects
with missing data

Percentage of subjects
with missing data

Continuous variables
Age, y 76.7 (11.6) 8338 0 0%
Respiratory rate at admission, breaths

per minute
24.5 (7.0) 8138 200 2.4%

Glucose (initial lab test), mmol/L 8.6 (4.1) 8051 287 3.4%
Urea (initial lab test), mmol/L 10.3 (6.6) 8028 310 3.7%
LDL cholesterol, mmol/L 2.2 (0.9) 2272 6066 72.8%
Binary variables
Female 50.9% 8338 0 0%
S3 6.2% 8126 212 2.5%
S4 2.7% 8135 203 2.4%
Neck vein distension 66.1% 7586 752 9.0%
Cardiomegaly on chest X-ray 47.7% 7711 627 7.5%
Outcome
Death within 1 year 31.7% 8338 0 0%

LDL, low-density lipoprotein; S3, third heart sound; S4, fourth heart sound.
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Complete case analysis

We conducted a complete case analysis restricted to the
1,806 subjects with complete data. The reason for doing this
is that complete case analysis is less prone to user error than
MI (because it does not rely on an imputation model) and we
should be able to explain any differences between the com-
plete case analysis and the MI analysis.5 We used logistic
regression to regress death within 1 year of hospital admission
on the 10 baseline covariates. The logarithm of the estimated
odds ratios and associated 95% confidence intervals are re-
ported in Figure 1 (log odds ratios are reported so that the
confidence intervals are symmetric). Increasing age and urea
were associated with an increased odds of death within 1 year
and had 95% confidence intervals that excluded the null
value. None of the binary variables had odds ratios whose
associated 95% confidence interval excluded the null value.
Note that the odds ratios for the 5 continuous variables are
not directly comparable with one another, because they are
measured on different scales.
Multiple imputation

Imputation was conducted using the MICE algorithm with
the use of PROC MI in SAS (SAS/STAT v14.1). Logistic
regression models were used as the imputation models for the
binary variables, and linear regression models were used as the
imputation models for the continuous variables. All variables
(including the binary outcome variable) were included in each
imputation model (with the obvious exception of the variable
that was being imputed). Using the rule of thumb suggested
by White et al., we created 78 imputed data sets because 78%
of the subjects had any missing data. For comparative pur-
poses, we used von Hippell’s 2-stage algorithm with 10
imputed data sets in the first stage with the criterion that the
standard errors of the estimated regression coefficients be
estimated accurately to 2 decimal places. The algorithm sug-
gested that 80 imputed data sets were necessary to estimate
the standard error of the intercept term with the desired
precision and that at most 15 imputed data sets were necessary
to estimate the standard errors of the 10 covariates with the
desired precision.
As a sensitivity analysis we used PMM when imputing
missing values for the continuous variables. Software code for
conducting these analyses is provided in Supplemental
Appendix S1 (SAS code), Supplemental Appendix S2 (R
code), and Supplemental Appendix S3 (Stata code).

Descriptive statistics in the imputed data sets

Nonparametric density plots were used to describe the
distribution of the 4 continuous variables that were subject to
missing data in the complete cases and in those subjects who
were missing data for the given continuous variable. The latter
was done separately in each of the imputed data sets. These
are described in Figure 2 (parametric imputation) and
Figure 3 (PMM). The density function in the complete cases
is shown as a solid black line, and the density function of the
imputed variable in each of the imputed data sets is shown
with a dashed red line. When using parametric imputation,
the distribution of imputed respiratory rate, glucose, and urea
failed to display the skewness seen in subjects for whom the
variable was observed. However, the distribution of imputed
values of LDL was similar to the empirical distribution in
subjects for whom LDL was measured. When using PMM,
the distribution of the imputed values tended to be very
similar to that of the observed values of the variable.

Logistic regression in the imputed data sets

In each imputed data set, we regressed the binary outcome
denoting death within 1 year of hospital admission on the 10
covariates described in Table 2. The regression coefficients
and their standard errors were pooled using Rubin’s rules. The
estimate of the Monte Carlo error for the 10 estimated
regression coefficients ranged from 0.000042 for age to
0.005502 for LDL cholesterol. Thus, if we repeated the entire
imputation process multiple times, we would expect to see
only minor variation in the estimated regression coefficients.

The log odds ratios and their associated 95% confidence
intervals obtained using parametric imputation are shown in
Figure 1. Three continuous variables (age, respiratory rate,
and urea) had a positive association with 1-year mortality,
while females had a lower risk of death than males. The odds
ratios and associated 95% confidence intervals obtained using
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Figure 1. Estimated log-odds ratios and 95% confidence intervals for variables in the logistic regression model fit in the case study. There are 3
estimates/confidence intervals for each of the 10 variables: analyses using complete cases (grey); multiple imputation analyses when using
parametric imputation (blue); and multiple imputation analyses when using predictive-mean matching (PMM) (red). LDL, low-density lipoprotein; S3,
third heart sound; S4, fourth heart sound.
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PMM imputation are also shown in Figure 1. The estimated
odds ratios and associated confidence intervals obtained using
PMM imputation were essentially identical to those obtained
using parametric imputation. In comparing the results of the 3
regression analyses, one observes that the confidence intervals
obtained from the imputation-based analyses were narrower
than those obtained in the complete case analysis. For some
variables (eg, age, S3, and S4), the confidence intervals ob-
tained using the complete case analysis were substantially
wider than those obtained using MI.
Discussion
Missing data occurs frequently in clinical research. MI is a

statistical tool that allows the researcher to replace missing
values with multiple plausible values of the variable in ques-
tion. The use of MI allows the researcher to analyse complete
data sets while incorporating the uncertainty in the imputed
values of the variable. We have provided a brief introduction
to MI and guidance regarding its implementation. We illus-
trated the application of MI through the analysis of data on
patients hospitalised with heart failure.

When applying MI, researchers should explore differences
between the observed and imputed distributions and between
the complete case analyses and the MI analyses. We refer
readers to previously published guidelines for reporting ana-
lyses affected by missing data.5,25

This introduction to MI was not intended to be exhaus-
tive. We refer the interested reader to several excellent texts on
MI1-3,10 as well as to more detailed overview articles.7,11 We
have focused our attention on MI in observational studies in
which clustering of subjects or a multilevel structure is absent.
Other works describe methods for using MI with multilevel
data.10,26-29 Similarly, we have focused on the use of para-
metric models (eg, logistic regression models or linear
regression models) for the imputation models. An area of
current research is on the use of machine-learning methods for
MI.30 We have focused on the use of MI when data are either
MCAR or MAR. The described methods must be modified if
it is thought that the data are MNAR. Van Buuren summa-
rises different methods to address data that are MNAR.10 The
simplest approach is to assume that the distribution of a
variable in those with missing data is shifted compared with
the distribution in those with complete data. Sensitivity ana-
lyses can be conducted in which the magnitude of the shift
parameter is allowed to vary.

We have focused on the MICE algorithm for MI, along
with a modification, PMM. This is not the only method to
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Figure 2. Distribution of continuous variables in complete cases and in those with imputed data when using parametric imputation. The solid black
line represents the distribution of the given continuous variable in those subjects for whom that variable was not missing. The dashed red lines
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impute missing data. An earlier method has been described as
“joint modeling,”10 of which MI under a normal model is a
specific implementation.4 This approach assumes that the set
of variables follow a joint multivariate distribution. The
multivariate normal distribution is widely used in applica-
tions.10 Under this implementation, the variables are assumed
to follow a multivariate normal distribution. Once the pa-
rameters of this distribution have been estimated, missing
values can be imputed by random draws from this multivar-
iate distribution. In theory, this approach requires that all of
the variables be continuous. In practice, binary or categorical
variables frequently occur (eg, presence or absence of dia-
betes). Schafer and Graham suggest that despite this theo-
retical limitation, they have found the multivariate normal
distribution to be useful in a wide range of settings.4

Furthermore, they provide suggestions for incorporating bi-
nary and categorical variables as well as nonnormally distrib-
uted continuous variables. However, others have suggested
that these methods of incorporating noncontinuous variables
may not perform as desired.10 Given the flexibility of the
MICE algorithm and its ability to explicitly incorporate
different types of variables, its use may be attractive to re-
searchers in biomedical research.
In our case study, we obtained similar parameter estimates
when using parametric imputation as when using PMM
imputation. This is to be expected for estimates that depend
on the middle of the distribution, such as means or regression
coefficients. In practice, it may be difficult to provide exam-
ples where PMM imputation beats a well crafted parametric
imputation model. However, in practice, analysts often prefer
PMM imputation because it preserves typical features in the
raw data. For example, it accounts for discreteness of data,
avoids impossible values, preserves location of quantiles, and is
highly robust to imputation model misspecification. All this
costs no additional work on the part of the analyst. If the
complete-data model depends on such features, then the
inference will also be better when using PMM imputation.

In this tutorial article we have focused on the use of MI in
observational studies. In randomised controlled trials (RCTs),
MI is not always the optimal approach.6 When a univariate
outcome is MAR, a complete case analysis using an adjusted
analysis is unbiased and efficient.6 With a multivariate
outcome (eg, an outcome measured at multiple occasions over
the course of follow-up), the use of a linear mixed model with
missing data in the outcome only will tend to result in esti-
mates with smaller standard errors compared with the use of
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MI.6 If MI is used, it is suggested that imputation be con-
ducted separately in the different arms of the trial.6

In summary, MI replaces missing values with plausible
values. By creating multiple imputed data sets, the analyst can
explicitly account for the uncertainty inherent in the imputed
values. Historical approaches such as complete case analysis,
mean imputation, and single imputation potentially result in
bias, incorrect estimates of standard errors, and consequently
incorrect tests of statistical significance. Researchers are
encouraged to consider MI as an important tool to address the
problems associated with missing data in clinical research.
Funding Sources
This study was supported by the ICES which is funded by

an annual grant from the Ontario Ministry of Health and
Long-Term Care (MOHLTC). The opinions, results and
conclusions reported in this paper are those of the authors and
are independent from the funding sources. No endorsement
by ICES or the Ontario MOHLTC is intended or should be
inferred. The data sets used for this study were held securely in
a linked deidentified form and analysed at ICES. Although
data-sharing agreements prohibit ICES from making the data
set publicly available, access may be granted to those who
meet prespecified criteria for confidential access, as described
at https://www.ices.on.ca/DAS. This research was supported
by a operating grant from the Canadian Institutes of Health
Research (CIHR) (grant number MOP 86508). The EF-
FECT data used in the study was funded by a CIHR Team
Grant in Cardiovascular Outcomes Research (grant numbers
CTP79847 and CRT43823). P.C.A. and D.S.L. are sup-
ported in part by Mid-Career Investigator awards from the
Heart and Stroke Foundation. D.S.L. is supported by the Ted
Rogers Chair in Heart Function Outcomes. I.R.W. was
supported by the Medical Research Council Programme
MC_UU_12023/21.
Disclosures
The authors have no conflicts of interest to disclose.

References

1. Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York:
John Wiley & Sons, 1987.

2. Little RJA, Rubin DB. Statistical Analysis with Missing Data. Hoboken:
John Wiley & Sons, 2002.

https://www.ices.on.ca/DAS
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref1
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref1
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref2
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref2


Austin et al. 1331
Multiple Imputation in Clinical Research
3. Carpenter JR, Kenward MG. Multiple Imputation and Its Application.
Chichester: John Wiley & Sons, 2013.

4. Schafer JL, Graham JW. Missing data: our view of the state of the art.
Psychol Methods 2002;7:147-77.

5. Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing
data in epidemiological and clinical research: potential and pitfalls. BMJ
2009;338:b2393.

6. Sullivan TR, White IR, Salter AB, Ryan P, Lee KJ. Should multiple
imputation be the method of choice for handling missing data in ran-
domized trials? Stat Methods Med Res 2018;27:2610-26.

7. Schafer JL. Multiple imputation: a primer. Stat Methods Med Res
1999;8:3-15.

8. White IR, Thompson SG. Adjusting for partially missing baseline mea-
surements in randomized trials. Stat Med 2005;24:993-1007.

9. Groenwold RH, White IR, Donders AR, et al. Missing covariate data in
clinical research: when and when not to use the missing-indicator method
for analysis. CMAJ 2012;184:1265-9.

10. van Buuren S. Flexible Imputation of Missing Data. Second Edition.
Boca Raton: CRC Press, 2018.

11. White IR, Royston P, Wood AM. Multiple imputation using chained
equations: issues and guidance for practice. Stat Med 2011;30:377-99.

12. van Buuren S. Multiple imputation of discrete and continuous data by
fully conditional specification. Stat Methods Med Res 2007;16:219-42.

13. van Buuren S, Groothuis-Oudshoorn K. mice: multivariate imputation
by chained equations in R. J Stat Softw 2011;45(3).

14. Morris TP, White IR, Royston P. Tuning multiple imputation by pre-
dictive mean matching and local residual draws. BMC Med Res Meth-
odol 2014;14:75.

15. von Hippell PT. How many imputations do you need? A two-stage
calculation using a quadratic rule. Sociol Methods Res 2020;49:699-718.

16. White IR, Royston P. Imputing missing covariate values for the Cox
model. Stat Med 2009;28:1982-98.

17. von Hippell PT. How to impute interactions, squares, and other trans-
formed variables. Sociol Methodol 2009;39:265-91.

18. Seaman SR, Bartlett JW, White IR. Multiple imputation of missing
covariates with nonlinear effects and interactions: an evaluation of sta-
tistical methods. BMC Med Res Methodol 2012;12:46.
19. Vink G, van Buuren S. Multiple imputation of squared terms. Sociol
Methods Res 2013;42:598-607.

20. von Hippell PT. Regression with missing Ys: an improved strategy for
analyzing multiply imputed data. Sociol Methodol 2007;37:83-117.

21. Tu JV, Donovan LR, Lee DS, et al. Effectiveness of public report cards
for improving the quality of cardiac care: the EFFECT study: a ran-
domized trial. JAMA 2009;302:2330-7.

22. Lee DS, Austin PC, Rouleau JL, et al. Predicting mortality among pa-
tients hospitalized for heart failure: derivation and validation of a clinical
model. JAMA 2003;290:2581-7.

23. Tu JV, Austin PC, Walld R, et al. Development and validation of the
Ontario acute myocardial infarction mortality prediction rules. J Am Coll
Cardiol 2001;37:992-7.

24. Lee DS, Lee JS, Schull MJ, et al. Prospective validation of the emergency
heart failure mortality risk grade for acute heart failure. Circulation
2019;139:1146-56.

25. Akl EA, Shawwa K, Kahale LA, et al. Reporting missing participant data
in randomised trials: systematic survey of the methodological literature
and a proposed guide. BMJ Open 2015;5:e008431.

26. Longford NT. Missing data. In: de Leeuw J, Meijer E, eds. Handbook of
Multilevel Analysis. New York: Springer, 2008:377-99.

27. van Buuren S. Multiple imputation of multilevel data. In: Hox JJ,
Roberts JK, eds. Handbook of Advanced Multilevel Analysis. New York:
Routledge, 2011:173-96.

28. Molenberghs G, Verbeke G. Missing data. In: Scott MA, J. Simonoff JS,
Marx BD, eds. The SAGE Handbook of Multilevel Modeling. London:
SAGE, 2013:403-24.

29. Audigier V, White IR, Jolani S, et al. Multiple imputation for multilevel
data with continuous and binary variables. Stat Sci 2018;33:160-83.

30. Richman M, Trafalis T, Adrianto I. Multiple imputation through ma-
chine learning algorithms. Paper presented at: American Meteorological
Society 87th Annual Meeting. January 13-18, 2007; San Antonio, TX.
Supplementary Material
To access the supplementary material accompanying this

article, visit the online version of the Canadian Journal of
Cardiology at www.onlinecjc.ca and at https://doi.org/10.
1016/j.cjca.2020.11.010.

http://refhub.elsevier.com/S0828-282X(20)31111-9/sref3
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref3
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref4
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref4
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref5
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref5
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref5
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref6
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref6
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref6
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref7
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref7
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref8
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref8
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref9
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref9
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref9
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref10
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref10
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref11
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref11
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref12
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref12
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref13
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref13
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref14
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref14
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref14
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref15
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref15
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref16
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref16
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref17
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref17
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref18
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref18
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref18
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref19
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref19
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref20
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref20
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref21
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref21
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref21
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref22
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref22
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref22
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref23
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref23
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref23
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref24
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref24
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref24
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref25
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref25
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref25
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref26
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref26
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref27
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref27
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref27
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref28
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref28
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref28
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref29
http://refhub.elsevier.com/S0828-282X(20)31111-9/sref29
http://www.onlinecjc.ca
https://doi.org/10.1016/j.cjca.2020.11.010
https://doi.org/10.1016/j.cjca.2020.11.010

	Missing Data in Clinical Research: A Tutorial on Multiple Imputation
	Multiple Imputation for Missing Data
	Multiple imputation using multivariate imputation by chained equations
	Multiple imputation for continuous variables with the use of predictive-mean matching
	Analyses in the M imputed data sets
	Rubin’s rules for combining estimates and standard errors across imputed data sets
	How many imputations: How large should M be?
	Which variables to include in the imputation model?
	Imputing derived variables
	Missing outcome variables

	Case Study
	Data sources
	Descriptive statistics
	Comparison of subjects with and without missing data
	Complete case analysis
	Multiple imputation
	Descriptive statistics in the imputed data sets
	Logistic regression in the imputed data sets

	Discussion
	Funding Sources
	Disclosures
	References
	Supplementary Material




