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Abstract. Applications of the wind farm layout optimisation problem focus on optimally 
positioning a certain number of turbines within a wind farm so that annual energy production 
(AEP) is maximised. This study addresses an earlier stage in the wind farm development process. 
Instead of optimising the individual positions of a certain number of turbines of a selected model, 
the control variables in the optimisation are rotor diameter of a wind turbine of fixed nominal 
power, number of turbines in a wind farm of fixed area and orientation angle of turbines in the 
farm. In addition to AEP, this study considers capital and operational expenses of a wind farm 
to calculate the levelized cost of energy (LCoE), which is the objective function. Given the stage 
of development addressed, it is also essential that uncertainty is considered; here the focus is on 
the impact of wind resource uncertainty. The optimisation is performed with a recently 
developed state-of-the-art stochastic gradient based method (StoSAG) which has shown in 
different domains to be computationally efficient and accurate when dealing with optimisation 
problems under uncertainty. Our results show non-trivial optimal designs with LCoE reductions 
of ~0.5% compared to the most optimal solution from a sensitivity analysis. 

1.  Introduction & Literature 
The cumulative installed capacity of offshore wind power in the EU has increased from 622 megawatts 
(MW) in the year 2004 to 22,072 MW at the end of 2019, with over 3,600 MW added in 2019 [1]. With 
increasingly crowded offshore space in certain parts of the North and Baltic Seas, it is essential that 
optimisation for minimised Cost of Energy is considered from the earliest stages of development, even 
though the information available may have high uncertainty. The objective of this work is to perform a 
combined wind turbine design and wind farm layout optimisation to find the ideal type, number and 
orientation of turbines in an offshore wind farm. With the increasing visibility of atmospheric changes 
due to climate change, the design of wind farms and turbines should be performed by accounting for 
different types of uncertainties which impact energy generation in wind farms. In this work, uncertainty 
in wind resource is introduced from historical data at a reference site to achieve wind farm design under 
uncertainty i.e. find a more robust optimal design strategy. 

The power production of a turbine can be increased by lengthening the blade, although longer blades 
lead to higher investment costs and reduced spacing between turbines in a given area. Similarly, placing 
too many turbines in a farm will increase production, but incur additional investment costs and higher 
wake effects. Given these trade-offs, finding the right rotor diameter and number of turbines in a given 
farm area is an optimisation problem, and a decision that needs to be made by wind farm developers. 

Studies on wind turbine optimisation to find a trade-off between blade length and hub height have 
been performed using particle swarm optimisation [2] and differential evolution algorithm [3]. Gradient 
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based optimisation of farms with different turbine heights has shown decrease in cost of energy by 5-
9% [4]. Optimising the parameters and performance of fixed and variable speed wind turbines at a 
specific site condition has shown improvements in profitability and cost of energy [5]. 

A frequently attempted problem when optimising a wind farm is the wind farm layout optimisation 
problem (WFLOP), where individual turbine locations are optimised for, making the number of control 
variables (~100). Non-uniform wind farms (i.e. wind farms with multiple types of turbines and hub-
heights) were seen to achieve lower costs of energy compared to their regular counterparts, when using 
an extended random search algorithm [6]. Another study by the same authors solves the WFLOP for 
Horns Rev 1 considering inter-annual conditions of the wind resource to introduce robustness in the 
optimisation [7]. The layout of Horns Rev 1 wind farm is optimised for power production with a genetic 
algorithm and a choice between four commercial turbine types in [8]. 

Coupled wind turbine design and layout optimisation is explored in [9] and performs better than 
sequentially optimising single variables, although no uncertainty in wind resource is accounted for. 
Wind turbine type and placement optimisation is explored with genetic algorithms with Class I, II and 
III type turbines [10]. Combined optimisation of turbine characteristics (tower height and rotor diameter) 
and wind farm layout has been shown to reduce LCoE and increase AEP at a German site in [11]. 
Optimal turbine configurations tended to more conservative designs i.e. larger ratios of swept area to 
power produced when uncertainty was introduced in [12]. 

Among the sources of uncertainty in wind farm layout evaluation such as uncertainty in wind speed, 
wake modelling, thrust (Ct) curve, surface roughness, power curve, capital costs, annual O&M costs and 
discount rate, uncertainty in wind speed proved to be most sensitive to the resulting AEP [13], and is 
chosen in this study. A mathematical approach to account for uncertainty in wind resource assessment 
is discussed by Lackner et. al [14] and Kwon [15]. An analysis of wind resource uncertainty showed 
that bulk regression between monitoring and reference sites provide more accurate long term wind speed 
projections than directional regressions [16]. 

In reality, wind farm design optimisation is fraught with uncertainties since a potential location is 
modelled using uncertain data sources such as frequency of wind from various directions, Weibull 
distribution to define wind speeds etc. To achieve optimisation solutions which have practical value, it 
is imperative to account for uncertainty within the optimisation framework known as robust 
optimisation. One way of representing uncertainty is to generate multiple models (or an ensemble) which 
represent the system being modelled. Most optimisation methods are not suitable for robust optimisation 
due to their computational inefficiency. This study uses a recently developed state-of-the-art 
optimisation technique, Stochastic Simplex Approximate Gradient (StoSAG) introduced by Fonseca et. 
al (2017), to achieve robust optimisation of wind farm design. 

Considering the literature discussed above, this study contributes in the following ways. For a 
combined wind turbine design and wind farm layout optimisation, rather than using a discrete set of 
wind turbine configurations, the design space is fully explored to find new configurations of turbine 
design. Next, instead of using the Jensen [17] or FLORIS model [18] to calculate wake effects, this 
study uses ECN FarmFlow, which showed a higher accuracy for large wind farms than other wake 
models in benchmark studies from 2009 to 2014 [19]. Finally, a recently developed technique for robust 
optimisation is used in this study. 

This paper first outlines the optimisation method in section 2 followed by a description of the control 
variables, the objective function and the uncertainties in section 3. Section 4 describes the results from 
optimisation experiments and presents the main conclusions. 

2.  Optimisation methodology 
The methods for model-based optimisation for wind engineering objectives can be classified into 
derivative-based and derivative free techniques. This study considers a stochastic derivative based 
approach which has been shown to be effective for optimisation problems under uncertainty.  

Stochastic Simplex Approximate Gradient (StoSAG) 
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This paper considers an approximate (stochastic) gradient calculated with the StoSAG method 
developed by Fonseca et al. (2017) [20]. StoSAG is an approach which has shown to be powerful 
especially for optimisation problems which consider uncertainty and have a large number of control 
variables to be optimised. To approximate the gradient of the objective function with respect to control 
variables, an initial point is chosen (f.i. the point 0.25, 1 in Figure 1). Around this initial choice, the 
algorithm generates a set of normally (Gaussian) distributed perturbed controls, shown as blue dots in 
Figure 1. Once these points have been created the objective function values for each of these points will 
be evaluated, shown as the red dots. An approximate gradient is thereby calculated as a linear regression 
through this set of perturbed controls and corresponding objective function values. A standard gradient 
descent optimiser is then used in an iterative loop for the optimisation.   

 
Figure 1. Schematic representation of the optimisation technique (left) and an example for a simple two 

control variable problem (right). 

In a deterministic optimisation i.e. only a single model realisation of wind resource is considered, 
approximately ten perturbed controls (in this paper we use WFPD, RPD, Farm Orientation) are typically 
used to estimate the gradient. Therefore the ratio between model realisations and control variables is 
1:10. In a robust optimisation experiment, with multiple model realisations to capture uncertainty (wind 
resource in this paper), the StoSAG method couples one model realisation (of the wind resource) with 
one perturbed control. Therefore the ratio between model realisations and perturbed controls is 1:1. With 
ten uncertain model realisations, this would mean the same computational effort as deterministic 
optimisation. The computational efficiency of the StoSAG method lies in its approach to estimate a 
robust gradient using a number of simulations equal to the number of model realisations. This is 
significant especially when evaluating high fidelity full physics simulation models, making it 
computationally attractive in large scale optimisation problems. For details into the theoretical aspects 
of the StoSAG technique we refer to [20]. 

3.  Control variables, objective function, models & uncertainties 

Control Variables 
In this paper, three control variables are optimised in various experiments. Adding more control 
variables to the optimisation problem is possible and is a user’s prerogative.  

3.1.1.  Rotor Power Density (RPD) Instead of choosing from a fixed list of turbines available in the 
market, this study references a research turbine (AVATAR) with a fixed nominal power of 10 MW and 
rated wind speed [21]. The design of this turbine is changed by varying its rotor diameter, and its power 
and thrust curves are scaled accordingly until rated wind speed. Increasing the turbine diameter increases 
the power production between cut-in and cut-out wind speeds and reduces thrust coefficients. To capture 
this, the first control variable is the rotor power density (RPD in W/m2), defined as the ratio of turbine 
nominal power to the rotor swept area. Therefore, 

𝑅𝑅𝑅𝑅𝑅𝑅 = (𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)/((𝜋𝜋/4)𝑑𝑑2)          (1) 
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where d is the rotor diameter and 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the turbine nominal power. 

3.1.2.  Wind Farm Power Density (WFPD) In this study, the aim is to find the optimal number of 
turbines in a fixed farm area (equal to 150 km2, with a defined length and width of 15 km and 10 km). 
A second control variable defined is wind farm power density (WFPD in MW/km2), which is the ratio 
of wind farm nominal power to farm area. The layout of the turbines is in a parallelogram shaped 
structure with as many “boundary” turbines as possible (while respecting the minimum spacing between 
turbines) and the remaining “centre” turbines equally placed in a grid within the boundaries. For each 
value of WFPD, a layout is generated such that the turbines are spaced fairly optimally in the attempt to 
reduce farm wake losses, due to which optimising the position of individual turbines is expected to 
provide only limited gain. Therefore, 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = (𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗  𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)/𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓         (2) 

where 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the number of turbines in the farm and 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the turbine nominal power. 

3.1.3.  Farm Orientation (θ):  WFPD only defines the layout and number of turbines in the farm. A 
third control variable, farm orientation angle (θ in degrees) defines the direction towards which turbines 
in the farm are oriented. Farm orientation (θ) rotates turbines in the farm in the counter-clockwise 
direction (Figure 2). 

                 
Figure 2. Example wind farm layout with 76 turbines with θ = 0° (left) and 10° (right). 

Objective Function 
The levelized cost of energy (LCoE) of a wind farm is the objective function and is defined as:  

               𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ((𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶/𝑎𝑎𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂))/𝐴𝐴𝐴𝐴𝐴𝐴         (3) 

where AEP (kWh/year), capex and annual opex are evaluated by the ECN wind cost model [22]. The 
annuity (𝑎𝑎𝑛𝑛), where r is average discount rate and n is the farm economic lifetime in years, is given by: 

            𝑎𝑎𝑛𝑛 =  (1 −  (1 + 𝑟𝑟)−𝑛𝑛)/𝑟𝑟.                   (4) 

Therefore, for each combination of WFPD, RPD and θ, the evaluation of capex, opex and AEP results 
in a value of LCoE. The objective is to find the combination of RPD, WFPD and θ that minimises LCoE. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 =  𝑓𝑓(𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖,𝜃𝜃𝑖𝑖)                 (5) 

For experiments which consider uncertainty, the objective function is the mean LCoE, which is 
calculated as the average over the LCoE for each model realisation. Other choices for objective functions 
like NPV or IRR can be considered, although these would be more powerful indicators with the inclusion 
of an energy market model that estimates the value of the electricity. 

3.2.1.  Capital expenses: Capex of a wind farm is modelled as a one-time investment, at the beginning 
of the project, and is calculated using different simulation models that compute costs for the wind 
turbine, support structure, electrical infrastructure and farm installation. Costs for wind turbine system 
including blades, hub, shaft, gearbox, generator, nacelle and electronic components are obtained from 
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engineering equations which assume scaling parameters that have been verified against many 
commercial turbines, as part of the offshore wind energy costs and potential (OWECOP) model [23]. 
For instance, the blade mass equation is expressed in terms of rotor power density and turbine diameter 
with some correction and scaling factors [24]. Support structure costs are determined by calculating the 
costs of tower, transition piece and monopile for a turbine, using TNO’s UpWind monopile model [25]. 
A constant water depth for all individual turbine locations is assumed. 

The electrical infrastructure model covers costs and electrical losses of the wind farm internal 
collection grid and the offshore transmission system up to the onshore grid connection point. ECN’s 
EeFarm II tool [26] is used, which consists of a component database from which electrical components 
are chosen and parameterised based on the wind farm size, layout and location. 

The installation model provides estimates for the cost of transport, installation and commissioning 
of wind farm components. ECN Install [27] provides these outputs based on the process steps that 
include rock dumping for scour protection, installation of monopiles, laying of intra array and export 
cables, installation of offshore high voltage substations, nacelles, blades & towers. 

3.2.2.  Operational expenses: ECN O&M Calculator [28] an operation and maintenance (O&M) 
software, provides estimates for the yearly operating costs.  O&M is performed either by crew transfer 
vessels (CTV) or by service operation vessels (SOV). One CTV is assumed to maintain up to 60 wind 
turbines and one SOV up to 120 wind turbines. The number of technicians for corrective and calendar-
based maintenance is estimated as a function of the number of wind turbines. The cost of spare parts 
scales with wind turbine size. To choose between CTVs or SOVs, an internal optimisation loop identifies 
the cheapest O&M strategy, by trying various combinations of vessels. The computational effort of the 
O&M module in relation to the other models used in the LCoE estimation, is relatively small.   

3.2.3.  Annual Energy Production: ECN FarmFlow calculates the wind turbine wake effects in (large) 
offshore wind farms by calculating the average velocities and turbulence intensities inside a wind farm. 
The wake model is a 3D parabolised Navier-Stokes code, using a k-ɛ turbulence model to account for 
turbulent processes in the wake. The computational effort of ECN FarmFlow and the accuracy of its 
results is directly proportional to the number of wind speeds and wind directions chosen for evaluation. 
Compared to engineering models, due to its lengthy computation time of several hours to perform 
simulations across all wind speeds (at intervals of 1 m/s from cut-in to cut-out) and wind directions (at 
intervals of 5 degrees), an approximation method of ECN FarmFlow uses axial induction factor (𝑎𝑎𝑥𝑥) to 
calculate the AEP. Axial induction factor (𝑎𝑎𝑥𝑥) is calculated using the relation below, where CT is the 
thrust coefficient. 

𝐶𝐶𝑇𝑇 =  4𝑎𝑎𝑥𝑥(1 −  𝑎𝑎𝑥𝑥)          (6) 

In the approximation method, a single reference wind speed estimation of ECN FarmFlow (at 8 m/s) 
over all wind directions is simulated, and the resulting energy yield estimation is extrapolated over all 
wind speeds using the relation that axial induction factor at each wind speed (𝑎𝑎𝑣𝑣𝑣𝑣) is proportional to the 
normalized difference between free stream and wake stream winds. First, according to Equation 6, the 
axial induction factor at the reference wind speed (𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟) is calculated using the thrust coefficient at the 
reference wind speed from the wind turbine thrust curve. Next, the axial induction factor (𝑎𝑎𝑣𝑣𝑣𝑣) at all 
other wind speeds are calculated using the thrust curve of the wind turbine. Using the FarmFlow 
evaluation at the reference wind speed, the free and wake stream wind speeds 𝑢𝑢𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣and 𝑢𝑢𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 are used 
in Equation 7 to calculate wake stream wind speed (𝑢𝑢𝑤𝑤) at each free stream wind speed (𝑢𝑢𝑣𝑣). 

𝑎𝑎𝑣𝑣𝑣𝑣
𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟

∝   (𝑢𝑢𝑣𝑣−𝑢𝑢𝑤𝑤)/𝑢𝑢𝑣𝑣
(𝑢𝑢𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−𝑢𝑢𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)/𝑢𝑢𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

         (7) 

Finally, the wake stream wind speeds are used to calculate the power output and net energy yield of 
the turbines. The results from this approximation method is validated against a full FarmFlow simulation 
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for a 750 MW wind farm, and showed minimal differences in results. The full FarmFlow simulation 
showed a farm efficiency (ratio of energy yield with and without wake losses) of 96.8%, whereas the 
approximated method resulted in a farm efficiency of 96.3%. 

Wind resource modelling & uncertainties 
The location assumed for this study is at the Borssele Wind Farm Zone Site III, and the Weibull 
parameters for the omnidirectional wind speed and per directional section are determined based on the 
HARMONIE data at various heights [29]. The Weibull probability density function is given by: 

𝑝𝑝(𝑈𝑈) =   (𝑘𝑘/𝑎𝑎) �𝑈𝑈
𝑎𝑎
�
𝑘𝑘−1 

𝑒𝑒𝑒𝑒𝑒𝑒 [−�𝑈𝑈
𝑎𝑎
�
𝑘𝑘 

]      (8) 

with shape parameter k and scale parameter a (in m/s) and for wind speed U.  

From wind and energy rose plots (Figure 3) created using scale and shape parameters at 100 m from 
the HARMONIE data at Borssele Wind Farm Zone Site III [29], the main wind direction is seen to be 
from southwest. 

             
Figure 3. Wind and energy rose plots at the reference site (Borssele Wind Farm Zone Site III). 

3.3.1.  Uncertainty in wind resource: Using a Weibull distribution to represent the wind speed 
distribution, the uncertainty in wind resource can be expressed as uncertainty in the values of scale (a) 
and shape (k) parameters (see Equation 8). The scale parameter (k) is nearly proportional to the mean 
wind speed, and it is reasonable to assume that the percentage uncertainty in the mean wind speed is 
equal to the percentage uncertainty in k [14]. 

A 5% error, which is comparable to the values for three wind farms studied in [13] is assumed for 
the wind frequency as well as scale (k) and shape (a) parameters. This is done by generating twenty 
realisations of wind resources from a normal distribution with mean as true value of wind resource and 
error of 5%. The generated realisations are then fit with a smoothing spline curve line, with the black 
line showing the initial measured value of frequency, k and a. The generated values of the uncertain 
parameters, used in the twenty model realisations are shown in Figure 4. 

            
Figure 4. Twenty realisations for uncertain parameters (frequency, scale parameter (a) and shape 

parameter (k)) with assumed uncertainty of 5%. 
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4.  Results 

Sensitivity analysis 
Before the optimisation experiments, a sensitivity analysis is done, where the objective function is 
evaluated for different values of the control variables. Figure 5 shows the sensitivity of LCoE with 
varying WFPDs (at a constant RPD of 325 W/m2 and a farm angle of 20°) and with varying RPDs (at a 
constant WFPD of 5 MW/km2 and a farm angle of 20°). 

                          
Figure 5. Sensitivity analysis of LCoE with varying WFPD (left) and RPD (right). 

A minimum LCoE is seen at a WFPD of ~5 MW/km2. The LCoE decreases until this value since the 
AEP continues to offset the capex and opex costs. Beyond this value, the LCoE increases since turbines 
are placed too close to each other resulting in wake losses and a failure of AEP to offset capex and opex 
costs. 

Increasing RPD reduces rotor diameter, farm energy yield and farm capacity factor. An increase in 
RPD initially sees a lowering of LCoE since wake effects reduce and the decrease in energy yield is 
offset by the lower capex costs of turbines and support structures. However, beyond an RPD of ~250 
W/m2, the reduction in AEP and farm capacity factor is not offset by lower component costs. 

Figure 6 shows the sensitivity of the LCoE to the farm orientation angle (θ). The most optimal 
orientation occurs around 140 degrees, where the shape of the farm is such that the least number of 
turbines are in the main wind direction (coming from southwest).  

           
Figure 6. Sensitivity analysis of LCoE with varying farm orientation angle. 

The sensitivity analysis results in a fairly optimal start point for the optimisation experiments. Any 
further reduction in LCoE would be a new improvement on the turbine and farm design. The 
optimisation experiments start with a simple problem with two control variables and no uncertainty 
(deterministic) and the complexity is increased with an addition control variable in farm angle and 
uncertainty in wind resource is later introduced. The reference LCoE for deterministic and robust start 
points are 5.144 c€/kWh and 5.152 c€/kWh respectively. The mean LCoE is higher in the robust case 
because of the twenty realisations that each define a wind direction frequency and scale and shape 
parameter and is a more robust representation of a future LCoE estimate of this wind farm. 

Table 1. Initial turbine design, farm layout and LCoE of optimisation experiments. 

Type Control 
variables 

RPD 
(W/m2) 

WFPD 
(MW/km2) 

Farm 
angle (°) 

Rotor 
diameter (m) 

#turbines LCoE 
(c€/kWh) 

Deterministic, 
Robust  

 
 

2, 3 250 

 
 

5 140 

 
 

225.7 75 

 
5.144, 
5.152 
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Deterministic experiment results 
Deterministic experiments with 2 control variables lower LCoE from 5.144 c€/kWh to 5.125 c€/kWh. 
Adding farm angle as a control variable further reduces the LCoE to 5.121 c€/kWh (0.45%). The 
optimised turbine diameter, farm layout and orientation are in Table 2. 

Table 2. Optimised turbine design, farm layout and orientation of deterministic experiments. 

Type Control 
variables 

RPD 
(W/m2) 

WFPD 
(MW/km2) 

Farm 
angle (°) 

Rotor 
diameter (m) 

#turbines LCoE 
(c€/kWh) 

% decrease 
in LCoE 

Deterministic  
 

2 265.5 
 

5.178 140 
 

219.0 78 
 

5.125 
 

0.37% 

Deterministic  
 

3 263.9 
 

5.171 137.4 
 

219.7 78 
 

5.121 
 

0.45% 
 
The number of turbines in both cases is the same whereas there is a slight increase in rotor diameter. 

This is because when the farm angle is optimised (at 137.4°), the wake losses are lower and there is 
greater scope to slightly increase the rotor diameter and capture more wind from each turbine. Figure 7 
shows the design space explored during the optimisation experiment.  

 
Figure 7. LCoE varying with WFPD (MW/km2) and RPD (W/m2) in an optimisation experiment. 

Robust experiment results 
Robust experiments assume an initial uncertainty of 5% in the frequency of wind direction and scale 
and shape parameters. With 2 control variables, the mean LCoE decreases from 5.152 c€/kWh to 5.129 
c€/kWh. Adding farm angle as a control variable further reduces the mean LCoE to 5.128 c€/kWh 
(0.47%). The optimised turbine diameter, farm layout and orientation are in Table 3. 

Table 3. Optimised turbine design, farm layout and orientation of robust experiments. 

Type Control 
variables 

RPD 
(W/m2) 

WFPD 
(MW/km2) 

Farm 
angle (°) 

Rotor 
diameter (m) 

#turbines Mean 
LCoE 

(c€/kWh) 

% decrease 
in mean 
LCoE 

Robust  
 

2 265.1 
 

5.167 140 
 

219.2 78 
 

5.129 
 

0.46% 

Robust 
 

3 264.1 
 

5.169 131.9 
 

219.6 78 
 

5.128 
 

0.47% 
 

The optimised farm angle in the robust case is lower than in the deterministic case (131.9° compared 
to 137.4°). This is because the twenty realisations of wind resource cumulatively orient the main wind 
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direction slightly southwards. Another finding is that the rotor diameter and number of turbines in the 
farm do not change significantly with the inclusion of uncertainty in wind resource. 

Validation and discussion 
To test the performance of the optimiser, the optimised points in the deterministic 3 variables case is run 
with a robust evaluation and vice versa. A robust evaluation of the deterministic optimised point results 
in a mean LCoE of 5.129 c€/kWh and a deterministic evaluation of the robust optimised point results in 
an LCoE of 5.122 c€/kWh, both of them being slightly higher than the optimised results in sections 4.2.  
and 4.3.  This analysis, along with the results in Table 2 and Table 3 highlight the need for an optimiser 
to find non-trivial optimised turbine design, farm layout and orientation. 

In future work, instead of LCoE, the net present value (NPV) of an offshore wind farm can be 
optimised for, by modelling various assets in an energy market model which can determine with a merit 
order, the future electricity price of a wind farm during operation.  

Also, instead of assuming a fixed uncertainty, this value can be estimated from a historical metocean 
timeseries at the required wind farm site location. To estimate this uncertainty, the timeseries can be 
discretised to cluster sectors of wind directions per year. Then, a Weibull distribution can be fit within 
each discretisation to calculate the scale and shape parameters within each sector. A normal distribution 
can then be fit to the scale and shape parameters for each sector to calculate the standard error or 
uncertainty for each sector. 

Other extensions could introduce farm length and width as control variables and allow the number 
and relative positions of turbines to change, resembling the WFLOP. Multi-objective optimisation of 
parameters independent from LCoE like LCA (life cycle assessment) can be added to the objective 
function. 

5.  Conclusions  
In this work, wind farm optimisation is performed to find the ideal design, number and orientation of 
turbines in a fixed-layout offshore wind farm, while considering uncertainty in wind resource. Optimised 
values of rotor diameter, farm layout and orientation are found which show an improvement of ~0.5% 
in LCoE compared to the most optimal solution found as a result of a sensitivity analysis. Starting from 
a different design would therefore lead to higher improvements in LCoE. Robust optimisation provides 
for the possibility to improve decision making by including uncertainty in wind resource, and finds 
optimised strategies that are different from those found by the deterministic optimisation. In the 
deterministic experiments, a slight increase in rotor diameter is seen when the farm orientation angle is 
optimised because the wake losses are lower and there is greater scope to change the rotor diameter and 
capture more wind from each turbine highlighting the non-trivial nature of the optimal solutions obtained 
in this work. In the robust experiments, an input uncertainty of 5% in the wind resource is reflected by 
twenty different wind realisations, resulting in overall decrease in LCoE of 0.47%. Various factors 
including the degree of uncertainty and nature of the objective function play a strong role in the results 
shown in this work. However we have shown that for almost the same computational effort uncertainty 
can be incorporated into the optimisation which might be very useful for many challenges in wind farm 
layout design. 
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