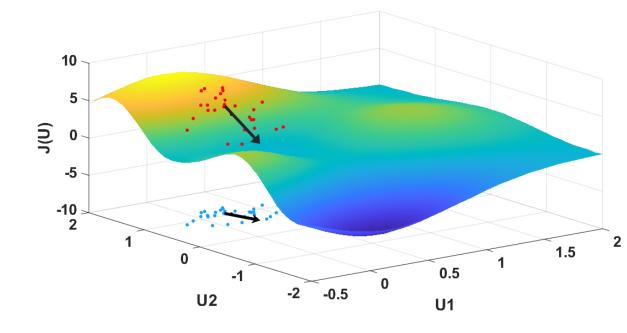


INDEXCONTENTS

- **01.** STUDY OBJECTIVES
- 02. OPTIMISATION
- 03. OBJECTIVE FUNCTION
- 04. CONTROL VARIABLES
- 05. UNCERTAINTY IN WIND RESOURCE
- 06. MODELLING
- 07. RESULTS
- **08.** CONCLUSIONS

STUDY OBJECTIVES

- Combined optimisation of wind turbine design and wind farm layout
-) Optimise turbine rotor diameter
-) Optimise number & position of turbines for a given farm area
- Optimise orientation of turbines in the farm
-) Optimisation objective: Minimise LCoE, & use uncertainty in wind resource
-) Objective function: TNO Wind Cost Model

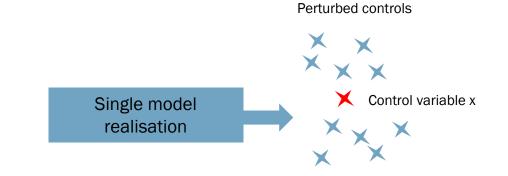

OPTIMISER

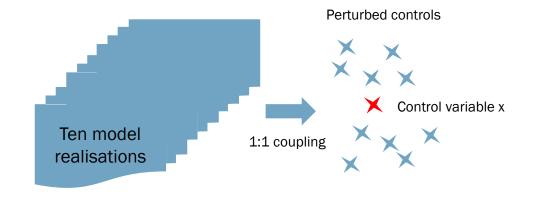
STOCHASTIC SIMPLEX APPROXIMATE GRADIENT (STOSAG)

) Developed for geological uncertainties for O&G reservoir simulations

Example with two dimensional controls:

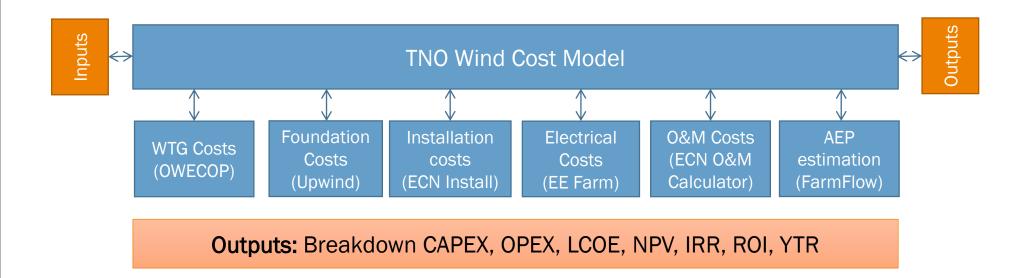
-) Choose an initial set of control variables $(u_1, u_2) = (0.25, 1)$
-) Perturbation of control vectors stochastically (blue dots)
- > Evaluate each perturbed control (red dots)
-) Estimate the gradient using linear regression
-) Update control variables using line search
- Repeat until convergence.


STOSAG METHOD


DETERMINISTIC OPTIMISATION

-) No uncertainty, i.e. single model realisation
- Number of perturbed controls: 10 (for example)
-) Ratio between model realisations and perturbed controls: 1:10

ROBUST OPTIMISATION


- 10 uncertain model realisations
- Number of perturbed controls: 10 (as above)
-) One model realisation coupled with one perturbed control
-) Same computational effort as deterministic case

OBJECTIVE FUNCTION

TNO Wind cost model used for economic evaluation of a "traditional" wind farm:

-) Wind turbine with single rotor
-) Monopile support structure
- Wind farm in a parallelogram shape (length, width, orientation)
- Installation and maintenance with SOVs and/or CTVs

$$LCoE = \frac{\left(\frac{CapEx}{a} + OpEx\right)}{AEP}$$

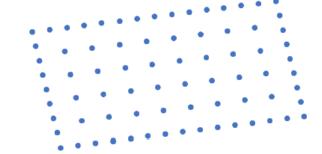
CONTROL VARIABLES

ROTOR POWER DENSITY (RPD)

-) Unit: W/m²
- Inversely proportional to square of turbine diameter (d)
-) Turbine rated power fixed (10 MW AVATAR research turbine)

$RPD = (P_{turbine})/((\pi/4)d^2)$

WIND FARM POWER DENSITY (WFPD)

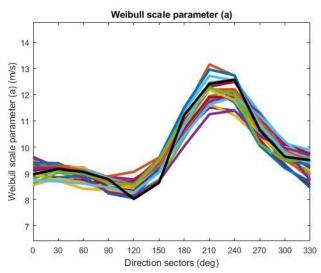

-) Unit: MW/km²
-) Directly proportional to number of turbines in farm
-) Fixed farm area (150 km²)

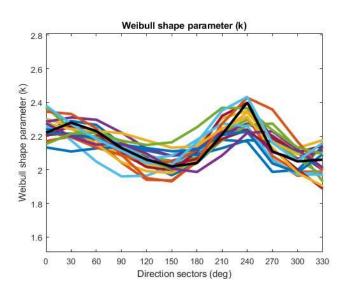
FARM ORIENTATION (Θ)

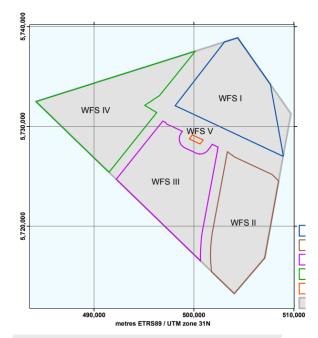
) Counter clockwise rotation of turbines in the farm

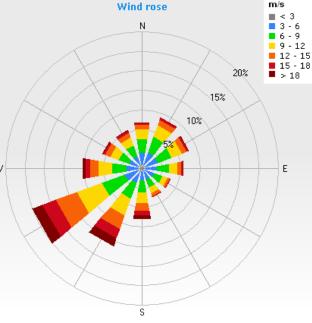
$$WFPD = (P_{turbine} * n_{turbines})/A_{farm}$$

UNCERTAINTY IN WIND RESOURCE

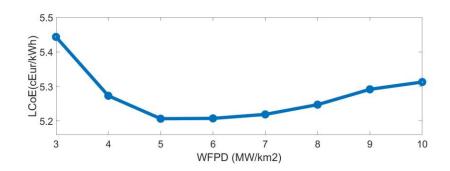

Location:

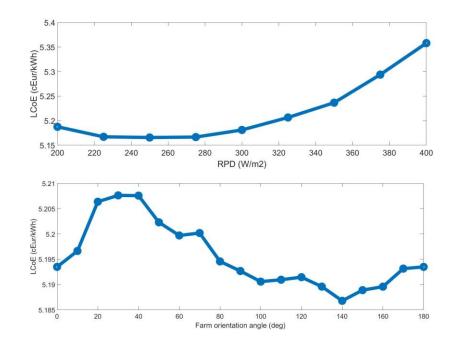

- 100m at Borssele Wind farm zone (WFS III)
- **)** Weibull probability density function:


$$p(U) = (k/a) \left(\frac{U}{a}\right)^{k-1} exp \left[-\left(\frac{U}{a}\right)^{k}\right]$$


where scale parameter is (a) and shape parameter is (k)

) 5% uncertainty in Weibull a and k parameters and in each direction sector





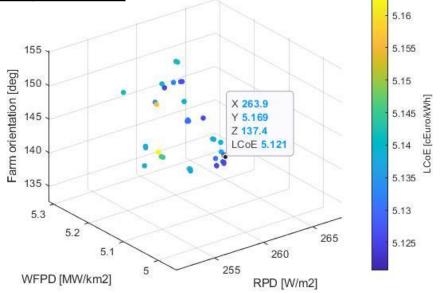
MODELLING

SENSITIVITY ANALYSIS FOR LOWEST LCOE

-) Min. LCoE of ~5.15 c€/kWh
-) @(RPD, WFPD, theta) = (250, 5, 140)

INITIAL CONTROL VARIABLES

Туре	Control variables	RPD (W/m²)	WFPD (MW/km²)	Farm angle (°)	Rotor diameter (m)	# turbines	LCoE (c€/kWh)
Deterministic, Robust	2,3	250	5	140	225.7	75	5.144, <mark>5.152</mark>



RESULTS

DETERMINISTIC EXPERIMENTS

Туре	Control variables	RPD (W/m²)	WFPD (MW/km²)	Farm angle (°)	Rotor diameter (m)	# turbines	LCoE (c€/kWh)	% decr. in LCoE
Determin istic	2	265.5	5.178	140	219.0	78	5.125	<mark>0.37%</mark>
Determin istic	3	263.9	5.171	137.4	219.7	78	5.121	0.45%

-) Farm angle as third control variable decreases LCoE to 0.45%
-) Optimised farm angle (137.4°) gives scope to slightly increase rotor diameter
-) Rotor diameter increased by 0.7m to capture more wind

RESULTS

ROBUST EXPERIMENTS

Туре	Control variables	RPD (W/m²)	WFPD (MW/km²)	Farm angle (°)	Rotor diameter (m)	# turbines	Mean LCoE (c€/kWh)	% decr. in mean LCoE
Robust	2	265.1	5.167	140	219.2	78	5.129	<mark>0.46%</mark>
Robust	3	264.1	5.169	131.9	<mark>219.6</mark>	78	5.128	0.47%

-) With 2 control variables, 0.46% decrease in mean LCoE
-) Twenty realisations cumulatively orient the wind slightly southwards
-) With 3 control variables, turbine diameter slightly increases

CONCLUSIONS

- Optimise turbine design and farm layout
-) Optimised design from deterministic experiments show decrease in LCoE of 0.45%
-) Input uncertainty of 5% in W_a and W_k is reflected with 20 wind resource realisations
- Robust experiments, with uncertainty, reduce mean LCoE by 0.47%

FURTHER WORK

- NPV as optimisation objective, with energy integrated market model
-) Estimate uncertainty from historical data by fitting distributions to W_a and W_k
- Multi-objective optimisation with LCoE and LCA (economic and environmental impact)

