

QUANTITATIVE RISK-BASED APPROACH FOR FIRE SAFETY INDEX

- **01.** INTRODUCTION RISK-BASED APPROACH
- 02. FRAMEWORK FOR LIFE SAFETY
- 03. GROUP HOME FOR DISABLED PEOPLE
- 04. SMOKE ALARM
- **05.** SENIOR APARTMENT
- 06. CONCLUSION

INTRODUCTION RISK-BASED APPROACH EFFECTIVENESS OF SMOKE ALARMS IN HOMES

44 fatalities per year of residential fires in the Netherlands

Predictions based on a risk-based approach

) Comparison presence of smoke detectors

Current situation with 50% working smoke detectors

Assuming 80% working smoke detectors

Assuming 100% working smoke detectors

44 fatalities per year

36 fatalities per year

31 fatalities per year

Basis of proposal Dutch Minister:

Smoke detectors in homes will be mandatory for both new and existing homes

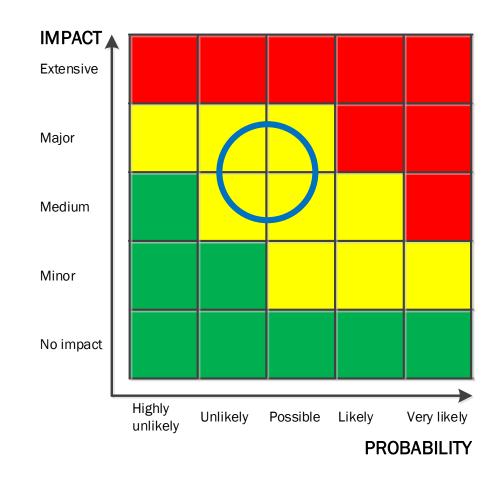
INTRODUCTION RISK-BASED APPROACH

REASONS TO DEVELOP A RISK-BASED APPROACH

-) Major incidents initiated need for upgrade of regulatory system for fire safety
- All major stakeholders involved noted that existing regulations are limited
 - Mainly prescriptive
 - Based on qualitative risk assumptions
 - Cost might be higher than needed
-) Fire safety engineers
 - Are used how to prescriptive rules given by fire code
 - Know how solutions perform in relation to each other in terms of qualitative risks
 - Have difficulty determining how a given solution performs regarding a quantitative risk criterion

A risk-based approach provides safe fire safety solutions for affordable costs

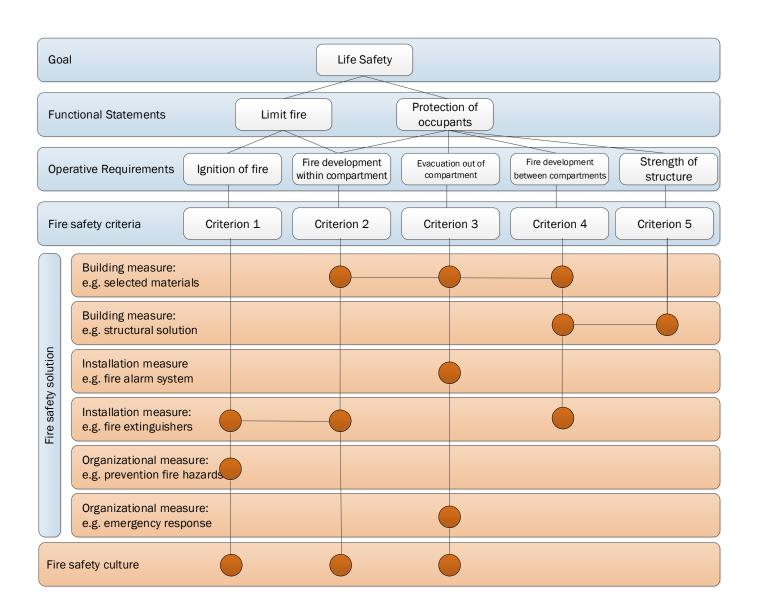
INTRODUCTION RISK-BASED APPROACH FIRE SAFETY GOALS


-) Life safety of attendees
-) Life safety of fire fighters
-) Property loss
-) Business continuity
-) Environmental impact
-) Reputation

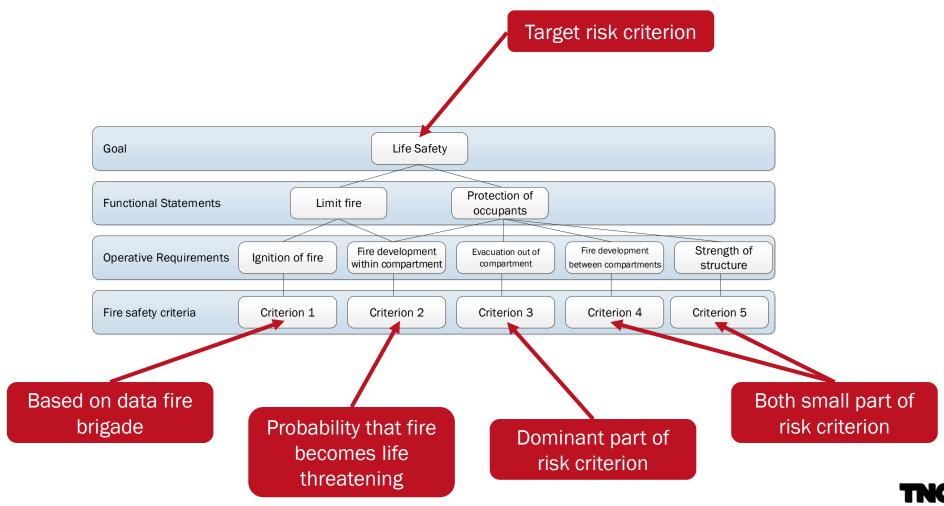
INTRODUCTION RISK-BASED APPROACH

METHODOLOGIES

-) Risk is defined as "probability" times "consequences"
 - Human life risk: number of injuries or fatalities per year
 - Financial risk: cost per year
-) Risk matrix
-) Available approaches: qualitative and quantitative PRA
-) Process industry
 - Want to avoid high impact and looking after alternatives
 - Quantitative approach can be used in various cases
-) Buildings
 - Have to deal with minimized probabilities and significant impact
 -) Quantitative approach is preferred
 - > Framework needed to link approach with fire safety code


IMPLEMENTING PROBABILISTIC RISK ANALYSES

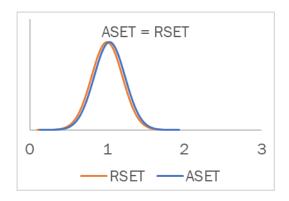
-) Guidance on use PRA on fire engineering
 - BS 7975 Fire Safety PD 7974-7 Probabilistic fire risk assessment (2019)
 - SFPE engineering Guide Risk Guidance (new edition to be published in 2021)
 -) INSTA 951 Fire Safety Engineering Probabilistic Methods for Verifying Fire Safety Design in Buildings (2019)
- Insight into
 - Probabilistic methods rather generic
 - Data limited data available


GENERAL RISK CRITERION

-) Hazards for people within a building
 - High temperature, radiation and toxic gases
 - Collapse of a structure
- These have a negative effect on the body of a person (injuries or death)
-) Risk measure
 - Mostly based on number of deaths
 - Also number of injuries might be considered
- Various matching criteria might be used, slight preference for
 - IR Individual risk for a person on an annual basis
 -) GR Group risk for a group on an annual basis
- Average number of death per year in buildings in the Netherlands (2001 2013) is 53 persons
 - Might be used as an option for a target (17 million inhabitants): IR = 3·10⁻⁶

BALANCED SUB-CRITERIA FOR OPERATIONAL REQUIREMENTS

GROUP HOME FOR DISABLED PEOPLECURRENT ASET-RSET ANALYSES

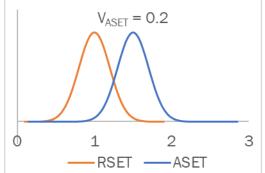

-) Based on 'worst-case' scenarios
 - ASET calculated with zone- of CFD-model
 - RSET based on simulation tools or evacuation exercises
-) Safety factor has to be assumed
- No common practice, only generic guidance
 - Which fire scenario has to be considered?
 -) How to determine time needed for evacuation?
 - Is chosen value safety factor safe enough? Or too conservative giving additional costs?

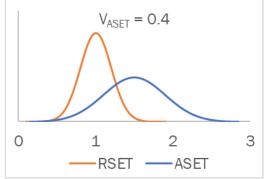
GROUP HOME FOR DISABLED PEOPLE

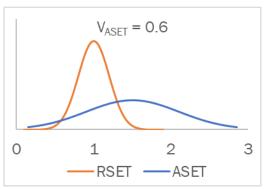
STOCHASTIC NATURE OF ASET AND RSET

-) Probability that ASET RSET < 0, assuming normal distributions & $V_{RSET} = 0.2$
 - Safety factor is 1.0

RSET = ASET : $P_f = 0.5$




Safety factor is 1.5


 $V_{ASET} = 0.2$: $P_f = 0.08$

 $V_{ASET} = 0.4$: $P_f = 0.24$

 $V_{ASET} = 0.6$: $P_f = 0.32$

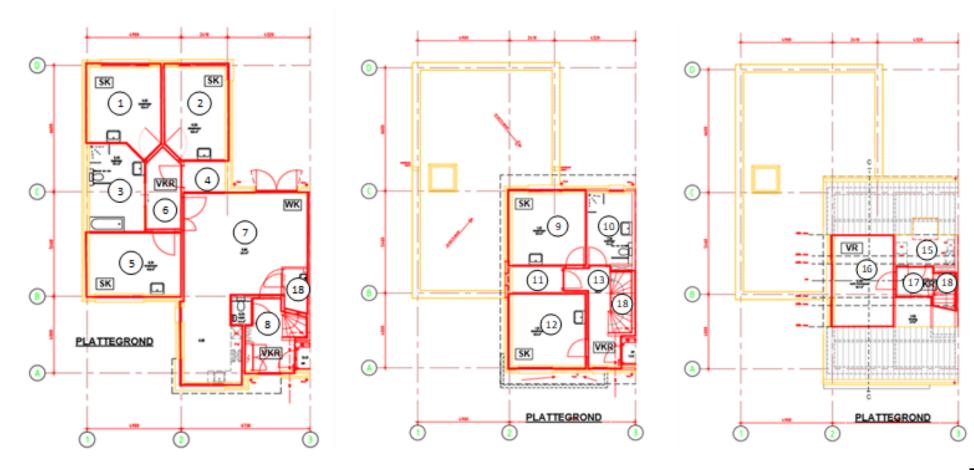
Value safety factor strongly depends on scenarios and criterion for RSET, expressed in value of V

GROUP HOME FOR DISABLED PEOPLE

ASET-RSET ANALYSES BASED ON PROBABILISTICS

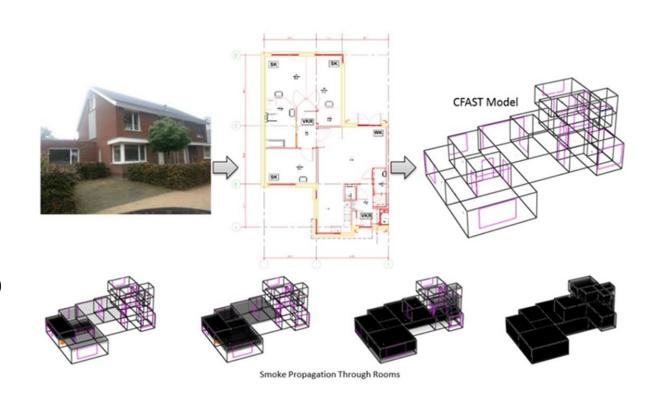
) Individual risk measure

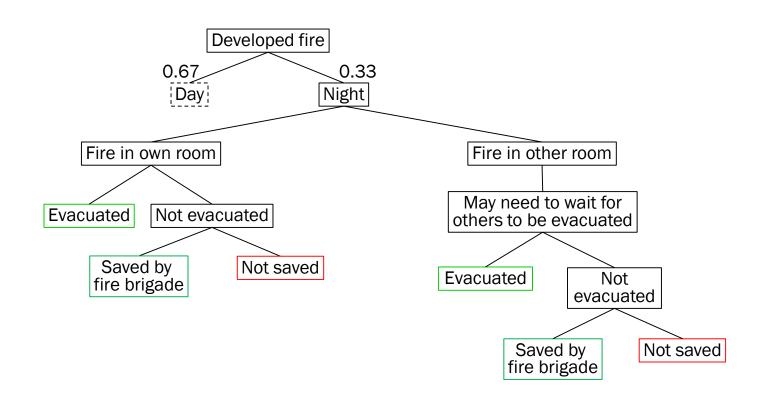
$$F(A) \cdot P_c \cdot P_f \le f_{IR} \cdot IR$$


-) F(A) is frequency that a fire occurs, depending on floor area A (assumed to be $F(A) = K \cdot A$, with $K = 10^{-5}$ per m² · year)
- P_c is probability that fire becomes life threatening (assumed to be $P_c = 0.04$)
- P_f is probability that a person is not capable to evacuate safely in time; based on ASET-RSET
-) f_{IR} is fraction of risk measure operational requirement "evacuation out of compartment", a value of f_{IR} = 0.8 is assumed
- IR is target of $12\cdot10^{-6}$ per year (probability fatalities in health care approximately 3 to 4 times higher than in average)
- > Event tree (analyzed with use of Monto Carlo simulations)
 - To evaluate ASET-RSET for number of scenarios
 -) For all relevant scenarios

GROUP HOME FOR DISABLED PEOPLEDESCRIPTION OF GROUP HOME

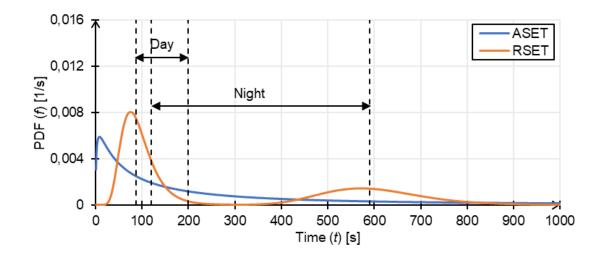
-) Group home for 6 clients (disabled people)
 -) Own sleeping room
 -) Common living room and kitchen
- Need assistance from personnel
 - Present during daytime (7h 22h)
 - Need to come during night (22h 7h)

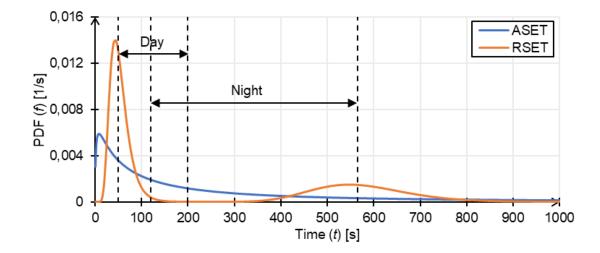

GROUP HOME FOR DISABLED PEOPLEFLOOR PLANS


GROUP HOME FOR DISABLED PEOPLE

SCENARIOS ASET AND RSET

-) ASET based on large number of CFAST calculations
 - Medium and large fire
 - Doors open or closed
 - Windows open or closed
 - Windows break due to fire
 -) Door fail due to fire after 15 minutes
-) RSET based on evacuation times
 - Action time day and night (30 s versus 9 minutes)
 - Time needed per client day and night (20 s versus 40 s)
 - Number of staff (1 and 6 considered)


GROUP HOME FOR DISABLED PEOPLEEVENT TREE FOR THE NIGHT


GROUP HOME FOR DISABLED PEOPLE

RESULTS PROBABILISTIC ANALYSIS

) Distribution functions ASET and RSET for sequential evacuation (1 staff member)

 Distribution functions ASET and RSET for parallel evacuation (6 staff members)

GROUP HOME FOR DISABLED PEOPLERESULTS SAFETY FACTOR

-) Calculation of safety factor based on target $f_{IR} \cdot IR = 0.8 \cdot 12 \cdot 10^{-6} = 10 \cdot 10^{-6}$
 - Variation in ASET large
 - RSET divided in day and night

	Daytime	Night		
	Living room	Rooms level 1	Rooms levels 2/3	
Sequential	2.3	0.20	0.51	
Parallel	4.0	0.21	0.53	

Conclusion: Not possible to derive fixed values for safety factor in this example; focuses on IR

GROUP HOME FOR DISABLED PEOPLEIR COMPARISON OF ALTERNATIVES

) Comparison with home sprinkler

	Sequential evacuation	Parallel evacuation
No active extinguisher	29·10 ⁻⁶	19·10 ⁻⁶
Home sprinkler	21·10 ⁻⁶	13·10 ⁻⁶

-) Target 10 ·10⁻⁶ still not reached
-) Remarks
 - Water mist system will be more effective
 -) Only evacuation is considered; consider also event survive in case of smoke conditions

REDUCTION OF FATALITIES

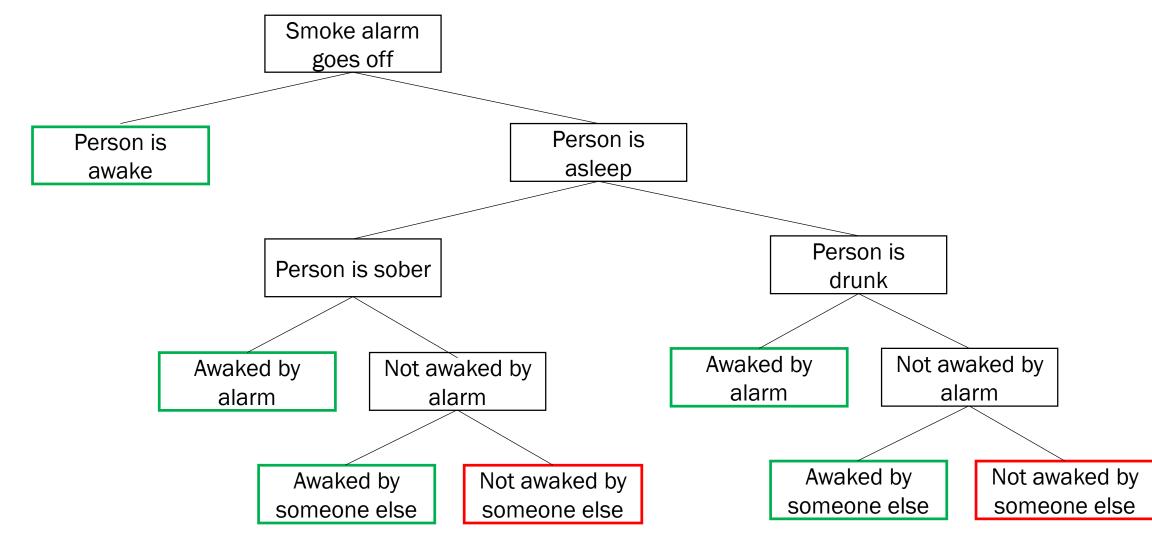
) Research question of the Dutch Standardisation Committee Fire Alarm Systems

What is positive effects of applying smoke alarms with a 520 Hz tune compared with the usual 3100 Hz tune?

) Result

Reduction of number of fatalities

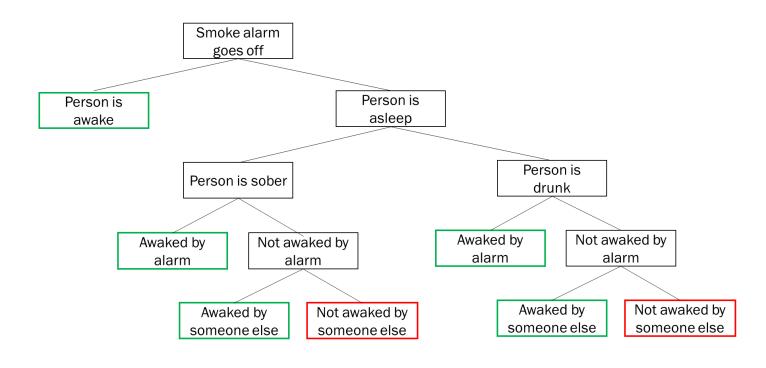
FINDINGS IN LITERATURE


) Bruck, D. & Thomas, I. (2008a), Towards a Better Smoke Alarm Signal – an Evidence Based Approach, pp. 403-414, Fire Safety Science – Proceedings of the Ninth International Symposium

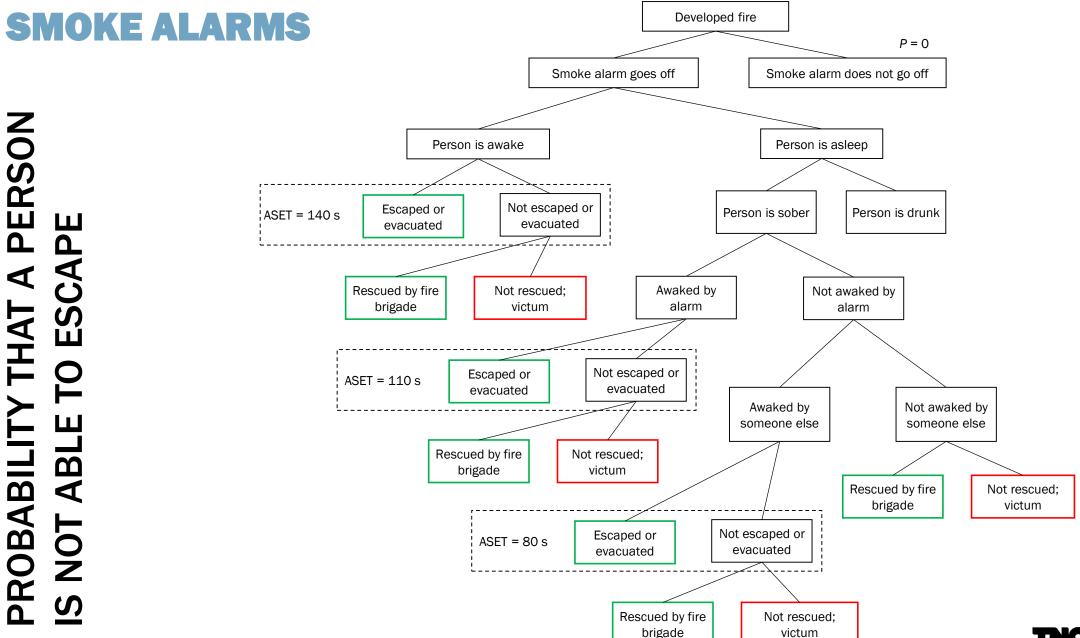
Participants	Alarm volume	Precentage slept through		
	dB(A)	Current alarm	520 Hz square wave alarm	
Children aged 6-10 yrs	89	43%	3.5%	
Deep sleeping young adults	75	43%	7%	
0.05 BAC young adults	75	38.5%	0%	
Sober young adults	75	21%	0%	
Older adults aged > 65 yrs	75	18%	4.5%	
Hard of hearing adults	75	56%	8%	

GOAL TO DETERMINE EFFECT ON FATALITIES

- These percentage only explain the effectiveness of the alarming effect
-) Also other parameters will affect fatalities
 - Other options to be alarmed (e.g. by partner)
 - Development and severity of the fire
 - Ability to escape: reaction time and travel speed
 - Action by fire brigade
-) Studied cases
 - Probability that person will not be alarmed
 - Probability that a person is not able to escape out of home
 - Number of fatalities per year


PROBABILITY THAT PERSON WILL NOT BE ALARMED

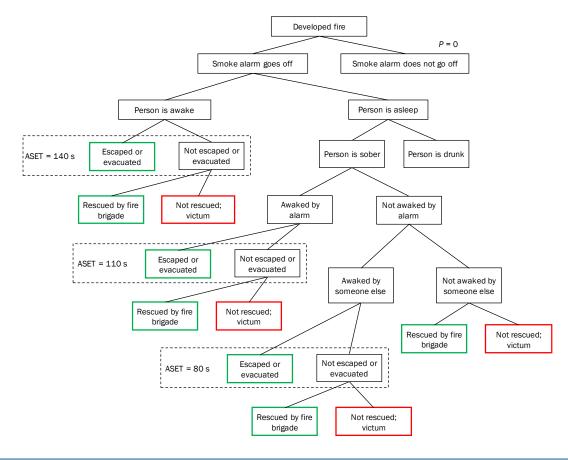
PROBABILITY OF EVENTS


Event	< 16 years	16-65 years	> 65 years
Awake	0.58	0.67	0.71
Sober	1.00	0.99	0.99
Alarmed 3100 Hz, sober	0.50	0.80	0.70
Alarmed 3100 Hz, drunk	-	0.60	0.50
Alarmed 520 Hz, sober	0.95	1.00	0.95
Alarmed 520 Hz, drunk	-	1.00	0.95
Alarmed by someone else	0.90	0.50	0.30

PROBABILITY THAT PERSON WILL NOT BE ALARMED

	< 16 years	16-65 years	> 65 years
Alarm 3100 Hz	2.1%	3.3%	6.1%
Alarm 510 Hz	0.2%	0.0%	1.0%

ERSON ESCAPE 1 4 ABL PROBABILI IS NOT



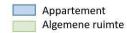
PROBABILITY EVENTS P(ASET-RSET) > 0

-) ASET and RSET (based on previous research TNO)
 - Normal distributions
 - Mean values are given
 - Coefficient of variation V = 0.2

Event	ASET	< 16 years RSET = 90 s	16-65 years RSET = 60 s	> 65 years RSET = 120 s
Escaped or evacuated	140 s	0.93	1.00	0.71
	110 s	0.76	0.98	0.38
	90 s	0.34	0.84	0.08
Rescued by fire brigade	Not relevant	0.50	0.50	0.30

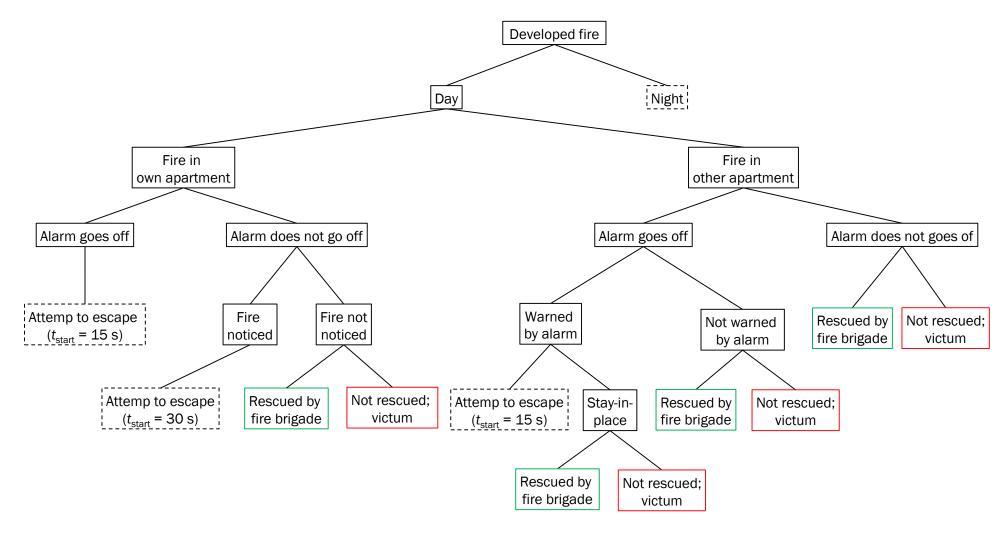
PROBABILITY IS NOT ABLE

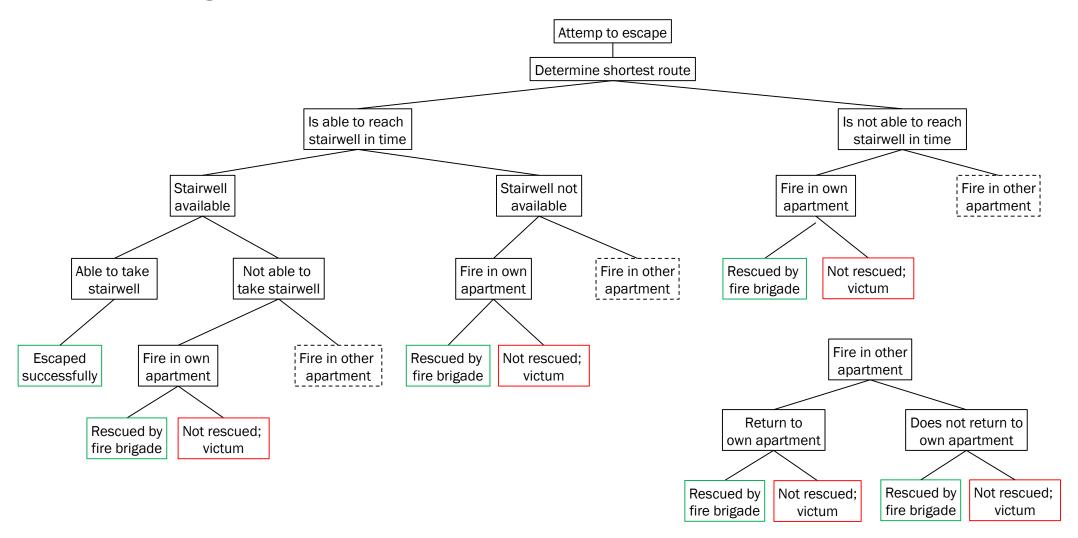
Alarm	< 16 years	16-65 years	> 65 years
None	0.165	0.097	0.246
3100 Hz sound	0.118	0.024	0.210
520 Hz sound	0.075	0.005	0.197


NUMBER OF FATALITIES PER YEAR

- Average probability of having a fire in a home 6·10⁻⁴ per year
-) 0.04 fraction of those fire will develop in life threatening circumstances

Alarm	< 16 years 2.8 million	16-65 years 11 million	> 65 years 3.3 million	Total 17.1 million
None	11	26	20	56
50% 3100 Hz sound	10	16	18	44
100% 3100 Hz sound	8	6	17	31
100% 520 Hz sound	5	1	16	22


FLOOR PLAN



1^E VERDIEPING

EVENT TREES

EVENT TREES

CALCULATED VALUE OF IR (10⁻⁶ PER YEAR) VARIOUS MEASURES

Situation	Fire safety measure	Fire in own dwelling	Fire in other dwelling	Total
Existing code	Non self-closing door; E20 smoke resistance; 50% smoke alarm	5.44	0.56	6.00
New code	Self-closing door; S200 smoke resistance; 100% smoke alarm	1.96 (-3.48)	0.04 (-0.52)	2.00 (-4.00)
Existing building stock	100% smoke alarm	3.47 (-1.97)	0.84 (+0.28)	4.41 (-1.59)
	Self-closing door	4.39 (-1.05)	0.22 (-0.34)	4.61 (-1.39)
	Sprinkler 2mm/min	4.15 (-1.29)	0.02 (-0.54)	4.16 (-1.84)
	Stay-in-place principle	5.42 (-0.02)	0.38 (-0.18)	5.80 (-0.20)

Probabilities of events are based on assumptions, data from literature and other TNO research

Individual risk for people >65 years is $IR = 6.10^{-6}$

QUANTITATIVE RISK-BASED APPROACH FOR FIRE SAFETY OF BUILDINGS

- Introduction of a risk-based approach for fire safety of buildings
-) Quantified framework for life safety
 - Based on principles of a risk-informed performance-based approach
 - Fire safety criterium has to be quantified and balanced for the relevant operation requirements
-) Risk-based ASET-RSET based on individual risk measure and event tree analysis
 - Able to identify advantages of change of requirements in the fire code
 -) Able to show effects of various fire safety measures
-) Methodology applicable for all fire safety goals

