Discrete Event Dynamic Systems
https://doi.org/10.1007/510626-020-00325-x

®

Check for
updates

Supervisor synthesis and throughput optimization
of partially-controllable manufacturing systems

Berend Jan Christiaan van Putten® - Bram van der Sanden'2 . Michel Reniers' © .
Jeroen Voeten'2 . Ramon Schiffelers's3

Received: 24 June 2018 / Accepted: 23 August 2020 / Published online: 02 November 2020
© The Author(s) 2020

Abstract

One of the challenges in the design of supervisors with optimal throughput for manufactur-
ing systems is the presence of behavior outside the control of the supervisor. Uncontrollable
behavior is typically encountered in the presence of (user) inputs, external disturbances,
and exceptional behavior. This paper introduces an approach for the modeling and synthesis
of a throughput-optimal supervisor for manufacturing systems with partially-controllable
behavior on two abstraction levels. Extended finite automata are used to model the high
abstraction level in terms of system activities, where uncontrollability is modeled by the
presence of uncontrollable activities. In the lower abstraction level, activities are modeled
as directed acyclic graphs that define the constituent actions and dependencies between
them. System feedback from the lower abstraction level, including timing, is captured using
variables in the extended finite automata of the higher abstraction level. For throughput
optimization, game-theoretic methods are employed on the state space of the synthesized
supervisor to determine a guarantee to the lower-bound system performance. This result is
also used in a new method to automatically compute a throughput-optimal controller that is
robust to the uncontrollable behavior.

Keywords Supervisory control - Throughput-optimal controller - Uncontrollable behaviour

1 Introduction

Over the past decades, increasing complexity of manufacturing systems has driven the
development of model-based systems engineering (MBSE) and supervisory control meth-
ods to aid in the design process (Estefan 2008; Steimer et al. 2017). Executable models
created by these methods allow engineers to test and adjust the system before it is built. This

This article belongs to the Topical Collection: Topical Collection on Smart Manufacturing - A New
DES Frontier
Guest Editors: Rong Su and Bengt Lennartson

< Michel Reniers
m.a.reniers @tue.nl

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10626-020-00325-x&domain=pdf
http://orcid.org/0000-0002-9283-4074
mailto: m.a.reniers@tue.nl

Discrete Event Dynamic Systems

increases design flexibility and reduces time-to-market, and has the potential to improve
system performance. In controller design, the developed models can be used for automatic
generation of supervisory controllers using controller synthesis techniques (Baeten et al.
2016). These controllers must ensure functional correctness with respect to the specifica-
tions, and provide optimal control decisions in terms of relevant performance criteria. A
challenge in the construction and analysis of models in these methods is the inclusion of
system behavior outside the influence of the controller. For example, products may enter
the manufacturing system with varying time intervals, or actions on a different control layer
may require a response from the supervisor. In the design phase, it is useful to assess func-
tional correctness and achievable performance under the influence of such behavior, while
it is desirable for a controller to make correct and optimal control decisions when these
activities occur.

This paper introduces an approach, shown in Fig. 1, for synthesizing throughput-optimal
supervisors for manufacturing systems with partially-controllable behavior. It is based on
the recently developed Activity modeling formalism (van der Sanden et al. 2016), which
enables the compositional modeling of functionality and timing of manufacturing systems.
Functionality in the Activity modeling formalism is specified on two abstraction levels:
high-level activities, and low-level actions. An activity expresses some deterministic func-
tionality, such as picking up and moving a product, in terms of the individual actions and
dependencies between the actions. Resources provide the services to execute actions; an
activity consisting of multiple actions may require more than one resource for its execution.
Functional design is carried out on the level of activities by the use of finite automata (FAs),
called plants and specifications. Plants describe the activity sequences that are available in
the system, and specifications describe the order in which activities should be executed.
The key benefit of this abstraction is a much smaller state-space for controller design, when
compared to the case where all actions are modeled explicitly (van der Sanden et al. 2016).

Formal model Variables |
AR
Plants/Specifications } ST | Resources | in terms of variables

~

’
RIS ’
in terms of — K | Guards
Controllable / activities _ ;l Activities |

Uncontrollable --~ | Updates
compute (max,+) matrices

v

Timing characterization
of each activity

Y

controller design

Supervisor
Activity-EFA

Normalized throughput
configuration space optimization

Fig. 1 Overview of the modeling approach for supervisor synthesis and throughput optimization of a
partially-controllable manufacturing system

Nominal supervisor |

Y

A A

@ Springer

Discrete Event Dynamic Systems

The internal structure of activities allows timing, expressed on the level of actions, to be
collected into a (max, +) timing characterization of each activity. By orthogonally adding
timing characterizations to the state space, a (max, +) state space can be constructed for
performance analysis. Existing optimal cycle ratio algorithms (Dasdan 2004) can be used to
find a throughput-optimal controller, which dispatches activities in an optimal ordering. The
Activity modeling formalism is already in use within ASML,' the world-leading manufac-
turer of lithography machines for the semiconductor industry, to formalize the description
of the product handling part of their machines. It acts as the semantic underpinning of a
domain-specific language (DSL) that allows domain engineers to model a complete system.
In the available tool chain, CIF (van Beek et al. 2014) is used for synthesizing a supervisor,
and throughput-optimization techniques of (van der Sanden 2018) are used.

Our modeling approach expands on the Activity modeling formalism in two fundamen-
tal ways. First, it defines uncontrollable system behavior explicitly by partitioning activities
into controllable and uncontrollable (to the supervisor) activities. This is a common concept
from supervisory control theory (Ramadge and Wonham 1987; Cassandras and Lafortune
2008). As uncontrollable activities may influence the performance that can be achieved,
performance can no longer be guaranteed by looking at the controller alone. To overcome
this, we use game-theoretic methods (van der Sanden 2018) to determine the optimal strat-
egy for the supervisor. From this result a guarantee on the lower bound system performance
in the presence of uncontrollable behavior can be achieved. Further, we use the optimal
strategy in a new method to automatically compute a throughput-optimal controller that
is robust to the uncontrollable behavior. One of the main challenges here is how to deal
with situations where both uncontrollable and controllable behaviour is enabled at the same
time.

The second fundamental change of our approach is the inclusion of (uncontrollable) feed-
back from lower abstraction levels into the level of the supervisor. We do this by augmenting
a finite automaton with variables, obtaining an extended finite automaton (EFA) (Chen and
Lin 2000; Skoldstam et al. 2007). Timing from the Activity modeling formalism, captured
by resource time stamps and their change upon the execution of an activity, can be naturally
expressed as variables and update functions in the EFA. This approach enables the descrip-
tion of functionality based on information induced by the actions, including the availability
times of resources. It also provides for concise and unified description of functionality and
timing in a single model.

The remainder of the paper is structured as follows. We start by introducing a moti-
vating example system, the Dice Factory, in Section 2, which presents several challenges
with regard to uncontrollability. In Section 3 we introduce the Activity modeling formalism
in more detail and outline several concepts and definitions that are used in our modeling
approach. That approach is described in Section 4, where we present the methods that can
be used to express and model uncontrollability. We subsequently turn to optimization of a
partially-controllable system in Section 5, where we describe methods to determine guar-
antees for system performance and to automatically compute an optimal controller that
is robust to the uncontrollable behavior. All introduced modeling and optimization meth-
ods are put to use in Section 6, where we model and optimize the example Dice Factory
system. We discuss the similarities and differences between our work and related works
in Section 7. Section 8 concludes the paper and describes future extensions that may be
investigated.

lwww.asml.com

@ Springer

www.asml.com

Discrete Event Dynamic Systems

2 Motivating case study: Dice Factory

As a motivating example for investigating partial controllability in manufacturing processes,
consider the fictional Dice Factory, shown in Fig. 2. In the Dice Factory, high-grade game
dice are produced in two stages. During the Mill stage, holes are milled in a side of the
unfinished die in a pattern corresponding to the value of that side. During the Paint stage,
the milled holes are filled with a colored paint. Transporting the dice is the job of two carts,
which carry a die from an input position, through the two production steps, onto an output
position. Because there are two carts and two production stages, while one die is processed
on the Mill stage, another die can be simultaneously processed on the Paint stage. This
system is a simplification of the product processing within an ASML TWINSCAN machine,
modeled using similar resources and constraints.

Each die is processed in the system by following a similar life cycle. An unfinished die is
put on either cart 1 (CR1) or cart 2 (CR2) by the load robot (LR). We assume no preference
to which cart picks up a die. The cart then transports the die to the mill station (MIL) where
it is milled. Upon finishing, the cart moves onto an exchange disc, which it may choose to
do either directly, or via one of two wait positions. The exchange disc transports the cart to
the opposite side. To avoid collisions between carts, the cart exchange always moves the two
carts simultaneously; the cart on the mill side is moved to the paint side, while the cart on
the paint side is moved to the mill side. The cart that was transported to the paint side of the
factory subsequently moves to the paint station (PNT), where the die is painted. After the
paint operation finishes, the cart once again moves onto the exchange disc, directly or via
a wait position, and the reverse exchange operation is executed. Finally, the cart transports
the finished die to the In/Out position where it is offloaded by the load robot.

In Section 6, we will show how the full system can be modeled using our approach.

For now, let us zoom in on the aspects of desired system behavior that present a challenge
to our modeling efforts. First, we assume that the choice of the pattern that must be produced
on the die (1-6) is unknown to the supervisor until a mill or paint operation is executed,
for instance because it is determined by a different controller. The supervisor may thus
request a mill or paint operation, but has no control over which mill or paint operation
is executed. This introduces uncertainty about the duration of the operation, as different
patterns have different execution times. Second, there is a choice between moving directly,
or via a wait position, onto the exchange disc from the Mill and Paint stages. The purpose

e

VIS ITIITA

In/Out Mill WaitLo ExchMil ExchPnt WaitLo Paint

Fig. 2 Top-down view of the Dice Factory manufacturing system with two carts (CR1 and CR2), two pro-
duction stages (MIL and PNT) and a load robot (LR). The names of positions with a dashed outline are
shown below or above the position

@ Springer

Discrete Event Dynamic Systems

of a wait position is to avoid unnecessary load on the exchange disc, when one cart rests on
it while the other cart is not yet available. As the exchange disc is sensitive to unbalanced
loads, it contains an emergency procedure that limits its speed of operation if it was loaded
off-balance. This can be avoided by the use of a wait position, which adds a delay so the
exchange disc entry procedure is better synchronized. There are two wait positions on either
side of the exchange disc: a low and a high wait position. As the position of a cart on the
stage depends on the pattern that was milled or painted, a cart may move to the wait position
to which it is closest. This depends only on its coordinate in y-direction in this example.
Figure 3 illustrates the available moves for a cart after a paint operation. Here, arrows 1a and
1b highlight the moves to the low and high wait positions, and arrow 2 highlights a direct
move onto the exchange disc.

Consider two scenarios shown in Fig. 4, which shows possible schedules of cart 2 at the
paint station leading up to a cart exchange. If the mill operation has already finished before
the paint operation ends, desired cart behavior on the Paint side is usually a direct move onto
the exchange disc, as the other cart is also available to move onto the exchange disc (Fig. 4a).
If the mill operation is still in progress when painting ends, the cart on the Paint side may
chose to move to a wait position so as to avoid the exchange disc emergency procedure
when the cart on the Mill side is not yet available (Fig. 4b). We will later show how these
scenarios can be accounted for without the need to specify each case individually. For now,
it suffices to recognize that description of behavior based on resource timing presents a
challenge to our modeling efforts.

In what follows, we will use the Dice Factory system as a running example to illustrate
the concepts that are introduced, and how our approach can be used to account for the
presented modeling challenges.

3 Preliminaries

In this section, several of the concepts and definitions that are used in our modeling approach
are introduced. We start by outlining the concepts of the Activity language (van der Sanden
et al. 2016), to the extent that is relevant for its application in the modeling approach
presented in the next section.

Fig. 3 Detail of the Dice factory
showing the Paint stage. Arrows
la and 1b show the choice of a
cart to move to a wait position
before moving onto the exchange
disc, while arrow 2 shows a direct
move onto the exchange disc

Exchange WaitLo

@ Springer

Discrete Event Dynamic Systems

OmiLL PAINTQ® OPAINT MILLO
A4 A 4 A 4

R4 : : Ra
CR2 b |to exch CR2 b
PNT a PNT | a
> T - > T
0 2 4 6 8 10 0 2 4 6 8 10

(a) (b)

Fig.4 Gantt charts of two possible schedules of cart 2 at the paint station leading up to a cart exchange. The
finish time of the parallel activities of cart 1 and the mill station, which are not shown here, is indicated by the
dashed line labeled MILL. Figure a shows a scenario where milling activities have finished when the paint
activities end, and cart 2 makes a direct move onto the exchange disc. Figure b shows a case where milling
has not yet finished when the paint activities end, and cart 2 decides to first move to a wait position, before
moving onto the exchange disc

3.1 Activity modeling formalism

The Activity modeling formalism views a system as a set P of peripherals that can execute
actions from a set A. Peripherals are aggregated into resources in a set R, which can be
claimed or released for the execution of some task. Given these semantics, activities are
used to describe a deterministic procedure of co-ordinated actions, essentially aggregating
them to describe a common functional operation. Activities are modeled as directed acyclic
graphs that define the actions involved and the dependencies between them.

Definition 1 (Activity (van der Sanden et al. 2016)) An activity is a directed acyclic graph
(N, —), consisting of a set N of nodes and a set - < N x N of dependencies. The
mapping function M : N — (A x P) U (R x {cl, rl}) associates a node to either a pair
(a, p) referring to an action a € A executed on a peripheral p € P, or to a pair (r, v) with
v € {cl, rl}, referring to the claim or release of a resource r € R.

Example 1 As an example, consider the Paint_1 activity on cart 2 of the Dice Factory sys-
tem, which is shown in Fig. 5. This activity paints pattern “1” on a die using two resources
(CR2 and PNT), which are first claimed and later released, and several action nodes that
execute actions on either of the resources. In the activity, peripheral XY of cart CR2 moves
the cart in XY-direction. For paint resource PNT, peripheral PNT.Z is used to move the paint
nozzle up and down, and peripheral PNT.NZ is used to turn the paint nozzle on and off. See
Section 6.1 for the full system description of all resources and peripherals.

A number of constraints exist on the activity structure to ensure proper resource claiming,
such as that each resource is claimed and released no more than once, and that each action
on a resource is preceded by the claim of that resource and succeeded by the release of it.

For the purpose of performance analysis, timing is added to the static semantics. The
execution time of a node is given by the mapping function T : N — R . For the execution
time of a node n with M(n) = (a, p) for some a € A, p € P, a fixed execution time
T (n) = T, is assumed. The execution time of a node corresponding to the claim or release
of a resource is 0.

Given the execution time of nodes, the dynamic semantics of an activity are concisely
captured using (max, +) algebra. (max, +) algebra uses two operators, max and addition,

@ Springer

Discrete Event Dynamic Systems

(CR2,cl) (moveToPos1,CR2.XY) (CR2,r1)

O)) >@ @ >0
&/ N4 O/ o/
(PNT,cl) (moveDown,PNT.Z) (on,PNT.NZ) (off,PNT.NZ) (moveUp,PNT.Z) (PNT,rl)

Fig.5 Activity Paint_1_CR2, showing nodes and dependencies. Resource claims and releases are represented
by a clear circle, while action nodes are shaded. An incoming arrow represents a dependency on the source
node of the arrow. The number in an action node gives the execution time of the action

which correspond conveniently to two essential characteristics of the execution of an activ-
ity: synchronization while a node waits for all its dependencies to finish, and delay as the
node takes an amount of time to execute. Since activities are executed by system resources,
the timed state of the system can be expressed by a set of clocks indicating the avail-
ability time of resources. These clock values are collected in resource availability vector
yr : R — R™%°, whose elements express when each resource r € R is available and can
thus be claimed for the execution of an activity. Here, we use R~ = R U {—o0}. Opera-
tions max and + are defined as usually in algebra, with the additional convention that —oo
is the unit element of max: max(—oo, x) = max(x, —o0) = x, and the zero element of
4+ :—0c0o+x = x 4+ —00 = —00. We use —oo for resources that are not used by an activity,
such that there is no impact on the synchronization when taking the max over all resources.

Given a vector yg this allows the start and completion times of the nodes of an activity
to be uniquely defined.

Definition 2 (Start/completion time (van der Sanden et al. 2016)) Given activity Act =
(N, —) and resource availability vector yg, the start time start(n) and completion time
end(n) for each node n € N are given by

YrR(r), if M(n) = (r, cl)
for somer € R,

max end(n;,), otherwise,
nin€Pred(n)

end(n) = start(n) + T (n),

start(n)

where Pred(n) = {nj, € N | (njn, n) €—} 1is the set of predecessor nodes of node n.

As the dynamic semantics of an activity Act = (N, —) are uniquely defined by N, —,
and timing function T, the change of resource availability vector yg when an activity is
executed can be defined.

Definition 3 (Activity execution (van der Sanden et al. 2016)) Given activity Act =
(N, —), timing function 7', and resource availability vector yg, the new resource availabil-
ity vector after execution of Act is given by yr, whose elements are given by

) = Yr(r), ifr ¢ R(Act),

VR = end(n), if r € R(Act) A M(n) = (r,rl) forsomen € N,

where R(Act) ={r e R| (3n € N | M(n) = (r, cl))} is the set of resources used by Act.
Each resource that is used by an activity is first claimed and subsequently released. From
this it follows that if » € R(Act), there also exists a node n in the activity with M (n) =
(r,rl).

@ Springer

Discrete Event Dynamic Systems

The dynamics of an activity can be equivalently expressed using a (max, +) matrix mul-
tiplication of vector yg with an activity matrix M4, called the (max, +) characterization
of activity Act. An algorithm for the automatic computation of (max, +) characterizations
can be found in (Geilen 2010). Each entry M4, [i, j] captures the longest path in terms of
total execution time from the claim of resource j to the release of resource i.

Since (max, +) algebra is a linear algebra, it can be extended to matrices and vectors in
the usual way. Given m x p matrix A and p x n matrix B, the elements of the result of

(max, +) matrix multiplication A® B are determined by: [A ® B];; = rlgllz,l{&([A]ik—l—[B]kj).

The new resource availability vector after execution of an activity is computed by (max, +)
matrix multiplication y, = Mac ® yg. Here, maxj_ | (Mg + yx) is the new value of the i-
th element of yg after the update, where m is the size of yg. The dynamics of the execution
of a sequence of activities is then given by repeated matrix multiplication.

Example 2 Figure 6 shows the Gantt chart of activity Paint_1_CR2, of Example 1, given the
starting resource availability vector yg = [1, 0]T. Vector yj after execution of the activity
can be computed using matrix multiplication of the starting vector with (max, +) charac-
terization M 4., of the activity. The (1,2) element of My, for example, is determined by
summing the execution times of actions on the path from the claim of resource PNT to the
release of resource CR2, 2 + 2 4 1 = 5. After repeating this procedure for the other entries
of My, vector y can then be computed by

o001

Functional specifications of the system are expressed in terms of the order in which
activities can be executed, modeled as finite automata in which transitions are labeled with
activities. Supervisory control synthesis (Ramadge and Wonham 1987) can be used to obtain
an Activity-FA, which contains all allowed activity sequences. As the supervisor is not
aware of the inner structure of an activity, it may influence the order in which activities are
executed, but not the order of the actions within an activity.

Definition 4 (Activity-FA (van der Sanden et al. 2016)) An Activity-FA on Act is a tuple
(L, Act, 8, ly) where L is a finite, nonempty set of locations, Act is a nonempty set of
activities, § € L x Act x L is the transition relation, and [y € L is the initial location. Let

l A—C; !’ be a shorthand for (I, Act, 1) € 6.

From the Activity-FA, a (max, +) state space can be constructed that records the dif-
ferent timed configurations of the system. The (max,+) state space can be used for

CR2 moveToPosl

PNT moveDown NZ,on NZ,off | moveUp

-

0 1 2 3 4 5 6 7

Fig.6 Gantt chart of activity Paint_1_CR2 given starting vector yg = [1, 0]T

@ Springer

Discrete Event Dynamic Systems

performance analysis of the system. In principle, the (max, +) state space is infinite, which
jeopardizes performance analysis. To counter this, and because future behavior is affected
only by the relative timing differences of resources, and not by their absolute offset from the
initial configuration, the resource availability vector is normalized in each configuration.
This effectively collapses states that are equivalent in their timing differences, resulting in
the normalized (max, +) state space. Using ||y || = max; y; to denote the maximum element
of a vector y, the normalized resource availability vector is given by y®™ = yr — ||lyrll.
We use 0 to denote a vector with all zero-valued entries. In addition to the name of the
activity, transitions in the normalized (max, +) state space are labeled with the total exe-
cution time (or transit time) |[Mac; ® Yrll, which is the time added by activity Act to the
complete schedule given starting vector yz. We need to store the total execution time on the
transition, because configurations only capture the normalized availability times. After nor-
malization, the additional execution time that is added to the schedule cannot be retrieved
without explicitly storing this information, and precisely these execution times of activities
are needed to determine the throughput of the system.

Definition 5 (Normalized (max, 4) state space (van der Sanden et al. 2016)) Given
Activity-FA (L, Act, 8, ly), resource set R, and a (max, +) matrix M4, for each Acr €
Act, the normalized (max, +) state space is defined as a 3-tuple

(C,co, A),

where:

~ =L xR isasetof configurations consisting of a location and a normalized
resource availability vector,

- ¢o = (lp, 0) is the initial configuration,

- A CC xRxAct x C is the labeled transition relation consisting of the transitions in
the set

A.
LU yR)s vl Act, (I, y ™) [1251 A yh = M ® yr)-

3.2 Ratio games

Ratio games have been proposed for the computation of robust controllers in supervisory
control problems (Bloem et al. 2009; van der Sanden 2018). We will use these to compute a
robust optimal supervisor that is throughput-optimal given a partially-controllable system.

A ratio game is a two-player infinite game, played on a finite double-weighted directed
graph, where each edge has two associated non-negative weights wj(e) and wy(e). Each
turn of the game constitutes a move by one of the players of a unique pebble on a vertex in
the game over an edge to an adjacent vertex. The pebble indicates the current state of the
system. The two players have opposite goals: one player wants to maximize the ratio of the
sum of weights w; and w; in the limit of an infinite play, whereas the other player wants to
minimize it.

Definition 6 (Ratio game graph (van der Sanden 2018)) A ratio game graph I" is a 5-
tuple (V, E, wy, wa, (Vo, V1)), where GF = (V, E, w, wy) is a (double) weighted directed
graph and (Vp, V) partitions V into a set Vj, belonging to player 0, and V|, belonging to
player 1. Weighted graph G consists of a finite set V of vertices, aset E C V x V of edges,
and weight functions w1, ws : E — Rx(that assign two nonnegative real weights to edges.

@ Springer

Discrete Event Dynamic Systems

GT is assumed to be foral, meaning that for all v € V, there exists a v/ € V such that
(v, v') € E. Note that although V is partitioned into disjoint subsets V; and V; for players O
and 1, the game graph does not need to be bipartite. This means that a player may sometimes
make multiple consecutive moves, i.e., there may exist (v, v') € E with both v and v’ in
either Vy or Vj.

In an infinite game, two players move a pebble along the edges of the graph for infinitely
many rounds. Taking V¢ as the set of infinite sequences over V, a play m = vpvj... € V¥ is
an infinite sequence of vertices such that (v;, v;4+1) € E for all i > 0. A ratio game (Bloem
et al. 2009) is an infinite game played on a ratio game graph. The ratio of a play = is defined
as

1
. . L Wi (vi, Vi
Ratio() = lim liminf Z’*;" (Wi, Vit1) .
m—00 |—o00 | 4 Zi:m w2 (vi, Vig1)

A memoryless strategy o; for player i is a function o; : V; — V that defines a unique
successor o; (v) for every vertex v € V; such that (v, 0;(v)) € E. A play is consistent with
memoryless strategy o; of playeri if vj;| = o0;(v;) forall j > Oand v; € V;. Strategy o; of
player i is considered optimal if it achieves for all v € V the highest (lowest) ratio of a play
starting in v that is consistent with o; given the worst-case strategy by the opponent player.
It is shown in van der Sanden (2018) that in a ratio game there exist strategies og for player
0 and o7 for player 1 for which the ratios of consistent plays are equal and optimal. The
optimal (maximum) ratio that player O can achieve is thus equal to the optimal (minimum)
ratio that player 1 can achieve.

4 Modeling for uncontrollability

In this section, the concepts that we use to express uncontrollability in the Activity modeling
formalism are addressed. First, we show how the occurrence of activities outside the influ-
ence of the controller can be expressed. We then introduce the Activity-EFA, which extends
an Activity-FA with variables, that is used to model functionality based on resource avail-
ability times and system feedback. We highlight the application of the introduced concepts
on the Dice Factory system.

4.1 Controllability of activities

In supervisory control theory, a transition is typically labeled with an event from a nonempty
alphabet (Cassandras and Lafortune 2008; Ramadge and Wonham 1987). To express events
whose occurrence the supervisor cannot influence, but can observe and may wish to respond
to, the alphabet is in these theories partitioned into a set of controllable events, and a set of
uncontrollable events.

In the Activity-FA, each transition is labeled with an activity. We express uncontrolla-
bility in the same way as in supervisory control theory. The nonempty set Act of activities
is partitioned into a set Act. of controllable activities, and a set Act, of uncontrollable
activities. We consider uncontrollability only at the level of activities, so that we retain the
deterministic nature of an activity. Variations within an activity can be translated to a set
of corresponding deterministic activities that together capture all possibilities; hence, we
are not concerned with partitioning the set of actions into controllable and uncontrollable
actions.

@ Springer

Discrete Event Dynamic Systems

Example 3 In the Dice Factory, the choice of a paint pattern (1-6) is considered uncon-
trollable to the supervisor. Using uncontrollable activities, this can be modeled as shown
in Fig. 7. Here, the controllable Paint activity can contain shared system behavior that pre-
cedes the paint activity of any pattern, or can be an empty activity acting only as a command
followed by the painting of a pattern.

A supervisory controller is said to be controllable with respect to the system it acts on,
if it does not attempt to disable the occurrence of any uncontrollable activity that is other-
wise admissible in the system (see Cassandras and Lafortune 2008 for a formal definition).
It may, however, disable a controllable activity leading up to the uncontrollable activity,
effectively preventing the uncontrollable activity from becoming admissible in the system.

4.2 Activity-EFA

In previous work (van der Sanden et al. 2016), plants and specifications were modeled using
Activity-FAs. In this paper we wish to benefit from the use of variables to capture system
feedback from the lower abstraction level. This gives rise to the notion of an Activity-EFA,
which we formally introduce below. An extended finite automaton (EFA) (Skoldstam et al.
2007) is a finite automaton augmented with variables. Guard expressions and update func-
tions can be added, which restrict behavior depending on the variable values, and update
the variable values during a transition, respectively. An Activity-EFA is an EFA in which
transitions are labeled by activities.

Definition 7 (Activity-EFA) An Activity-EFA can be viewed as a 7-tuple,
(L, Act,8,V,G, U, (ly, vo)),

where L is the location set, Act is the alphabet (of activities),§ € L x G x Act x U x L is
the transition relation, V is a set of variables, G is a collection of Boolean expressions over
the variables, U is a collection of value assignments to the variables of the form x := e,
where x is a variable and e is an expression over the variables, and (I, vo) are the initial
location and valuation. We denote the collection of all valuations by Val(V). As shorthand

. .. . Ac
for a transition in the Activity-EFA, we write [—L;g/u I',wherel,l' e L, Act € Act,g € G
andu € U.

The meaning of an update x := e on a transition that is executed is that the new value
of the variable x is the value of the expression e evaluated with the values of the variables
prior to the execution of the transition. In literature such updates are also denoted x” = e.

For convenience, and to keep the size of the plant model manageable, typically a col-
lection, or network, of Activity-EFAs is used. Formally, the network of Activity-EFAs

Fig.7 Automaton of a paint Paint_1. Paint_2
- ==

sequence where controllable . .
activity Paint is followed by Paint_3, Paint.4,

uncontrollable paint activities Paint_5, Paint_6

1-6, which paint the patterns - - ~

— ~

corresponding to their numbers H(C)‘/\

~

=S

@ Springer

Paint

Discrete Event Dynamic Systems

represents a single Activity-EFA, which can be obtained by computing the full synchronous
composition (see Skoldstam et al. 2007) of the contained Activity-EFAs. Intuitively, in full
synchronous composition the automata synchronize on shared activities. If, in such a syn-
chronization, a variable is updated in both transitions, then these updates have to result in
the same value for the transition to take place (and the value of the variable is updated to that
value). If the variable is only updated by one of the transitions, then the variable changes
value according to that transition. Finally, if the variable is not updated by either transition,
then its value is not changed.

Variables can now also be used to capture feedback from lower abstraction levels, and
to represent resource availability times. In the timing analysis of the Activity modeling
formalism, the timed state of a system is expressed in terms of resource availability time
stamps in a vector yg. For each resource r € R, we now assume a variable 7, representing
the availability time of that resource, which we do not normalize for now. This enables the
description of functionality based on the timing information that they provide. As (max, +)
algebra is used for the computation of availability times, all 7, are defined on the domain
R~%°. When it is convenient to refer to these variables in vector form, we will continue to
denote this by yr.

Timing variables are special for two reasons: we get their updates for free from the timing
characterization of an activity, and we wish to normalize their values after each update in
the performance analysis methods.

Example 4 In the time dependency problem of the Dice Factory (Fig. 4), two resources are
shown: cart 2 and the paint station. For each resource we assume an availability time stamp
variable, which we denote by tcg2 and tpyT, respectively. Let us assume, as we will later
show, that the indicated finish time of the parallel activities on the Mill side is reflected by
the availability time stamp of a third resource, the mill station. We denote its variable by
TMIL-

The values of resource time stamps are updated by (max, 4+) multiplication. For any
transition in the Activity-EFA, multiplication matrix M is given by (max, 4+) characteri-
zation My, of the corresponding activity. These can be automatically computed from the
structure of the activity and timing function 7" on the nodes of the activity, as pointed out in
Section 3.1. Note that the number of rows and columns in the matrix is equal to the number
of resources in the system. If some resource is not used, value —oo is used for the corre-
sponding rows and columns, except on the diagonal of the matrix where value 0 is added.
Timing updates thus require no additional effort from the modeler. Given a vector yg of
timing variables and some matrix M4, a timing update is written as yg := M ® yr.

Example 5 Given a vector of resource time variables yg = [tcr2, TpnNT, Tm1L]T, the
timing characterization of activity Paint_1_CR2, shown in Fig. 5, is given by

5 5 —o0
Mpaincicrz2=| 6 6 —o0
—o00 —o0 0

The corresponding update of these timing variables for activity Paint_1_CR2 is then shown
in Fig. 8. Going forward, we will hide the updates of timing variables in our models and
assume they are all automatically determined this way.

@ Springer

Discrete Event Dynamic Systems

Paint_1_CR2

YR = Mpaint_1.cR2 ® TR

Fig. 8 Update of timing variables yg = [tcr2, TPNT, TmiL]T for activity Paint_1_CR2 in the Dice Factory
system

Note that we do not normalize the resource availability time stamps at this point. Nor-
malization discards the absolute time offset between consecutive transitions, which denotes
the duration of an activity during performance analysis. It is therefore necessary to preserve
this information until a state space for performance analysis is constructed. We must, how-
ever, account for normalization if we wish to ensure that the meaning of a guard on timing
variables does not change when these variables are normalized. A meaningful guard involv-
ing timing variables is therefore an expression over the difference between two of these
variables, as the difference between timing variables is not altered by normalization.

Example 6 The time dependency problem of the Dice Factory (Fig. 4) relates to the timing
difference between the end of the Mill and Paint operations. This is expressed as guards
using the difference between timing variables ty77; and tpyr in Fig. 9. Note that this is
a simplified example; the application of a guard for this problem in a practical setting is
further discussed in Section 6.

4.3 Synthesis

Given these building blocks, our method to construct the Supervisor Activity-EFA, which
contains all allowed activity sequences including time-dependent and feedback-dependent
behavior, is shown in Fig. 10. As the domain of the non-normalized variables represent-
ing the resource availability times is potentially infinite, we choose a two-step approach to
construct the supervisor. In the first step, the timing variables are stripped from the Plant
and Specification Activity-EFAs. In case timing variables have been used in relation to
other variables, these must also be removed. Note that other variables may be maintained,
so long as they are supported by the used synthesis method. On the resulting Untimed
Activity-EFAs, we apply supervisory controller synthesis of EFAs (Ouedraogo et al. 2011)
to compute an Untimed Activity-EFA, which contains activity sequences in which the omit-
ted timing variables are neglected. This Untimed Activity-EFA acts as an intermediary and
is augmented in the second step with the omitted variables and their guards and updates to
form the Supervisor Activity-EFA. We can add these variables by computing the full syn-
chronous composition (Skoldstam et al. 2007) of the Untimed Activity-EFA and the original
Plant and Specification Activity-EFAs.

Move_PaintToWaitHi

Move_PaintToExch Move_PaintToWaitLo

TmiL — TenT <0 TmiL — TpNT 2> 0

Fig.9 Example of a guard on the difference of timing variables

@ Springer

Discrete Event Dynamic Systems

Plant and Specification Activity-EFAs

I
strip timing variables

Untimed Activity-EFAs

controller synthesis

Untimed Activity-EFA Supervisor Activity-EFA

\4
full

—>» synchronous —|
composition

Timing

Fig. 10 Overview of the method to construct the Supervisor Activity-EFA

The removal of some variables before the application of synthesis, and the addition of
them in the resulting supervisor, potentially has an effect on the controllability and non-
blockingness properties achieved by synthesis. If we only remove variables with guards
on transitions with controllable activities in specifications, controllability of the supervisor
with respect to the original plant and specification Activity-EFAs is guaranteed.

Nonblockingness of the supervisor, however, cannot be guaranteed. Methods found in
the literature (Voronov and Akesson 2009; Mohajerani et al. 2016) can be used to verify
nonblockingness of the supervisor.

In the proposed approach the modelling of the behaviour of the system is split into
two levels. Synthesis is only applied to the models of the higher abstraction level as
these are relatively small. In literature there are methods for synthesizing supervisory
controllers that utilize abstractions and decompositions such as hierarchical (Zhong and
Wonham 1990), decentralized (Feng and Wonham 2008), and multilevel supervisory con-
trol synthesis (Komenda et al. 2016). A clear difference with our approach is that in
our approach the activities of the higher abstraction level are defined in terms of the
lower-level actions, whereas in the other approaches there is no such notion of activity
refinement.

4.4 Configuration space
As before, we construct a state space in terms of the system configurations, this time starting

from the Supervisor Activity-EFA. The constructed configuration space can be used for
performance analysis.

@ Springer

Discrete Event Dynamic Systems

Definition 8 (Configuration space) Given an Activity-EFA (L, Act, 8, V, G, U, (ly, vo)),
the configuration space is defined as a 3-tuple

(C,co, 4), (D
where:

— C =L x Val(V) is the (possibly infinite) set of configurations consisting of a location
and a valuation of variables;

- ¢o = (lp, vo) is the initial configuration;

- A CC xRx Act x C is the transition relation consisting of the transitions in the set

{({l,v), 0, Act, (I',v) | Gl Igg/u I es|
gW) AV =u@) A0 = lygll — llvrlD},

in which y is a vector of the timing values in v, before the transition, and y,/e is the
corresponding vector in v, after the transition.

A configuration refers to both a location in the EFA and a valuation of the variables.
When a transition is taken, the variable values in the new configuration are updated accord-
ing to the specified update function. As before, the timing variables are used to determine the
transit time 6 of a transition, which expresses by how much the largest resource availabil-
ity time has shifted by the execution of an activity. The transit time is used in performance
analysis to determine the duration of an activity sequence.

Variables in V may be defined on a possibly infinite domain, potentially leading to an
infinite configuration space L x Val(V). For example, consider a counter variable that is
incremented for each finished product in a cyclic production process. Many performance
analysis and optimization algorithms, including the ratio games we wish to employ, require
a finite solution space to terminate (Brim et al. 2011; van der Sanden 2018). By instead
defining variables on a finite domain, we can ensure a finite configuration space for perfor-
mance analysis. This does not restrict our modeling efforts in many practical situations. An
infinite counter variable may be replaced by a counter that can only go up to a feasible num-
ber of products in a shift. Even values from sensors can normally be expressed on a finite
domain, as sensors have a finite precision and their values are typically discretized. From
now on, we assume that all non-timing variables are defined on a finite domain.

Normalization of the timing variables, as used in the construction of the normalized
(max, +) state space (Definition 5), serves the same purpose. Using normalization, it has
been shown that the normalized (max, +) state space remains finite under the condition
that each cycle contains a dependency on each of the resources at least once, i.e., no part of
the system evolves completely independently of another part (Geilen and Stuijk 2010). We
denote normalization of the timing variables in a valuation v by v,

Normalization affects the evaluation of guards on timing variables, as the meaning
of their absolute values is no longer clear. It is easily shown that the relative difference
between timing variables is invariant under normalization. Suppose we take the difference
between the values v, ; and v, > of two timing variables in the same valuation v, and apply
normalization using a value ||y ||, then

norm norm

N R ! (er = llyID = (e2 = liv D

= VUr,] — Vr,2.

v

A finite state space can now be constructed for performance analysis of the system.

@ Springer

Discrete Event Dynamic Systems

Definition 9 (Normalized configuration space) Given an Activity-EFA (L, Act, 8, V,
G, U, (lp, vo)), the normalized configuration space is defined as a triple

(C, co, A), @)
where:

— C = L x Val(V) is the finite set of configurations consisting of a location and a
valuation;

— ¢o = (lp, vo) is the initial configuration;

— A CC xR x Act x C is the transition relation consisting of the transitions in the set

(L 0), 0, Act, (I, w™™) | @1 1 €5

g Aw=u@) A0 =lyglD},

in which V;e is the non-normalized vector of timing values in w, and 6 = ||)/1’2 II.

Notice that the Activity-FA and timing characterization of the original formalism
are embedded in the definition of an Activity-EFA. To see this, given an Activity-FA
(L, Act, 8, ly), resource set R, and (max, +) matrices M4.; for each Act € Act, construct
the Activity-EFA by introducing a timing variable for each resource r € R, and adding an
update yg := My ® yr for each edge labeled by activity Act. Any Activity-FA may thus
equivalently be expressed as an Activity-EFA and gain the ability to express functionality
based on timing or other variables.

5 Robust optimal supervisor design

A reachable cycle in the configuration space relates to the periodic execution of the system.
Each transition in the configuration space is equipped with a transit time that describes the
time that is added by executing the activity on the resources (see Definitions 8 and 9). The
value can also be 0, if the activity does not add time to the total execution of the activity
sequence. To illustrate, consider a system with two resources R1 and R2 that are initially
available in state so. First, we execute an activity with one action on resource R1 that takes
5 time units and go to state s1. This activity will have a transit time of 5. Then, we execute
another activity with one action on resource R2 that takes 4 time units. This activity will
have a transit time of O from s, since no additional time is added to the total execution.
However, if we would execute the activity from sp, the transit time will be 4, since 4 time
units are added to the schedule.

A second value is assigned to each transition, which we call the reward of the transition.
The reward can be used to describe progress. For instance, we can assign a reward to each
activity that delivers a finished product. In the synthesis step marked states have been used
for modelling the progress of the system. This role is taken over by the rewards on transi-
tions. It is expected (and confirmed in the case study) that transitions with (higher/positive)
rewards and marked states are closely connected. The transit time of a cycle equals the sum
of the transit times of the transitions of the cycle, and the reward of a cycle equals the sum
of the rewards. We define the cycle ratio as its reward divided by its transit time.? Optimal

2In a manufacturing system, throughput refers to the number of produced products per unit of time. In this
context, we can assign a reward of value 1 to each edge associated with an activity that delivers a finished
product. The cycle ratio then equals the throughput of the system when operating on that cycle.

@ Springer

Discrete Event Dynamic Systems

cycle ratio algorithms (Dasdan 2004; Geilen and Stuijk 2010) can be used to find cycles in
the system with the highest value, or the lowest value for the cycle ratio. These cycles relate
to best-case, or worst-case system performance.

The partitioning of activities into controllable and uncontrollable activities allows us to
consider new scenarios. It is likely that we wish to design a controller that attains the highest
achievable performance by directing system execution to an optimal cycle. It may do so by
dictating the choice of controllable activities. Uncontrollable activities act as a disturbance,
which may aid system performance if they lead to a higher cycle ratio, or hurt performance if
they lead to a lower cycle ratio. Viewed this way, the highest cycle ratio that can be achieved
by the controller, given worst-case uncontrollable disturbances, determines a guarantee to
the lower bound of periodic system performance. In this paper we call such a controller a
robust throughput-optimal controller.

The challenge is now to find a controller that makes optimal choices. We are interested
in two results: i) a guarantee to the achievable lower-bound system performance, and ii) an
optimal controller that is robust to uncontrollable behavior, i.e., it makes optimal choices
regardless of the occurrence of uncontrollable disturbances. The structure of this challenge
corresponds well to the ratio games that were introduced in Section 3.2. Recall that the
result of a ratio game are optimal strategies for player 1 and player 2, given that one player
aims to achieve the highest ratio, and the other player aims to achieve the lowest ratio. In our
challenge, player 1 is the controller, who controls the moves on edges with a controllable
activity, and whose aim is to achieve the highest cycle ratio. Player 2 is the environment, who
controls the moves on edges with an uncontrollable activity and aims to achieve the lowest
cycle ratio. Optimal strategies then relate to the the best achievable controller performance
given worst-case disturbances. We give some examples to illustrate the expected results.

Example 7 Consider the system represented given in Fig. 11 with only activity ¢ uncontrol-
lable. Consider the situation that all activities have a reward of 1. Furthermore activity b has
a transit time of 1, activity ¢ has a transit time of 3, and activity e has a transit time of 2. All
other transit times are 0. Although the cycle with the highest ratio between reward and tran-
sit times is ab (with ratio 2/1), this is not the cycle with the highest guaranteed ratio since in
state 2 the environment can decide to execute activity ¢ which brings the ratio down to 2/3.
The cycle with activities d and e has a ratio of 2/2 (and the environment cannot do anything
to negatively influence this). Therefore, as we are pursuing the highest guaranteed ratio, the
controller should enable d in state 1 (thereby effectively preventing to reach state 2 where
possibly uncontrollable activity ¢ could have its detrimental effect on the achieved ratio).

Example 8 If we now consider the same system but with b uncontrollable and ¢ controllable
(see Fig. 12), the situation arises where the highest ratio cycle containing a and b requires
co-operation of the environment by actually executing the uncontrollable event. We do not
want to rely on this and therefore our approach should in such cases, a state with both

1 1
dg aq

1 1
€2 by

Fig. 11 System where the throughput-optimal behaviour does not constitute the cycle with the highest ratio.
The rewards of the activities are indicated by a superscript and the transit times as a subscript

@ Springer

Discrete Event Dynamic Systems

1 1
€2 by

Fig. 12 System where the cycle with the highest ratio involves a choice for an uncontrollable activity. The
cycle that has highest ratio involves an uncontrollable activity from a location that also allows controllable
activities

controllable and uncontrollable activities, always select a controllable activity (for the case
that the environment decides not to execute the uncontrollable activity).

A ratio game requires a graph whose vertices are partitioned into vertices controlled
by player 1, and vertices controlled by player 2. The graph structure of the configura-
tion space is typically not partitioned in this way, as from any state there may exist both
controllable and uncontrollable transitions to another location (see state 2 in Fig. 11 for
example). We must therefore introduce a partitioning. Given that a characteristic property
of uncontrollable behavior is that it may not be blocked by a controller, we assume a pri-
ority of uncontrollable behavior over controllable behavior. In our game setting, this can
be interpreted as the rule that at each turn in which both players can make a move, the
player who commands the uncontrollable moves may make a move first. This player may
equally choose to pass its turn to the other player, at which point the player in charge of the
controllable moves may make a move.

We introduce a new uncontrollable activity t ¢ Act which is the ‘pass a turn’ activity.
No variables are updated by execution of this activity and hence variable values do not
change when it is executed. In the game graph, the reward and transit time of t are both 0.
For a location ¢ in which both a controllable and an uncontrollable transition are possible,
we introduce a new location ¢ and a transition (g, 7, ¢) so that location g can be reached
via the ‘pass a turn’ move. Transitions from location ¢ labeled with a controllable activity
are removed from location ¢ and added to location g.

Example 9 Consider the example system of Fig. 13a, where from state g there are two con-
trollable transitions a and b, and one uncontrollable transition c. To partition the system, a

©) ®
B
‘)@»_cj—_ _) ~c

N N

® ®
(b) ©)

Fig. 13 Partitioning of a transition system with competing controllable and uncontrollable players. Figure a
shows the system before partitioning. Figure b shows the system after partitioning with the thick arrow
indicating the optimal controller choice. Figure ¢ shows the resulting robust optimal controller

@ Springer

Discrete Event Dynamic Systems

transition (g, 7, ¢) is added and transitions (¢, a, 1) and (g, b, 2) are replaced by transitions
(g,a, 1) and (g, b, 2). The uncontrollable transition is maintained at the original location.
We end up with the partitioned system shown in Fig. 13b.

Ratio game algorithms (van der Sanden 2018) can be applied to the partitioned config-
uration space where rewards and transit times are assigned as weights w; and w, to the
transitions. A guarantee to the achievable periodic system performance is given by the ratio
of a reachable cycle consistent with the computed optimal strategies of both players. The
chosen values of reward and transit time for t ensure that its introduction does not affect
the computed ratio.

A play consistent with the strategies of both players gives us one periodic sequence of
activities. For our controller, we are interested in all activity sequences in which the con-
troller follows an optimal strategy for any behaviour of the uncontrollable environment.
To compute this controller, we start with the partitioned configuration space S and opti-
mal controller strategy o.. Recall that o, defines a unique successor ¢’ = o.(c) for each
c € C where C¢’? contains the configurations under the control of the controller. From
each such configuration, we remove the outgoing controllable transitions that are not consis-
tent with optimal controller strategy o, such that ¢’ = o.(c) for every remaining transition
(c, 0, Act,¢’) € A of S where ¢ € C°®. All uncontrollable transitions are retained since
we want to keep all possible uncontrollable behavior. As we do not observe the artificial
activity t in our original system, we use the natural projection (Cassandras and Lafortune
2008) P : Act™ — Act, where Act™ = Act U {t}, to project out t from the configuration
space. This effectively erases all transitions labeled with T and maps back the remaining
transitions of each artificially introduced location ¢’ to their original location g. Finally,
we can compute the reachable subautomaton (Cassandras and Lafortune 2008) to obtain
the supervisory controller that is minimal (i.e., prohibits all but one controllable enabled
activity in each state), controllable, and throughput-optimal in the presence of uncon-
trollable behavior. We call this the robust throughput-optimal controller, as it determines
throughput-optimal controller choices while respecting the occurrence of uncontrollable
behavior.

Example 10 The optimal controller strategy of the partitioned system in Fig. 13b chooses
(g, a, 1), as indicated by the thick arrow. To compute the robust throughput-optimal con-
troller, (g, b, 2) is removed as it is not consistent with the optimal controller strategy. Both
uncontrollable transitions from location ¢ are kept. The natural projection P : Act™ — Act
removes T and maps ¢ onto g. As location 2 is no longer reachable after (g, b, 2) was
removed, it is not present when we compute the reachable subautomaton. The result of these
steps is the robust optimal controller of Fig. 13c.

In locations that have both outgoing transitions labelled with controllable and uncontrol-
lable events, always at least one controllable event is maintained, even though “selection”
of the uncontrollable event may correspond with the optimal throughput. This choice is jus-
tified by the observation that uncontrollable events (such as a failure) may as well not occur
at all, in which case there is no progress anymore.

Note that even in cases where the supervisory controller obtained from synthesis is non-
blocking, the resulting optimal controller is not necessarily nonblocking. As mentioned
previously, it is assumed that the rewards of transitions are such that progress is achieved in
the optimal controller.

@ Springer

Discrete Event Dynamic Systems

6 Case study: Dice Factory

In this section we show how our approach is used for the synthesis of a throughput-optimal
supervisor for a partially-controllable manufacturing system. We do this by systematically
describing the components of our modeling method (Fig. 1) and applying the performance
analysis methods of Section 5. As a case study we take the Dice Factory system that was
introduced in Section 2, which we now look at in more detail. Figure 14 shows the system
with all components.

6.1 System description

The Dice Factory contains five resources. Two carts (CR1 and CR2) transport dice in the
system. A load robot (LR) is used to put an unfinished die from the input buffer onto a
waiting cart, and to pick a processed die from a cart and put it in the output buffer. The other
two resources are the processing stations: the mill station (MIL), which mills holes in a side
of a die, and the paint station (PNT), which fills the holes with a colored substance.

The two functionally equivalent carts have a single peripheral: an undercarriage (XY),
which moves the cart to a position in the XY-plane. The load robot has two peripherals: an
arm (X), which moves to and from a waiting cart, and a clamp, which grips the die when the
arm is moving. The mill station has two peripherals, an R-motor (R), which rotates the mill
cutter, and a Z-motor (Z), which moves the mill cutter up and down. The paint station has a
nozzle (NZ), which turns on and off to release paint, and a Z-motor, which moves the nozzle
to and from the die. Note that the mill and paint stations are fixed in the XY-plane and the
carts move during processing to correctly position the die for a mill or paint operation.

6.2 Activities

There are twelve production activities: six milling activities, one for each possible value of
a side of a die, and six corresponding painting activities. We denote the milling and painting
activities by Mill_N and Paint_N, where N = {1, 2, ..., 6} corresponds to the value that is
milled or painted. Two additional activities, Paint and Mill, are used to control the execution
of the respective production activities, which we shall consider later.

In/Out Mill WaitLo ExchMil ExchPnt WaitLo Paint

Fig. 14 Top-down view of the Dice Factory manufacturing system with two carts (CR1 and CR2), two
production stages (MIL and PNT) and a load robot (LR). Resource names are shown in shaded circles,
peripherals are indicated by arrows and rounded rectangles with their names, and dashed outlines indicate
logical positions which are labeled below or above the position

@ Springer

Discrete Event Dynamic Systems

The production activities operate on either cart 1 or cart 2. The CartExchange activity
works on both carts as they are moved simultaneously. Finally, there are several Move_
activities by cart 1 and cart 2 that move the respective cart from one position to another. The
labeled positions are shown in Fig. 14 as dashed cart outlines.

Since the two carts are modeled as separate resources, we define individual activities for
each cart. As they are functionally equivalent, we define their activities once and use the
following notation to refer to the activity executed by cart 1 or cart 2. Given a cart activity
Act, the set Act_x = {Act_CR1, Act_CR2} contains activity Act executed by cart 1 and by
cart 2.

All activities are defined by denoting the resources, actions, and dependencies between
actions, as outlined in Section 3. As an example, recall activity Paint_.1_CR1 for cart 1,
shown in Fig. 5, which paints a die on cart 1. The full set of activities is listed in Table 1;
activity structures of individual activities are available in (van Putten 2018).

6.3 Plants and specifications

For the description of allowed activity sequences, we model the system as a set of automata
of which transitions are labeled with the activities. We first define a set of plant automata
that define all admissible, if not necessarily desired, behavior. These are complemented
with specifications that enforce the functional specification of our system. As mentioned
before, full synchronous composition is used for composing the automata in the set so that
execution of shared activities is synchronous.

6.3.1 Plants

The possible behavior of carts 1 and 2 is modeled by two similar plant automata, that differ
only in their initial locations. Cart 1 is initially on the Mill stage at location arMill, while cart
2 starts on the Paint stage at location atPaint. The automaton of a cart is shown in Fig. 15,
where the initial locations of carts 1 and 2 have been marked.

In addition to the cart models, the plant contains two automata that model the Mill and
Paint stations, as introduced in Section 2. These station plants, shown in Fig. 16a and b,
respectively, allow for different patterns to be milled and painted. As before, we assume the
choice of a pattern is uncontrollable. Taking the Paint station as an example, controllable
activity Paint_i starts the operation and is followed by one of six uncontrollable activities,
Paint_N _i, which finish the operation. This way, the controller may choose when to start
a paint operation, but has no control over which paint operation is subsequently executed.
To reflect this, activity Paint_i contains no actions so that it does not affect the resource

Table 1 Activities of the Dice Factory system

CartExchange Move_ToMill_x Move_ToPaint_x
LimpCartExchange Move_MillToExch_x Move_PaintToExch_x
Mill_x Move_MillToWaitHi_x Move_PaintToWaitHi_»
Mill_N _x Move_MillToWaitLo_% Move_PaintToWaitLo_x
Paint_x Move_WaitMillToExch_* Move_WaitPaintToExch_x
Paint_N _x Move_ToInOut_x PickFromIn_%
PutOnOut_x

@ Springer

Discrete Event Dynamic Systems

Mill_4 Paint_i

atMill Move_Mill ToWaitHi_i

Move_MillToWaitLo_i
Move_PaintToWaitHi_i
Move_PaintToWaitLo_i
atWaitMill
Move_MillToExch_i

Move_WaitMillToExch_i
Move_ToPaint_i

Move_PaintToExch\
atWaitPaint

Move_ToMill_¢
CartExchange
LimpCartExchang

Move_WaitPaintToExch_i

PickFromIn_i Move_ToInOut_i
PutOnOut_s

atInOut atExchMill atExchPaint

CartExchange
LimpCartExchange

Fig. 15 Plant automaton of cart i, where i can be 1 or 2. The initial locations of carts 1 and 2 are marked by
shaded circles labeled 1 and 2, respectively

availability times. Activities Paint_N _i contain the actions that constitute the paint operation
(see for example Paint_1_CR1 in Fig. 5). In our example we assume that a larger value for
N results in a larger transit time for the activity, as more holes are milled or painted.

Because the system contains five resources, there are five (max, +) variables available
with timed information. We denote these by Ty, TpNT, TCR1, Tcr2 and T g according to
the respective resource identifiers. The update of (max, +) variables during a transition is
given by the (max, +) matrix of the corresponding activity, as explained in Section 4.2.

We add two additional variables to represent the real-valued y-coordinates of cart 1 and
cart 2, which we denote by y; and y,. As the system is modeled using a finite number of
positions for the carts, these variables can take on a finite number of values. For their update
functions, we consider the milling and painting production activities, as these affect the y-
coordinate of a cart. Since the new y-coordinate is determined solely by the execution of an
activity, we apply the corresponding value as a fixed assignment to each transition labeled
with the activity. Because we use full synchronous composition, this is easily achieved using
the automata shown in Fig. 17.

Mill_.1_CR1 Mill_.1_CR2 Paint_1_CR1 Paint_1_CR2
Mill_2_CR1 Mill_2_.CR2 Paint_2_CR1 Paint_2_CR2
Mill_.3_CR1 Mill_3_.CR2 Paint_3_CR1 Paint_3_CR2
Mill 4_CR1 Mill_4_CR2 Paint_4_CR1 Paint_4_CR2
Mill_5_CR1 Mill_5_CR2 Paint_5_CR1 Paint_5_CR2

Mill__6__CR1

Mill_.6_CR2 Paint_6_CR1 Paint_6_CR2

0 ol e
Mill_.CR1 Mill_CR2 Paint_CR1 Paint_CR2
Move_MillToExch_* Move_PaintToExch_x
Move_MillToWaitHi_* Move_PaintToWaitHi_x
Move_MillToWaitLo_x Move_PaintToWaitLo_x
(a) (b)

Fig. 16 Plant automata of the Mill station (a) and Paint station (b), which allow for six patterns to be milled
and painted

@ Springer

Discrete Event Dynamic Systems

Mill_1_4, Mill_5_3, Mill_ 43, Mill_6_1, Move_MillToWaitHi_i
Paint_1_i, Paint_5_¢ Paint_4_i, Paint_6_¢ Move_PaintToWaitHi_i
gyi :=0.0 &;y, = —1.0 gyl = 2.0

(a) (b) (c)

Move_MillToExch_i
Move_WaitMillToExch_i

Mill 24, Mill 3., Move_MillToWaitLo_i Move_Paint ToExch_i
Paint_2_i, Paint_3.¢ Move_PaintToWaitLo_i Move_WaitPaint ToExch_i
Qyi :=1.0 Qyz = —2.0 Qyz :=0.0
(d) (e) ()

Fig. 17 Updates of variable y; in the Dice Factory plant

6.3.2 Specifications

The plant model is complemented by specifications that enforce the correct sequence of
activities in a production cycle, and the activity orderings based on timing information of the
resources and position information of the carts. These specifications are shown in Figs. 18,
19 and 20. The specifications in Fig. 18a and b ensure that a die is processed by one mill or
paint operation before it is moved along. The specifications in Fig. 18c and d ensure that the
carts are not exchanged before a mill and paint operation have taken place. The specification
in Fig. 18e avoids product collisions by enforcing that a die must be put on the output buffer
before a new die can be picked up for processing. The specification in Fig. 18f ensures that
the cart exchange cannot take place before both carts are ready to be exchanged.

As discussed in Section 2, the exchange disc is sensitive to unbalanced loading and con-
tains an emergency “limp” mode, which slows down its operation to protect sensitive parts
if it has been subjected to an unbalanced load. We now assume that this mode is activated
when the two carts enter the exchange disc more than two seconds apart. This is modeled
in the specification of Fig. 19 by adding a guard that compares the availability times of
the two cart resources. Note that according to the cart plants of Fig. 15, a cart exchange is
only allowed after both carts have entered the exchange disc. Clock values tcg1 and tcr2
therefore always refer to the time of arrival of the two carts at any point that the guard is
evaluated, namely when a CartExchange activity is enabled. Notice that the system, when
modeled this way, allows some freedom to influence the values of tcr; and tc g2 to avoid
the “limp” mode, by the appropriate choice of a (faster) direct move onto the exchange disc,
or via a wait position. We will see in Section 6.5 how this is automatically achieved for dif-
ferent combinations of occurrence of the uncontrollable Mill_N _x and Paint_N _* activities,
using the presented throughput optimization methods.

In the presented case study, we have modeled the plants conveniently, such that the state
of the resources is clear when the guard is evaluated. We may therefore access their clocks
and receive the time at which their operation finished. In general, the meaning of a clock
value for use in a guard can be ambiguous. For example, the cart resources are used in
several activities, and the meaning of the value of their clocks for use in specifications can
depend on which of these activities is last executed. In these cases, it is useful to introduce a
new resource, which we call a virtual resource. We can synchronize the clock of this virtual
resource with some other resource by defining a dependency on it at the point of interest

@ Springer

Discrete Event Dynamic Systems

Mill_* Paint_x
Move_MillToExch_x Move_PaintToExch_x
Move_MillToWaitHi_x Move_PaintToWaitHi_x
Move_MillToWaitLo_x Move_PaintToWaitLo_x
(a) Mill procedure. (b) Paint procedure.
CartExchange CartExchange
LimpCartExchange LimpCartExchange
Move_ToInOut_x Move_ToPaint_*
(c) Exchange finish, mill (d) Exchange finish,
side. paint side.

Move_MillToExch_x
Move_WaitMillToExch_x

Move_PaintToExch_x
Move_WaitPaint ToExch_x

CartExchange Aé
J— LimpCartExchange 7

PutOnOut_x Move_Mill ToExch_+
Move_WaitMillToExch_x

PickFromIn_x
Move_PaintToExch_x
Move_ToMill % Move_WaitPaint ToExch_x

(e) Input-output sequence. (f) Exchange entry procedure.

Fig. 18 Specification automata that enforce the production life cycle

in an activity. As the clock of the virtual resource is decoupled from the original resource,
we can access its value at a later time, even if the clock of the original resource changes
with subsequent activities. This allows for concise and meaningful descriptions using clock
values.

To capture the choice between the high and low wait positions, as introduced in Section 2,
we use the specification shown in Fig. 20. This specification ensures that a cart moves to
the correct wait position depending on the value of its y-coordinate. It describes only which

—2.0 < 7¢r1 — Tore < 2.0

CartExchange
Fig.19 Specification that enforces an emergency limp mode on the cart exchange procedure by conditionally

disabling the regular CartExchange activity, which is disabled when the time difference between the moments
at which both carts have entered the exchange disc exceeds a threshold of 2.0 [s]

@ Springer

Discrete Event Dynamic Systems

wait position is allowed; it does not denote if a move to a wait position is at all enabled. As
the move to a wait position is only available immediately after a mill or paint operation, the
value of the y-coordinate is determined by the end position of the Mill and Paint activities.
For the values of y given earlier, this means, for example, that a cart may only move to the
lower waiting position after activity Paint_6, whereas it may move to either wait position
after activity Paint_1.

6.4 Constructing the supervisor activity-EFA

Given the model components specified in the previous sections, we construct the supervisor
using the approach shown in Fig. 10. First, we strip the guards and updates associated with
timing variables t,, of each resource r € R, from the plants and specifications of Figs. 15—
20. Supervisory controller synthesis on these stripped plants and specifications gives the
intermediary Untimed Activity-EFA. This EFA is more permissive compared to the mod-
eled specifications, as the guards of the EFAs in Figs. 19 and 20 have been disregarded.
We add back these guards, as well as the updates of timing variables ., by computing
the full synchronous composition of the Untimed Activity-EFA and the original plants and
specifications. This gives us the Supervisor Activity-EFA, which contains the allowed sys-
tem behavior including timing and state feedback dependency. As the stripped guards only
occurred in relation to controllable activities, as mentioned in Section 4.3, the resulting
supervisor is controllable.

The synthesis step is performed on Activity-EFAs that only consider the activity level,
abstracting from all the interleavings of constituent actions. This has a big impact in terms of
scalability of the approach, since an EFA at action level is often too big to fit in memory (van
der Sanden et al. 2016). Moreover, the timing is at this point not yet relevant, and also
abstracted from.

6.5 Performance analysis

The normalized configuration space is computed by eliminating variables from the con-
structed supervisor, and the methods of Section 5 are used to obtain the robust throughput-
optimal controller. This controller and the configuration space are too large to be shown.
Therefore, for the purpose of illustration, Fig. 21 shows the activity sequences of the con-
troller for a system in which the choice of patterns is limited to either 1 or 6. Note that the
activity sequences of the controller can always be traced back to the Supervisor Activity-
EFA, which we have chosen to do here for the purpose of visibility. Activity sequences of
the Supervisor Activity-EFA that are rejected by the computed controller are shown in the
background to provide some reference.

Fig. 20 Specification for the Move_MillToWaitHi_i

choice of a wait position based Move_PaintToWaitHi_z
on cart position y;

Move_MillToWaitLo_i
Move_Paint ToWaitLo_i

@ Springer

Discrete Event Dynamic Systems

EBMTTTH SACK D)

 UOXHOIAUTEd SAOH

ureq ko ¥ 3utedol 240 AN
@ ZaONHEO10TI TN T T TH_2agpT) Q X o e S B
3 TZao dTao ohudhsg §9Ioutor enon
" i RiD INOUIOL SAOK
2¥D OTITEMOLTTTW SAOW HOLIUTed SAON
o ' CeMOLTTTH SAOW N0 Anouzor saoufs)

28D UOXHOLTTTW SA0W

D) 207t ayed £)
V 28 UOXHOLTTTH 240f Ged)) = a9 N\gTed
T¥D 9" JuTed W Indgoand
= @ Ve g0 3nou0Ing
T T_aury =
ﬁmo L e ST T RO INou0INg

ZaDN\g JuTed -

R %

Aomkea p
\ o Juted

ko T T (= M Aures Q

20 uTwoINOTd
(@<= 30 uTWOTI\OTA (g
\ s e)

/ 10 Juted N.%] u.ﬁm,_”m LT = a

40 TTTIWOL 2AOW

IO TTTHOL SA0W| _
D TTTHOL SAOW

i0 T Jur%e
> L1y o v furea
)

¥ TTTH

- - ¥ TTTH
TTTHOL 2A0K
T4 TTTH
e w223 ¥
oY uted
= b O Py
o 10 UTWOIANOTA ZaD lyoxgordured snon
ZuD UTWOIIPTA g, T T TITH
\@ I~ _ _ - 1 r - —
TaD"9 Wuted T¥D IUTRGOL 2A0H P e | T T
L 2uD UOXEOLIYTEg FAON F 5
— No T 3urey by . () — 280 T Yped _
@ = ()= 223 Haurea
D AT S200 O
14D UPXHOLTTTW 940K £ -
= = BO 0T TENOLTTTH 40K
THO UOXEOLTTIW 2aof’ (7 23D YOXHOLIUIEG~ERON - -
Z¥D” INOUOING' ﬁ G D THITEMOLTTTW SAOW

THD UPXHOLOTATEMTTTH 24
2¥D 1 ;uxmoeﬁ: G

ebueyoXEITED

S C R e
TH5 auTedoL SAOWZND ;uxmoinlq. Suidason) .
Z¥0 YOXTOLOTATEMAUTRd 940K ﬂ\ o LD THo #OJHOLTHITEMTTTH 940K
X x b 9 qutea
e mmoton = D UOXEOLTHATEMITIN 9AOH c
40 T auted
/ I

20 uoxENLUTed 9AOK C)

Z¥D UOXHOLTHAITEMIUed oA0W
THD THATEMOLIUTEd SAOH

Fig. 21 Activity sequences of the computed robust throughput-optimal controller, in case the choice of paint

or mill patterns is reduced to either 1 or 6. For the purpose of vi
have been traced back to transitions of the Supervisor Activity

sibility, the sequences in this illustration

-EFA, and guards and updates are omitted.

The faded background represents the activity sequences of the Supervisor Activity-EFA that are rejected by

the computed optimal controller

pringer

&H's

Discrete Event Dynamic Systems

7 Related work

Timed Petri nets are a commonly encountered modeling mechanism for manufacturing
systems, which also allow for uncontrollable transitions (Wang 1998). Performance anal-
ysis of timed Petri nets can be achieved by associating delay bounds with each place in
the net (Hulgaard and Burns 1995). Petri nets are generally well suited for the design and
analysis of systems operating on multiple resources, as they can naturally express concur-
rent execution of system behavior. Studies that consider uncontrollable transitions generally
focus on finding minimally-restrictive controllers (Moody and Antsaklis 2000) or deadlock-
avoidance (Aybar and Iftar 2008), rather than timed performance. Recently, an effort was
made in Lefebvre (2017) to incrementally compute an optimal control sequence using timed
Petri nets, with knowledge of the probability of occurrence of some uncontrollable events.
This makes it suitable for a real-time control solution of a known system, but not as much
for performance analysis in the design phase. An alternative approach that considers both
uncontrollability and timed performance is proposed in Basile et al. (2002). Here, uncon-
trollability is replaced by a control cost of an event, and optimization aims to minimize
control cost and cycle time of the closed loop net simultaneously. In Pena et al. (2016) also
a setting with both controllable and uncontrollable events is considered, where the objective
is to minimize the makespan for the production of a batch of products. The optimization
is done using a heuristic optimization method. Related is also the optimal directed control
problem introduced by Huang and Kumar (2008), where the goal is to accomplish a pend-
ing task in a minimal cost. Again, the objective is towards makespan-related optimization
objectives rather than throughput. Another difference between our work and that reported
in Huang and Kumar (2008) is that we treat states with both controllable and uncontrollable
activities differently.

Su et al. (2012) look at the synthesis problem to find a maximally permissive supervi-
sor with minimum makespan for a fixed batch of products. First, the maximally-permissive
supervisor is generated, and then a tree automaton is constructed that encodes all the possi-
ble strings and their completion times. From this tree automaton, a permissive supervisory
controller is obtained by removing all paths with a non-optimal makespan while preserv-
ing nonblockingness and controllability with respect to the system. This approach is not
scalable for larger problems, because the tree automaton grows exponentially in size in the
worst-case. The (max, +) state space is typically much smaller, since possible redundancy
in substrings with the same timing information can be encoded more efficiently.

In Raman et al. (2015) an approach is provided for synthesis of reactive controllers for
systems satisfying signal temporal logic specifications. Using a cost-function over infinite
runs of the system, optimality of the resulting control is achieved. The approach is based
on reactive synthesis (Kupferman and Vardi 2000) instead of supervisory control theory
as used in this paper. In Ehlers et al. (2017) the (formal) relationship and inherent differ-
ences between supervisory control theory and reactive synthesis approaches are clearly and
precisely described. The work presented in Ehlers et al. (2017) does not offer a layered
approach towards the specification of the supervisory control problem reducing the state
space as offered in this paper.

Other approaches for modeling or performance analysis of partially-controllable sys-
tems include the use of probabilistic automata and stochastic scheduling. In Kobetski et al.
(2007), probabilistic automata are combined with extended finite automata to find uncon-
trollable alternative working sequences with corresponding occurrence probabilities. A
version of the A" search algorithm (Hart et al. 1968) is used to find the shortest cycle time.

@ Springer

Discrete Event Dynamic Systems

Stochastic scheduling (Nifio-Mora 2008) considers uncertainty only in the duration of activ-
ities by assuming stochastic operation times. Controller synthesis methods can be found
(Kempf et al. 2013) to compute a controller with an expected optimal performance. What
these methods have in common is the assumption of a priori knowledge of the probabili-
ties of duration or occurrence of uncontrollable system behavior. Instead, our approach is
based on worst-case execution times and can thus be used to guarantee a certain level of
performance.

Scenario-Aware Data Flow (SADF) (Geilen and Stuijk 2010) is a related modeling
approach that has a similar separation of concerns with respect to functionality and timing.
This formalism uses the same model of computation, (max, +) algebra, to perform through-
put analysis. The throughput analysis considered in SADF is restricted to fully-controllable
systems. In this setting, an approach has been presented in Skelin and Geilen (2018) where
also guards can be added on transitions in an FA on explicit values of time stamps of events.
There is no distinction between controllable and uncontrollable events, and no synthesis
step. Similar to our approach, the guards are evaluated only when constructing the (max, +)
state space.

Game theory applied to timed automata (Behrmann et al. 2007) has been used for the syn-
thesis of a controller that ensures safe behavior, as well as reachability of a final (goal) state.
Timed automata have also been used in Abdeddaim et al. (2006) to solve a scheduling prob-
lem using shortest path algorithms. Using timed automata poses challenges with respect to
scaling for large systems, as timing of individual actions must be considered during analysis.
This is avoided by the use of (max, +) timing characterizations of activities.

8 Conclusions

This paper introduces a new approach to model partial controllability of functionality in
manufacturing systems on two abstraction levels. It is based on the recently developed
Activity modeling formalism (van der Sanden et al. 2016) with associated tools, which is
used to model the functionality and timing of manufacturing systems at a high level of
abstraction using deterministic activities. The Activity modeling formalism allows for the
scheduling of desirable sequences of activities on multiple resources by means of (max, +)
algebra. Our approach extends the modeling by the introduction of uncontrollability at the
level of activities, as commonly found in a supervisory control context (Cassandras and
Lafortune 2008). Moreover, functional dependency at activity level on feedback from lower
abstraction levels is captured using variables in Activity-EFAs. The Activity-EFAs contain
the allowed activity sequences, along with guard expressions that limit behavior depend-
ing on the values of the variables. We introduce a new performance analysis method that
employs game-theoretic methods to provide a guarantee to system performance, and to
automatically compute a robust, throughput-optimal controller given a partially-controllable
system. The methods are illustrated on an example manufacturing system.

There are a number of directions in which our approach can be extended. First, there are
various other performance analysis and optimization techniques that can be investigated that
cope with uncontrollability in different ways. For batch production systems, the use of finite
two-player games and different performance metrics, such as makespan, could be investi-
gated. When the probability of occurrence of uncontrollable behavior is known, stochastic
scheduling methods (Nifio-Mora 2008) can be employed, which may further optimize per-
formance. Another aspect that is currently not present is the extension with strategies for

@ Springer

Discrete Event Dynamic Systems

bringing the system out of the maximum-throughput strategy. This could be useful in cases
that the operator wants to shut the machine down when production is finished, or main-
tenance is needed. Finally, we want to investigate the application of our approach on an
industrial-size case. The approach we present can easily be adopted in a domain-specific
language that already uses the semantics of the Activity modeling formalism.

Acknowledgments This research is supported by the Dutch NWO-TTW, carried out as part of the
Robust Cyber-Physical Systems (RCPS) program, project number 12694. Research leading to these results
has received funding from the EU ECSEL Joint Undertaking under grant agreement n°® 826452 (project
Arrowhead Tools) and from the partners national funding authorities.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

Abdeddaim Y, Asarin E, Maler O (2006) Scheduling with timed automata. Theor Comput Sci 354(2):272—
300. https://doi.org/10.1016/j.tcs.2005.11.018. ISSN 03043975

Aybar A, Iftar A (2008) Deadlock avoidance controller design for timed Petri nets using stretching. IEEE
Syst J 2(2):178-188. https://doi.org/10.1109/JSYST.2008.923193. ISSN 19379234

Baeten JCM, van de Mortel-Fronczak JM, Rooda JE (2016) Integration of supervisory control synthesis
in model-based systems engineering. In: Dimirovski GM (ed) Complex systems: relationships between
control, communications and computing, pp 39-58

Basile F, Chiacchio P, Giua A (2002) Optimal Petri net monitor design. In: Caillaud B, Darondeau P,
Lavagno L, Xie X (eds) Synthesis and control of discrete event systems. Springer, Boston, pp 141-153.
https://doi.org/10.1007/978-1-4757-6656-1_9. ISBN 978-1-4757-6656-1

Behrmann G, Cougnard A, David A, Fleury E, Larsen KG, Lime D (2007) Uppaal-tiga: time for playing
games! In: Damm W, Hermanns H (eds) Computer aided verification. Springer, Berlin, pp 121-125.
ISBN 978-3-540-73368-3

Bloem R, Greimel K, Henzinger TA, Jobstmann B (2009) Synthesizing robust systems. In: Formal methods
in computer-aided design, pp 85-92. ISBN 9781424449668

Brim L, Chaloupka J, Doyen L, Gentilini R, Raskin JF (2011) Faster algorithms for mean-payoff games.
Form Methods Syst Des 38(2):97-118. https://doi.org/10.1007/s10703-010-0105-x. ISSN 09259856

Cassandras CG, Lafortune S (2008) Introduction to discrete event systems. Springer, Berlin

Chen Y-L, Lin F (2000) Modeling of discrete event systems using finite state machines with parameters.
In: Proceedings of the IEEE international conference on control applications, CCA’00, pp 941-946.
https://doi.org/10.1109/CCA.2000.897591. ISBN 0780365623

Dasdan A (2004) Experimental analysis of the fastest optimum cycle ratio and mean algorithms. ACM Trans
Des Autom Electron Syst 9(4):385—418. https://doi.org/10.1145/1027084.1027085. ISSN 10844309

Ehlers R, Lafortune S, Tripakis S, Vardi MY (2017) Supervisory control and reactive synthesis: a comparative
introduction. Discrete Event Dyn Syst 27:209-260

Estefan JA (2008) Survey of model-based systems engineering (MBSE) methodologies. Technical report,
INCOSE MBSE Initiative

Feng L, Wonham WM (2008) Supervisory control architecture for discrete-event systems. IEEE Trans Autom
Control 53(6):1449-1461

Geilen M (2010) Synchronous dataflow scenarios. ACM Trans Embed Comput Syst 10(2):1-31. https://doi.
org/10.1145/1880050.1880052. ISSN 15399087

@ Springer

http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1016/j.tcs.2005.11.018
https://doi.org/10.1109/JSYST.2008.923193
https://doi.org/10.1007/978-1-4757-6656-1_9
https://doi.org/10.1007/s10703-010-0105-x
https://doi.org/10.1109/CCA.2000.897591
https://doi.org/10.1145/1027084.1027085
https://doi.org/10.1145/1880050.1880052
https://doi.org/10.1145/1880050.1880052

Discrete Event Dynamic Systems

Geilen M, Stuijk S (2010) Worst-case performance analysis of Synchronous Dataflow scenarios. In: Inter-
national conference on hardware/software codesign and system synthesis (CODES+ISSS), pp 125-134.
https://doi.org/10.1145/1878961.1878985. ISBN 978-1-6055-8905-3

Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost
paths. IEEE Trans Syst Sci Cybern 4(2):100-107. https://doi.org/10.1109/TSSC.1968.300136. ISSN
0536-1567

Huang J, Kumar R (2008) Optimal nonblocking directed control of discrete event systems. IEEE Trans
Autom Control 53(7):1592-1603. https://doi.org/10.1109/TAC.2008.927800. ISSN 0018-9286

Hulgaard H, Burns SM (1995) Efficient timing analysis of a class of Petri nets. In: Wolper P (ed) Computer
aided verification. Springer, Berlin, pp 423-436. ISBN 978-3-540-49413-3

Kempf J-F, Bozga M, Maler O (2013) As soon as probable: optimal scheduling under stochastic uncertainty.
In: Piterman N, Smolka SA (eds) Tools and algorithms for the construction and analysis of systems.
Springer, Berlin, pp 385—400. ISBN 978-3-642-36742-7

Kobetski A, Richardsson J, Akesson K, Fabian M (2007) Minimization of expected cycle time in manufac-
turing cells with uncontrollable behavior. In: 2007 IEEE International conference on automation science
and engineering, pp 14-19. https://doi.org/10.1109/COASE.2007.4341802

Komenda J, Masopust T, van Schuppen JH (2016) Control of an engineering-structured multilevel discrete-
event system. In: 13th International workshop on discrete event systems, pp 103—-108

Kupferman O, Vardi MY (2000) Synthesis with incomplete information. Kluwer Academic Publishers,
Dordrecht, pp 109-127

Lefebvre D (2017) Dynamical scheduling and robust control in uncertain environments with Petri nets for
DESs. Processes 5(4):54. https://doi.org/10.3390/pr5040054. ISSN 2227-9717. http://www.mdpi.com/
2227-9717/5/4/54

Mohajerani S, Malik R, Fabian M (2016) A framework for compositional nonblocking verification of
extended finite-state machines. Discrete Event Dyn Syst 26(1):33-84. https://doi.org/10.1007/s10626-
015-0217-y

Moody JO, Antsaklis PJ (2000) Petri net supervisors for DES with uncontrollable and unobservable transi-
tions. IEEE Trans Autom Control 45(3):462-476. https://doi.org/10.1109/9.847725. ISSN 00189286

Nifio-Mora J (2008) Stochastic scheduling. In: Encyclopedia of optimization. Springer, pp 3818-3824

Ouedraogo L, Kumar R, Malik R, Akesson K (2011) Nonblocking and safe control of discrete-event systems
modeled as extended finite automata. IEEE Trans Autom Sci Eng 8(3):560-569. https://doi.org/10.1109/
TASE.2011.2124457

Pena PN, Costa TA, Silva RS, Takahashi RHC (2016) Control of flexible manufacturing systems under
model uncertainty using supervisory control theory and evolutionary computation schedule synthesis. Inf
Sci 329:491-502. https://doi.org/10.1016/.ins.2015.08.056. ISSN 0020-0255. http://www.sciencedirect.
com/science/article/pii/S002002551500691X

Ramadge PJ, Wonham WM (1987) Supervisory control of a class of discrete event processes. SIAM
J Control Optim 25(1):206-230. https://doi.org/10.1137/0325013. http://epubs.siam.org/doi/10.1137/
0325013. ISSN 0363-0129

Raman V, Donzé A, Sadigh D, Murray RM, Seshia SA (2015) Reactive synthesis from signal temporal logic
specifications. In: Proceedings of the 18th international conference on hybrid systems: computation and
control, HSCC’ 15, Seattle, WA, USA, April 14-16, 2015, pp 239-248

Skelin M, Geilen M (2018) It’s a matter of time: modeling and analysis of time dependent systems using
scenario-aware dataflow. In: 2018 16th ACM/IEEE international conference on formal methods and
models for system design (MEMOCODE), pp 1-11

Skoldstam M, Akesson K, Fabian M (2007) Modeling of discrete event systems using finite automata with
variables. In: 46th IEEE conference on decision and control, CDC 2007, New Orleans, LA, USA,
December 1214, 2007, pp 3387-3392

Steimer C, Fischer J, Aurich JC (2017) Model-based design process for the early phases of manufacturing
system planning using SysML. Procedia CIRP 60:163—-168. https://doi.org/10.1016/j.procir.2017.01.036.
ISSN 22128271

Su R, van Schuppen JH, Rooda JE (2012) The synthesis of time optimal supervisors by using heaps-of-
pieces. IEEE Trans Autom Control 57(1):105-118. https://doi.org/10.1109/TAC.2011.2157391. ISSN
0018-9286

van Beek DA, Fokkink W, Hendriks D, Hofkamp A, Markovski J, van de Mortel-Fronczak JM, MA
Reniers (2014) CIF 3: model-based engineering of supervisory controllers. In: Tools and algorithms for
the construction and analysis of systems—20th international conference, TACAS 2014, pp 575-580.
https://doi.org/10.1007/978-3-642-54862-8_48

van der Sanden B (2018) Performance analysis and optimization of supervisory controllers. PhD thesis,
Eindhoven University of Technology

@ Springer

https://doi.org/10.1145/1878961.1878985
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TAC.2008.927800
https://doi.org/10.1109/COASE.2007.4341802
https://doi.org/10.3390/pr5040054
http://www.mdpi.com/2227-9717/5/4/54
http://www.mdpi.com/2227-9717/5/4/54
https://doi.org/10.1007/s10626-015-0217-y
https://doi.org/10.1007/s10626-015-0217-y
https://doi.org/10.1109/9.847725
https://doi.org/10.1109/TASE.2011.2124457
https://doi.org/10.1109/TASE.2011.2124457
https://doi.org/10.1016/j.ins.2015.08.056
http://www.sciencedirect.com/science/article/pii/S002002551500691X
http://www.sciencedirect.com/science/article/pii/S002002551500691X
https://doi.org/10.1137/0325013
http://epubs.siam.org/doi/10.1137/0325013
http://epubs.siam.org/doi/10.1137/0325013
https://doi.org/10.1016/j.procir.2017.01.036
https://doi.org/10.1109/TAC.2011.2157391
https://doi.org/10.1007/978-3-642-54862-8_48

Discrete Event Dynamic Systems

van der Sanden B, Bastos J, Voeten J, Geilen M, Reniers M, Basten T, Jacobs J, Schiffelers R (2016)
Compositional specification of functionality and timing of manufacturing systems. In: 2016 Forum on
specification and design languages (FDL), Bremen

van Putten BJC (2018) Tackling uncontrollability in the specification and performance of manufacturing
systems. Master’s thesis, Eindhoven University of Technology

Voronov A, Akesson K (2009) Verification of supervisory control properties of finite automata extended
with variables. Technical report, Chalmers University of Technology. http://publications.lib.chalmers.se/
records/fulltext/94442.pdf

Wang J (1998) Timed Petri nets: theory and application. The International Series on Discrete Event Dynamic
Systems. Springer US. ISBN 9780792382706

Zhong H, Wonham WM (1990) On the consistency of hierrchical supervisoion in discrete-event systems.
IEEE Trans Autom Control 35(10):1125-1134

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Berend Jan Christiaan van Putten holds an M.Sc. in Mechanical
Engineering from Eindhoven University of Technology (TU/e). He is
currently a mechatronic designer at ASML, a supplier of advanced
lithography systems for the IC industry. His professional interests
cover various aspects of mechatronic system design, including model-
based systems engineering, design of precision mechanical systems,
control system design, and supervisory control synthesis.

Bram van der Sanden holds an M.Sc. in Computer Science and
a Ph.D. in Electrical Engineering from Eindhoven University of
Technology (TU/e). He is currently a scientist at the ESI group of
TNO (Dutch national institute for applied scientific research). His
research interests include model-based systems engineering, formal
models-of-computation, system performance optimization, supervi-
sory controller synthesis and formal verification methods.

@ Springer

http://publications.lib.chalmers.se/records/fulltext/94442.pdf
http://publications.lib.chalmers.se/records/fulltext/94442.pdf

Discrete Event Dynamic Systems

@ Springer

Michel Reniers (S’17) is currently an Associate Professor in model-
based engineering of supervisory control at the Department of
Mechanical Engineering, Eindhoven University of Technology. He
has authored over 100 journal and conference papers, and is the
supervisor of ten Ph.D. students. His research portfolio ranges from
model-based systems engineering and model-based validation and
testing to novel approaches for supervisory control synthesis. Appli-
cations of this work are mostly in the areas of high-tech systems and
cyber-physical systems.

Jeroen Voeten works as a full professor at the Eindhoven University
of Technology and is the scientific director of the Cyber-Physical Sys-
tems Center. Between 2013 and 2019 he worked as senior scientist
and was the scientific advisor of the ESI group of the Dutch national
institute for applied scientific research. His professional passion is
to improve industrial products and design processes through cutting
edge model-based design methodologies, by working on the borders
between academic research and industrial innovation. His research
expertise is performance engineering, including the areas of (stochas-
tic) performance analysis, design-space exploration, scheduling and
predictable synthesis. He worked actively in the application domains
of telecommunication, consumer electronics and hightech products.
He developed and supervised several multidisciplinary research pro-
grams that led to various industrial innovations and authored over
hundred journal and conference publications.

Ramon Schiffelers is leading the Software Research Group at
ASML, world’s leading provider of lithography systems for the semi-
conductor industry. Furthermore, he has a position as part-time assis-
tant professor at the Eindhoven University of Technology. Together
with his group, he combines state-of-the-art methods and techniques
from academia with state-of-thepractice in industry into so-called
multi-disciplinary system engineering ecosystems. These ecosystems
empower their users to develop complex, large-scale, software inten-
sive systems. Application domains are logistics scheduling, high
performance process control, formal verification of software systems
and the design and synthesis of supervisory controllers.

Discrete Event Dynamic Systems

Affiliations

Berend Jan Christiaan van Putten' - Bram van der Sanden'2 . Michel Reniers' © .
Jeroen Voeten'2 . Ramon Schiffelers'3

Berend Jan Christiaan van Putten
b.j.c.v.putten @gmail.com

Bram van der Sanden
bram.vandersanden @tno.nl

Jeroen Voeten
j-p-m.voeten@tue.nl

Ramon Schiffelers
ramon.schiffelers @asml.com

Eindhoven University of Technology, Eindhoven, The Netherlands
2 ESI(TNO), Eindhoven, The Netherlands
3 ASML, Veldhoven, The Netherlands

@ Springer

http://orcid.org/0000-0002-9283-4074
mailto: b.j.c.v.putten@gmail.com
mailto: bram.vandersanden@tno.nl
mailto: j.p.m.voeten@tue.nl
mailto: ramon.schiffelers@asml.com

	Supervisor synthesis and throughput optimization of partially-controllable manufacturing systems
	Abstract
	Introduction
	Motivating case study: Dice Factory
	Preliminaries
	Activity modeling formalism
	Ratio games

	Modeling for uncontrollability
	Controllability of activities
	Activity-EFA
	Synthesis
	Configuration space

	Robust optimal supervisor design
	Case study: Dice Factory
	System description
	Activities
	Plants and specifications
	Plants
	Specifications

	Constructing the supervisor activity-EFA
	Performance analysis

	Related work
	Conclusions
	References
	Affiliations

