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Abstract
Due to the rising concerns of energy consumption in wireless networks, base station (BS) sleeping strategies were

introduced to save energy in low traffic scenarios. In this paper we analyse a weighted trade-off between energy con-

sumption and user-perceived performance in dense cellular networks. We present an optimization problem representing

this trade-off and derive properties of its optimal solutions. Using these properties we design a self-organizing strategy that

dynamically (online) makes load-aware user association and BS operation decisions. Our strategy is self-organizing in the

sense that it does not need any information or optimization beforehand, it simply relies on real-time load measurements at

the BSs and user-reported SINR values. We furthermore present extensive simulation results, demonstrating the effec-

tiveness of our self-organizing strategy and the impact of increased energy consumption on the user-perceived

performance.

Keywords BS sleeping � Dense cellular networks � Load balancing � Self-organizing

1 Introduction

Wireless cellular networks have experienced immense

growth in traffic loads over the last years as a consequence

of the rapid proliferation of smartphones, tablets, and their

bandwidth-hungry applications. A key option to further

increase wireless network capacity is to deploy dense cel-

lular networks (DCNs) since they allow for higher spectral

reuse and efficiency (shorter communication range, and

thus lower path loss).

The denser concentration of base stations (BSs) raises

new and challenging issues compared with the traditional

macro cellular networks (MCNs), especially with regard to

cell planning and traffic engineering [5]. Physical con-

straints will typically make it even harder to arrange BSs in

an ideal hexagonal pattern, which causes the coverage

areas to significantly overlap, and the natural cell regions to

be irregularly shaped. As a result, the nominal traffic loads

will tend to exhibit not only more spatial variation but also

stronger temporal fluctuations. This variability in traffic

could potentially result in severe load imbalances and

performance degradation under existing BS sleeping

strategies and traditional user association schemes.

BS sleeping strategies were introduced as a result of the

rising concerns of energy consumption of wireless net-

works, both in in terms of environmental impact and eco-

nomic cost. In MCNs, BSs are responsible for about

60–80% of the total energy consumption [28], where a

single BS may consume up to 90% of its peak energy

consumption in the absence of any traffic due to cooling

and pilot signalling [24]. In terms of economic costs, Nokia

corporation recently estimated [19] that the global energy

bill of radio access networks is currently over 72 billion

Euros. These costs and the environmental impact caused by

the massive energy consumption of cellular networks

drives the need to improve their energy efficiency. A
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common approach to save energy is to switch BSs into

low-power operational modes in the absence of traffic, e.g.

sleep modes.

Although DCNs are expected to experience more vari-

ability in traffic, the high density of BSs also offers more

flexibility than traditional MCNs to deal with this increased

variability. With the overlapping cell areas in DCNs,

switching BSs into sleep mode does not directly lead to

coverage holes, as is often the case in MCNs, forcing the

latter to be more conservative in switching off BSs. That

means DCNs can potentially react to traffic dynamics on a

much smaller timescale than MCNs. For example, DCNs

may be able to react to locally appearing (and disappear-

ing) hotspots of traffic demands on a timescale of (several)

minutes, while MCNs can typically only react to day/night

traffic patterns appearing on a timescale of hours to days

due to the severe coverage degradation when switching off

a macro BS. To fully harvest the potential energy savings

and capacity gains in dense cell deployments, more refined

load-aware BS sleeping strategies must be developed

[2, 22].

An important issue is that reducing energy consumption

by switching BSs into sleep mode basically reduces the

system capacity. This is at odds with the primary goal of

dense cellular networks: increasing network capacity. The

latter is most important for optimizing user-perceived

performances, which is typically done by applying load

balancing schemes. From an energy perspective we wish to

have a minimum number of active BSs, while optimizing

the user-perceived performance ideally activates as many

BSs as possible. Hence—as has also been mentioned by

Zhou et al. [35]—we have two opposite objectives and a

trade-off has to be made.

To complicate matters further, in DCNs, traffic condi-

tions are typically strongly varying over time and hard to

estimate, making manual traffic engineering highly

impractical. This motivates the need for self-organizing

strategies: measurement-based algorithms that realize

excellent performance without requiring explicit prior

knowledge of system parameters like traffic conditions. In

this paper we present a self-organizing, load-aware strategy

that makes a trade-off between energy consumption and

user-perceived performance for DCNs, using a pre-speci-

fied trade-off parameter.

1.1 Discussion and related work

In the past few years ‘‘green cellular networks’’ has been an

active research field providing many approaches to reduce

energy consumption. In this section we give an overview of

different approaches proposed in literature and point out

how our approach is different from existing solutions.

In principle energy can be saved in two ways: reducing

the downlink transmission power (e.g. [3, 33]) yet keeping

the BSs active, and/or switching BSs into sleep mode

in situations of low load conditions. We focus on the sec-

ond option, i.e. switching BSs into sleep mode.

There are roughly three network modelling perspectives

in the existing literature on BS sleeping strategies: models

that focus on a single BS (e.g. [12, 13, 32]), models that

focus on a single HetNet cell with a macro BS and several

pico BSs (e.g. [10]), and models that consider the entire

network (e.g. [1, 3, 9, 11, 14–17, 23, 25, 27, 29, 31, 34]).

We will briefly discuss the first two approaches and then

focus on network wide models since our approach belongs

to the latter category.

First, when considering a single BS, energy can be saved

by switching the BS into sleep mode when no more users

are in service. Several papers exploit an M/G/1 queueing

model to derive asymptotically (locally) optimal activation

strategies [12, 13, 32] such as activation after a pre-opti-

mized sleep period or when the number of users awaiting

the activation hits a certain threshold. These queueing

based methods are easy to implement but require a priori

information to operate optimally and also place users in a

queue when the BS is not active, potentially leading to

unnecessary delays.

Secondly, in the case of a single HetNet cell the macro

BS is typically always on [10, 21]. In such a scenario the

authors optimize the operational modes of the pico BSs in

the macro cell. Their approaches have the advantage that

users are always directly placed in service, but limit the

potential for saving energy as they do not consider the

traffic conditions in neighbouring (HetNet) cells, nor allow

for the macro BS to be turned off.

For the remainder of this section we focus on the cel-

lular network at system level. In this setting, user assign-

ments can specifically focus on active BSs, which

eliminates delays experienced by users assigned to a

sleeping BS. Moreover, BS sleeping strategies with sys-

tem-wide awareness may better recognize when to (de-

)activate a BS as they can account for traffic offloading to

neighbouring active BSs, potentially leading to increased

energy efficiency compared to local strategies. There are

many results on models that consider the entire network

and we further discuss them from three different perspec-

tives: the considered network topology (regular or arbi-

trary), the proposed decision type of the algorithms

(randomized or not randomized), and the considered user

population (fixed or dynamic). We briefly consider each

perspective, using them to position our work in relation to

existing literature.

In terms of the network topology, several papers focus

on the traditional macro cellular hexagonal BS positioning,

presenting specific case studies [2], dealing with both
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transmission power and operation modes [3], or using

detailed user position information [31]. These results rely

on regular BS positioning, which is no longer a fair

assumption in DCNs. The works outlined below (including

our work) do apply to arbitrary network topologies.

Several papers exploit stochastic geometry to find an

asymptotically optimal number of active BSs, or proba-

bilities that BSs are active [9, 23, 25, 29]. These all result

in randomized strategies that can make a different decision

when presented with the same load conditions. Other

approaches [1, 11, 14–17, 27, 34] and—as we will see

later—our approach consistently make the same decision

under the same conditions, making them more reliable in

the sense that the algorithms do not suffer from ‘‘unlucky

tosses’’.

Looking at the user population dynamics, we find many

approaches that optimize BS operation modes for a specific

(fixed) user population [1, 11, 14, 27, 34]. Jahid et al.

[15, 16] on the other hand focus on user association

specifically and on the use of on-site renewable energy

sources (e.g. solar panels), and simply switch any BS into

sleep mode during off-peak hours. We particularly mention

the work of Zheng et al. [34], which applies game theory to

include the effect that switching a BS into sleep mode leads

to load increases at other BSs. All of these approaches are

optimized for a static user population, potentially requiring

a new optimization every time the user population changes.

Considering the fast flow-level dynamics of DCNs,

strategies optimized for static user populations may need to

change operation modes faster than the optimal operation

modes can be determined.

Although the literature overview given above is by no

means exhaustive, it does paint a broader picture: there are

little to no known strategies in green cellular networks that

cover arbitrary network topologies with dynamic user

populations and that make consistent decisions. One of the

few exceptions is the work of Klessig et al. [17], which

proposes a BS activation strategy inspired by the activation

of cytotoxic killer cells in the immune system of mammals.

However, even though their method is self-organizing in

the sense that it does not need manual intervention during

operation, it does require detailed information on the BS

coverage areas and an a priori chosen BS hierarchy.

1.2 Main contributions

In this paper we analyse a weighted trade-off between

energy consumption through switching BSs on and off and

user-perceived performance in dense cellular networks.

Optimizing the user performance is realized by applying

load balancing user association schemes, and we further-

more introduce a trade-off parameter. To the best of our

knowledge we are the first to analyse such a tunable trade-

off for dense cellular wireless networks: typically the user-

perceived performance is taken as a hard constraint. We

present an optimization problem representing the above-

mentioned trade-off and derive properties of its optimal

solutions. Using these properties we design a self-orga-

nizing strategy that dynamically (online) makes load-aware

user association and BS operation decisions. Our strategy is

self-organizing in the sense that it does not need any

information or optimization beforehand, it simply relies on

real-time load measurements at the BSs and user-reported

signal-to-interference-plus-noise ratio (SINR) values. We

furthermore present extensive simulation results, demon-

strating the effectiveness of our self-organizing strategy

and the role of the trade-off parameter.

1.3 Organization of this paper

The remainder of this paper is organized as follows. In

Sect. 2 we give the model description and introduce some

useful notations. In Sect. 3 we present our optimization

problem and derive conditions and properties of optimal

strategies. Then, in Sect. 4 we propose our dynamic

approach which is based on the properties derived in

Sect. 3. In Sect. 5 we show results of simulations we per-

formed to gain insight in the performance characteristics of

our proposed approach. Finally, in Sect. 6 we make some

concluding remarks and mention directions for future

research.

2 Problem statement and model description

The challenge is to dynamically adapt the set of active BSs

and the user association to changing traffic demands such

that a specific desired trade-off is realized between energy

consumption and user-perceived performance. In our pro-

posed approach, we first study this trade-off in a stationary

regime: a period in time where the traffic demands (i.e. file

transfer initiation rate, mean download file size) are con-

stant. For such a stationary regime we formulate an opti-

mization problem that represents the desired trade-off

using a trade-off parameter. We then analyse the structure

of the optimization problem to obtain properties for opti-

mal user association and optimal BS (de-)activation. These

properties are then used to design an optimal dynamic user

association algorithm and sufficient conditions for dynamic

BS (de-)activation. The user association algorithm and BS

(de)activation rules will no longer depend on the stationary

scenario and can react to changing traffic demands.

We will now proceed as follows. In the remainder of this

section, we introduce the system model for a stationary

scenario and we specify the power consumption model. In

Sect. 3 we formulate the optimization problem for the
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stationary scenario and derive properties of optimal user

association and BS (de-)activation. In Sect. 4 we will

describe how these properties are turned into a dynamic

algorithm, the Green Shadow Price Assignment (GSPA)

algorithm.

2.1 System model

We consider a system with L BSs, and we focus on

downlink communication only. Within the considered area,

BSs provide service to a time-varying set of users. For

convenience, we assume that there is a discrete set of N

user locations, which may be interpreted as a suitable dis-

cretization of the overall coverage area. A location repre-

sents a class of users that all have (approximately) equal

physical transmission rate characteristics with respect to

the BSs. At location n, users initiate file transfers (down-

loads) at a rate mn. The sizes of the file transfers initiated by

users in location n are independent and have mean bn Mbit.

As soon as a user has downloaded its file it leaves the

system. We do not explicitly consider user mobility.

Remark 2.1 Together, the rates mn and the mean file sizes

bn determine the traffic demands of the system and they

may change over time. However, in the stationary regime

that we currently consider they are constant (by definition).

The bit rate at which users are served depends on their

experienced SINR values. We do not account for fast

fading and consider only average SINR values. A BS l

transmits at a fixed power in the time slots it is serving

users. A user i does not receive the full transmission power

of the BS, but a reduced portion due to path loss factors.

For convenience we do not consider frequency-selective

fading, which means that the path loss is independent of the

frequency and only depends on the distance between the

location and the BS. The Shannon formula implies that

user i at location n can receive a maximum communication

rate Rn;l (in bits per second) from BS l given by

Rn;l ¼ w log 1þ SINRðn; lÞð Þ; ð1Þ

where w is the fixed bandwidth available to the BS in Hz,

and where SINRðn; lÞ is the signal-to-interference-plus-

noise ratio that user i experiences at location n when served

by BS l. We assume that there is an interference-free

spectrum allocation to the BSs such that each BS has a

fixed bandwidth w. BSs apply a proportional fair schedul-

ing policy as is also common in 4G LTE networks, such

that the service rate experienced by users depends on the

number of users in service at the BS as well as the SINR of

that user.

Let xn;l be the fraction of the users that initiate a file

transfer at location n that is allocated to BS l, and let x be a

vector representing all the individual values of xn;l. Then

the long term load, or resource utilization, of BS l can be

expressed by (see e.g. [26])

qlðxÞ ¼
XN

n¼1

mnbn
Rn;l

xn;l: ð2Þ

We assume that the network has a centralized control unit,

which may be realized by using Radio-over-Fiber (RoF)

technology [18]. That means that at the BS site there is

only a simple remote radio head, and all BS intelligence is

located at a centralized entity. This has the advantage that

important state information—specifically load estimates

and user-reported SINR values—is known for the entire

system, and can be used in the dynamic operation of the

network.

Remark 2.2 At this point we wish to note that, although in

our model and analysis we use a discrete set of locations,

we aim to design decision rules that do not rely on these

locations since the underlying discretization is most prob-

ably not available in practice. For the same reason, we also

aim to avoid the specific use of mn and bn in the final

decision rules. Instead we use estimates of the resource

utilization at BSs to obtain load proxies and use these in

our decisions. As a result the decision rules become self-

organizing in the sense that they dynamically react to

changing load conditions at the BSs. In other words, when

the system changes from one stationary scenario to another,

the decision rules automatically adjust to the new situation.

2.2 BS modes and power consumption model

A BS can be in three operational modes: active, sleep and

start-up mode. A BS can directly go from active to sleep

mode, but when a BS is switched from sleep to active

mode, there is a start-up delay of TOn seconds before the

BS is operational and can start serving users. The start-up

delay is typically small (e.g. 1 second [12]) compared with

the time-scale at which BSs are activated or de-activated

(minutes). When a BS is switched to sleep mode, the users

in service at that BS will be handed over to other BSs.

Similarly, an activated BS may take over users of other

BSs.

We adopt the widely-used (e.g. [10, 11, 25, 30, 32, 34])

load-dependent power consumption model of Auer et al.

[7], where the power consumption Pl in Watt of a BS l is

given by

Pl ¼ P0 þ P � qlðxÞ: ð3Þ

Here, P0 is the constant power consumption of an opera-

tional BS with no traffic, and P � qlðxÞ is the load-depen-

dent power consumption term for given load qlðxÞ. When a

BS is in sleep mode, we assume its power consumption
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POff satisfies 0�POff\P0. Moreover, in start-up mode, a

BS has a power consumption of PST (e.g. PST ¼ 2P0 [12]).

3 Optimization problem and analysis

In this section we first formulate an optimization problem

for a stationary regime of the system, where the stationary

regime represents a period in which the rates mn and mean

file sizes bn are constant. Thereafter we break down the

optimization problem into two separate parts: user associ-

ation and BS (de-)activation. In the first part we will show

how to realize an optimal (in the sense of the trade-off

objective) user association for a given set of active BSs. In

the second part we derive sufficient conditions for acti-

vating a BS or putting a BS into sleep mode. The results

presented in this section will serve as input for Sect. 4,

where we will use the optimal user association and the

sufficient conditions for (de-)activating BSs to design a

dynamic control algorithm.

Let sl ¼ 1 if BS l is in active mode, and sl ¼ 0 if it is in

sleep mode. The setup mode is not considered as it is a very

short temporary mode preceding activation, having little

effect on the overall power consumption. The objective is a

trade-off between minimizing the total power consumption

and optimizing the user perceived-performance. For the

latter we specifically choose load balancing as is common

in cellular networks [4, 6, 8]. Load balancing is realized by

minimizing the highest BS load, and hence we can for-

mulate the following minimization problem, where a is the

desired trade-off factor between power minimization and

load balancing, and U represents the maximum BS load

(further explanation of the constraints is given below).

min
x;s;U

hðx; s;UÞ ¼
XL

l¼1

Plðx; sÞ þ a � U ð4aÞ

sub: Plðx; sÞ ¼ sl P0 þ P � qlðxÞð Þ þ ð1� slÞPOff ; 8l;
ð4bÞ

qlðxÞ ¼
XN

n¼1

mnbn
Rn;l

xn;l �U; 8l; ð4cÞ

XL

l¼1

xn;l � sl ¼ 1; 8n; ð4dÞ

sl 2 f0; 1g; 8l; ð4eÞ

xn;l � 0; 8n; 8l: ð4fÞ

The objective (4a) is minimized over the operation modes

of the BSs, over the user association x, and over the

maximum BS load U. The user association x is included

since users can only be assigned to active BSs. The user

association in combination with constraint (4c) and the

minimization of U give rise to a load balancing problem,

which is then weighted by a factor a with the power con-

sumption. Constraint (4d) makes sure that (exactly all)

traffic is only assigned to active BSs (all locations have

coverage).

The problem (4a)–(4f) is a non-convex [due to con-

straints (4d)], mixed-integer, quadratically constrained

[also due to constraints (4d)] quadratic program (QCQP—

the objective contains quadratic terms), and in particular

the non-convexity makes it hard to find (provably) globally

optimal solutions. However, we do not wish to find optimal

solutions for this formulation directly since we aim for

decision rules that can be applied dynamically and in

particular without knowledge of the values of mn and bn.
We will now consider the optimization problem (4a)–(4f)

in two separate parts: user association and the operation

modes of the BSs.

Remark 3.1 The optimization problem (4a)–(4f) applies to

a single-tier network. Multiple tiers may be incorporated by

splitting the sum in the objective function over different

sets of BSs, where each set of BSs represents a network tier

with possibly different values for P0, P, and POff .

3.1 Optimal user association

To gain insight in the optimal user association, let us fix the

operation modes of the BSs and consider the sub-problem

of load balancing for the active BSs l̂ 2 LðsÞ ¼ f l̂ 2 L j
sl̂ ¼ 1g for any given operational mode s:

min
x;U

L̂P0 þ
XL̂

l̂¼1

P � q l̂ðxÞ þ a � U ð5aÞ

sub: q l̂ðxÞ ¼
XN

n¼1

mnbn
Rn; l̂

xn; l̂ �U; 8 l̂; ð5bÞ

XL̂

l̂¼1

xn; l̂ ¼ 1; 8n; ð5cÞ

xn; l̂ � 0; 8n; 8 l̂: ð5dÞ

where LðsÞj j ¼ L̂. The problem (5a)–(5d) is a linear pro-

gramming problem (LP) with continuous decision variables

x and U. This problem is a variation on the LP for the user

association problem presented by Post and Borst [26],

where the only difference is in the objective function,

which is originally minx;U U. Post and Borst [26] presented

a dynamic user association algorithm—the shadow price

assignment (SPA) algorithm—that realizes an optimal user

association for the original objective function. We can
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modify the SPA-algorithm to also find optimal user

assignment fractions x� for (5a)–(5d).

The idea of the original SPA-algorithm was to assign

users to BSs using shadow prices yl̂
1 for the BSs. The

shadow prices are adapted over time depending on load

proxies observed at the BSs, eventually leading to optimal

user associations. We briefly explain the two most impor-

tant differences with the original SPA-algorithm if we wish

to apply it to find optimal solutions for the LP (5a)–(5d).

Let yl̂ be the shadow prices of BS l̂, and let y denote the

vector containing all shadow prices (including the BSs in

sleep mode). The first, and perhaps most important dif-

ference appears in the optimality condition of user

assignments. Using the Karush-Kuhn-Tucker optimality

conditions, we can derive that an optimal user assignment

x� satisfies

x�
n; l̂
ðyÞ[ 0 ) l̂ 2 argmin fl0:sl0¼1g

yl0 þ P

Rn;l0

� �
; ð6Þ

breaking ties at random when the minimizer is not unique.

Condition (6) may be interpreted as follows: given (opti-

mal) shadow prices y, the optimal user assignment allo-

cates users to BSs with either a low shadow price or a high

service rate. If all shadow prices are equal, users will

simply be assigned to the BS l that provides them with the

highest rate Rn;l. The only difference compared with the

original SPA-algorithm is the added power consumption

term P. Notice that condition (6) may be implemented

without relying on locations by using user-dependent ser-

vice rates Ri;l for user i. This can be thought of as if each

user has its own unique location. In practice, the service

rates Ri;l can be obtained by using user-reported SINR

values.

The second most important difference is that the optimal

shadow prices y satisfy
P L̂

l̂¼1
y�
l̂
¼ a (instead of summing

to one as in the original SPA-algorithm). More details

about the modification of the original SPA-algorithm, and

specifically the modified update step for the shadow prices,

can be found in the ‘‘Appendix’’. The practical imple-

mentation is summarized in Sect. 4.3.

3.2 Sufficient conditions for changing operation
modes

We will now study the operational modes of BSs. For

notational convenience we take POff ¼ 0. The analysis for

POff [ 0 only leads to one added term POff in the condi-

tions that we derive, and POff is often assumed negligible

compared to P0.

Considering that we are dealing with a non-convex,

mixed-integer QCQP problem, we are not planning to find

the optimal set of BSs for a given situation, but rather take

a different approach. We consider the current BS loads and

test if we can (expect to) improve the objective (4a) by

activating BSs or by switching BSs into sleep mode. Then,

after we have made a change we measure the new realized

BS loads, at which point we start to repeat the process.

Although we do not expect to always find optimal opera-

tion modes, the advantage of this approach is that it can

dynamically react to changing load conditions and that the

choices are clearly motivated and consistent: given the

same situation, this approach will take the same decision.

Recall that we wish to avoid relying on the discretiza-

tion into locations. In Sect. 3.1 we have seen a dynamic

algorithm that realizes an optimal user association for a

given set of active BSs without relying on the discretiza-

tion. Let qlðsÞ denote the resulting load of BS l under the

optimal user association realized by the modified SPA-al-

gorithm for the set of active BSs represented by s. This

allows us to only focus on the operation modes s of BSs

and the corresponding optimal BS loads qlðsÞ, without

having to worry about the user assignments too much.

Switching to sleep mode Suppose the system is currently

using the operation modes s. Then the objective value (4a)

can be written as hðqðsÞÞ, with

hðqðsÞÞ ¼
XL

l¼1

sl P0 þ P � qlðsÞð Þ þ amax
l

qlðsÞf g: ð7Þ

Let us focus on any BS ~l with operation mode s~l. Changing

the operation mode of BS ~l leads to the new mode ~s~l ¼
1� s~l (when we disregard the setup mode). This gives a

new vector of operation modes ~s which is only different

from s in the ~lth coordinate. Then, it pays off to change the

operation mode of BS ~l if and only if

hðqðsÞÞ[ hðqð~sÞÞ: ð8Þ

Although we may obtain the values qðsÞ by using load

measurements at the active BSs, it is unclear what the new

loads qð~sÞ will become. However, if we can find estimates

q̂lð~sÞ for the load values qlð~sÞ such that hðqðsÞÞ[ hðq̂ð~sÞÞ,
then for sure we have hðqðsÞÞ[ hðqð~sÞÞ by optimality of

qlð~sÞ for ~s. Hence, if we can obtain reliable estimates q̂lðsÞ
we can deduce a sufficient condition for changing the

operation mode of BS ~l: BS ~l is a candidate for changing its

operation mode if

hðqðsÞÞ[ hðq̂ð~sÞÞ: ð9Þ

We will now explain how to use the shadow prices of the

modified SPA-algorithm to obtain estimates q̂ð~sÞ for the

new load values qð~sÞ. Considering that we are applying the
1 We continue to use identifiers l̂ for BSs to stress that we are only

dealing with active BSs in this subsection.
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modified SPA-algorithm as described in Sect. 3.1, the load

proxies used by this algorithm can represent the values

qlðsÞ. Then, to obtain values for q̂lð~sÞ we will use the

instantaneous user population at the BS ~lLet us focus on

the active BS ~l which serves the set of users I ~l and which

experiences a load of q~lðsÞ. Then we can associate this load
proportionally to the users in service at BS ~l as follows:

user i 2 I ~l is responsible for a fraction qi;~l of the load,

where the fraction qi;~l is given by

qi;~l ¼
R�1
i;~lP

j2I ~l
R�1
j;~l

: ð10Þ

Suppose now that after BS ~l has been switched to sleep

mode, user i is handed over from BS ~l to its new serving

BS l 2 argmin l0 6¼~lfð~yl0 þ PÞ=Ri;l0 g, where ~yl0 are the sha-

dow prices directly after BS ~l has been switched into sleep

mode (or directly after activation, see Sect. 4.2). Then the

load that user i adds to BS l is the load it induced to BS ~l
multiplied by a factor Ri;~l=Ri;l. Hence, if we handover user i

from BS ~l to BS l, the new load ~qlðsÞ of BS l can be

estimated by

q̂l ¼ qlðsÞ þ qi;~l � q~lðsÞ
Ri;~l

Ri;l
: ð11Þ

Following these lines of reasoning, we can obtain values

for q̂lð~sÞ (where l 6¼ ~l and sl ¼ 1) by taking

q̂lð~sÞ ¼ qlðsÞ þ
X

i2I ~l

1 l ¼ argmin l0:~sl0¼1

~yl0 þ P

Ri;l0

� �� �
qi;~l � q~lðsÞ

Ri;~l

Ri;l
:

ð12Þ

Activation Now suppose BS ~l is in sleep mode, and we

consider activating it. Then in a similar way as described

above, the load of candidate BS ~l after activation can be

approximated by

q̂~lð~sÞ ¼
X

l:sl¼1

X

i2I l

1 ~l ¼ argmin l0:~sl0 ¼1

~yl0 þ P

Ri;l0

� �� �
qi;l � qlðsÞ

Ri;l

Ri;~l

:

ð13Þ

Furthermore, the loads qlð~xÞ of other (active) BSs after

activation of BS l can be approximated by

q̂lð~sÞ¼ qlðsÞ 1�
X

i2I l

1 ~l¼ argmin l0:~sl0 ¼1

~yl0 þP

Ri;l0

� �� �
qi;l

 !
:

ð14Þ

The new load estimates given by (12) and (14) can be

used to obtain sufficient conditions for switching to sleep

mode and activation respectively. However, the sufficient

condition for activation can be further improved. Since the

load estimates are based on instantaneous user populations,

the following situation is very likely. By using the modified

SPA-algorithm there are multiple BSs that maximize the

load, i.e. argmax lfqlðxðsÞÞgj j[ 1. When we activate a

currently sleeping BS ~l it may attract load from some of the

BSs in argmax lfqlðxðsÞÞg, but very likely not all. This

means that the maximum load among the BSs is not

decreased according to the load estimates given by (14).

Even though we indeed do not expect the newly activated

BS ~l to be able to alleviate all maximum loaded BSs, we

can expect a cascading effect: BS ~l takes over some load

from BS l 2 argmax lfqlðxðsÞÞg, which in turn allows the

BS l to take over some load from another BS

l0 2 argmax lfqlðxðsÞÞg. This effect is eventually realized

by the modified SPA-algorithm, but it is not captured by

the load estimates given by Eq. (14).

To account for the cascading effect described above, we

propose an extra step in determining load estimates for BS

activation. First we determine the load estimates according

to Eq. (14). If q̂~lð~sÞ is higher than the old maximum load,

then we do not expect to gain in the objective, and hence

we can assume that q̂~lð~sÞ\maxlfqlðsÞg. Next we consider
the set of BSs L� that had a load equal to the maximum

load and that did not offload any users to the newly acti-

vated BS ~l. We will then pretend that BS ~l will take some

load by averaging the loads of the BSs in L� with BS ~l in a

weighted manner. First, the weights for BSs l0 2 L� are

given by wl0 ¼ mini2I l0 fRi;l0=Ri;~lg, and w~l ¼ 1, such that

the weights represent the best possible ratio in which load

from BS l0 can be offloaded to BS ~l. Let W ¼ w~l þ
P

l0 wl0

be the total weight, then the improved load estimates are

given by

~qlð~sÞ ¼
P

l02L�[f~lg
wl0

W
q̂l0 ð~sÞ if l 2 L� [ f~lg;

q̂lð~sÞ otherwise.

(

ð15Þ

In short, we use load estimates (12) to obtain a sufficient

condition for switching a BS into sleep mode. We use the

load estimates (15) to obtain a sufficient condition for

activating a BS, resulting in a set of candidate BSs for

which a change in operation mode improves the objective.

The condition (9) considers changing the operation

mode of a single BS at the time. Theoretically we can

simply consider a set of BSs rather than a single BS, but

when we change the operation modes of more than one BS

it immediately becomes unclear how the new loads will

behave. Therefore we have chosen to focus on one BS at a

time. Nevertheless, condition (9) may still present several

candidates of BSs for which a change in operation mode

realizes a better objective. In the next section we will

discuss which BSs are selected.
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4 Dynamic control

In this section we propose a self-organizing strategy which

dynamically makes load-aware user association and BS

operation decisions. These decisions are based on the

optimality conditions for the optimization problem (4a)–

(4f) derived in the previous section and use load proxies

observed at the active BSs.

For the user assignments we apply a modified version of

the SPA-algorithm as described in Sect. 3.1, which

requires to frequently update the shadow prices associated

with the BSs. For the operation modes we use periodic

decision moments in which we will change at most two

BSs operation modes at each decision moment: at most one

activation and at most one into sleep mode. The proposed

strategy will therefore perform two types of updates, each

on a different timescale:

1. Updates of the shadow prices, where at shadow price

update moment t
ðjÞ
y we determine the jth iterate of the

shadow prices denoted by yðjÞ.
2. Changes in the operation modes of the BSs, where at

operation update moment t
ðkÞ
s we determine the kth

iterate of the operation modes denoted by sðkÞ.

The shadow price updates are fully determined by the

modified SPA-algorithm as described in Sect. 3.1, but we

still need to specify how we update the operation modes. In

addition, we will also specify what happens to the shadow

prices yðjÞ when the set of active BSs changes. These two

issues will be covered in the next two subsections. In

Sect. 4.3 we will give a precise description of our proposed

strategy.

4.1 Operation mode updates

At operation update moments we treat the set of active and

sleeping BSs separately. For the set of active BSs we check

which ones are candidates for de-activation (switching into

sleep mode). To do this we use the load estimates (12) and

compute D~lðsðkÞÞ ¼ hðqðsðkÞÞÞ � hðq̂ð ~sðkÞÞÞ for each active

BS ~l. From all active candidate BSs with D~lðsðkÞÞ[ 0 we

choose the BS l� ¼ max~l:s
ðkÞ
~l
¼1
fD~lðsðkÞÞg and switch it into

sleep mode.

Similarly, for all sleeping BSs we also compute D~lðsðkÞÞ,
but now using the load estimates (15). Then, from all

sleeping candidate BSs with D~lðsðkÞÞ[ 0 we activate BS

l� ¼ max~l:s
ðkÞ
~l
¼0
fD~lðsðkÞÞg.

Remark 4.1 We allow for a BS activation and another BS

to switch into sleep mode simultaneously. In a small

network, we do not expect this to happen, however in a

large network the two BSs may be separated by enough

distance that they locally do not influence each other.

Moreover, in large networks the local traffic demands may

vary a lot, where one area experiences a high load, whereas

other areas are better off reducing their number of active

BSs.

Remark 4.2 The activation and sleep rules presented

above do not take into account any activation cost or de-

activation costs. These costs may be implemented by set-

ting different thresholds for D~lðsðkÞÞ that allow activation or

deactivation.

4.2 Adjusting shadow prices after operation
mode changes

In Sect. 3.1 we showed that for an optimal user assignment,

the shadow price iterates y
ðjÞ
l sum up to a. If we activate a

BS or put a BS into sleep mode, the number of active BSs

changes and we either gain or lose a shadow price

respectively. Consequently we have to adjust the shadow

prices such that the sum over the shadow prices of active

BSs equals a. The easiest way to do this is to reset all

shadow prices to a=jLðsðkÞÞj, where LðsðkÞÞ is the set of

active BSs under operation mode vector sðkÞ. However, this
method loses the information that the modified SPA-algo-

rithm has already learned on the shadow prices, and

therefore we will introduce updates for the shadow prices

that maintain their mutual ratios.

First we will describe how the shadow prices y
ðjÞ
l are

changed when we activate a BS. Suppose we have shadow

prices yðjÞðsðkÞÞ for a given operation mode vector sðkÞ

where BS ~l is in sleep mode (i.e. s
ðkÞ
~l

¼ 0), and at decision

time tkþ1 we activate BS ~l so that we get the new operation

modes sðkþ1Þ ¼ sðkÞ þ e~l, where e~l is the ~lth unit vector.

Then the new shadow prices yðjÞðsðkÞ þ e~lÞ are given by

y
ðjÞ
l ðsðkÞ þ e~lÞ¼

y
ðjÞ
l ðsðkÞÞ jLðsðkÞÞj

jLðsðkÞ þe~lÞj
¼ y

ðjÞ
l ðsðkÞÞ jLðsðkÞÞj

jLðsðkÞÞjþ1
if l 6¼ ~l;

a

LðsðkÞ þ e~lÞ
if l¼ ~l;

8
>><

>>:

ð16Þ

which indeed sum up to a given that the original shadow

prices sum up to a. Moreover, from (16) we can see that for

any pair fl; l0g of active BSs under sðkÞ the ratios of the

shadow prices are preserved.

Secondly we consider the situation where we put the BS
~l into sleep mode. Hence we now assume that under sðkÞ the

BS ~l is active, and switching it into sleep mode results in
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operation mode vector sðkÞ � e~l. Then the new shadow

prices are given by

y
ðjÞ
l ðsðkÞ � e~lÞ ¼

y
ðjÞ
l ðsðkÞÞ 1þ

y
ðjÞ
~l
ðsðkÞÞ

a� y
ðjÞ
~l
ðsðkÞÞ

0
@

1
A if l 6¼ ~l;

0 if l¼ ~l;

8
>><

>>:

ð17Þ

where again the new shadow prices sum up to a and their

mutual ratios are maintained.

We can now fully specify how the shadow prices are

adapted. In case of assignment update moments, the sha-

dow prices are updated according to the SPA-algorithm, as

described in Sect. 3.1. In the case of operation update

moments, the shadow prices yðjÞðsðkÞÞ are updated accord-

ing to update step (16) in case of a BS activation or

according to update step (17) when a BS has been switched

to sleep mode. In the situation where the update moment of

the shadow prices and the update moment of the operation

modes coincide, we first apply the shadow price updates

given in Sect. 3.1 and then (16) or (17).

4.3 Algorithm specification

We will now give a formal algorithm description for the

GSPA-algorithm: the Green Shadow Price user Association

algorithm. There are two types of decision epochs: t
ðjÞ
y for

the shadow price updates, and t
ðkÞ
s for the operation mode

updates. The time between two same-type decision epochs

is deterministic, i.e. we always have the same number of

decision epochs per time unit (second). However, as the

SPA-algorithm needs time to find new user associations,

the rate of shadow price updates is higher than the rate of

operation mode updates. Also, operation modes should not

be updated too often as from an operational point of view it

is undesirable to have a large number of BSs switching on

and off on a fast time scale. However, operation modes

should be updated often enough to follow statistical

changes in the traffic demands.

The modified SPA-algorithm uses load proxies rðjÞl to

update the shadow prices. The formal definition of the

proxies rðjÞl as necessary to obtain theoretical optimality

results is given in Sect. 1. In practice they can be defined as

the fractional resource utilization of BS l between time

t
ðj�1Þ
y and time t

ðjÞ
y . The same kind of proxies are used to

obtain load estimates qðkÞl for the operation mode updates,

where the loads are estimated as

qðkþ1Þ
l ¼ ð1� esÞqðkÞl þ esr

ðkÞ
l : ð18Þ

The loads are hence estimated by a moving average prin-

ciple, where es determines the size of the updates, and thus

how sensitive the load estimates are to the realized load

proxies. We now have introduced all ingredients for our

self-organizing scheme: the GSPA-algorithm, which is

summarized in Algorithm 1.

5 Numerical results

In this section we present various results of numerical

experiments we conducted to gain insight in the perfor-

mance of the GSPA-algorithm. We consider an area of

1000m� 500m with 10 BSs and used three different

traffic scenarios:

1. Uniform The times between two users initiating a file

transfer is independent and exponentially distributed

with mean 1/5 s. The positions of the users are

independent, uniformly at random in the considered

area.

2. Moving Hotspot Similar to the Uniform scenario,

except that there are additional users initiating file

transfers in the form of a non-stationary hotspot. The

hotspot is a 200m� 100m area, and moves to a new

position after every 1000 s. It starts with its south-west

corner at (200, 100), then it moves to (400, 100),

(600, 100), back to (400, 100) and finally returns to

(200, 100), after which this pattern repeats. The

hotspot has a relative file transfer initiation rate of 10

times the normal rate. This scenario is designed to test
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if our algorithm can cope with (rather extreme) spatial

and temporal variation in the traffic demands.

3. Rush hour This scenario represents rush hours, and

basically switches between two Uniform scenarios of

different file transfer initiation rates. During the first

two hours the initiation rate is of a high intensity m ¼
50 file transfers per second, and during the next four

hours it is of low intensity with m ¼ 5 file transfer

initiations per second. This pattern repeats over time.

The file sizes of users are independent and exponentially

distributed with a mean of b ¼ 5Mbit. These chosen ini-

tiation and files size distributions are not essential for the

GSPA-algorithm to operate, but are primarily used for

convenience in the simulations. The load proxies rðjÞl and

qðkþ1Þ
l are obtained by measuring the fractional resource

utilization of BSs, as we suggested for practical systems in

Sect. 4.3. The shadow prices update moments occur every

second, and the operation mode update moments occur

every ten seconds.

All simulations are based on 500,000 user arrivals. The

number of users that can be in service at a BS simultane-

ously is limited by 100 users. If there are 100 users in

service at a BS l and a new user initiates a connection and

is assigned to BS l, then that user will be denied service and

leaves the system directly without receiving service.

The values for P0, P are derived from the work of Auer

et al. [7], leading to P0 ¼ 13:6W and P ¼ 1W for Pico

BSs. Furthermore, each BS transmits with equal power of

24 dBm over the spectrum it has available. The signal

propagation and path loss follows the 3GGP urban micro

model defined in 3GPP 36.814 v9.0.0, where the path loss

(in dB) from BS l to user i is given by

PLði; lÞ ¼ 140:7þ 36:7 log10ðdði; lÞÞ=1000Þ, and dði; lÞ is

the distance in meters between user i and BS l. Further-

more, each BS has available spectrum of bandwidth

5MHz, and we assume a thermal noise of � 174 dBm=Hz.

The BS positions are generated uniformly at random, and

for the Rush Hour scenario they are shown in Fig. 1.

5.1 Benchmarks

We compare our GSPA-algorithm to three benchmarks.

Two benchmarks are based on queues with vacation times

and were proposed by Guo et al. [12]. In both these

benchmarks, a BS directly goes into sleep mode when it

has no more users to serve. The activation policies are

different:

• SISL Single Sleep. The BS is activated after a

deterministic time since it was switched into sleep

mode, regardless of if there are users to serve.

• NLIM N-limited. The BS is activated when there are

N users in the queue at the BS.

In both SISL and NLIM benchmark systems, users are

always assigned to the BS that provides the strongest

received reference signal, even if the BS is in sleep mode.

The SISL and NLIM systems treat BSs on an individual

basis, and do not take into account that other BSs can take

over the users of a BS that was switched off. The advantage

of the SISL and NLIM systems is that they are easy to

operate as they have very simple and intuitive activation

and de-activation policies. However, the optimal number of

users in the queue before a BS is activated in the NLIM

system depends on the arrival rate that a BS is experiencing

[12]. In practice this arrival rate may be unknown and time-

varying. For the purpose of the simulations we have

averaged the arrival rates at BSs over time (considering the

Hotspot and Rush Hour scenarios) to determine the optimal

number of users waiting in the queue before a BS is acti-

vated. The arrival rates per BS are obtained by considering

the cell sizes of BSs as shown in e.g. Fig. 1.

The third benchmark that we consider will be referred to

as the OPT system. The OPT system assigns users to BSs

according to the same rule as the GSPA-algorithm, but it

Fig. 1 The BS positions with

their natural cell areas in the

Rush Hour scenario
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uses predetermined optimal operation modes and shadow

prices. These optimal values are obtained by discretizing

the 500m� 1000m area into 5m� 5m squares, where

each square represents a location. Then we use Cplex to

find optimal solutions to (5a)–(5d) for each state that the

user arrival process can be in (Uniform has only one state,

Hotspot has 3 states, Rush Hour has 2 states). When the

user arrival process changes state, the OPT system applies

the corresponding optimal operation modes and shadow

prices for that new state.

Remark 5.1 For each scenario we generated a sequence of

users (file sizes, locations, and times between file transfer

initiations), and each system was presented with the same

sequence of users to obtain fair comparisons.

Remark 5.2 We chose the benchmarks SISL and NLIM

because of their consistency: the evaluation of the systems

is completely determined by the sequence of user as

described in Remark 5.1 and does not include any proba-

bilistic mechanism for BS activation or user association. It

would be interesting to compare the GSPA algorithm

against the policy proposed by Zhen et al. [34] or Klessig

et al. [17], as these approach also takes network-wide

effects into account. However, it is difficult to make a fair

comparison since Zhen et al. do not provide a mechanism

for practically obtaining an interaction graph, and Klessig

et al. do not provide a mechanism for choosing a good BS

hierarchy. These details are crucial for the respective

approaches.

5.2 Performance

As described in Sect. 1 we are primarily interested in the

power consumption and user-perceived performance. For

the latter we consider two performance metrics: the num-

ber—or fraction—of service denials and the user-perceived

throughput, where we define user-perceived throughput as

the file size of a user divided by its total time spent in the

system (hence it includes the time a user may be waiting in

the queue of the SISL of NLIM systems for its BS to

activate). Under equal power consumption, a lower fraction

Fig. 2 Uniform scenario, mean perceived throughput versus total

power consumption

Fig. 3 Moving Hotspot scenario, mean perceived throughput versus

total power consumption

Fig. 4 Rush Hour scenario, mean perceived throughput versus total

power consumption
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of service denials and/or a higher user-perceived through-

put implies a more efficient user association. In Figs. 2, 3

and 4 we plot the realized total power consumption (in

Joule) versus the realized mean user-perceived throughput

(in Mbit) for the GSPA and OPT systems, where the plot

marks are labelled with the respective values for a. The
SISL and NLIM benchmarks are also included in these

plots as single nodes. The SPA-nodes represent a system

that applies the original SPA-algorithm and always has all

BSs active, and can be thought of as the GSPA-system with

a ! 1. Furthermore, Table 1 shows the realized service

denials and we present plots of the user-perceived

throughput in Figs. 5, 6, 7 and 8.

We can clearly see that as a increases, the power con-

sumption of the GSPA and OPT systems is increasing, and

simultaneously the user-perceived performance is improv-

ing: the percentage of service denials is decreasing and the

user-perceived throughput is increasing. For a ¼ 100, the

realized power consumption of the GSPA and OPT systems

seem extremely favourable, but they have to be weighed

against the high number of service denials.

In the Rush Hour scenario with a ¼ 104, the GSPA-

algorithm has comparable service denials as the NLIM and

SISL systems, against a slightly improved power con-

sumption and a significantly higher mean user-perceived

throughput. In this case, the user-perceived throughput is

worse in the low-throughput region as users in the GSPA

system may be offloaded to BSs that provide them with a

Table 1 Percentage of service denials per system, with various values

for a

System Uniform M Hotspot Rush H

SISL 0 0 1

NLIM 0 0 1

GSPA 100 0 0 28

OPT 100 52 53 86

GSPA 103 0 0 17

OPT 103 6 29 69

GSPA 104 0 0 1

OPT 104 0 0 43

GSPA 105 0 0 1

OPT 105 0 0 29

GSPA 106 0 0 0

OPT 106 0 0 29

Fig. 5 Uniform scenario, GSPA versus NLIM and SISL

Fig. 6 Moving Hotspot scenario, GSPA versus NLIM and SISL

Fig. 7 Rush Hour scenario, GSPA versus NLIM and SISL

Fig. 8 Rush Hour scenario, GSPA versus OPT
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weaker signal, with the benefit of avoiding the power

consumption of an extra BS.

The GSPA-algorithm outperforms the SISL and NLIM

systems in the Uniform and Moving Hotspot scenarios

when a ¼ 103 or a ¼ 104: it has a lower power consump-

tion, less service denials and higher user-perceived

throughputs. This suggests that optimal trade-offs may be

expected for some a in between 103 and 104, although

Quality-of-Service constraints may require higher values

for a. Also, it shows that we can improve both user-per-

ceived performance and power consumption by consider-

ing the system as a whole and accounting for traffic

offloading, instead of looking at each BS individually.

Curiously, the OPT system is not outperforming the

GSPA system on all levels: for the Uniform and Moving

Hotspot scenario with a ¼ 105 and a ¼ 106 the GSPA-al-

gorithm realizes a lower power consumption. Moreover, in

Fig. 8 we see that the GSPA system has significantly less

users with very low throughputs (� 1Mbit=s) for all

investigated values of a. This can be explained by the

dynamic behaviour of the GSPA-algorithm. Although the

OPT system applies optimal shadow prices and operation

modes for each specific (statistically different) state of the

user file transfer initiation process, it does not respond to

inherent variations in of this stochastic process. The GSPA-

algorithm on the other hand may not directly have the

optimal shadow prices, nor have an optimal set of active

BSs, but it does respond to variations in the user arrival

process and clearly that comes with some gains.

The plots in Figs. 2, 3 and 4 can act as a guide for

operators to choose the best value for the trade-off

parameter a. For both the Uniform and Moving Hotspot

scenarios, a trade-off value a ¼ 104 appears a very good

choice: the increase in power consumption compared to

a ¼ 103 also comes at a significant improvement in mean

throughput, but for a[ 104 the increase in power con-

sumption only comes at a marginal improvement in the

mean user-perceived throughput. We have also considered

plots where the (arithmetic) mean user-perceived

throughput is replaced by the geometric mean to put more

weight on users with low experienced throughputs, and the

conclusions drawn in this paper also apply to the geometric

mean user-perceived throughputs.

Finally, observe that the GSPA-algorithm operates

without any a priori information, in contrast to the OPT,

NLIM and SISL systems, and solely bases its decisions on

load proxies determined at the BSs and SINR values

reported by the users. In light of this property, the perfor-

mance of the GSPA-algorithm is remarkably favourable

compared to the considered benchmarks.

6 Conclusion

In this paper we presented a self-organizing green load

balancing algorithm, the GSPA-algorithm, specifically

designed to deal with the many overlapping cells and the

cell load fluctuations appearing in dense cellular networks.

We formulated an optimization problem for a trade-off

between power consumption and user-perceived perfor-

mance and derived sufficient conditions for activating BSs

and switching BSs into sleep mode. Furthermore, we

constructed a user assignment strategy that realizes an

optimal user assignment in terms of the trade-off for a

given set of active BSs. These results were then used to

design the GSPA-algorithm. The GSPA-algorithm relies on

load measurements at BSs and SINR measurements

reported by users, to make a tunable trade-off between

power consumption and user-experienced performance by

activating BSs or putting BSs into sleep mode and also by

adapting the user assignment.

Extensive simulations demonstrated the effectiveness of

the GSPA-algorithm to dynamically react to changing load

conditions without other information than load proxies at

the BSs and SINR measurements from users. The GSPA-

algorithm realized both a lower power consumption and

better user-perceived performances (fewer service denials,

higher perceived throughput) than two considered bench-

marks. Moreover, by tuning the trade-off, the simulations

clearly show a change from minimizing power consump-

tion towards optimizing user-perceived performance.

To the best of our knowledge, this is the first self-or-

ganizing BS sleeping strategy designed for dense cellular

networks. We wish to stress the fact that the GSPA-algo-

rithm realizes good performance without the need of prior

optimization. An interesting direction for future research is

to improve the performance of the GSPA-algorithm for

large systems by locally (geographically) clustering the

BSs in smaller sub-systems and hence increasing the rate of

local self-organization.
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Appendix: Modified SPA-algorithm

In this section we provide further details about the modi-

fication of the SPA-algorithm [26] so that it can be applied

to the optimization problem (5a)–(5d). In the setting of the

original SPA-algorithm, all loads were equal in the optimal

solution. In the current setting however, this complete load

balancing property is lost due to the ‘‘price’’ of extra power

consumption when offloading users to a less favourable BS

(with lower user-experienced SINR values). That means

that in the optimal solution ðx�ðsÞ;U�ðsÞÞ to (5a)–(5d)

some BSs l̂ have an optimal load q l̂ðx�ðsÞÞ strictly lower

than the optimal maximum load U�ðsÞ. This influences the
way in which we have to update the shadow prices. Further

analysis of the Lagrangian dual problem to (5a)–(5d) gives

us the complementary slackness condition: y�
l̂
[ 0 implies

q l̂ðx�Þ ¼ U�. In other words, in the optimal solution, BSs

with a positive shadow price have an optimal load equal to

the maximum load. BSs with an optimal load lower than

the maximum load have their shadow prices equal to 0. The

update step for the modified SPA-algorithm has to take into

account that shadow prices may become zero, and fur-

thermore reflect that for all BSs l̂ with optimal shadow

price y�
l̂
[ 0, the loads should be equal to the maximum

load, and hence all loads of BSs with positive optimal

shadow price have equal loads. Hence, rather than looking

at the system wide average load, we will use the system

wide average load conditioned on the shadow price being

positive:

qþðx; yÞ ¼
1

LþðyÞj j
X

l̂2LþðyÞ

q l̂ðxÞ; ð19Þ

where LþðyÞ is the set of BSs with positive shadow price

yl̂: LþðyÞ ¼ f l̂ 2 L : yl̂ [ 0g.
We will now present the modified update step. The

update step for the shadow prices will only have to balance

the loads of BSs with strictly positive shadow prices. Let

BðiÞ be the file size of user i, let the instantaneous load rðiÞ0
that user i brings to BS l̂i (and hence into the system) be

defined by rðiÞ0 ¼ BðiÞ

Rn; l̂i

, and furthermore rðiÞ
l̂
¼ rðiÞ0 1 l̂ ¼ l̂i

� �

is the load brought to BS l̂. The modified mean load proxy

rðiÞþ ðyÞ is then given by rðiÞþ ðyÞ ¼ rðiÞ0 1 yl̂i [ 0
h i

. Let Ya ¼

fy j
P L̂

l̂¼1
yl̂ ¼ a; yl̂ � 0g be the set of feasible shadow

prices. Then the update step of the modified SPA-algorithm

for the shadow price iterates yðiÞ is given by

yðiþ1Þ ¼ PYa yðiÞ þ eðiÞ rðiÞ � rðiÞþ ðyðiÞÞ
LþðyðiÞÞj j 1L

 !" #
; ð20Þ

where PYa ½y	 is the projection of y to the closest vector in

Ya in the Euclidean sense. The projection is needed

because we can not guarantee by the updates themselves

that shadow prices remain non-negative. We even suspect

that when a is small compared to P many optimal shadow

prices will be zero, reflecting that only a few BSs will have

their loads equal to the maximum load. If we then do not

actively correct the shadow prices, they turn negative when

a BS has a load lower than the average load.

With the above-described modifications to the original

SPA-algorithm, we have obtained the modified SPA-algo-

rithm for the updates of the shadow prices. The framework

of Kushner and Yin [20, Thm. 8.2.5] can be used to con-

clude that the modified SPA-algorithm realizes optimal

user assignments in the long run (a formal proof of this

statements is not the main focus of this paper and is omitted

due to space restrictions).
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