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Abstract

Due to the rising concerns of energy consumption in wireless networks, base station (BS) sleeping strategies were
introduced to save energy in low traffic scenarios. In this paper we analyse a weighted trade-off between energy con-
sumption and user-perceived performance in dense cellular networks. We present an optimization problem representing
this trade-off and derive properties of its optimal solutions. Using these properties we design a self-organizing strategy that
dynamically (online) makes load-aware user association and BS operation decisions. Our strategy is self-organizing in the
sense that it does not need any information or optimization beforehand, it simply relies on real-time load measurements at
the BSs and user-reported SINR values. We furthermore present extensive simulation results, demonstrating the effec-
tiveness of our self-organizing strategy and the impact of increased energy consumption on the user-perceived

performance.

Keywords BS sleeping - Dense cellular networks - Load balancing - Self-organizing

1 Introduction

Wireless cellular networks have experienced immense
growth in traffic loads over the last years as a consequence
of the rapid proliferation of smartphones, tablets, and their
bandwidth-hungry applications. A key option to further
increase wireless network capacity is to deploy dense cel-
lular networks (DCNs) since they allow for higher spectral
reuse and efficiency (shorter communication range, and
thus lower path loss).

The denser concentration of base stations (BSs) raises
new and challenging issues compared with the traditional
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macro cellular networks (MCNs), especially with regard to
cell planning and traffic engineering [5]. Physical con-
straints will typically make it even harder to arrange BSs in
an ideal hexagonal pattern, which causes the coverage
areas to significantly overlap, and the natural cell regions to
be irregularly shaped. As a result, the nominal traffic loads
will tend to exhibit not only more spatial variation but also
stronger temporal fluctuations. This variability in traffic
could potentially result in severe load imbalances and
performance degradation under existing BS sleeping
strategies and traditional user association schemes.

BS sleeping strategies were introduced as a result of the
rising concerns of energy consumption of wireless net-
works, both in in terms of environmental impact and eco-
nomic cost. In MCNs, BSs are responsible for about
60-80% of the total energy consumption [28], where a
single BS may consume up to 90% of its peak energy
consumption in the absence of any traffic due to cooling
and pilot signalling [24]. In terms of economic costs, Nokia
corporation recently estimated [19] that the global energy
bill of radio access networks is currently over 72 billion
Euros. These costs and the environmental impact caused by
the massive energy consumption of cellular networks
drives the need to improve their energy efficiency. A
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common approach to save energy is to switch BSs into
low-power operational modes in the absence of traffic, e.g.
sleep modes.

Although DCNs are expected to experience more vari-
ability in traffic, the high density of BSs also offers more
flexibility than traditional MCNs to deal with this increased
variability. With the overlapping cell areas in DCNs,
switching BSs into sleep mode does not directly lead to
coverage holes, as is often the case in MCNs, forcing the
latter to be more conservative in switching off BSs. That
means DCNs can potentially react to traffic dynamics on a
much smaller timescale than MCNs. For example, DCNs
may be able to react to locally appearing (and disappear-
ing) hotspots of traffic demands on a timescale of (several)
minutes, while MCNs can typically only react to day/night
traffic patterns appearing on a timescale of hours to days
due to the severe coverage degradation when switching off
a macro BS. To fully harvest the potential energy savings
and capacity gains in dense cell deployments, more refined
load-aware BS sleeping strategies must be developed
[2, 22].

An important issue is that reducing energy consumption
by switching BSs into sleep mode basically reduces the
system capacity. This is at odds with the primary goal of
dense cellular networks: increasing network capacity. The
latter is most important for optimizing user-perceived
performances, which is typically done by applying load
balancing schemes. From an energy perspective we wish to
have a minimum number of active BSs, while optimizing
the user-perceived performance ideally activates as many
BSs as possible. Hence—as has also been mentioned by
Zhou et al. [35]—we have two opposite objectives and a
trade-off has to be made.

To complicate matters further, in DCNs, traffic condi-
tions are typically strongly varying over time and hard to
estimate, making manual traffic engineering highly
impractical. This motivates the need for self-organizing
strategies: measurement-based algorithms that realize
excellent performance without requiring explicit prior
knowledge of system parameters like traffic conditions. In
this paper we present a self-organizing, load-aware strategy
that makes a trade-off between energy consumption and
user-perceived performance for DCNs, using a pre-speci-
fied trade-off parameter.

1.1 Discussion and related work

In the past few years “green cellular networks” has been an
active research field providing many approaches to reduce
energy consumption. In this section we give an overview of
different approaches proposed in literature and point out
how our approach is different from existing solutions.
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In principle energy can be saved in two ways: reducing
the downlink transmission power (e.g. [3, 33]) yet keeping
the BSs active, and/or switching BSs into sleep mode
in situations of low load conditions. We focus on the sec-
ond option, i.e. switching BSs into sleep mode.

There are roughly three network modelling perspectives
in the existing literature on BS sleeping strategies: models
that focus on a single BS (e.g. [12, 13, 32]), models that
focus on a single HetNet cell with a macro BS and several
pico BSs (e.g. [10]), and models that consider the entire
network (e.g. [1, 3,9, 11, 14-17, 23, 25, 27, 29, 31, 34]).
We will briefly discuss the first two approaches and then
focus on network wide models since our approach belongs
to the latter category.

First, when considering a single BS, energy can be saved
by switching the BS into sleep mode when no more users
are in service. Several papers exploit an M/G/1 queueing
model to derive asymptotically (locally) optimal activation
strategies [12, 13, 32] such as activation after a pre-opti-
mized sleep period or when the number of users awaiting
the activation hits a certain threshold. These queueing
based methods are easy to implement but require a priori
information to operate optimally and also place users in a
queue when the BS is not active, potentially leading to
unnecessary delays.

Secondly, in the case of a single HetNet cell the macro
BS is typically always on [10, 21]. In such a scenario the
authors optimize the operational modes of the pico BSs in
the macro cell. Their approaches have the advantage that
users are always directly placed in service, but limit the
potential for saving energy as they do not consider the
traffic conditions in neighbouring (HetNet) cells, nor allow
for the macro BS to be turned off.

For the remainder of this section we focus on the cel-
lular network at system level. In this setting, user assign-
ments can specifically focus on active BSs, which
eliminates delays experienced by users assigned to a
sleeping BS. Moreover, BS sleeping strategies with sys-
tem-wide awareness may better recognize when to (de-
)activate a BS as they can account for traffic offloading to
neighbouring active BSs, potentially leading to increased
energy efficiency compared to local strategies. There are
many results on models that consider the entire network
and we further discuss them from three different perspec-
tives: the considered network topology (regular or arbi-
trary), the proposed decision type of the algorithms
(randomized or not randomized), and the considered user
population (fixed or dynamic). We briefly consider each
perspective, using them to position our work in relation to
existing literature.

In terms of the network topology, several papers focus
on the traditional macro cellular hexagonal BS positioning,
presenting specific case studies [2], dealing with both
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transmission power and operation modes [3], or using
detailed user position information [31]. These results rely
on regular BS positioning, which is no longer a fair
assumption in DCNs. The works outlined below (including
our work) do apply to arbitrary network topologies.

Several papers exploit stochastic geometry to find an
asymptotically optimal number of active BSs, or proba-
bilities that BSs are active [9, 23, 25, 29]. These all result
in randomized strategies that can make a different decision
when presented with the same load conditions. Other
approaches [1, 11, 14-17, 27, 34] and—as we will see
later—our approach consistently make the same decision
under the same conditions, making them more reliable in
the sense that the algorithms do not suffer from “unlucky
tosses”.

Looking at the user population dynamics, we find many
approaches that optimize BS operation modes for a specific
(fixed) user population [1, 11, 14, 27, 34]. Jahid et al.
[15, 16] on the other hand focus on user association
specifically and on the use of on-site renewable energy
sources (e.g. solar panels), and simply switch any BS into
sleep mode during off-peak hours. We particularly mention
the work of Zheng et al. [34], which applies game theory to
include the effect that switching a BS into sleep mode leads
to load increases at other BSs. All of these approaches are
optimized for a static user population, potentially requiring
a new optimization every time the user population changes.
Considering the fast flow-level dynamics of DCNs,
strategies optimized for static user populations may need to
change operation modes faster than the optimal operation
modes can be determined.

Although the literature overview given above is by no
means exhaustive, it does paint a broader picture: there are
little to no known strategies in green cellular networks that
cover arbitrary network topologies with dynamic user
populations and that make consistent decisions. One of the
few exceptions is the work of Klessig et al. [17], which
proposes a BS activation strategy inspired by the activation
of cytotoxic killer cells in the immune system of mammals.
However, even though their method is self-organizing in
the sense that it does not need manual intervention during
operation, it does require detailed information on the BS
coverage areas and an a priori chosen BS hierarchy.

1.2 Main contributions

In this paper we analyse a weighted trade-off between
energy consumption through switching BSs on and off and
user-perceived performance in dense cellular networks.
Optimizing the user performance is realized by applying
load balancing user association schemes, and we further-
more introduce a trade-off parameter. To the best of our
knowledge we are the first to analyse such a tunable trade-

off for dense cellular wireless networks: typically the user-
perceived performance is taken as a hard constraint. We
present an optimization problem representing the above-
mentioned trade-off and derive properties of its optimal
solutions. Using these properties we design a self-orga-
nizing strategy that dynamically (online) makes load-aware
user association and BS operation decisions. Our strategy is
self-organizing in the sense that it does not need any
information or optimization beforehand, it simply relies on
real-time load measurements at the BSs and user-reported
signal-to-interference-plus-noise ratio (SINR) values. We
furthermore present extensive simulation results, demon-
strating the effectiveness of our self-organizing strategy
and the role of the trade-off parameter.

1.3 Organization of this paper

The remainder of this paper is organized as follows. In
Sect. 2 we give the model description and introduce some
useful notations. In Sect. 3 we present our optimization
problem and derive conditions and properties of optimal
strategies. Then, in Sect. 4 we propose our dynamic
approach which is based on the properties derived in
Sect. 3. In Sect. 5 we show results of simulations we per-
formed to gain insight in the performance characteristics of
our proposed approach. Finally, in Sect. 6 we make some
concluding remarks and mention directions for future
research.

2 Problem statement and model description

The challenge is to dynamically adapt the set of active BSs
and the user association to changing traffic demands such
that a specific desired trade-off is realized between energy
consumption and user-perceived performance. In our pro-
posed approach, we first study this trade-off in a stationary
regime: a period in time where the traffic demands (i.e. file
transfer initiation rate, mean download file size) are con-
stant. For such a stationary regime we formulate an opti-
mization problem that represents the desired trade-off
using a trade-off parameter. We then analyse the structure
of the optimization problem to obtain properties for opti-
mal user association and optimal BS (de-)activation. These
properties are then used to design an optimal dynamic user
association algorithm and sufficient conditions for dynamic
BS (de-)activation. The user association algorithm and BS
(de)activation rules will no longer depend on the stationary
scenario and can react to changing traffic demands.

We will now proceed as follows. In the remainder of this
section, we introduce the system model for a stationary
scenario and we specify the power consumption model. In
Sect. 3 we formulate the optimization problem for the
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stationary scenario and derive properties of optimal user
association and BS (de-)activation. In Sect. 4 we will
describe how these properties are turned into a dynamic
algorithm, the Green Shadow Price Assignment (GSPA)
algorithm.

2.1 System model

We consider a system with L BSs, and we focus on
downlink communication only. Within the considered area,
BSs provide service to a time-varying set of users. For
convenience, we assume that there is a discrete set of N
user locations, which may be interpreted as a suitable dis-
cretization of the overall coverage area. A location repre-
sents a class of users that all have (approximately) equal
physical transmission rate characteristics with respect to
the BSs. At location n, users initiate file transfers (down-
loads) at a rate v,. The sizes of the file transfers initiated by
users in location »n are independent and have mean /3, Mbit.
As soon as a user has downloaded its file it leaves the
system. We do not explicitly consider user mobility.

Remark 2.1 Together, the rates v, and the mean file sizes
f, determine the traffic demands of the system and they
may change over time. However, in the stationary regime
that we currently consider they are constant (by definition).

The bit rate at which users are served depends on their
experienced SINR values. We do not account for fast
fading and consider only average SINR values. A BS [
transmits at a fixed power in the time slots it is serving
users. A user i does not receive the full transmission power
of the BS, but a reduced portion due to path loss factors.
For convenience we do not consider frequency-selective
fading, which means that the path loss is independent of the
frequency and only depends on the distance between the
location and the BS. The Shannon formula implies that
user i at location n can receive a maximum communication
rate R,; (in bits per second) from BS / given by

R,; = wlog(1 + SINR(n, 1)), (1)

where w is the fixed bandwidth available to the BS in Hz,
and where SINR(n,/) is the signal-to-interference-plus-
noise ratio that user i experiences at location n when served
by BS [. We assume that there is an interference-free
spectrum allocation to the BSs such that each BS has a
fixed bandwidth w. BSs apply a proportional fair schedul-
ing policy as is also common in 4G LTE networks, such
that the service rate experienced by users depends on the
number of users in service at the BS as well as the SINR of
that user.

Let x,; be the fraction of the users that initiate a file
transfer at location n that is allocated to BS /, and let x be a
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vector representing all the individual values of x,;. Then
the long term load, or resource utilization, of BS / can be
expressed by (see e.g. [26])

_ by

pilx) = D, @)

n=1

We assume that the network has a centralized control unit,
which may be realized by using Radio-over-Fiber (RoF)
technology [18]. That means that at the BS site there is
only a simple remote radio head, and all BS intelligence is
located at a centralized entity. This has the advantage that
important state information—specifically load estimates
and user-reported SINR values—is known for the entire
system, and can be used in the dynamic operation of the
network.

Remark 2.2 At this point we wish to note that, although in
our model and analysis we use a discrete set of locations,
we aim to design decision rules that do not rely on these
locations since the underlying discretization is most prob-
ably not available in practice. For the same reason, we also
aim to avoid the specific use of v, and f, in the final
decision rules. Instead we use estimates of the resource
utilization at BSs to obtain load proxies and use these in
our decisions. As a result the decision rules become self-
organizing in the sense that they dynamically react to
changing load conditions at the BSs. In other words, when
the system changes from one stationary scenario to another,
the decision rules automatically adjust to the new situation.

2.2 BS modes and power consumption model

A BS can be in three operational modes: active, sleep and
start-up mode. A BS can directly go from active to sleep
mode, but when a BS is switched from sleep to active
mode, there is a start-up delay of Tp, seconds before the
BS is operational and can start serving users. The start-up
delay is typically small (e.g. 1 second [12]) compared with
the time-scale at which BSs are activated or de-activated
(minutes). When a BS is switched to sleep mode, the users
in service at that BS will be handed over to other BSs.
Similarly, an activated BS may take over users of other
BSs.

We adopt the widely-used (e.g. [10, 11, 25, 30, 32, 34])
load-dependent power consumption model of Auer et al.
[7], where the power consumption P; in Watt of a BS [ is
given by

P =Py + P px). (3)

Here, Py is the constant power consumption of an opera-
tional BS with no traffic, and P - p,(x) is the load-depen-
dent power consumption term for given load p;(x). When a
BS is in sleep mode, we assume its power consumption
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Pogr satisfies 0 < Pogr < Py. Moreover, in start-up mode, a
BS has a power consumption of Psy (e.g. Pst = 2Py [12]).

3 Optimization problem and analysis

In this section we first formulate an optimization problem
for a stationary regime of the system, where the stationary
regime represents a period in which the rates v, and mean
file sizes f8, are constant. Thereafter we break down the
optimization problem into two separate parts: user associ-
ation and BS (de-)activation. In the first part we will show
how to realize an optimal (in the sense of the trade-off
objective) user association for a given set of active BSs. In
the second part we derive sufficient conditions for acti-
vating a BS or putting a BS into sleep mode. The results
presented in this section will serve as input for Sect. 4,
where we will use the optimal user association and the
sufficient conditions for (de-)activating BSs to design a
dynamic control algorithm.

Let s; = 1 if BS [ is in active mode, and s; = O if it is in
sleep mode. The setup mode is not considered as it is a very
short temporary mode preceding activation, having little
effect on the overall power consumption. The objective is a
trade-off between minimizing the total power consumption
and optimizing the user perceived-performance. For the
latter we specifically choose load balancing as is common
in cellular networks [4, 6, 8]. Load balancing is realized by
minimizing the highest BS load, and hence we can for-
mulate the following minimization problem, where « is the
desired trade-off factor between power minimization and
load balancing, and U represents the maximum BS load
(further explanation of the constraints is given below).

L
min h(x,s,U) = ;Pl(x,s) +o-U (4a)

sub:  Pi(x,s) = s;(Po+ P - p;(x)) + (1 — s;)Pose, VI,

(4b)
N v ﬁ
(%) = ; R, SV (4c)
L
an,l -s;=1, Vn, (4d)
=1
s €4{0,1}, Vi, (4e)
X >0, Vn, VL. (4f)

The objective (4a) is minimized over the operation modes
of the BSs, over the user association X, and over the
maximum BS load U. The user association x is included
since users can only be assigned to active BSs. The user

association in combination with constraint (4c¢) and the
minimization of U give rise to a load balancing problem,
which is then weighted by a factor « with the power con-
sumption. Constraint (4d) makes sure that (exactly all)
traffic is only assigned to active BSs (all locations have
coverage).

The problem (4a)-(4f) is a non-convex [due to con-
straints (4d)], mixed-integer, quadratically constrained
[also due to constraints (4d)] quadratic program (QCQP—
the objective contains quadratic terms), and in particular
the non-convexity makes it hard to find (provably) globally
optimal solutions. However, we do not wish to find optimal
solutions for this formulation directly since we aim for
decision rules that can be applied dynamically and in
particular without knowledge of the values of v, and f,,.
We will now consider the optimization problem (4a)—(4f)
in two separate parts: user association and the operation
modes of the BSs.

Remark 3.1 The optimization problem (4a)—(4f) applies to
a single-tier network. Multiple tiers may be incorporated by
splitting the sum in the objective function over different
sets of BSs, where each set of BSs represents a network tier
with possibly different values for Py, P, and Pog.

3.1 Optimal user association

To gain insight in the optimal user association, let us fix the
operation modes of the BSs and consider the sub-problem
of load balancing for the active BSs [ € L(s) = {l € L |
s; = 1} for any given operational mode s:

L
min LP0+ZP~pi(X)+oc~U (5a)
=1

N .8,
>

n=1 n,l

sub:  pj(x) =

x,;<U, Vi, (5b)

L
an,i =1, Vn, (5¢)
=1

X,;>0, Vn, Vi (5d)

where |£(s)| = L. The problem (5a)—(5d) is a linear pro-
gramming problem (LP) with continuous decision variables
x and U. This problem is a variation on the LP for the user
association problem presented by Post and Borst [26],
where the only difference is in the objective function,
which is originally miny iy U. Post and Borst [26] presented
a dynamic user association algorithm—the shadow price
assignment (SPA) algorithm—that realizes an optimal user
association for the original objective function. We can
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modify the SPA-algorithm to also find optimal user
assignment fractions x* for (5a)—(5d).

The idea of the original SPA-algorithm was to assign
users to BSs using shadow prices y;l for the BSs. The
shadow prices are adapted over time depending on load
proxies observed at the BSs, eventually leading to optimal
user associations. We briefly explain the two most impor-
tant differences with the original SPA-algorithm if we wish
to apply it to find optimal solutions for the LP (5a)—(5d).

Let y; be the shadow prices of BS I, and let y denote the
vector containing all shadow prices (including the BSs in
sleep mode). The first, and perhaps most important dif-
ference appears in the optimality condition of user
assignments. Using the Karush-Kuhn-Tucker optimality
conditions, we can derive that an optimal user assignment
x* satisfies

xi(y)>0 = [ € argmin {l/:s[,_l}{yl;ejp}, (6)
breaking ties at random when the minimizer is not unique.
Condition (6) may be interpreted as follows: given (opti-
mal) shadow prices y, the optimal user assignment allo-
cates users to BSs with either a low shadow price or a high
service rate. If all shadow prices are equal, users will
simply be assigned to the BS [ that provides them with the
highest rate R,;. The only difference compared with the
original SPA-algorithm is the added power consumption
term P. Notice that condition (6) may be implemented
without relying on locations by using user-dependent ser-
vice rates R;; for user i. This can be thought of as if each
user has its own unique location. In practice, the service
rates R;; can be obtained by using user-reported SINR
values.

The second most important difference is that the optimal
shadow prices y satisfy Zle y? = o (instead of summing
to one as in the original SPA-algorithm). More details
about the modification of the original SPA-algorithm, and
specifically the modified update step for the shadow prices,

can be found in the “Appendix”. The practical imple-
mentation is summarized in Sect. 4.3.

3.2 Sufficient conditions for changing operation
modes

We will now study the operational modes of BSs. For
notational convenience we take Pog = 0. The analysis for
Posr > 0 only leads to one added term Pog in the condi-
tions that we derive, and Pog is often assumed negligible
compared to P.

! We continue to use identifiers [ for BSs to stress that we are only
dealing with active BSs in this subsection.
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Considering that we are dealing with a non-convex,
mixed-integer QCQP problem, we are not planning to find
the optimal set of BSs for a given situation, but rather take
a different approach. We consider the current BS loads and
test if we can (expect to) improve the objective (4a) by
activating BSs or by switching BSs into sleep mode. Then,
after we have made a change we measure the new realized
BS loads, at which point we start to repeat the process.
Although we do not expect to always find optimal opera-
tion modes, the advantage of this approach is that it can
dynamically react to changing load conditions and that the
choices are clearly motivated and consistent: given the
same situation, this approach will take the same decision.

Recall that we wish to avoid relying on the discretiza-
tion into locations. In Sect. 3.1 we have seen a dynamic
algorithm that realizes an optimal user association for a
given set of active BSs without relying on the discretiza-
tion. Let p,(s) denote the resulting load of BS [ under the
optimal user association realized by the modified SPA-al-
gorithm for the set of active BSs represented by s. This
allows us to only focus on the operation modes s of BSs
and the corresponding optimal BS loads p,(s), without
having to worry about the user assignments too much.

Switching to sleep mode Suppose the system is currently
using the operation modes s. Then the objective value (4a)
can be written as h(p(s)), with

h(p(s)) =D _si(Po+ P+ pi(s)) +amax{p,(s)}. (7)
=1

Let us focus on any BS [ with operation mode s;. Changing
the operation mode of BS [ leads to the new mode §;=
1 — 57 (when we disregard the setup mode). This gives a
new vector of operation modes § which is only different
from s in the Ith coordinate. Then, it pays off to change the
operation mode of BS [ if and only if

h(p(s)) > h(p(8))- (3)

Although we may obtain the values p(s) by using load
measurements at the active BSs, it is unclear what the new
loads p(s) will become. However, if we can find estimates
0,(8) for the load values p,(s) such that h(p(s)) > h(p(8)),
then for sure we have h(p(s)) > h(p(S)) by optimality of
p,(8) for . Hence, if we can obtain reliable estimates p,(s)
we can deduce a sufficient condition for changing the
operation mode of BS I: BS [is a candidate for changing its
operation mode if

h(p(s)) > h(p(s)). ©)

We will now explain how to use the shadow prices of the
modified SPA-algorithm to obtain estimates p(S) for the
new load values p(§). Considering that we are applying the
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modified SPA-algorithm as described in Sect. 3.1, the load
proxies used by this algorithm can represent the values
p,(s). Then, to obtain values for p,(s) we will use the
instantaneous user population at the BS ILet us focus on
the active BS  which serves the set of users Z 7 and which
experiences a load of p;(s). Then we can associate this load
proportionally to the users in service at BS [ as follows:
user [ € Z; is responsible for a fraction ¢, ; of the load,
where the fraction g, ; is given by
Rl
ol (10)

Ui 1
' ZjGIl‘Rj’f

Suppose now that after BS [ has been switched to sleep
mode, user i is handed over from BS [ to its new serving
BS I € argmin,_;{(y, + P)/Rir}, where §, are the sha-
dow prices directly after BS [ has been switched into sleep
mode (or directly after activation, see Sect. 4.2). Then the
load that user i adds to BS [ is the load it induced to BS [
multiplied by a factor R, ;/R;;. Hence, if we handover user i

from BS [ to BS I, the new load p,(s) of BS I can be
estimated by

~ Ri‘l
pr=pi(s) +qi,z~pz(S)Rf;l~ (11)

Following these lines of reasoning, we can obtain values
for p;(8) (where [ # [ and s; = 1) by taking

A~ . 5),+P R,‘_'
p1<s>=p,<s>+2ﬂ[l= gm{ : qu,,rpz(s) 3

Riy Ry

(12)

Activation Now suppose BS [ is in sleep mode, and we
consider activating it. Then in a similar way as described

i€T;

above, the load of candidate BS [ after activation can be
approximated by

. ~ . Yy +P R,
pi(s) = E E 1|/ = argmin;,_ L iz~ pi(s) 5
e Ry R,
=1 i€Z; ’ il
(13)

Furthermore, the loads p;(X) of other (active) BSs after
activation of BS [/ can be approximated by

51(3) =5 (1 Y [i — argming.;,_, {yRLPH q)

i€l

(14)

The new load estimates given by (12) and (14) can be
used to obtain sufficient conditions for switching to sleep
mode and activation respectively. However, the sufficient
condition for activation can be further improved. Since the

load estimates are based on instantaneous user populations,
the following situation is very likely. By using the modified
SPA-algorithm there are multiple BSs that maximize the
load, i.e. |argmax {p,;(x(s))}| > 1. When we activate a
currently sleeping BS lit may attract load from some of the
BSs in argmax {p,(x(s))}, but very likely not all. This
means that the maximum load among the BSs is not
decreased according to the load estimates given by (14).
Even though we indeed do not expect the newly activated
BS [ to be able to alleviate all maximum loaded BSs, we
can expect a cascading effect: BS I takes over some load
from BS I € arg max ,{p,(x(s))}, which in turn allows the
BS [ to take over some load from another BS
I' € argmax {p;(x(s))}. This effect is eventually realized
by the modified SPA-algorithm, but it is not captured by
the load estimates given by Eq. (14).

To account for the cascading effect described above, we
propose an extra step in determining load estimates for BS
activation. First we determine the load estimates according
to Eq. (14). If p;(s) is higher than the old maximum load,
then we do not expect to gain in the objective, and hence
we can assume that p;(§) < max;{p,(s)}. Next we consider
the set of BSs £° that had a load equal to the maximum
load and that did not offload any users to the newly acti-
vated BS I. We will then pretend that BS [ will take some
load by averaging the loads of the BSs in £° with BS lina
weighted manner. First, the weights for BSs I € £L° are
given by wy = minjez, {R;y/R;;}, and w; = 1, such that
the weights represent the best possible ratio in which load
from BS [ can be offloaded to BS I. Let W = w; + >, wy
be the total weight, then the improved load estimates are
given by

wr . . .
~ Z/ o T 7[)!(5) lf
pi(8) = { —reet w

pi(s)

leL£ou{l},
otherwise.
(15)

In short, we use load estimates (12) to obtain a sufficient
condition for switching a BS into sleep mode. We use the
load estimates (15) to obtain a sufficient condition for
activating a BS, resulting in a set of candidate BSs for
which a change in operation mode improves the objective.

The condition (9) considers changing the operation
mode of a single BS at the time. Theoretically we can
simply consider a set of BSs rather than a single BS, but
when we change the operation modes of more than one BS
it immediately becomes unclear how the new loads will
behave. Therefore we have chosen to focus on one BS at a
time. Nevertheless, condition (9) may still present several
candidates of BSs for which a change in operation mode
realizes a better objective. In the next section we will
discuss which BSs are selected.
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4 Dynamic control

In this section we propose a self-organizing strategy which
dynamically makes load-aware user association and BS
operation decisions. These decisions are based on the
optimality conditions for the optimization problem (4a)-
(4f) derived in the previous section and use load proxies
observed at the active BSs.

For the user assignments we apply a modified version of
the SPA-algorithm as described in Sect. 3.1, which
requires to frequently update the shadow prices associated
with the BSs. For the operation modes we use periodic
decision moments in which we will change at most two
BSs operation modes at each decision moment: at most one
activation and at most one into sleep mode. The proposed
strategy will therefore perform two types of updates, each
on a different timescale:

1. Updates of the shadow prices, where at shadow price

update moment sz )

we determine the jth iterate of the
shadow prices denoted by y!).
2. Changes in the operation modes of the BSs, where at

(k)

operation update moment #;° we determine the kth

iterate of the operation modes denoted by s*).
The shadow price updates are fully determined by the
modified SPA-algorithm as described in Sect. 3.1, but we

still need to specify how we update the operation modes. In
addition, we will also specify what happens to the shadow

prices yU) when the set of active BSs changes. These two
issues will be covered in the next two subsections. In
Sect. 4.3 we will give a precise description of our proposed
strategy.

4.1 Operation mode updates

At operation update moments we treat the set of active and
sleeping BSs separately. For the set of active BSs we check
which ones are candidates for de-activation (switching into
sleep mode). To do this we use the load estimates (12) and
compute Aj(s®¥) = h(p(s¥)) — h(ﬁ(s(">)) for each active
BS [. From all active candidate BSs with A;(s®)) > 0 we
choose the BS I* = maX]N:S(ik):l{Ai(S<k))} and switch it into

sleep mode.

Similarly, for all sleeping BSs we also compute A;(s*)),
but now using the load estimates (15). Then, from all
sleeping candidate BSs with A;(s¥)) > 0 we activate BS
= maxizx(i@:(){A[(s(k))}.

Remark 4.1 We allow for a BS activation and another BS
to switch into sleep mode simultaneously. In a small
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network, we do not expect this to happen, however in a
large network the two BSs may be separated by enough
distance that they locally do not influence each other.
Moreover, in large networks the local traffic demands may
vary a lot, where one area experiences a high load, whereas
other areas are better off reducing their number of active
BSs.

Remark 4.2 The activation and sleep rules presented
above do not take into account any activation cost or de-
activation costs. These costs may be implemented by set-
ting different thresholds for A;(s*)) that allow activation or
deactivation.

4.2 Adjusting shadow prices after operation
mode changes

In Sect. 3.1 we showed that for an optimal user assignment,

the shadow price iterates y}n sum up to a. If we activate a

BS or put a BS into sleep mode, the number of active BSs
changes and we either gain or lose a shadow price
respectively. Consequently we have to adjust the shadow
prices such that the sum over the shadow prices of active
BSs equals o. The easiest way to do this is to reset all
shadow prices to a/|L(s®))|, where £(s®¥)) is the set of
active BSs under operation mode vector s*). However, this
method loses the information that the modified SPA-algo-
rithm has already learned on the shadow prices, and
therefore we will introduce updates for the shadow prices

that maintain their mutual ratios.

First we will describe how the shadow prices ylm are

changed when we activate a BS. Suppose we have shadow

prices y¥)(s®)) for a given operation mode vector s

(k)

where BS [ is in sleep mode (i.e. 570 = 0), and at decision

time #;,; we activate BS [ so that we get the new operation
modes s+t = gk + e, where ej is the Ith unit vector.

Then the new shadow prices y¥) (s® 4 e j) are given by
0) (k) 1£(sM)] N |£(s%)]
yi' (s )|£(s(k)+e])| i ( )7%(5(,())‘_’_1
o
L(s®) +¢;)

. if 11,
Y (s® 4e;) = )
if 1=1,

(16)

which indeed sum up to o given that the original shadow
prices sum up to a. Moreover, from (16) we can see that for
any pair {/,/'} of active BSs under s the ratios of the
shadow prices are preserved.

Secondly we consider the situation where we put the BS

I into sleep mode. Hence we now assume that under s*) the
BS [is active, and switching it into sleep mode results in
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operation mode vector s*) —ej. Then the new shadow

prices are given by

W (s®)

o=y (s)

0 it 1=1,
(17)

where again the new shadow prices sum up to « and their
mutual ratios are maintained.

We can now fully specify how the shadow prices are
adapted. In case of assignment update moments, the sha-
dow prices are updated according to the SPA-algorithm, as
described in Sect. 3.1. In the case of operation update

. if 1#£1,
(59 —ep) =

moments, the shadow prices y)(s*)) are updated accord-
ing to update step (16) in case of a BS activation or

The modified SPA-algorithm uses load proxies alw to

update the shadow prices. The formal definition of the

proxies O’IU) as necessary to obtain theoretical optimality

results is given in Sect. 1. In practice they can be defined as
the fractional resource utilization of BS [ between time
PO 0]

v 7 and time #;”. The same kind of proxies are used to

obtain load estimates p,(k> for the operation mode updates,

where the loads are estimated as
oY = (1= e)p + el (18)

The loads are hence estimated by a moving average prin-
ciple, where ¢; determines the size of the updates, and thus
how sensitive the load estimates are to the realized load
proxies. We now have introduced all ingredients for our
self-organizing scheme: the GSPA-algorithm, which is
summarized in Algorithm 1.

GSPA-algorithm

Initialization:
Shadow price updates
Operation mode updates

At decision times .

Sety” =a/L,p)" =0,0/" =0,V =1,...,L.
G+1)

, calculate y*1) by applying update (20).

At decision times t§k+1) , determine new load estimates (18), change

operation modes of BS as in Section 4.1 by using the load estimates.
Adjust shadow prices as in Section 4.2.

Assignment step:

BS ! € argmin, {(y

Initiating user i + 1 is assigned (uniformly at random) to a
(i+1)
M

+P)/Rir}.

according to update step (17) when a BS has been switched
to sleep mode. In the situation where the update moment of
the shadow prices and the update moment of the operation
modes coincide, we first apply the shadow price updates
given in Sect. 3.1 and then (16) or (17).

4.3 Algorithm specification

We will now give a formal algorithm description for the
GSPA-algorithm: the Green Shadow Price user Association
algorithm. There are two types of decision epochs: ty ) for
the shadow price updates, and tﬁk) for the operation mode
updates. The time between two same-type decision epochs
is deterministic, i.e. we always have the same number of
decision epochs per time unit (second). However, as the
SPA-algorithm needs time to find new user associations,
the rate of shadow price updates is higher than the rate of
operation mode updates. Also, operation modes should not
be updated too often as from an operational point of view it
is undesirable to have a large number of BSs switching on
and off on a fast time scale. However, operation modes
should be updated often enough to follow statistical
changes in the traffic demands.

5 Numerical results

In this section we present various results of numerical
experiments we conducted to gain insight in the perfor-
mance of the GSPA-algorithm. We consider an area of
1000m x 500m with 10 BSs and used three different
traffic scenarios:

1. Uniform The times between two users initiating a file
transfer is independent and exponentially distributed
with mean 1/5s. The positions of the users are
independent, uniformly at random in the considered
area.

2. Moving Hotspot Similar to the Uniform scenario,

except that there are additional users initiating file
transfers in the form of a non-stationary hotspot. The
hotspot is a 200m x 100 m area, and moves to a new
position after every 1000 s. It starts with its south-west
corner at (200, 100), then it moves to (400, 100),
(600, 100), back to (400, 100) and finally returns to
(200, 100), after which this pattern repeats. The
hotspot has a relative file transfer initiation rate of 10
times the normal rate. This scenario is designed to test
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if our algorithm can cope with (rather extreme) spatial
and temporal variation in the traffic demands.

3. Rush hour This scenario represents rush hours, and
basically switches between two Uniform scenarios of
different file transfer initiation rates. During the first
two hours the initiation rate is of a high intensity v =
50 file transfers per second, and during the next four
hours it is of low intensity with v =35 file transfer
initiations per second. This pattern repeats over time.

The file sizes of users are independent and exponentially
distributed with a mean of f§ = 5Mbit. These chosen ini-
tiation and files size distributions are not essential for the

GSPA-algorithm to operate, but are primarily used for

convenience in the simulations. The load proxies 05’) and

pgkﬂ) are obtained by measuring the fractional resource

utilization of BSs, as we suggested for practical systems in
Sect. 4.3. The shadow prices update moments occur every
second, and the operation mode update moments occur
every ten seconds.

All simulations are based on 500,000 user arrivals. The
number of users that can be in service at a BS simultane-
ously is limited by 100 users. If there are 100 users in
service at a BS / and a new user initiates a connection and
is assigned to BS /, then that user will be denied service and
leaves the system directly without receiving service.

The values for Py, P are derived from the work of Auer
et al. [7], leading to Py = 13.6 W and P =1 W for Pico
BSs. Furthermore, each BS transmits with equal power of
24dBm over the spectrum it has available. The signal
propagation and path loss follows the 3GGP urban micro
model defined in 3GPP 36.814 v9.0.0, where the path loss
(in dB) from BS [ to wuser i is given by
PL(i,1) = 140.7 4+ 36.71log,,(d(i,1))/1000), and d(i,!) is
the distance in meters between user i and BS /. Further-
more, each BS has available spectrum of bandwidth
5MHz, and we assume a thermal noise of — 174 dBm/Hz.

500m

The BS positions are generated uniformly at random, and
for the Rush Hour scenario they are shown in Fig. 1.

5.1 Benchmarks

We compare our GSPA-algorithm to three benchmarks.
Two benchmarks are based on queues with vacation times
and were proposed by Guo et al. [12]. In both these
benchmarks, a BS directly goes into sleep mode when it
has no more users to serve. The activation policies are
different:

e SISL Single Sleep. The BS is activated after a
deterministic time since it was switched into sleep
mode, regardless of if there are users to serve.

e NLIM N-limited. The BS is activated when there are
N users in the queue at the BS.

In both SISL and NLIM benchmark systems, users are
always assigned to the BS that provides the strongest
received reference signal, even if the BS is in sleep mode.
The SISL and NLIM systems treat BSs on an individual
basis, and do not take into account that other BSs can take
over the users of a BS that was switched off. The advantage
of the SISL and NLIM systems is that they are easy to
operate as they have very simple and intuitive activation
and de-activation policies. However, the optimal number of
users in the queue before a BS is activated in the NLIM
system depends on the arrival rate that a BS is experiencing
[12]. In practice this arrival rate may be unknown and time-
varying. For the purpose of the simulations we have
averaged the arrival rates at BSs over time (considering the
Hotspot and Rush Hour scenarios) to determine the optimal
number of users waiting in the queue before a BS is acti-
vated. The arrival rates per BS are obtained by considering
the cell sizes of BSs as shown in e.g. Fig. 1.

The third benchmark that we consider will be referred to
as the OPT system. The OPT system assigns users to BSs
according to the same rule as the GSPA-algorithm, but it

Fig. 1 The BS positions with
their natural cell areas in the
Rush Hour scenario
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uses predetermined optimal operation modes and shadow
prices. These optimal values are obtained by discretizing
the 500m x 1000m area into Sm X 5m squares, where
each square represents a location. Then we use Cplex to
find optimal solutions to (5a)—(5d) for each state that the
user arrival process can be in (Uniform has only one state,
Hotspot has 3 states, Rush Hour has 2 states). When the
user arrival process changes state, the OPT system applies
the corresponding optimal operation modes and shadow
prices for that new state.

Remark 5.1 For each scenario we generated a sequence of
users (file sizes, locations, and times between file transfer
initiations), and each system was presented with the same
sequence of users to obtain fair comparisons.

Remark 5.2 We chose the benchmarks SISL and NLIM
because of their consistency: the evaluation of the systems
is completely determined by the sequence of user as
described in Remark 5.1 and does not include any proba-
bilistic mechanism for BS activation or user association. It
would be interesting to compare the GSPA algorithm
against the policy proposed by Zhen et al. [34] or Klessig
et al. [17], as these approach also takes network-wide
effects into account. However, it is difficult to make a fair
comparison since Zhen et al. do not provide a mechanism
for practically obtaining an interaction graph, and Klessig
et al. do not provide a mechanism for choosing a good BS
hierarchy. These details are crucial for the respective
approaches.
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5.2 Performance

As described in Sect. 1 we are primarily interested in the
power consumption and user-perceived performance. For
the latter we consider two performance metrics: the num-
ber—or fraction—of service denials and the user-perceived
throughput, where we define user-perceived throughput as
the file size of a user divided by its total time spent in the
system (hence it includes the time a user may be waiting in
the queue of the SISL of NLIM systems for its BS to
activate). Under equal power consumption, a lower fraction
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Table 1 Percentage of service denials per system, with various values
for «

System Uniform M Hotspot Rush H
SISL 0 0 1
NLIM 0 0 1
GSPA 100 0 0 28
OPT 100 52 53 86
GSPA 10° 0 0 17
OPT 10° 6 29 69
GSPA 10* 0 0 1
OPT 10* 0 0 43
GSPA 10° 0 0 1
OPT 10° 0 0 29
GSPA 10° 0 0 0
OPT 10° 0 0 29
1 - |--- NLIM
------ SISL
0.8} —a =100
é ——q =103
2 060 ——a = 10*
b ——a=10°
é 041 ——a=10°
E
O 02
O -

0 5 10 15 20
Throughput in Mb/s

Fig. 5 Uniform scenario, GSPA versus NLIM and SISL

1 --- NLIM
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. 08 —a= 109
.;2 a =103
3 _ 104
é 0.6 — o= 10;—
° ——a =10
= —— o = 10°
= 04 “=
g
O 0.2

0

15 20
Throughput in Mb/s

Fig. 6 Moving Hotspot scenario, GSPA versus NLIM and SISL
of service denials and/or a higher user-perceived through-
put implies a more efficient user association. In Figs. 2, 3

and 4 we plot the realized total power consumption (in
Joule) versus the realized mean user-perceived throughput
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Fig. 8 Rush Hour scenario, GSPA versus OPT

(in Mbit) for the GSPA and OPT systems, where the plot
marks are labelled with the respective values for o. The
SISL and NLIM benchmarks are also included in these
plots as single nodes. The SPA-nodes represent a system
that applies the original SPA-algorithm and always has all
BSs active, and can be thought of as the GSPA-system with
o — oo. Furthermore, Table 1 shows the realized service
denials and we present plots of the user-perceived
throughput in Figs. 5, 6, 7 and 8.

We can clearly see that as « increases, the power con-
sumption of the GSPA and OPT systems is increasing, and
simultaneously the user-perceived performance is improv-
ing: the percentage of service denials is decreasing and the
user-perceived throughput is increasing. For o = 100, the
realized power consumption of the GSPA and OPT systems
seem extremely favourable, but they have to be weighed
against the high number of service denials.

In the Rush Hour scenario with & = 10*, the GSPA-
algorithm has comparable service denials as the NLIM and
SISL systems, against a slightly improved power con-
sumption and a significantly higher mean user-perceived
throughput. In this case, the user-perceived throughput is
worse in the low-throughput region as users in the GSPA
system may be offloaded to BSs that provide them with a
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weaker signal, with the benefit of avoiding the power
consumption of an extra BS.

The GSPA-algorithm outperforms the SISL and NLIM
systems in the Uniform and Moving Hotspot scenarios
when o = 10% or o« = 10*: it has a lower power consump-
tion, less service denials and higher user-perceived
throughputs. This suggests that optimal trade-offs may be
expected for some « in between 10° and 10*, although
Quality-of-Service constraints may require higher values
for a. Also, it shows that we can improve both user-per-
ceived performance and power consumption by consider-
ing the system as a whole and accounting for traffic
offloading, instead of looking at each BS individually.

Curiously, the OPT system is not outperforming the
GSPA system on all levels: for the Uniform and Moving
Hotspot scenario with o = 10° and « = 10° the GSPA-al-
gorithm realizes a lower power consumption. Moreover, in
Fig. 8 we see that the GSPA system has significantly less
users with very low throughputs (<1Mbit/s) for all
investigated values of «. This can be explained by the
dynamic behaviour of the GSPA-algorithm. Although the
OPT system applies optimal shadow prices and operation
modes for each specific (statistically different) state of the
user file transfer initiation process, it does not respond to
inherent variations in of this stochastic process. The GSPA-
algorithm on the other hand may not directly have the
optimal shadow prices, nor have an optimal set of active
BSs, but it does respond to variations in the user arrival
process and clearly that comes with some gains.

The plots in Figs. 2, 3 and 4 can act as a guide for
operators to choose the best value for the trade-off
parameter o. For both the Uniform and Moving Hotspot
scenarios, a trade-off value o = 10* appears a very good
choice: the increase in power consumption compared to
a = 10° also comes at a significant improvement in mean
throughput, but for o > 10* the increase in power con-
sumption only comes at a marginal improvement in the
mean user-perceived throughput. We have also considered
plots where the (arithmetic) mean user-perceived
throughput is replaced by the geometric mean to put more
weight on users with low experienced throughputs, and the
conclusions drawn in this paper also apply to the geometric
mean user-perceived throughputs.

Finally, observe that the GSPA-algorithm operates
without any a priori information, in contrast to the OPT,
NLIM and SISL systems, and solely bases its decisions on
load proxies determined at the BSs and SINR values
reported by the users. In light of this property, the perfor-
mance of the GSPA-algorithm is remarkably favourable
compared to the considered benchmarks.

6 Conclusion

In this paper we presented a self-organizing green load
balancing algorithm, the GSPA-algorithm, specifically
designed to deal with the many overlapping cells and the
cell load fluctuations appearing in dense cellular networks.
We formulated an optimization problem for a trade-off
between power consumption and user-perceived perfor-
mance and derived sufficient conditions for activating BSs
and switching BSs into sleep mode. Furthermore, we
constructed a user assignment strategy that realizes an
optimal user assignment in terms of the trade-off for a
given set of active BSs. These results were then used to
design the GSPA-algorithm. The GSPA-algorithm relies on
load measurements at BSs and SINR measurements
reported by users, to make a tunable trade-off between
power consumption and user-experienced performance by
activating BSs or putting BSs into sleep mode and also by
adapting the user assignment.

Extensive simulations demonstrated the effectiveness of
the GSPA-algorithm to dynamically react to changing load
conditions without other information than load proxies at
the BSs and SINR measurements from users. The GSPA-
algorithm realized both a lower power consumption and
better user-perceived performances (fewer service denials,
higher perceived throughput) than two considered bench-
marks. Moreover, by tuning the trade-off, the simulations
clearly show a change from minimizing power consump-
tion towards optimizing user-perceived performance.

To the best of our knowledge, this is the first self-or-
ganizing BS sleeping strategy designed for dense cellular
networks. We wish to stress the fact that the GSPA-algo-
rithm realizes good performance without the need of prior
optimization. An interesting direction for future research is
to improve the performance of the GSPA-algorithm for
large systems by locally (geographically) clustering the
BSs in smaller sub-systems and hence increasing the rate of
local self-organization.
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Appendix: Modified SPA-algorithm

In this section we provide further details about the modi-
fication of the SPA-algorithm [26] so that it can be applied
to the optimization problem (5a)—(5d). In the setting of the
original SPA-algorithm, all loads were equal in the optimal
solution. In the current setting however, this complete load
balancing property is lost due to the “price” of extra power
consumption when offloading users to a less favourable BS
(with lower user-experienced SINR values). That means
that in the optimal solution (x*(s), U*(s)) to (5a)—(5d)
some BSs [ have an optimal load p j(x*(s)) strictly lower
than the optimal maximum load U*(s). This influences the
way in which we have to update the shadow prices. Further
analysis of the Lagrangian dual problem to (5a)—(5d) gives
us the complementary slackness condition: y”li > 0 implies
pj(x*) = U*. In other words, in the optimal solution, BSs
with a positive shadow price have an optimal load equal to
the maximum load. BSs with an optimal load lower than
the maximum load have their shadow prices equal to 0. The
update step for the modified SPA-algorithm has to take into
account that shadow prices may become zero, and fur-
thermore reflect that for all BSs [ with optimal shadow
price y; > 0, the loads should be equal to the maximum
load, and hence all loads of BSs with positive optimal
shadow price have equal loads. Hence, rather than looking
at the system wide average load, we will use the system
wide average load conditioned on the shadow price being
positive:

1
o Y pilx), (19)

py(xy) =
: | i€5+(Y)

where £ (y) is the set of BSs with positive shadow price
yii Li(y) ={l€ L:y;>0}.

We will now present the modified update step. The
update step for the shadow prices will only have to balance
the loads of BSs with strictly positive shadow prices. Let
B be the file size of user i, let the instantaneous load oéi)
that user i brings to BS i, (and hence into the system) be

defined by a((f) = IfLi;, and furthermore ogf) = o(()i>ﬂ [i = i,]

is the load brought to BS [. The modified mean load proxy
aﬁ) (y) is then given by ag) (y) = a(()i>1] {y[’_ > O}. Let Y, =
{y | Ziil yi=ua,y;>0} be the set of feasible shadow
prices. Then the update step of the modified SPA-algorithm
for the shadow price iterates y*) is given by

o) |

(i+1) _ D) 4 0 [ 50
y " =1y, |y +e" | 6" — 1. ]|,
1L (yD)]

(20)
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where Iy, [y] is the projection of y to the closest vector in
Y, in the Euclidean sense. The projection is needed
because we can not guarantee by the updates themselves
that shadow prices remain non-negative. We even suspect
that when « is small compared to P many optimal shadow
prices will be zero, reflecting that only a few BSs will have
their loads equal to the maximum load. If we then do not
actively correct the shadow prices, they turn negative when
a BS has a load lower than the average load.

With the above-described modifications to the original
SPA-algorithm, we have obtained the modified SPA-algo-
rithm for the updates of the shadow prices. The framework
of Kushner and Yin [20, Thm. 8.2.5] can be used to con-
clude that the modified SPA-algorithm realizes optimal
user assignments in the long run (a formal proof of this
statements is not the main focus of this paper and is omitted
due to space restrictions).
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