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The Halide DSL and compiler have enabled high-performance code generation for image processing pipelines

targeting heterogeneous architectures through the separation of algorithmic description and optimization

schedule. However, automatic schedule generation is currently only possible for multi-core CPU architec-

tures. As a result, expert knowledge is still required when optimizing for platforms with GPU capabilities. In

this work, we extend the current Halide Autoscheduler with novel optimization passes to efficiently generate

schedules for CUDA-based GPU architectures. We evaluate our proposed method across a variety of applica-

tions and show that it can achieve performance competitive with that of manually tuned Halide schedules,

or in many cases even better performance. Experimental results show that our schedules are on average 10%

faster than manual schedules and over 2× faster than previous autoscheduling attempts.
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1 INTRODUCTION

Code generation for image processing pipelines remains a challenging problem due to the
increasing need for high performance as well as the complexity of modern hardware platforms.
Image processing applications usually require developers to have expert knowledge of both the
algorithm that needs to be implemented as well as the behavior of the underlying platform that
will be used. These platforms are usually of heterogeneous nature, with a multi-core CPU with
SIMD extensions acting as a host and a dedicated or onboard GPU unit acting as an accelerator.
In the context of image processing pipelines, GPUs can often be more than an order of magnitude
faster than a traditional CPU architecture [3]. As a result, developers have to spend a lot of manual
effort to provide efficient implementations of each pipeline and manage host and accelerator
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communication. This effort usually has to be repeated each time an algorithm gets designed or
modified or a new target platform has to be used.

Modern compilers and languages attempt to alleviate this issue by using libraries with prede-
fined manual optimized implementations of the most popular image processing algorithms [17]
or by allowing developers to specify their applications in a general-purpose, high-level language.
Such an example is the Julia language, which uses the LLVM CUDA backend [5] to generate code
for NVIDIA GPU architectures, enabling easier offloading for applications through a general pur-
pose language.

Domain specific languages (DSLs) have also proven to be invaluable for efficient GPU code
generation. These languages often incorporate a syntax that allows for both quicker exploration
of the optimization space as well as offloading parts of the application to the GPU extensions of
the platform. Most of these DSLs also employ schedulers that attempt to automatically optimize
an algorithm for the given hardware. Such schedulers usually fall into one of the following two
categories: analytical models that use heuristics and cost functions to generate a solution [12, 21]
and autotuning frameworks that iteratively try different configurations in the search space and
choose the best performing one [20, 26].

Halide [20] is one of the most prominent of these DSLs that targets image processing applica-
tions. It enables efficient exploration of the design space by separating the algorithmic description
of a pipeline from its optimization schedule. Its compiler can generate code for the host as well
as any GPU (as well as some extensions) that may be present on the platform. The optimization
schedule of an application dictates the transformations that need to be applied on the code to
maximize performance. Moreover, through the use of special keywords/directives in the schedule,
parts of the pipeline may be offloaded to an accelerator without altering the original description
of the application. This distinction of functional description and schedule aims to increase code
portability, maintainability, and readability.

Generating an efficient optimization schedule involves dealing with a trade-off space between
parallelism, redundant computation, and locality [20]. Due to the near-infinite number of possible
optimizations, even for small pipelines, it is extremely challenging to find a point in the design
space that results in near-optimal performance. In an attempt to tackle this issue most automatic
approaches limit the search space by employing an overlapping tile analysis that attempts to max-
imize parallelism at the cost of extra recomputation [13]. Furthermore, unlike CPU platforms,
GPU-based architectures impose strict constraints on the schedule that make many schedules in-
valid. Such constraints are the maximum number of threads per block as well as the maximum
shared memory per Streaming Multiprocessor (SM), which may vary per architecture or Compute
Capability (although usually some parameters remain constant). Developers have to keep such
constraints in mind when determining the proper tile sizes for their implementations, as they can
have a severe impact on performance.

Halide currently employs an automatic scheduler that was first proposed by Mullapudi et al.
[13] and was later further updated by the community [8]. Recently, a new learned autoscheduler
that combines learning and autotuning [1] was used to broaden the search space compared to prior
work to generate schedules for multi-core CPU platforms. Many other schedulers were proposed
over the years, but they are focused at CPU schedule generation and are therefore unable to use
the GPU if it is available [23, 24] or exclude key optimizations from their schedule space (e.g., no
fusion being considered) [10].

In this work, we make the following contributions:

(1) We extend the current autoscheduler of Halide master [8] with a new analytical cost model
that considers GPU-specific parameters when generating optimization schedules.
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(2) We perform fast design space exploration by eliminating uninteresting and invalid config-
urations without evaluating the equivalent schedules while ensuring that the final sched-
ules meet all constraints imposed by the platform.

(3) We introduce a set of heuristics that enable nested fusion, extending to possible solutions
outside the traditional optimization space where computation of each group’s interme-
diate stages is always placed relative to the group’s output stage and always set to the
block level of the consuming loop nest. Nested fusion reduces the shared memory require-
ments of the schedule configuration, allowing previously computed values to stay in local
registers.

(4) We evaluate our approach across various applications and test it on two different CUDA-
based platforms. Experimental results show a significant performance improvement over
previous attempts (over 2×) at automatic GPU scheduling, while our solutions remain
competitive or are even better than the manual schedules written by Halide experts
(around 10% faster).

(5) We implement our method as an extension over the previous CPU autoscheduler reusing
parts of its analysis in an effort to ensure compatibility with the current Halide versions.

The rest of this work is organized as follows: Section 2 discusses related work. Section 3 es-
tablishes the search space and scope of our approach. Section 4 presents the proposed method,
while Section 5 demonstrates the experimental results that were obtained. Possible future work
and conclusive remarks are discussed in Section 6.

2 RELATED WORK

This section discusses related work on optimization strategies for image processing applica-
tions and GPU code generation. We divide this section into three parts: (a) Common loop trans-
formations used to optimize loop nests of image processing pipeline stages, combinations of
which are often used in automatic scheduling attempts; (b) prior automatic scheduling for Halide
pipelines and their limitations for GPU schedule generation; (c) other optimization strategies for
efficient GPGPU code generation in the image processing domain as well as general purpose
compilers.

2.1 Loop Transformations

Most scheduling approaches for image processing pipelines focus on a combination of loop trans-
formations and optimizations to exploit parallelism and avoid costly memory accesses. The most
common of these transformations are loop fusion and tiling. Loop fusion can enable other opti-
mizations by increasing locality between production and consumption of intermediate values [11].
In the context of GPU code generation, fusion can help avoid global memory accesses by merging
multiple kernels, increasing performance in memory bound applications by introducing redun-
dant computations, and ensuring that data used across consecutive, merged stages of the pipeline
remain in the shared memory or local caches [18, 28, 29].

Loop tiling is often used alongside kernel fusion to exploit parallelism and enable both spatial
and temporal reuse across stages. Tiling has been extensively used to optimize applications
in the image processing domain targeting either CPU- or GPU-based architectures. Most such
approaches focus on the optimization of affine programs, using what is commonly called an
overlapping tiles analysis that executes one thread block per tile, interleaving the computation
of producing stages at the block level of the consuming loop nest and storing all pixels computed
into the shared memory [9, 22]. Tile sizes are often chosen through a cost function that attempts
to model the performance of the underlying architecture while taking into account key CPU
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parameters (hardware prefetching, SIMD vector units, number of cores) or GPU-specific parame-
ters (register and shared memory usage, achieved occupancy) [16, 24]. Our model considers even
more architecture-specific parameters, such as the thread block size, the total number of global
memory accesses, active streaming multiprocessors, and threads per stage while extending the
kernel fusion space by allowing computation of producing stages to be placed at depths lower
than the block level, reducing the shared memory requirements of the schedule and allowing
values to be placed in the constant memory and registers instead.

2.2 Halide Autoscheduling

Automatic scheduling for Halide pipelines has been investigated a number of times in the past.
Halide originally used an autotuner [20] that was later replaced with a more optimized one that
uses genetic algorithms to find an efficient schedule [2]. However, this approach was unable to
converge to optimal solutions especially for complex large pipelines. An analytical heuristic-based
model was later introduced by Mullapudi et al. [13] that uses an overlapping tile analysis along
with a greedy grouping/merge algorithm, which enables fast exploration of the design space and
generation of optimization schedules. Its search space is limited to tile sizes that are powers of two
(8 to 256), stages can either be fully inlined (completely concatenating the statements of producers
and consumers), computed in a breadth-first manner, or interleaved at the innermost inter-tile
level of the group output (overlapping tiles). This method was extended by the Halide community
and after having its cost model updated it is one of the supported autoschedulers in the Halide
master [8]. While the original publication shows promising results on GPU architectures as well,
that part of the scheduler was never integrated into the Halide master. We extend the Halide
master scheduler with a new analytical model and analysis passes that enable (i) GPU schedule
generation, (ii) a larger tiling and kernel fusion solution space than prior approaches, as well as
(iii) schedule requirements that ensure that the final solution adheres to the constraints of the
underlying hardware, all without sacrificing design/compile time.

Recent analytical models [23, 24] tried to extend the search space considered while attempting
to model cache and hardware prefetching behaviors. The analytical model proposed by Sioutas
et al. [24] attempts to quickly generate efficient schedules through the use of heuristics while
maintaining a larger search space (sliding window optimizations) compared to the one explored
by both the Mullapudi et al. [13] and Halide master [8] autoschedulers. However, both above mod-
els [23, 24] along with the associated heuristics were tuned to CPU behavior with large caches, and
due to favoring sliding window optimizations, they are incapable of exploiting the massive paral-
lelism available on GPU architectures without sacrificing performance to thread synchronization
overhead.

Finally, Adams et al. [1] investigated a learned model that used random pipelines as training data
to train a hybrid model for x86 multi-core CPUs. Its search space is much larger than prior non-
autotuning attempts, but retraining and changes to the search space are needed for more efficient
GPU-valid schedules. The authors report preliminary results compared to the Li et al. scheduler
[10] (29% to 33% faster) in CUDA-based platforms but without yet retraining for GPUs. The latter
[10] is the only functional autoscheduler for GPUs where tiling is applied to stages independently
while stages themselves are either set to root (breadth-first implementations) or inline. While this
can serve as a good baseline for an optimization schedule, stage/kernel fusion is not considered
at all, and solutions are often far from optimal or inferior to the manually tuned ones. This article
extends the current CPU scheduler present in Halide master [8] with new heuristics and an updated
analytical model that considers a broader space along with GPU parameters when generating
optimization schedules for Halide pipelines.
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2.3 Other DSLs and Approaches

Besides Halide, there have been several other DSLs with GPU offloading support. HiPacc [12] is
similar to Halide, as it can generate code for both multi-core CPUs as well as GPUs while employing
an autoscheduling framework to optimize the final code. This framework was recently extended
in Reference [19] with a novel kernel fusion model that tries to interleave computation of stages
within the pipeline, but unlike our approach, loop tiling and interchange is not considered in the
model.

Forma [21] is another DSL that behaves similar to Halide and offers an integrated autoscheduler
as well. It supports CUDA (PTX) code generation and can cover a large set of image processing
applications. However, its primary optimization strategy is to generate code in such a form that
the back-end compiler (nvcc) will be able to efficiently optimize.

PolyMage [14] is a DSL comparable to Halide that relies on the polyhedral framework and also
targets image processing pipelines. It combines autotuning with heuristics to automatically gen-
erate schedules. However, unlike our approach, tile sizes are limited to powers of two and stages
are always fused at the innermost inter-tile level of their consumers (overlapping tiles analysis).

Many other DSLs focus on optimizing tensor operations and only a subset of the algorithms
found in traditional image processing applications. Such are for example TVM [6] and Tensor
Comprehensions [26]. TVM focuses on local optimizations for single operators in the context of
deep learning. Developers define an optimization space and the compiler can automatically de-
termine which optimizations should be applied. Tensor Comprehensions uses a front-end that
is similar to the one used by Halide and its intermediate representation, but it replaces Halide’s
interval analysis with a polyhedral representation. Automatic optimization is enabled through au-
totuning across various possible schedules. Our method uses an analytical model and heuristics
and does not require autotuning to generate efficient schedules, thus enabling faster design time
and cross-compilation.

Outside the scope of DSLs, polyhedral compilers are often used to optimize image processing
and tensor or stencil operations in GPUs [4, 16, 27]. These compilers employ polyhedral transfor-
mations to optimize affine programs. They aim to maximize parallelism through proper tile size
selection but their application is limited to small-scale algorithms (i.e., GEMM-based kernels) and
they are unable to express many of the trade-offs explored in the above non-polyhedral DSLs like
introducing redundant computations in an attempt to further increase locality.

3 PROBLEM STATEMENT

Halide pipelines can be described as DAGs where each node of the graph represents a Halide func-
tion (Func) or stage of the pipeline. Each stage can be defined as a rectangular n-dimensional array,
the allocation and size of which are determined/inferred by the compiler based on the dependen-
cies with its consuming stages and the schedule. Each stage can have multiple dependencies on
input images/buffers or other preceding stages.

As an example, consider the graph shown in Figure 1(a), which represents an arbitrary pipeline
consisting of 11 nodes or functional stages. In a naive implementation where the granularity of
all stages is set to root each producer would be evaluated once and stored into a buffer to be
consumed later. A naive implementation of this pipeline would require a separate CUDA kernel
to be launched for each stage, storing all computed pixels necessary for the following stages in
large buffers/arrays. In GPU terms that would result in multiple accesses to the global memory
and the local caches (depending on the size of the buffers, as well as the dependencies between the
stages). In other words, each edge would represent a number of global memory accesses equal to
the allocation of the preceding node (buffer).
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Fig. 1. Generic Pipeline Example: Trivial stages are inlined into their consumers before splitting the pipeline

into smaller groups of stages that are assigned an optimization schedule.

An example of such an implementation for part of the pipeline can be seen in Figure 2. The
definitions of stages K, H, W, and Z along with an example schedule that launches a separate
CUDA kernel for each of them is seen in Figure 2(a). The compute_root scheduling directive tells
the compiler to fully compute a stage before moving to the next one. When paired with the gpu_
tile command, the loop nest that corresponds to the surrounding stage will be tiled and the inner
intra-tile loops will be mapped to CUDA threads, while the outer inter-tile dimensions will be
mapped to CUDA blocks. As a consequence, the loop nest of stage H gets tiled such that the intra-
tile loops x_i and y_i have sizes 8 and 6 iterations, respectively, or a threadblock of size 8 × 6. The
equivalent CUDA pseudo-code can be found in Figure 2(b). A separate CUDA kernel is launched
for each stage and all pixels computed are stored in the global memory. Finally, Figure 2(c) shows
a visual representation of the schedule, where the green pixels correspond to the tile applied to
each loop nest, which is equal to the dimensions of the CUDA thread block. All pixels need to be
loaded back from the global memory before they can be used in the consuming stages.

However, global memory accesses are often costly compared to ones in the cache or shared
memory, since DRAM bandwidth is often much lower than the one achieved by shared memory.
A more efficient implementation would then require splitting the pipeline into groups of stages
where each group corresponds to a different CUDA kernel and therefore global accesses only
happen between groups, while all intra-group communication happens either through registers
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Fig. 2. A naive implementation fully computes each stage in a different CUDA kernel and stores all data into

the global memory.

or the shared memory. However, such communication introduces extra synchronization between
threads and therefore may limit the amount of parallelism that can be exploited.

As a consequence, optimizing a pipeline as a whole involves generating schedules that affect
both the intra-group as well as inter-group granularity [1, 24]. Inter-group scheduling focuses
on the segmentation of the pipeline into groups of stages as well as inlining stages into their
consumers such that maximum producer/consumer locality can be achieved. Scheduling stages
within a group (intra-group) includes optimizations such as tiling, unrolling, selecting the variables
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Fig. 3. An overlapping tiles schedule computes all pixels needed for one intra-tile iteration (or thread block)

and stores them in the shared memory.

that should be assigned as threads/blocks as well as determining the level of the consuming loop
nest at which the computation of each producer should be placed. Figure 1(b) shows the new DAG
after stages D and H have been inlined into their consumers (J and W, respectively). Stage inlining
is equivalent to replacing all occurrences of a producing stage inside the functional definition of
the consuming stage with all necessary computations of said producer. The same pipeline after
being partitioned into four groups (red dashed line) with stages G, E, J, and Z as the output
functions of each group is seen in Figure 1(c). As seen in the new graph, the number of edges that
correspond to global memory accesses has reduced in an effort to maximize producer/consumer
locality.
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An example of what is usually called an “overlapping tiles” schedule can be seen in Figure 3,
where all non-inlined stages are computed as needed per intra-tile iteration (or per thread block)
of the output stage. Inlining stage H is equivalent to replacing its occurrence in the definition of
W with 2 * E(x, y) * 4. Kernel fusion is achieved through the compute_at, level scheduling
directive, which tells the compiler to compute all pixels of a stage necessary for one iteration of
level by the consumer. As a consequence, computation of stages K and W gets interleaved on a
per-tile basis of the consumer Z and all pixels are stored in the shared memory. Contrary to the
previous implementation, this one requires a single kernel to be launched for the whole group, and
global memory accesses are limited to writes for the output and reads for stages outside the group.

The equivalent CUDA pseudo-code can be found in Figure 3(b). As already mentioned, a sin-
gle CUDA kernel is launched for the whole group, and all pixels computed in a single intra-tile
iteration are stored in the shared memory. Finally, Figure 3(c) shows a visual representation of
the schedule. The blue and green pixels of the producing stages correspond to the pixels that will
be computed before each intra-tile iteration and stored in the shared memory to produce the red
pixels in the output. The green pixels indicate how the dependencies propagate to generate the
pixels for one x_i iteration, while the orange arrows show the single pixel dependencies between
stages. It is important to note that while the tile applied to the output would cause a 4 × 4 thread
block on the generated CUDA kernel, assigning dimensions x and y of the producing stages K and
W causes the actual thread block to grow into 4 × 8 due to inter-stage dependencies.

An even more optimized implementation is shown in Figure 4, where computation of stage K
has been moved inside the inner thread dimension of its consumer W to achieve what we call nested
fusion in this article. Since one pixel of W requires three pixels of K (across the third dimension) but
none across x or y, computing K per pixel of W does not cause redundant computation to increase.
The equivalent loop nest is shown in Figure 4(b), where we can see that computation of K is nested
inside W and shared memory allocation is limited to the one required by W. This is better explained
through the visual representation of the schedule in Figure 4(c) where none of the light gray pixels
of Stage K need to be stored in the shared memory and are computed on-the-fly as needed by W.
The third dimension of K is also unrolled to minimize loop overhead inside W.x_i. Nested fusion
increases the work computed by the W.x_i threads, sacrificing parallelism in the process, but it
can boost performance in applications with severe memory requirements by replacing large shared
memory allocations with smaller ones in the constant memory and registers.

A larger tile size could further reduce the communication to the global memory (less pixels
needed per tile by stage E), but may reduce the occupancy of the GPU and even cause the schedule
to exceed the constraints imposed by the architecture. As an example, assume that the output stage
Z is tiled with a 32 × 12 tile. Since dimensions x and y of stage W are also assigned as threads and
due to the dependencies with their consumer Z (four extra pixels along y) the dimensions of the
thread block will be 32 × 16, causing 512 threads per block in total and 2,048 bytes allocated in
the shared memory (assuming 4 bytes per pixel). Such dependencies can easily be derived by the
compiler but are difficult to deduce by developers for more complex cases.

In GPUs, multiprocessor occupancy is the ratio of active warps to the maximum number of
warps supported on an SM. Maximizing the occupancy can help hide latency during global mem-
ory loads, which are followed by a thread synchronization command. The occupancy is determined
by the amount of shared memory and registers used by each thread block. Achieved occupancy
can be calculated using a set of equations that vary per Compute Capability (CC) of the GPU.
These equations can be found in Reference [15]. In this specific schedule, on a GPU of 7.5 CC and
a configuration of 64 Kbytes of shared memory per block, if we assume that our kernel requires
64 registers per block, 2,048 bytes of shared memory usage, and 512 threads per block, we would
get a 100% occupancy of each SM.
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Fig. 4. Nested fusion can significantly lower shared memory usage without increasing redundant

computation.

As seen from the above, proper kernel fusion alongside tile size selection has a direct impact on
the amount of parallelism that will be exploited in the implementation, the occupancy of the GPU’s
SMs as well as the number of external (global) memory accesses. The problem we aim to solve then
lies in introducing a model that can quickly generate an efficient schedule for a whole pipeline while

ensuring that all constraints imposed by the target GPU architecture are satisfied. Such a model needs
to be able to find a balance between parallelism and redundant computations and should focus on
minimizing the number of global memory accesses while maximizing the occupancy of the GPU’s
SMs.
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Fig. 5. Basic Scheduling Flow: The scheduler requires the loop bounds estimates along with a target speci-

fication description given by the user to produce an optimization schedule for a given pipeline. Most of the

steps in the compilation flow have been extended to support automatic GPU scheduling.

4 GPU AUTOSCHEDULER

This section presents the new optimization passes implemented in the Halide master [8] au-
toscheduler to generate optimization schedules that target CUDA-based GPU architectures. We
follow a process similar to the current optimization flow where trivial (pointwise consumed) stages
are first inlined into their consumers and then partitioned into groups using the greedy algorithm
implemented in the Halide master. We adapt its model with new heuristics and steps that are pre-
sented in the following algorithms. Figure 5 shows an overview of the optimization flow used
by the autoscheduler. Our method can generate schedules using the traditional overlapping tiles
analysis as well as a new nested fusion.

4.1 Initialization and Overview

Most of the steps in the initialization process are identical with the ones performed by the CPU
autoscheduler. The user needs to give an estimate of the problem size (loop bounds for the input
buffers and outputs) as well as the specifications for the target architecture (compute capability).
During the initialization step, the scheduler evaluates the amount of reuse/overlap between stages
and inlines trivial functions. Trivial are considered the functions that are either consumed in a
pointwise function or have a low arithmetic cost. After having initialized the cost of each stage,
the scheduler uses the greedy algorithm of the Halide master to inline stages into their consumers
when that is deemed beneficial by the model. The next step involves tiling and splitting the pipeline
into segments, while the last step generates the final optimization schedule of the pipeline and fur-
ther tightens the compute granularity of each stage when applicable. These two steps are discussed
in more detail in the following subsections.

4.2 Stage Fusion & Tiling

This section discusses the new algorithms developed for automatic schedule generation targeting
CUDA-based GPU architectures. These algorithms focus on efficient tiling and fusion of stages of
the pipeline while exploiting both parallelism and producer/consumer locality. As already men-
tioned in Section 2, our scheduler is driven by an analytical model that expands upon a number of
architecture-specific parameters considered in prior related work by incorporating features such
as the active Streaming Multiprocessors and threads per stage when evaluating the cost of a group-
ing configuration while also ensuring that the final schedule meets the constraints imposed by the
target hardware platform.

The scheduler begins by determining which dimensions of each stage should be tiled. To this
end, the bounds across each dimension are analyzed and in an attempt to limit the search space,
loops with low iteration count are not tiled (e.g., channel dimensions in RGB images, small fil-
ter kernels). If all dimensions of a stage are found to have a low iteration count (i.e., less than
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64 iterations), then we pick the largest one to be tiled, ensuring that at least one dimension can be
tiled and an adequate number of blocks will be generated by the equivalent PTX kernel. The loop
bounds for the outputs of the pipeline are derived by the estimates given by the user. Loop bounds
for all producing stages are instead determined through the bounds inference analysis pass of the
compiler. After the dimensions to be tiled have been determined, a list of all possible tile sizes
for these dimensions gets generated. Since evaluating all possible combinations would require an
enormous amount of time for deeply nested loops, we impose an upper bound on the generated
tiles. These upper bounds vary per dimension and depend on both its extent as well as the number
of dimensions that will be tiled (NT dims ). The bounds (upper Tmax and lower Tmin ) for the gen-
erated tile sizes (Tdim ) across each dimension (dim) based on the corresponding extents Bdim are
selected such that the scheduler does not spend extra time evaluating options that are known to
be inefficient or invalid. Invalid are considered the configurations that exceed the constraints im-
posed by the platform (number of threads or shared memory allocation higher than the maximum
permitted), while inefficient are deemed those that do not exploit enough parallelism (e.g., number
of blocks less than 2–4× the number of SMs). These upper and lower bounds are defined based on
the following equations:

Tmin ≤ Tdim ≤ Tmax ,

Tmin =
⎧⎪⎨
⎪
⎩

8, if Bdim ≥ 64

2, otherwise,

Tmax =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪
⎩

Bdim

128 , if Bdim ≥ 1024, NT dims = 1

Bdim

32 , if Bdim ≥ 1024, NT dims > 1

Bdim

2 , otherwise.

The numbers 2, 32, and 128, used as upper bounds for the tiles in the equations above, have
been chosen such that at least one block is active per SM, but they can easily be changed in the
model for architectures with a low SM count. In a similar fashion, the lower bounds ensure more
than eight threads per block in loops with extents larger than 64 and at least one block active per
SM in loops with low iteration count. The step size used for the final tile size configurations is set
to two.

After generating the tile size configurations that will be evaluated, we proceed to the fusion
analysis of the pipeline’s stages by recursively attempting to merge groups of stages until no more
beneficial merges can be found. This process is performed using the greedy algorithm of the CPU
autoscheduler in the Halide master. A merge is deemed beneficial only when the total cost of the
new merged group is less than the sum of the costs of each individual group. Each independent
group corresponds to a single CUDA kernel, as seen in the examples of Section 3 (Figures 3 and 4).
The cost of a group as well as the benefit of a configuration are determined through the algo-
rithm and analytical model presented in Listing 1. Specifically, a brief description of some of the
terms used in the pseudocode is found in Table 1. The terms denoted with capital letters refer to
architecture parameters used as constant constraints in the following algorithm.

Listing 1 shows the analysis that evaluates the costs (memory and arithmetic) for a given tiling
configuration of a group. Similar to the CPU scheduler, the memory cost of a stage is calculated
as the number of loads from a buffer, multiplied by a factor equal to the cost of accessing the
global memory compared to a computation. Specifically, the algorithm first calculates the costs of
loading data from stages outside the group (global memory accesses), which may be either stages
from other groups or input buffers. Stages accessing input buffers (which typically reside in the
global memory) have their memory cost divided by the number of consecutive loads from that
buffer (in bytes) to take memory coalescing (lines 3–4) into account. The benefit from such loads
is capped by the maximum transfers that can be issued per global transaction. The memory cost
for stages within the group (member stages) is then calculated in a similar fashion. Allocations for
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Listing 1. Group Costs Analysis: Calculates the total cost of a group (kernel fusion and tiling) as well as

various GPU-specific metrics to ensure that the equivalent optimization schedule adheres to the target’s

resource constraints.

buffers of such stages are allocated in the shared memory (line 6) and the sum of all such allocations
will be equal to the shared memory requirements for a given tiling/grouping configuration (line 7).

For each specific tiling configuration for a group, we need to estimate the dimensions of the
thread block required for the corresponding schedule to ensure that the generated kernel does not
exceed the target’s constraints. If the group is a singleton (only one non-inlined stage, which is
the output), then the thread block dimensions are equal to the intra-tile extents (tiles) of the
loop levels that were chosen to be assigned as threads by the equations described above, found in
loop_threads (lines 10–12). This behavior can be seen in Figure 2 where each of the K, H, W, Z
stages correspond to a different group and therefore an independent CUDA kernel whose thread
block dimensions are equal to the tile sizes on each dimension. However, for groups with multiple
(non-inlined) stages, the thread block dimensions have to be calculated based on the regions of each
stage required to produce one tile of the output. These regions (local_bounds) are inferred by the
dependence analysis of the compiler (line 14). The actual final thread block size in each dimension
will be equal to the maximum extent across all stages of the group (line 25), and the total number
of threads will be equal to the product across each thread block dimension (line 23). As an example,
consider the definitions and schedule of Figure 3(a). The schedule of the group output Stage Z will
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Table 1. Notation of Terms Used in Listing 1

Description

group A group of stages merged together into a single kernel.

tiles A tiling configuration applied on the group’s output stage loop nest.

inputs Stages computed outside the group, or stages input to the pipeline.

members Non-inlined stages of the group.

footprint The total size of the shared memory allocation required for this group.

thread_block[dim] The thread block size across each dim dimension.

thread_count The total number of threads required for a computation.

active_SMs The number of active SMs during a computation.

active_threads The number of active threads during a computation (subset of the total threads).

occupancy The SM occupancy during the computation of a member stage.

SM_COUNT The number of Streaming Multiprocessors in the GPU.

MAX_THREADS_PER_BLOCK Maximum threads per block constraint.

MAX_SHARED_MEM_PER_BLOCK Maximum allowed shared memory per block constraint.

WARP_SIZE The number of threads that correspond to a single warp.

require a thread block of 32 × 12 dimensions (due to tiling in x and y dimensions, respectively),
but due to its dependencies with the producing stage W, the actual grid dimensions will be 32 ×
16 with a total of 512 threads per block.

Based on the total shared memory allocation, as well as the number of threads required per
stage, we can calculate the occupancy of each stage, the number of active threads, as well as the
number of SMs that will be active during the computation of said stage (line 26). This calculation
takes place in a new pass (estimate_occupancy) that is implemented in our scheduler and is made
based on the NVIDIA Occupancy Calculator [15], which can determine all of these metrics as a
function of the number of threads (estimated_threads), shared memory per block (footprint),
the number of registers per thread, as well as the compute capability of the platform. Since it is
not possible to accurately predict the number of registers that will be used at compile time, we
estimate them such that:

Nr eдs ≤ min

(
MAX_REGS_PER_THREAD,

TOTAL_REGS_PER_SM

Nthr eads

)
.

If the occupancy of a stage is less than OCCUPANCY_THRESHOLD (usually set to 0.1) then the number
of active warps per SM may severely limit parallelism and the configuration can already be con-
sidered inefficient (line 28). Unlike a CPU-only architecture where the number of tiles n_tiles is
enough to obtain an estimate to the amount of parallelism that can be exploited, a GPU architec-
ture requires all of the above metrics for a given configuration. To calculate the total arithmetic
cost of each group, the arithmetic cost of each stage is scaled by the product of active threads
and occupancy (line 30). Finally, the total (sum) arithmetic and memory costs are multiplied by
the number of tiles, and the number of active threads and occupancy of the group is set to the
minimum across all stages (lines 30–31).

The final cost of a grouping/tiling configuration can be evaluated given all of the metrics cal-
culated above. We first check whether the new schedule will be valid for the target platform
(lines 36–37). To this end, we ensure that the number of threads (thread_count) and shared mem-
ory per block (footprint) does not exceed the maximum values allowed for the architecture
(MAX_THREADS_PER_BLOCK and MAX_SHARED_MEM_PER_BLOCK, respectively). Unlike CPU sched-
uling, where such checks are not necessary, GPU schedules that exceed these platform-specific
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constraints will cause the generated kernel to fail at runtime and should therefore be invalidated
by the scheduler’s analysis as quickly as possible. We ensure that the minimum active SMs per
group (active_SMs) are at least equal to the number of SMs in the platform (SM_COUNT, line 36).
During the fusion analysis, the final, total cost is simply equal to the arithmetic and memory cost of
the analysis, as determined by the algorithm in Listing 1. During the fusion/grouping analysis, we
only generate tile sizes that are powers of two to further reduce optimization runtime (not shown
in the listing for simplicity). However, the final tile sizes should ensure that the total number of
threads is a multiple of the WARP_SIZE (usually 32 in most architectures). As a result, a final tiling
pass (where tiling configurations use a step size of 2), is performed after all groupings have been
concluded. During this step, the memory cost of a group configuration (tiling/fusion) is scaled by
the product of occupancy and active threads to avoid situations where the tile sizes grow too large
while the occupancy and active threads remain the same (line 39).

Similar to the CPU scheduler in the Halide master, after the group’s cost has been calculated, a
new grouping choice is picked for evaluation until no more beneficial group merges can be found.
The pipeline whose groups result in the minimum overall cost is picked for the final optimizations
and schedule generation.

4.3 Other Optimizations and Schedule Generation

After tile sizes have been selected and the pipeline has been split into segments, we finalize the
optimization schedule of the pipeline. For each group, we first tile the loop based on the sizes
selected during the previous steps and then assign the outer (up to three) inter-tile variables as
blocks and the outer intra-tile variables as threads (Halide gpu_blocks and gpu_threads, respec-
tively). The loop nests of each stage are reordered such that dimensions not assigned as threads
are innermost (ordered based on their stride), followed by the thread dimensions and finally the
block dimensions. Inner intra-tile loops (such as the kernels of convolution layers and the channel
dimension of RGB images) are then unrolled.

Contrary to the traditional overlapping tiles analysis where computation of stages is always
placed/interleaved at the innermost inter-tile (or GPU block) level of the output (consuming) loop
nest, our scheduler can also generate schedules where nested fusion is enabled. Nested fusion
allows scheduling the computation of stages at different levels, including at intermediate stages of
the group similar to the schedule presented in Figure 4, where computation of stage K has moved
from the block dimension (x_o) of the group’s output stage (Z) to the inner thread dimension x of
stage W. This optimization pass is applied on groups where member stages have severe resource
requirements (i.e., high number of active threads, high shared memory usage).

The above code (Listing 2) demonstrates how nested fusion is implemented in our sched-
uler. The algorithm attempts to tighten the compute and storage granularity of a stage by low-
ering its compute_at level both in terms of consumers (compute_stage) as well as dimension
(compute_level). After a loop ordering (loop_order) has been chosen, we schedule producing
stages (each stage in group.members) at their last consumer (in topological order) and one level
above the overlap dimension with the highest order in the consuming loop’s ordering (lines 5–8),
using the max_order_reuse function. For stages that only consume themselves (e.g., matrix mul-
tiplications, convolutions) the compute_stage is set to the group’s output stage (lines 20 and 25).
The amount and dimension of reuse/overlap per stage (reuse_per_stage) is determined during
the initialization step of the autoscheduler as seen in Figure 5. On the example seen in Figure 4,
computation of stage K has been moved to the x level of the loop nest of stage W, since there is no
reuse/overlap between K and W across iterations of x or y. However stage W will not be moved below
the innermost inter-tile loop level (block level x_o), since reuse possibilities exist across iterations
of y (which is the outermost intra-tile loop of the consuming stage Z). This extra optimization step
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Listing 2. Nested Fusion Optimization Pass: A quick post-tiling pass that attempts to tighten the interleaving

of stages by lowering the compute level of producing stages without affecting the amount of redundant

computation.

can further increase locality in applications with severe memory requirements by reducing shared
memory allocations and allowing temporary values to stay in the constant memory or registers,
at the cost of extra synchronization and therefore reduced parallelism.

5 EVALUATION AND EXPERIMENTAL RESULTS

This section presents the results that were obtained using our proposed method on a test suite of 14
applications. We test our algorithms using two state-of-the-art CUDA-based architectures, the key
parameters of which are shown in Table 2. The RTX 2080Ti platform is chosen to represent targets
in the High Performance Computing domain, while the AGX Xavier represents the embedded
domain. The list of benchmarks along with the corresponding number of channels or dimensions
of the output loop nest, number of stages, and compile time (on an AMD Ryzen 2920X processor)
using our scheduler can be found in Table 3. All benchmarks share a problem size of 1,536 ×
2,560 (width, height) and differ in the number of output channels. Exceptions are the matmul and
convlayer benchmarks that compute 1,536 × 1,536 and 128 × 128 × 64 × 4 (width, height, output
feature maps, batch size) output images, respectively. A description of each of the benchmarks
used can be found in References [1, 13].

5.1 Halide GPU Scheduling

We compare our solutions to the manual schedules obtained from the Halide official repository
[8] as well as the ones generated by the Li et al. scheduler [10]. Some manual schedules were
further optimized before benchmarking, since the existing ones were either targeting GPUs with
limited amount of available memory (interpolate) or older architectures (matmul) and the results
would not be representative of actual expert-tuned schedules. To investigate the impact of each
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Table 2. Architectural Parameters for the Two Platforms

RTX 2080 Ti AGX Xavier

Compute Capability 7.5 7.2

L1 cache 64 KB 128 KB

Max Shared memory per Block 64 KB 48 KB

SM count 68 8

Max threads per Block 1,024

Max regs per Block 255

Max regs per SM 65,536

Table 3. Benchmarks,

Corresponding Number of

Channels, Functional Stage,

and Compile Time Using

AutoGPU, Respectively

Benchmark [c,s,t]

bilateral [2,8,24s]

camera [2,30,47s]

harris [3,13,3s]

histogram [3,7,4s]

IIR [3,8,3s]

interpolate [3,52,10s]

laplacian [3,103,21s]

maxfilter [3,9,15s]

unsharp [3,9,2s]

nlmeans [3,13,28s]

stencil [3,34,28s]

lensblur [3,74,51s]

matmul [2,2,1s]

convlayer [4,4,2s]

optimization pass/step in our model, we generate three kinds of implementations: schedules where
fusion is entirely disabled and stages are tiled and computed either inline or at root level (Auto-
GPU w/o Fus); schedules where fusion strategies are limited to the traditional overlapping tiles
technique (AutoGPU Overlap); and finally schedules where all optimization passes are enabled
and nested fusion may also be applied on a group (AutoGPU Nested) depending on the heuris-
tics described in the previous section. The performance of our proposed AutoGPU autoscheduler
corresponds to the AutoGPU Nested bar.

The average execution time of each implementation is measured as follows: Each application is
executed 100 times and afterwards host and GPU device are synchronized. We measure the average
time elapsed and repeat this process 100 times. The minimum average execution time across all
samples is finally used in the following graphs.

Figure 6 shows the results obtained with the NVIDIA RTX 2080Ti platform. Our solutions out-
perform the Li et al. scheduler [10] in all benchmarks with a significant speedup (over 5×) in large
pipelines where fusion is beneficial. Moreover, our schedules result in an average of 10% perfor-
mance improvement over the manual implementations. Three applications also have a moderate
performance improvement when the scheduler operates under the nested fusion mode compared
to only overlapping tiles. Forcing the scheduler to apply the nested fusion optimization on all
groups would cause two benchmarks to suffer a slowdown (bilateral, lensblur) due to reduced
parallelism. The effect of our tiling analysis can be determined by comparing the Li et al. sched-
uler with the results that correspond to the no fusion schedules. Our solutions (AutoGPU w/o
Fusion) outperform the latter [10] in most cases due to a more extensive tiling analysis. We notice
that 4 out of 14 benchmarks experience zero slowdown when fusion is disabled, since all imple-
mentations would converge to breadth-first schedules anyway (where all non-inlined stages are
set to compute_root). The Li et al. autoscheduler was not able to generate valid solutions for the
last two applications (cvlayer and lensblur).
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Fig. 6. Average Execution time (ms) NVIDIA RTX 2080 Ti. Comparison of the average runtime of our proposed

method (without stage fusion, with overlapped tiling, and with nested fusion applied on all groups) with the

manual tuned Halide schedules and the Li et al. autoscheduler [10].

Fig. 7. Average Execution time (ms) NVIDIA AGX Xavier. Comparison of the average runtime of our proposed

method (without stage fusion, with overlapped tiling, and with nested fusion applied on all groups) with the

manual tuned Halide schedules and the Li et al. autoscheduler [10].

Results for the same benchmarks when run on the NVIDIA AGX Xavier architecture while
running at max clock on the default power mode are shown in Figure 7. The results follow a
similar trend with our scheduler outperforming both the manual and the Li et al. solutions, with
the latter being slower in all cases even when fusion is disabled in our model. The only application
where we can notice a deviation compared to the RTX platform is the histogram, where the Li
et al. autoscheduler performs similar to our methods due to limited parallelism offered by the
platform (low SM count compared to the RTX 2080 Ti). Overall, we notice that two non-local
means (nlmeans) and camera pipeline are the only applications with a significant benefit when
nested fusion is enabled (around 40% and 33%, respectively, in the AGX platform). Pipelines with
a small number of stages (histogram, IIR, matmul) do not offer large fusion opportunities, and all
three methods result in similar performance. Similar results (lower runtimes but similar ratios)
were obtained on the maximum power mode.
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Fig. 8. Speedup of AutoGPU compared to manual and Li et al. scheduling: AutoGPU refers to our scheduler

when all optimization passes are enabled.

All experiments were repeated on four more platforms with different GPUs of various gener-
ations. Figure 8 shows the average speedup achieved using our proposed AutoGPU method over
the manual and Li et al. schedules for all six considered architectures. The performance of Auto-
GPU is equal to the AutoGPU-Nested bar of the above graphs and corresponds to the situation
where fusion is enabled and the nested optimization pass is performed only when it is deemed
profitable by the heuristics presented in the previous section. As seen in the graph, our schedules
on average perform similar to the manually tuned ones. In detail, they achieve around 10% higher
performance on the RTX 2080Ti and RTX 2070 platforms, 3% to 5% on the embedded Tegra boards
(K1 and Xavier), but are 7% slower on the older GTX TITAN GPU. However, and as expected, since
the Li et al. scheduler does not consider stage fusion, our solutions are 70% to 127% faster than the
ones generated by Reference [10].

We should also note that even though our framework itself has not been optimized for compile-
time, all schedules are generated within the order of seconds, as can be seen in Table 3.

To further investigate our results, the roofline model for the RTX 2080 Ti platform [30] was de-
rived for six of the benchmarks, as shown in Figure 9. The roofline model can show how close an
implementation is to the maximum performance achieved by the target platform. Memory bound
applications are bound by the memory bandwidth of the hardware (GDDR6 on RTX2080 ti), while
compute bound applications are bound by the maximum achieved performance, or Floating point
Operations per second (FLOP/s). Arithmetic intensity was calculated after profiling each applica-
tion using the NVIDIA Nsight profiler [7] to count the number of DRAM (and other memories for
the hierarchical roofline) transactions, and Floating Point Operations (FLOPs). Peak performance
and bandwidth were measured using the Empirical Roofline Toolkit (ERT) [25].

As seen from the above figures, all applications are mostly memory bound, which is common
in image processing. It is also interesting to note that, since different optimization schedules can
heavily influence the number of memory accesses as well as floating point operations (e.g., inlin-
ing), implementations do not share the same arithmetic intensity (AI). We can notice that for three
benchmarks (bilateral, interpolate, and unsharp) the AutoGPU implementations are equivalent to
the manual ones and close to the ceiling imposed by the DRAM memory bandwidth. In two cases
(Laplacian and lensblur) AutoGPU schedules cause a higher AI, allowing for higher performance.
In cvlayer, AutoGPU achieves higher FLOP/s with more dram accesses (lower AI) but higher L1
and L2 AI, which also explains the lower execution time. It is important to note, however, that
all figures should be considered alongside the runtimes shown in Figure 6, since higher perfor-
mance (in FLOP/s) does not necessarily mean lower execution time. As an example, consider the
nlmeans benchmark where the AutoGPU overlap implementation achieves a higher performance
than AutoGPU with nested fusion enabled even though the latter is 20% faster. Through nested
fusion, AutoGPU requires less than half of the dram accesses of AutoGPU-Overlap (half bytes) for
the same number of floating point operations. A similar situation happens for harris, where the
manual schedule achieves a higher rate of floating point operations per second (FLOP/s) but at
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Fig. 9. Roofline models for a subset of the applications used as benchmarks. The ceiling values correspond

to the maximum achieved memory bandwidth of the RTX 2080 Ti architecture and the maximum achievable

performance.
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reduced performance compared to AutoGPU, since it requires nearly 2× FLOPS for the same bytes
(and therefore has higher AI). Finally, we can see that without loop fusion and a limited tiling
model, Li et al. is constrained to a much lower AI than the other implementations due to exces-
sive memory accesses and no shared memory usage, which explains why it is heavily bound by
a platform’s memory bandwidth ceiling. This coincides with the fact that loop/kernel fusion and
inlining can make applications less memory bound, enabling higher performance through other
optimizations.

All experiments were repeated using a much smaller problem size (192 × 320 for most bench-
marks and 512 × 512 for matmul) as well as a larger one (3,840 × 2,160 and 4,096 × 4,096 for
matmul). For smaller problem sizes our scheduler performed on average similar to the manual
(within 1%), while in the larger cases, our solutions outperformed the manual ones by 15% and the
results were similar to the ones presented in Figure 6. In both cases the solutions generated by our
scheduler were around two or more times faster than the ones given by the Li et al. scheduler.

Finally, to showcase the portability of our approach to non-CUDA architectures, the whole test
suite was repeated on an Intel GE onboard graphics card using the openCL target of Halide. The
main changes that had to be made to account for the differences in the memory hierarchy and
target specifications was to set the maximum threads per block to 512 (instead of 1,024 in CUDA)
and set the maximum tile size to half of that in CUDA architectures. The results obtained were
similar to the ones presented above with the difference that the Li et al. scheduler [10] was unable
to generate valid schedules in a few benchmarks due to the reduced maximum threads/memory
per block constraints.

5.2 Comparisons with Other Frameworks

As already mentioned in Section 2, HiPacc is a DSL similar to Halide, which was recently extended
with a kernel fusion model for CUDA. We compared the performance of Halide using our proposed
scheduler with the performance of HiPacc using the instructions provided in Reference [19] for
unsharp, harris, and bilateral (which are the common benchmarks in the two suites). HiPacc was
in all cases faster than Li et al. but more than 2× slower than both the manual and our schedules.
Unsharp was the only application where HiPacc was only 20% slower than our method and on par
with the manual implementation. (However, the two definitions of the algorithms were different,
i.e., the Gaussian kernels in Halide get generated at runtime, while in HiPacc they are hardcoded.)

CuDNN is another widely used framework that provides hand-optimized implementations of
popular deep learning applications. We tested our autoscheduler on ResNet-50, a popular deep
learning application used for image classification. Our solutions were on average 25% to 30% slower
compared to the pytorch implementation with CuDNN enabled on the RTX 2080 TI platform.1

6 CONCLUSIONS AND FUTURE WORK

In this work, we introduced a new analytical model along with novel optimization passes and
heuristics for the Halide DSL and compiler to enable automatic generation of schedules targeting
CUDA-based GPU architectures. We integrated our model into the Halide autoscheduler and tested
it on a variety of image processing pipelines. Experimental results show that the generated sched-
ules can achieve performance comparable to, or even better than, that of manual, expert-tuned
solutions.

Future work directions can either improve the current model with new techniques (i.e., multi-
level tiling, unrolling of outer loops) or even use the heuristics we developed here as features
in a learned autoscheduler similar to Reference [1]. The occupancy of the target platform and

1No manual Halide, or other implementations, were provided for this network.
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the arithmetic cost per thread can for example be features that could be beneficial during the
training process. Moreover, a scheduler more dedicated to deep learning could also be enabled
as an extension to our framework with parametric-based schedules for layers. Furthermore, an
extended scheduler should integrate the existing CPU and GPU models to be able to independently
decide whether pipelines/stages should be scheduled on the host CPU or offloaded into the GPU
accelerator when present.

A SOURCES

1. Dependencies

This section describes the process to reproduce the results obtained in the Evaluation section of
the article.

(1) Hardware Dependencies: A CUDA GPU of at least 3.2 compute capability.
(2) Software Dependencies: To build and run the provided source code, the following frame-

works are required:
• Clang/LLVM 8.0 or higher (for Linux)
• Linux distribution (tested on Ubuntu 18.04)
• Make 4.1 or higher
• Git 2.17 or higher
• NVIDIA CUDA driver 10.0 or later
• Python 2.7 /w matplotlib and numpy

2. Installation

(1) Acquiring LLVM:

Linux binaries for LLVM 8.0 along with the matching version of Clang can be found
through: http://llvm.org/releases/download.html. Both llvm-config and clang must be
somewhere in the path.

(2) Acquiring and building Halide with AutoGPU:

The source code for Halide with AutoGPU can be found through:

$ git clone
https://github.com/TUE-EE-ES/HalideAutoGPU.git

Point Halide to llvm-config and clang:

$ export LLVM_CONFIG=<path to llvm>/build/bin/llvm-config
$ export CLANG=<path to llvm>/build/bin/clang

To build Halide:

$ cd Halide
$ make
$ make distrib
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3. Benchmarking

This subsection explains the process to reproduce the results obtained in Figures 6 and 7.

(1) To reproduce the results of Figure 6, run all the benchmarks for the RTX GPU and then
plot the graphs with matplotlib:

$ cd benchmarks
$ source run_tests_2080ti.sh

All runtimes should be listed in a new file named “results_ti.txt,” located in the
benchmarks folder. To plot the graphs:

$ python plot_figures_2080ti.py

(2) To reproduce the AGX Xavier results, repeat the above process using the AGX scripts
instead:

$ source run_tests_xavier.sh

All runtimes should be listed in a new file named “results_xavier.txt,” located in the
benchmarks folder. To plot the graphs:

$ python plot_figures_xavier.py

To run an individual benchmark (e.g., harris) first set up the environment variables needed
by the autoscheduler with:

$ cd benchmarks
$ source setup_env.sh

Compute Capability of the target platform can be set by changing the HL_TARGET envi-
ronment variable set in the above script. For example, changing the cuda_capability_61
target feature to cuda_capability_35 changes the target’s compute capability from 6.1
to 3.5.

$ cd harris
$ make test

The above process can be repeated for the rest of the applications. All runtimes are expected
to have a variation of +/− 5% but a similar ratio across each implementation compared to the one
seen in the presented figures.

The source code of the AutoGPU scheduler can be found in the AutoSchedule.cpp file located
in: benchmarks/autoscheduler/.
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