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Executive Summary

This report describes the work performed as part of the PPP Toeslag project
“Automated Underperformance Detection for Wind Turbines”.

The project aimed to take a novel approach to wind farm condition monitoring and

automated alerting, based on Bayesian statistics and the relative behaviour of wind

turbines, with the following goals:

e To be able to automatically detect and quantify underperformance in a wind farm.

e To do this as much as possible using only 10 minute SCADA data, which is cheap
and readily available (although often unreliable).

e To assess the additional value of a minimal set of data from additional
measurements (e.g. a Lidar campaign) — in order to improve information
sufficiently to take maintenance decisions.

For this purpose, Fortum provided TNO with several years of commercially-sensitive
SCADA data from one of their onshore wind farms in northern Europe, along with
data from expensive nacelle-mounted Lidar campaigns which established yaw
misalignment on three turbines.

The majority of analyses performed on SCADA data in both academic and industrial
contexts involves one form or another of individual turbine analysis, in particular of
turbine power against nacelle anemometer wind speed. The difficulty with this—
which is very widely understood in the industry—is that, even with the built-in
calibration to account for the effect of the rotor on the wind, its measurements are not
accurate enough to support reliable detection of underperformance.

This report—by contrast—elaborates a concept of “social statistics”, where turbines
compare their behaviour to each other, enabling inference of their slowly-varying
performance characteristics, freed of the many uncertainties that arise from
unmeasured or poorly-measured wind conditions. Properties of the turbines are
inferred based on information from the individual turbine, pair, or wind farm level
(depending on the complexity of information required to perform the inference) as
illustrated in Figure 1.
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Figure 1 Overview of social statistics framework.
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Algorithms are here provided for important parts of the framework, such as the
automatic creation of valuable turbine pairs. Further, a robust software architecture
has been designed and tested, enabling the required event-driven processing of the
10-minute average SCADA, and allowing analysts to implement additional inference
logic for different degradation modes or turbine / sensor statuses.

Due to the particular wind farm data set provided, which included a rather valuable
measurement campaign of nacelle Lidar data, the decision was taken early on to
focus exclusively on implementing an algorithm for yaw misalignment detection.

However, one of the key learnings from this project is that nacelle yaw sensors can
be highly unreliable. It is proven here that separation of yaw misalignment from
nacelle yaw direction miscalibration is impossible without any source of independent
truth to robustly re-calibrate the true nacelle direction.

To provide a result of value to the industry, an automated method for using measured
differences in yaw direction between turbine pairs to infer the sum of yaw
misalignment and miscalibration has been developed, using Bayesian inference. This
is shown with a toy example to be able to estimate correctly each individual turbine’s
yaw error within a fraction of a degree. This is industrially useful as it can identify
turbines for maintenance, and/or be used automatically to remove the calibration
error.

This method can include sources of truth such as a nacelle-mounted Lidar campaign
to estimate yaw errors (due to the combination of miscalibration and misalignment).
An example is shown in Figure 2 for the results inferred for the test wind farm.

One way to estimate the accuracy of the method is to compare the prediction of yaw
misalignment (assuming zero miscalibration) on turbines which were later subjected
to a Lidar campaign. The predicted values were within [—1.5, 4+2.8]° of the measured
values. Given the length of time elapsed between prediction and measurement, the
regularity of yaw sensor de-calibrations, and some concerns about the results from
the lidar measurements themselves, this seems reasonable.

Itis likely that the methods outlined here will be more successful on wind farms where
the effect of orography is either known, or less pronounced. Sites with a higher spread
of incoming wind directions should also be more fruitful. However, the wind farm does
not need to have many turbines for social statistics to be effective, so long as the
turbines are not too far apart both horizontally and vertically.

Future extensions to this method should place more emphasis on detection of other
degradation modes, such as blade damage. This can be achieved by looking more
deeply at combining the power ratios of the turbine pairs with the ratios and
differences of other sensors.
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Figure 2 lllustrative dashboard of inferred yaw misalignments for the wind farm used in this study.
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Project Aims and Report Structure

This report details the work undertaken during the PPP Toeslag project “Automated
Underperformance Detection for Wind Turbines”. The main aim of this project was to
investigate the value in taking a novel approach to wind farm condition monitoring
and automated alerting, based on Bayesian statistics and the relative behaviour of
wind turbines. The approach was supported by Fortum, who provided data from an
onshore wind farm in northern Europe, where yaw misalignment in three turbines had
been detected using nacelle-mounted Lidar campaigns.

The objectives of the project were:

e To be able to automatically detect and quantify underperformance in a wind farm.

e To do this as much as possible using only 10 minute SCADA data, which is cheap
and readily available (although often unreliable).

e To assess the additional value of a minimal set of data from additional
measurements (e.g. a Lidar campaign) — in order to improve information
sufficiently to take maintenance decisions.

For this purpose, Fortum provided several years of commercially-sensitive SCADA
data from one of their wind farms, along with expensive nacelle-mounted Lidar data
sets and previous analysis. These data sets are described in section 2.

Next, the methodologies applied are described in section 3. These are built to be
implementable online in a SCADA monitoring system.

In section 4, these methodologies are applied to the data set from Fortum, in order to
assess their effectiveness, in particular their ability to predict the yaw misalignment
already seen. Additional benefits and difficulties are discussed and demonstrated.

Finally, section 5 summarises the conclusions from this study, the potential next steps
for promising lines of research, and recommendations to both Fortum and the wider
wind energy industry.
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Wind farm data set

Wind farm description

Wind farm data were provided by Fortum for an onshore wind farm in Northern
Europe. The turbines are located as shown in Figure 1.
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Figure 3 Turbine heights above mean sea level, and locations (in UTM relative to an arbitrary origin).

The wind farm consists of 14 turbines, less than 10 years old, operating across an
area of 1300m by 1400m, with a maximum elevation difference of 80m.

The terrain is expected to have a significant effect on the wind speeds and directions
across the site during normal operation.

SCADA Data

Supervisory Control and Data Acquisition (SCADA) data were provided for a period
of more than 7 years, with a 10-minute frequency. While many hundreds of
parameters were available in the manufacturer’'s documentation, and more than 70
parameters were provided in the data set, most of these were missing or corrupted.
As one example, wind direction measurements from a nacelle wind vane (or sonic
anemometer) were not present, even though they must be available for the control
system to function. The parameters used in this study are summarised in Table 1.

The data were loaded into Python, structured into a pandas DataFrame, and then
stored in pickle files for further use in the project. An illustration of the cleaned data
is shown in Figure 2.
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Table 1 SCADA parameters used

Parameter description Comments

Ambient Temperature (°C) Mean, min, max, standard deviation
Active Power (kW) Mean, min, max, standard deviation
Nacelle Position (°) Mean, min, max, standard deviation
Main Shaft Speed (RPM) Mean, min, max, standard deviation

Wind Speed Active Sensor (m/s) Mean, min, max, standard deviation

Duration Turbine Released to Operation Between 0 and 600 seconds
Duration Turbine Operating Between 0 and 600 seconds

Duration Wind Speed between Cut-in and Cut-out Between 0 and 600 seconds

Figure 4 lllustration of cleaned DataFrame with SCADA data

wtc_ActPower mean

idr: timestamp TO1 TO02 ... Ti4
2012-09-20 00:40 0.0 0.0 .. 0.0
2012-09-20 00:50 0.0 0.0 ... 0.0
2012-09-20 01:00 0.0 0.0 .. 0.0

Outlier detection and removal is an essential first step before performing analysis.
Several methods for detecting outliers are standard in the statistics and data science
literature. Here, we illustrate the process used by focusing on identifying spikes in
nacelle anemometer-measured wind speed (which seemed to occur most frequently
when the turbine is turned on again after maintenance).

Two methods were applied to flag suspicious data points, for subsequent manual
review before removal or retention:

1

Considering only a single variable (each turbine’s wind speed data in this case),
and flagging all times where the value exceeds the 99" percentile. This non-
parametric method was chosen over alternative such as the z-score, because the
data are not Normally-distributed (even when taking the logarithm);

Calculating the absolute difference of the measured variable from its equivalent in
a reference meteorological data set (described in section 2.3), then flagging values
greater than the 90" percentile (or some manually-chosen threshold selected a
priori based on the particular parameter, e.g. 5m/s for wind speed). With this
approach it is appropriate to be more aggressive at flagging data, since the use of
a model means that the physical processes explaining some extreme values will
be included, and therefore deviations should only occur when data errors are
present.

The results of the outlier removal process are shown using boxplots. These diagrams
are a powerful tool for visualising the distribution of data. An explanatory example is
shown in Figure 3, and the before-and-after plots for each turbine’s measured wind
speed are given in Figure 4.
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Figure 5 lllustrative boxplot for nacelle anemometer-measured wind speed. The solid lines indicate
non-parametric values (from bottom: lower fence, lower quartile, median, upper quartile,
upper fence). The fences are set at 1.5 times the inter-quartile range, or the
minimum/maximum value, whichever is nearer the median. The dotted horizontal line
shows the mean and the extremes of the dotted triangles shown one standard deviation
away from this mean. All points lying outside the fences are plotted as dots.

Further examination of the time series of nacelle position was undertaken, given its
importance in determining the possible yaw misalignment, and the lack of wind vane
data.
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Figure 6 lllustration of outlier removal on SCADA wind speed data, using boxplots described in
Figure 3. Top: before cleaning; bottom: after cleaning.

Figure 5 illustrates how regular large shifts in measured yaw position occur. In the
top graph, there is a divergence in measurement of wind of up to 180 degrees. The
bottom graph, in a period almost 1 year later, demonstrates that the miscalibration of
the yaw position sensors has been largely corrected, and the divergence is now
around 30 degrees. However, the relative position of the measurements exhibits
systematic differences after each direction shift. For instance, following the purple
line for turbine TO2, after February 12" it has the most northerly yaw position
measurement. The next time the westerly winds occur, just before the mark for
February 19, it is the most southerly. This relative position persists for the easterly
wind period following, before reverting to being the most northerly.

Such changes could be attributed to a combination of: an error in the sensor; a
change in sensor measurement due to external influence; a true change in the
controller resulting in misalignment; or a systematic change in inflow wind in time.

Some of these proposals are less plausible than others, and can be discounted after
enough data has been collected. For example, any change in time attributed to
orography should be fully explained by, and consistent with, the change in direction.
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Sensor hysteresis after large yaw changes are possible, but have not been confirmed
by any wind turbine manufacturer.
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Figure 7 lllustration of nacelle position sensor calibration shifts. Top: a period with large
disagreements between turbines; bottom: a period with small disagreements between
turbines.

Finally, the contracted power curve, shown in normalised form in Figure 6, was
provided.
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Figure 8 Turbine manufacturer's contractual power curve, with normalised power, and rated
conditions indicated by the blue dash-dotted lines.
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WRF Meteorological Data
Meteorological data at one-hour frequency were provided by Fortum from a well-

known hindcast model provider. This was intended to replace the missing met mast
data, and comprised the parameters shown in Table 2.

Table 2 Available WRF parameters

Parameter description
Wind Speed (m/s)

Wind Direction (°)
Atmospheric Pressure (Pa)

Ambient Temperature (K)
Relative humidity with respect to ice (%)

Relative humidity with respect to liquid water (%)

This data set enabled some exploratory data analysis to understand the conditions
on site. First, the wind rose is shown in Figure 7. As can be seen, the wind is highly
bi-directional, with most energetic winds coming from the East.
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Figure 9 Wind rose created using WRF data for the wind farm under consideration

Next, a comparison of wind speeds and directions from the WRF versus turbine T04
is displayed in Figure 8. As can be seen, the agreement is poor (despite time zone
shifting to align the series correctly). For the wind direction, this may be partly
accounted for by the response time and control of the nacelle position versus the true
wind direction. However, the wind speed comparisons were similar for every turbine,
and inspection of time series plots shows that significant and persistent
disagreements of up to 5m/s are present, indicating that the WRF data is not accurate
in this location with complex terrain.
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Due to this discrepancy, the WRF was not treated as a replacement for a
meteorological mast.

WRF-modelled wind speed [m/s]

20

WRF-modelled wind direction [deg]

: ! . AP i ¥ o
20 120 150 180 210 240 270 300 330
Nacelle position @ T04 with regards to North [deg]

Figure 10 Comparison of WRF versus SCADA data. Top: wind speed from model and T04 nacelle
anemometer; bottom: wind direction from model and nacelle position of T04.

Air density was nevertheless calculated as follows.

First, the reference ambient temperature T,.., was corrected to each turbine’s height

h, using the temperature lapse rate L = 0.0065K /m:
Th = Tref - L . h

The vapour pressure of water p, is then calculated as follows, where the relative
humidity RH,,, is input as a %:

PUBLIC
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7.5(Tp—273.15)
Dy = (6.108 . 10Th—273.15+237.8> - RH,,

The partial pressure of water vapour at each turbine’s height p;, ,,4,, is then calculated,
using the molar mass of water vapour M,,, = 0.018kg/mol and the specific gas
constant for water vapour R,,, = 461.5:

9-Myap
L- h)m

Phyap = Pv * (1 - T—h

Next, the observed atmospheric pressure p,.r is corrected to the partial pressure of
dry air at each turbine’s height pj 4., using he molar mass of dry air Mgy, =
0.029kg/mol and the specific gas constant for dry air Ry, = 287.1:

g'Mdry
L- h)L'Rdry

ph,dry = (pref - pv) : (1 - T_
h

Finally, air density is calculated using:
ph,dry ph,vap

B Rdry “Th Rvap “Th
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Social Statistics Methodology

Motivation and Literature Review

Wind turbine SCADA data is analysed by wind farm owners in order to:
1) Summarise wind farm performance across a portfolio and enable asset
management to focus on poor performers;
2) ldentify poorly-performing turbines in a wind farm and prioritise them for
corrective action;
3) Detect or predict damage or other problems with the turbine which require
maintenance.

The focus of this project is on the second topic. The methodology outlined in section
3.2 and implementation in 3.3 are deliberately generic, giving a framework for the
detection of underperformance and attempted attribution to any fault mode, where
there is sufficient physical knowledge. In this project, there was a particular emphasis
on detecting yaw misalignment, so section 3.4 focuses on that use case.

The majority of analyses performed on SCADA data in both academic and industrial
contexts involves one form or another of individual turbine analysis, in particular of
power curvesl. In this approach, poorly-performing turbines are identified by
comparing a graph of power output against wind speed with the warrantied power
curve of the turbine.

The measurements of wind speed used for this analysis are usually from the
anemometer (commonly a cup, sometimes sonic) placed on top of the wind turbine
nacelle, behind the rotor. The difficulty with this—which is very widely understood in
the industry—is that, even with the built-in calibration to account for the effect of the
rotor on the wind, its measurements are not accurate enough to support reliable
detection of underperformance?. For this purpose the IEC 61400-12-1 standard has
been created, which requires a separate measurement placed upstream of the wind
turbine in undisturbed flow.

Even if a meteorological mast is available (which is often not the case, as for the wind
farm used in this study) the wind field changes across the wind farm, largely due to
wakes and orography (terrain). Thus this wind speed cannot be a suitable reference
for all the turbines on a farm.

As an aside, one very useful diagnostic curve for individual turbines, which does not
rely on uncertain wind speed measurements, is the torque-speed curve shown in
Figure 9. When torque is not available in the SCADA system, it can be calculated

from the active power P and shaft speed w (in revolutions per minute, rpm) as follows:
30 P

T W

1 Sohoni et al., “A Critical Review on Wind Turbine Power Curve Modelling Techniques and Their
Applications in Wind Based Energy Systems”, J. Energy, 2016

2 A. Albers, J. Mander and G. Gerdes, “Analysis of wind turbine control and performance based on
time series data of the wind farm monitoring system.” Proceedings of EWEC2003, Madrid.
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Figure 11 Torque versus shaft speed curve for region 2 operation, data from the wind farm used in
this project.

The significant differences observed for turbine T13 are unlikely to be causing a loss
of power, since this would have been quickly detected and corrected (and is not
visible in the power curve of T13 compared to other turbines). However, it cannot be
due to a malfunctioning shaft speed sensor, so deserves further investigation.

Less error-prone techniques than power curve analysis are also available®, which
have often been in use for many decades. However, these often rely on wind flow
modelling (not available for the wind farm under study here) to predict wind flow and
turbine performance.

For this reason, the project investigated the concept of creating a ‘social network’ of
turbines, which benchmark themselves against each other. Comparison of
differences or ratios in SCADA parameters, between turbines which are close enough
to be operating in similar conditions, should enable the truth to be established:
detecting both trends and sudden changes in time, and attributing these changes to
a likely cause.

A similar concept was only recently considered in the literature—in parallel with this
project—for the purpose of collaborative wind turbine control4. The goal of that work
was the adjust the turbines’ yaw controllers to minimise yawing time and yaw
misalignment. The problem was presented as an optimisation task, with each turbine
iteratively determining its own local wind direction and bias, based on a comparison
with local turbines.

That work is very interesting in the context of this project, and the conceptual
framework for consensual analysis has some similarities, despite the differing

3 A. Albers, “Efficient Wind Farm Performance Analysis”, Deutsche Wind Guard Consulting, 2004
4J. Annoni et al., “Wind direction estimation using SCADA data with consensus-based optimization”,
Wind Energ. Sci., 4, 355-368, 2019
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objectives. As stated by Annoni et al., the wind direction estimator is a potential
technique which could be applied inside the framework presented here (although we
demonstrate another, based on statistical inference).

Finally, regarding the use of nacelle lidar for the establishment of yaw misalignments,
the theoretical basis for this is established in documents such as Vindforsk technical
report 2016:2985.

Social Analysis Framework

The first step in establishing a social network for the turbines is to use the provided
locations and hub heights (above a fixed reference such as Mean Sea Level) to
establish distance and interaction matrices:

o Vertical separation (m): z, 5 = zg — 2,

* Horizontal separation (m): s, 5 = /(¥5 — ¥a)? + (x5 — x,)?

e Wind direction for wake impingement (°): 6, 5 = (%) tan‘l%
B~YA

These are defined such that the first turbine in the pair (A) is considered the
reference. For example, a positive vertical separation indicates that turbine B is
higher than turbine A.

Importantly (and assuming the locations are given in a projection which creates a
locally Cartesian system, with true North aligned with the vertical axis) this information
provides a source of truth for the wind direction.

When the power ratio of two turbines aggregated over time is plotted against
direction, each relevant wake should be visible as a fluctuation in that ratio. The
direction of greatest increase/decrease should, barring systematic deviations to the
flow caused by orography, indicate the relative direction of the wind turbine, which
can be compared against the expected direction from the known turbine positions.

Figure 10 illustrates this for the power ratio of a hypothetical turbine pair. A gradient
descent optimisation—such as the optimize.minimize function from scipy in Python—
can be used to fit the expected wake profiles and thus determine the calibration error
in the nacelle-measured wind direction. This procedure already has some currency
in the wind energy sector.

Unfortunately this important source of truth was unavailable here, since the highly bi-
directional nature of the wind (easterly and westerly only) at the particular site used
in the project meant that both sides of the wake profile could not be seen.

5 U. Turkyilmaz, J. Hansson and O. Undheim, “Use of remote sensing for performance optimization
of wind farms”, Kjeller Vindteknikk, 2016
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Figure 12 Schematic of the detection of true turbine angles from wake effects. The thick solid line
shows the power ratio of To/T;. The dashed lines illustrates the uncertainty (standard
error). The wake of To on T; is seen at direction c, and vice versa at direction f. Another
turbine T, wakes Ty at location e, and T; at location d. Finally, upstream orography
reduces the power produced by turbine Ty at direction a, and T at direction b.

The key improvement over standard SCADA analysis now developed is the
recognition that the data forms a time series, such that neighbouring points are likely
to have a correlation. Since a wind farm owner’s SCADA system already stores the
data, the concept behind the design of this system is to parse each set of 10-minute
aggregated data as it arrives, in order to perform an update of its inferences about
the states of the turbines and wind farm (in less than 10 minutes). This can be used
to drive a real-time dashboard display of the wind farm, as outlined in Figure 11. The
following subsections elaborate this framework.

Cancnr TN

Sensor TO1 Analyst

10-minute - Power Dashboard

data [TO1]
Turbine
TO1 1 Sensor TO1

Status Monitor ) — Nacelle
Position

Turbine T0O1-T02
Social Analysis Pair

Figure 13 Structure of updating process using social statistics: blue arrows: propagation of SCADA
data; orange arrows: propagation of status and calibration updates; green arrows:
propagation of information to user
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Independent turbine inference

First, a set of turbine and sensor statuses are defined, and then are set using the
latest data (without yet considering other turbines). The implementation here
assumes a Markov process, i.e. that a status is stored, and can be updated or
retained at each time step. Previous statuses are forgotten once overwritten, thus
inference of a new status can only depend the new information received and the
previous status. However, at the minor cost of additional memory, trends could be
remembered and used, for example to fill in missing data. The state inference process
applied here is shown in Figure 12.

! 1
10-minute Update TO1 sensor E Update TO1 turbine
data [T01] U statuses i status
: . | .
H No No
H i
! Is there _ e release
H data? E - .
' Mo Yes |
H Status =
Reliable

Areall essential®
sensors rellable?

s (i — mins |
macolle position <
107

Yes

Power Sensor
Status = Unreliable

I AEan power >
120% rated power?

Status =
Operating in ing i Operating in
region 1 £ region 3

Operating in
region 4

* Essentlal sensors are Power, Released to Operation, Nacelle Position, and Shaft Speed
“Shaft speed can be used to detect downrated turbines; this is omitted here for simglicity.
81 walid mean wind speed measurement exsts

Figure 14 Turbine and sensor status analysis performed at each timestep

As can be seen, in the situation that a power reading is far higher than would be
expected for the turbine, that sensor’s status is overridden to be ‘unreliable’. This then
flags it when later processes attempt to use it (in our implementation, it is treated as
if there is no measurement). Further, the turbine’s status in this case is not updated,
i.e. the most logical choice is to retain the status set when the latest valid
measurement was received.

Sensor statuses used here are:
1 No measurement

2 Reliable

3 Unreliable

Turbine statuses used here are:

No measurement (i.e. SCADA is not working correctly)
Not operating

Yawing

Operating in region 1

Operating in region 2

Operating in region 3

Operating in region 4

~NOo ok~ WwnN -

This process chart can be improved over time by engineers and asset analysts
according to their specific knowledge of the wind farm, turbines and sensors.
Additional statuses can be added (for instance “downrated”, or “region 2a/b/c”) based
on other logical rules or available SCADA tags.
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Turbine pair inference

Once every turbine’s status and sensor data are updated, this data is used to update
a network of turbine pairs, which each compare the ratio or difference of a particular
sensor (e.g. power, or nacelle yaw position).

The first step is to automatically create useful turbine pairs. The method chosen here
is to allow the user to specify:

o the maximum number of pairs for each turbine Nmax;

¢ the maximum horizontal distance between a pair dxy,max; and

e the maximum vertical distance between a pair dzmax.

The following algorithm is then used to generate at least one pair per turbine. For
each turbine it creates pairs with each turbine which meets the above criteria, until
the maximum allowed number is reached, nearest horizontal distance first. If no
turbines meet the criteria, it first tries to identify turbine which meets the horizontal
distance criterion and violates the vertical criterion least. If this fails, it tries the
opposite approach: from those turbines which are close enough vertically, it finds the
one which least violates the horizontal distance. Finally, if there is no turbine matching
either criteria, it simply chooses the one closest horizontally.

— Enter nmax, dxy,max, dz,max
- P el
— For each turbine Ta:
- p, Oy, d €[, 10, 10
— For each other turbine Tg:
Calculate horizontal distance between turbines dxy,ag and add to dyy
Calculate vertical difference between turbines |d; as| and add to d,
If P contains pga, add psato p
Else create new turbine pair pag and add to p
— Sort p, dyy, d; in ascending order of dyy
— Prina €]
— For each pair pjin p:
— If dyyj < dxy.max and dzj < dzmax, add pj tO Prinal
— If prinal CONtaINSs Nmax pairs, end loop
— If prina contains 0 pairs:
— dymin, | €10%9, -1
— For each pair p;in p:
— If dyyj < dyymax @nd dz,j < dz min:
— dzmin= dz;
— Q=]
— Ifi =0, add pito prinai, €lse:
— dyymin, 1 €101, -1
— For each pair p;in p:
— If dzj £ dzmax @and dyy,j < dyy,min:
- dxy min= Ox;
—i=j
— Ifi =20, add pito prina, €lse:
— Add poto pfinal
— Add Pfinal t0 P

The next step is to implement inference algorithms, to determine information such as:
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Whether a sensor has likely shifted calibration (suddenly or gradually), relative to
a neighbour, and if so, how much.

Which directions exhibit wake (or orography) effects, and by how much.

Whether a turbine’s sensor value is consistently offset from that of its neighbour’s
(for example, power loss).

Sensor re-calibration is worth considering here, as it can be inferred with the following
method:

1

Create a regression model for the difference (or ratio, if more logical) in the sensor
values of a given turbine pair with direction. This can use the reference turbine’s
wind vane, nacelle direction sensor, or the reference met mast; whichever
combination of these is used, inference of a reference wind velocity is important
for most analyses. This is best modelled with a Gaussian process (even though
data storage is required), although other flexible methods which provide
uncertainty on predictions should work.

When each valid update is received (perhaps filtered by the turbine’s operating
state as well as the sensor’s state), use it to update the regression model.

Each time step, or less frequently—perhaps on demand—reset or update any
inferred re-calibration values that have been assigned to sensors, based on the
regression model (see section 3.4 for a specific example).

Usually, a sudden change in calibration occurs during maintenance. Therefore,
detect such periods using a change in turbine status from ‘out of operation’ to ‘in
operation’. When this occurs, archive the old regression model and start creating
a new temporary one.

As each new valid data point is collected, update the temporary model, and run a
t-test to check whether the mean u of the new model is likely to be significantly
different to the old (locally to the direction just acquired):

Hotd — Unew

T
2 2
\ O—new/ + Uold/
Nnew Noia

where T is the cumulative distribution function of the Student’s t distribution, o is
the standard deviation of the predicted mean, and n is the number of
measurements used to make the prediction. It may also be desirable to enforce a
minimum change |tyq — Unewl, OF @ Maximum number of values n,,,, to collect
before making the decision, since p values can often become significant (0.05 is
often used as the threshold) once enough data is collected, even for very small
changes.

If a significant change is detected, abandon the old model and treat the temporary
model as the new one. If no significant difference is found, add the data from the
temporary model to the old model.

p=1-

yMpew + Notg — 2/

Wind farm inference
Finally, the information gathered by the turbine pairs can be compared across the
wind farm to obtain more global information. This should include:

1
2

Assigning global data (such as from meteorological masts);

Attributing sudden or gradual changes measured by pairs back to individual
turbines, by finding the most likely explanation looking at the whole network;
Assigning sensor calibration values by finding the optimal choices across the
network;

Determining individual turbine’s likelihood of exhibiting a particular degradation
mechanism.
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In section 3.4, an example of the 2" and 3" inference algorithm is developed,
focusing on yaw direction misalignment. It is important to build up a library of
explanatory models for different failure modes, since they are likely to exhibit in
similar ways but with subtly effects on different combinations of sensors’ data.

Software Structure

The usefulness of a SCADA analysis framework lies not only in its theoretical power
on paper, but also in its simplicity and robustness to be implemented in software.
Thus, effort was put in this project into designing and implementing a software
architecture which could be copied by wind farm analysis organisations. This
architecture enables individuals to try particular inference algorithms without
disrupting (or needing to understand) the overall software.

The social network was thus implemented in Python using an Object Oriented
approach, in order to simulate providing each time stamp of data and then running
the inference methods described in the previous section (on the general framework),
and the following section (on yaw direction specifically). As well as a robust
architecture, it was important to test whether the inference algorithms were indeed
fast, such that they can be easily run within the 10-minute gap between updated
SCADA signals.

The Observer software engineering pattern was used as the basis of the design. In
this pattern, which is commonly used to architect event-driven software, messages
are passed from each higher-level object (here called a Sender) to lower-level objects
which is registered to it (here called Receivers).

Receivers have one method by default:
1 update(data): this is an abstract method, meaning that classes implementing the
Receiver must specify what actions should be taken when receiving data.

Senders have by default three methods:

1 register_receiver(receiver): this adds a new Receiver to the internally maintained
list of objects which should receive messages;

2 unregister_receiver(receiver): this removes a Receiver from the list, avoiding
memory leaks;

3 notify_receivers(data): This forwards the data to all registered Receivers by calling
their update(data) method.

These concepts are implemented as follows for the wind farm SCADA analysis:

e a Sensor is a Receiver. These are created first and then registered to:

e a Turbine, which is both a Sender and Receiver. These are created and then
registered to:

¢ a WindFarm, which is a Sender.

Each 10-minute set of SCADA data is sent, looping over each turbine, into the
WindFarm'’s notify_receivers method. This automatically forwards it to the Turbines,
which decide whether or not it is appropriate for them, and if so first use their
notify receivers method to forward it to all Sensors.
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The Sensor’s update method immediately determines its status, as well as updating
its current data, if deemed reliable. Then the Turbine’s update method continues by
determining its own status (all as described in section 3.2.1).

The Turbine and Sensor classes each have a supporting Properties class, which
contains static information, such as location and power curve for a Turbine, and
variable type for a Sensor. While inferred information, such as a calibration offset,
could be stored here, it was determined that is it preferential to create a VirtualSensor
class, which extends the Sensor class, allowing decoupled storage and application
of a calibration offset to the data already in the relevant Sensor class.

A TurbinePairManager automatically creates a network of TurbinePair objects for any
desired sensor variable, and are stored in the WindFarm. These are manually
updated once the individual turbine’s updating is completed.

The full Unified Modelling Language (UML) class diagram is shown in Figure 13. This
structure is entirely generic; the logic for detecting and assigning recalibration values
is written inside methods such as TurbinePairManager.recalibrate all. It is
recommended to make the TurbinePairManager class into a Builder pattern, such
that it constructs and returns a specific type of class with logic that depends on the
particular sensor type and failure mode being analysed.

Finally, by implementing a logging system, any detected change in calibration (which
caused a TurbinePair to discard its previous model and start afresh, as described in
section 3.2.2) is automatically logged to a text file for further analysis.
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Yaw Calibration Offset Detection UML Diagram |

Sender(ABC)

abjects informing receivers about new data™™

Receiver(ABC) 1

1 lass for Objacts receiving new data™™

+ /_turbine_data)

define Whal & do whan recaiving new data™

@dataclass TurbineData

"contains and manages al the data™
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the calibration offsets and uncertaintios™
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+ pawer: astropy.units, Quantity
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+ class Stalistic(Enum);
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+ get_timestamp():
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VirtualSensor

+method_name:
+defaull_unit: astropy.units.Quantty
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2
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Y
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. dWelghtWidih, bCircular):

Figure 15 Unified Modelling Language (UML) class diagram for the Python code created for this

project
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Yaw Analysis

In this project, because of the existence of a Lidar campaign which directly measured
yaw misalignment, the decision was taken to focus on this cause of turbine power
loss. Thus, best efforts are now made to develop a model able to infer this.

The mean measured nacelle yaw angle of a turbine © over a 10-minute period, when
in power production in region 2, can be assumed to be determined by the following
combination of effects, illustrated in Figure 14:

0 =0pcq1 +60, +60,+¢

In words, the turbine angle from True North @ should be aligned with the direction

from True North from which the wind is coming 6,,.,;. However, this is affected by:

e §0,,—a systematic error in the control system which causes the turbine to be
aligned at an angle to the wind;

e §0,—a pure measurement error, whereby the North reference of the sensor is not
equal to True North;

e ¢—a random error (assumed here to be Normally-distributed and zero-mean)
caused mostly by the delay in the control system to adjust to the turbulent
fluctuations in wind direction experienced during the 10-minute period.

( lgLeloca[
v

Figure 16 lllustration of nacelle yaw position measurement effects

The reason it is specified here that these assumptions only hold true in region 2
(partial load) operation, is because in region 3 (full power) it may be that the control
system is programmed to yaw less, in order to reduce wear on the yaw bearing. It is
also possible that this is not the case, however, and then region 3 may prove to
provide more stable data for yaw direction comparison. In any case, 10-minute
periods with significant dynamic yawing towards a new direction are excluded, as
consistent operation is desired for reliable statistical inference.

By subtracting the measured yaw position of two turbines, we end up with the
following equation:
AOpg = Oocap — Brocaa + 6Omp — 8054 + 60,5 — 60, 4 + €
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For a pair created according to the methodology in section 3.2.2, such that the
turbines are quite close together and at similar elevations, it is reasonable to assume
that the relative local wind directions may be systematically affected by orography,
but that such a variation—which is related to inflow direction—can be averaged over
all directions to have zero mean:

360
f (Blocal,B - Glocal,A)de ~N(0' 59)
0

Where no data are available for a substantial portion of the compass (as in this wind
farm, where the wind flows bidirectionally) , this assumption may be invalidated and
result in an unknown bias (which can be treated as uncertainty) on the results.

Calibration errors are assumed piecewise constant (i.e. no variation by direction) in-
between step changes in time (which can occur after maintenance, as previously
described). This assumption may be refuted if hysteresis effects related to large yaw
changes are proven; however, there is currently insufficient corroboration for this
idea.

Finally, yaw misalignment with the incoming wind is also generally assumed constant,
although unlike a calibration error it should result in a loss of power. It is commonly
stated that the angle acts on the power available to the turbine as follows:

1
P(50,,) = EpA(v c0s50,,)3

Thus a power loss of cos3 §0,, is assumed. However, this is overly conservative, and
a loss of less than cos'® §0,, has been observed by wind turbine manufacturers in
practice. Not knowing the true value of the exponent here, and particularly having
little information on how it varies with air density, wind shear (which is not measured),
and so forth, means that power output differences cannot meaningfully be used to
infer a particular yaw misalignment angle. This is particularly true because any
measured power losses could come from any number of degradation modes to the
turbine, for instance extra roughness on the blades, or wear in the gearbox (although
these degradation modes could exhibit a varying power ratio with wind speed).

Thus we currently have two inextricable effects—miscalibration and misalignment—
which can separately or in combination cause a disagreement in nacelle position
when averaged over all directions.

We now turn to multiple turbine pair data for a wind farm, as per section 3.2.3, to
search for a solution which we can apply. Figure 15 illustrates a theoretical example,
where the true (calibration + misalignment) offset is marked on the map. We will
measure the directionally-averaged pairwise differences shown in Table 3.

Table 3 lllustration of mean pairwise nacelle yaw position differences for the example in Figure 15.

Pair Average Yaw Difference A@ (°)
A8, -15

Y -10

AB,; 5

A®,, 18
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In order to estimate the original §; = §0,,; + §0.; values, which are provided in
Figure 15, we will apply Bayesian updating.

T +5° T5

T4
+8° O T6

Figure 17 lllustration of a social turbine network for Bayesian inference of true nacelle position

Bayes’ Rule states that the posterior (updated) probability p(u|D) of the mean u
taking a certain value, given some data D, is proportional to the prior (previously
assumed) probability of that value (), multiplied by the likelihood of the data given
that the value is correct L(D|u). In this case we are observing correlated values from
the pairs, thus the updates need to be simultaneous:

(g, 1p|AB,R) & ()T (Up)L(AG AR |1, tp)

First, a prior m(u) is needed to encode our assumption that—before seeing any
data—the yaw miscalibration lies somewhere in the range [-180°, +180°]. This could
be a uniform distribution, however, using a Normal distribution results in the
approximate inference method we are going to use working better. Thus we need to
determine an equivalent variance for a zero-mean Normal distribution.

The variance of a uniform distribution supported between a and b is é(b —a)2. This

gives g, = 104 for our range of 360°. For a zero-mean Normal distribution with this

180

variance, the cumulative probability of a value less than -180° would be & (— E) ~

0.042. Thus 8% of the probability would lie outside the region of acceptable values.

This being unacceptable, instead we determine the variance 2 which gives less than
0.1% probability density outside [—180°,+180°]:
180
1-2 d)(——) <107*
0Op
L0y S 46

For safety, o, = 40 is used here.

The inference is performed used Markov Chain Monte Carlo (MCMC), a standard
approach for performing inference in Bayesian statistics. The Python pymc3 package
is used, where the following code snippet performs the required sampling to calculate
the results in Table 4 from the inputs in Table 3.
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import pymc3 as pm
with pm_Model () as model:

t1 = pm.Normal("t1", mu=0, sigma=40.)

t2 = pm.Normal ("t2", mu=0, sigma=40.)

t3 = pm.Normal ("t3", mu=0, sigma=40.)

t4 = pm.Normal("t4", mu=0, sigma=40.)

diffl2 = pm.Deterministic("t2-t1", t2 - tl)

diffl3 = pm.Deterministic("t3-tl1", t3 - t1)

diff23 = pm.Deterministic("t3-t2°, t3 - t2)

diff24 = pm.Deterministic("t4-t27, t4 - t2)

obs12 = pm_Normal("obs12®, mu = diffl2, sigma=0.5, observed=-15)
obs13 = pm_Normal("obs13®, mu = diffl3, sigma=0.5, observed=-10)
obs23 = pm_Normal ("obs23", mu = diff23, sigma=0.5, observed=5)
obs24 = pm.Normal("obs24®, mu = diff24, sigma=0.5, observed=18)
trace = pm.sample(1500, init="adapt _diag™)

print(pm.summary(trace))
The results are shown in Table 4. As can be seen, the final estimates are within 0.2°

of the true values. Note that the posterior uncertainty is high, even though in this case
the input data is specified as having only 0.5° uncertainty.

Table 4 Calculation of turbine yaw offsets using Markov Chain Monte Carlo, see Figure 15.

Turbine True Yaw Offset §; (°) Estimated §; (°) Error (°)
+5 484193 -0.2
2 -10 —-10.2+19.3 -0.2
3 -5 —51+19.3 -0.1
4 +8 7.8+19.3 —0.2

Inferring calibration error in this way is valuable for the industry, as it quickly highlights
which turbines could benefit from re-calibration, which then enables further analysis.

However, it is clearly not possible to separate out calibration error from true yaw
misalignment with this method. If all turbines have their yaw position sensors
corrected to True North (either by inferring this error from the nacelle wind vane
sensor or, preferably, by conducting maintenance to align them) then the pairwise
average yaw misalignment reduces to the following:

AG)AB = 6®m'3 - 69771,.4

A single source of truth now suffices to propagate yaw misalignment estimates across
the whole network. This can come from a nacelle-mounted Lidar installation, which
can be on any turbine, although a turbine with a large probability of being unwaked
and which is paired with several others should be prioritised.
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Results and Analysis

Data preparation

As well as the turbine SCADA data, Fortum supplied data from several campaigns of
a ZephlIR (now zZX Lidars) nacelle-mounted lidar. All data used for this analysis are
10-minute averaged statistics.

The SCADA data came in the form of multiple Microsoft Access databases. The lidar
data is converted from the binary ZPH files to CSV using Waltz v4.7. Thereafter both
data sets are imported and time-synchronised into a Python pandas DataFrame.

Lidar data analysis

Yaw misalignment measurements were performed by Fortum using a nacelle lidar in
four campaigns covering three turbines:

1 T11:2018-03-15 15:50 - 2018-04-15 23:50

2 T13:2018-04-17 09:40 - 2018-05-13 23:50 (campaign a)

3 TO05: 2018-05-24 10:00 - 2018-07-16 23:50

4 T13:2018-07-27 11:30 - 2018-10-10 23:50 (campaign b)

This data is now analysed to determine the yaw calibration error and then the yaw
misalignment for each turbine. The processing methodology described by ZX Lidars
is reimplemented as closely as possible.

Calibration error

To obtain an estimate of the calibration error, we use the lidar’s internal compass and
compare it to the turbine’s nacelle position obtained from the SCADA data. However,
while a constant error was expected, Figure 16 reveals a strong directional
dependency (which is repeated on other turbines). A simple sinusoidal fit of the data
estimates an average offset of —0.2°, which fits well with the required assumption that
the nacelle yaw direction sensor calibration error is zero.

—— regression of data: 16.0 sin{x-4.4)-02
regression of bin-wise means: 18.7 sin{ x- 126 )+ 2.6
+ dala
20 bin-wise means

T11 nacelle position - compass bearing [deg]

-20

-150 -100 —60 o 80 100 180
Lidar compass bearing [deg]

Figure 18 Disagreement between the lidar compass and the nacelle direction of turbine 11.
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4.2.2 Yaw misalignment
The 10-minute average yaw misalignment is computed by the nacelle lidar. We use
the results for the “fit-derived” algorithm, which uses all measurement points along
the scanned circle, as visualised in Figure 17. The wind speed is measured about
half a rotor diameter upstream.

Figure 19 Visualisation of the fit-derived algorithm used by the ZX lidar to determine the yaw
misalignment.

The resulting yaw misalignment fluctuates, because it is, in part, caused by the
inherent laziness of the yaw controller. We are interested in the systematic offset that
remains after averaging out this normal fluctuation.

For each lidar campaign we compute the average yaw misalignment measured by
the nacelle lidar. Prior to averaging the lidar data is filtered using the following criteria:
e Turbine must be operational throughout the entire 10-minute interval.
e The power produced must be at least 5kW.
e The nacelle direction must be inside the measurement sector: 60° - 120°.
This is the free wake sector for turbines 11 and 13, but for consistency it is
also applied to TO5.

The resulting (cumulative) average yaw misalignment for each campaign in shown in
Figure 18, Figure 20, Figure 22 and Figure 23. The blue graph traces the cumulative
average yaw misalignment, while the green traces the standard error. At times when
the measured data does not satisfy the filter criteria outlined above — most notably
when the wind directions are not inside the measurement sector — the averages are
not updated, resulting in a horizontal section of the graph. The final average values
obtained for each campaign listed in Table 5.

For the T11 and T13a campaigns, Fortum shared yaw misalignment analysis results
obtained under more elaborate filter conditions. These results are shown in Figure
19 and Figure 21. These yaw misalignment values, also shown in Table 5, are very
close to those obtained in our analysis.

Knowing the yaw misalignment on a single turbine, we will use social statistics to

extrapolate that misalignment to all turbines in the farm. Because we have measured
the misalignment on more than one turbine, we can verify those extrapolations.
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Table 5 Yaw misalignment for each lidar campaign.

Lidar campaign Yaw misalignment Standard error
TNO ZX Lidars TNO ZX Lidars
T11 -4.35° -3.99° 0.11° 0.11°
T13 a -6.80° -6.68° 0.06° 0.06°
TO5 -5.68° - 0.24° -
T13b -5.20° - 0.07° -

g T11 - Yaw misalignment at 0.5D .
A -1
g N ‘L\ﬂ_ﬂ—\—\ ! :
4 s
7 2018-03-21 2018-03-25 2018-03-29 20158-04-01 20158-04-05 2013-04-09 2015-04-13 B

Figure 20 Cumulative average yaw misalignment for turbine 11.
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Figure 21 Cumulative average yaw misalignment for turbine 11 as calculated by ZX Lidars.
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T13 - Yaw misalignment at 0.50
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Figure 22 Cumulative average yaw misalignment for turbine 13 (campaign a).
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Figure 23 Cumulative average yaw misalignment for turbine 13 (campaign a) as calculated by ZX.
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T05 - Yaw misalignment at 0.50
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Figure 24 Cumulative average yaw misalignment for turbine 5.
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Figure 25 Cumulative average yaw misalignment for turbine 13 (campaign b).

As can be seen from Figure 18 - Figure 23, the estimate of yaw misalignment
consistently changes whenever new data is received to update it. This change is
greater than the standard error derived from the cumulative number of data points
acquired, suggesting that the measurement is not stationary. This is a concern which
should be addressed in other projects, to determine what may cause such instability.
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Applying social statistics

The turbine pair manager is configured to create pairs or turbines not further than
750m apart and not differing more than 10m in elevation. This resulted in the pairing
of turbines shown in the first two columns of Table 6.

The simulation is run using SCADA data starting on 2018-01-01. The estimated yaw
errors for all turbine pairs are logged at the end date of each of the lidar campaigns.
Figure 24 shows a typical result for the difference of the nacelle positions of a turbine
pair, as a function of the nacelle position of one of the turbines in the pair. We can
see some variation, which is to be expected, because the yaw controller of each
turbine operates independently of the other turbines. Again, we are interested in the
systematic deviation. It can also be seen that the average difference is different for
the easterly and westerly wind direction. This may well be caused by differences in
inflow conditions, such as wakes and orography.
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Figure 26 Example of yaw error estimation. The nacelle position difference is compared for turbine
pair T11 and T12. The easterly measurement sector is indicated by red bars.

The average yaw differences for each pair are computed at the end of each lidar
campaign. This is done separately for the easterly (60° — 120°) and westerly (240° —
310°) wind sectors. The results are reported in Table 6 (easterly sector) and Table 7
(westerly sector).

There are two main conclusions to be drawn straight away:

1 Most of the turbine exhibit systematic differences between easterly and westerly
wind directions. Given the layout of the wind farm with turbines aligned closely to
the wind direction and therefore likely experiencing wakes in one of these
directions, this is not surprising.

2 De-calibration (or intentional re-calibration) events can be seen to have a sudden
effect on some of the turbine pair differences during the 6-month period. However,
some of the pairs have very stable values. Given the stability of all turbine T07
pairs except for its relationship with T11, this implies that a re-calibration event
occurred to T11 between the T13(a) and T05 Lidar campaigns.
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Table 6 Yaw differences between turbine pair A and B for all four lidar campaigns, easterly wind direction sector
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(60° — 120°). Bold entries are used for inference, since they are less waked.

Turbine Mean difference Standard error
A B T11 T13(a) T05 T13(b) T11 T13(a) T05 T13(b)
11 12 0.50 0.30 0.36 0.28 0.08 0.06 0.05 0.04
11 10 -4.97 -4.16 -4.22 -4.02 0.49 0.12 0.08 0.04
11 7 2.24 2.15 0.70 1.25 0.09 0.06 0.25 0.06
12 13 -0.16 -0.02 0.01 -0.06 0.05 0.04 0.04 0.03
12 10 -3.10 -3.96 -4.14 -2.28 0.26 0.11 0.10 0.16
0.52 0.63 0.68 0.79 0.05 0.04 0.04 0.04
-1.31 -1.70 -1.80 -2.17 0.27 0.13 0.11 0.10
-0.43 -0.25 -0.24 -0.17 0.06 0.05 0.04 0.04
13 14 1.10 -0.31 -0.23 -0.33 0.14 0.07 0.06 0.10
-4.53 -4.55 -4.57 -4.65 0.04 0.04 0.04 0.03
9 8.48 8.99 8.92 9.21 0.15 0.08 0.36 0.07
7.67 7.53 7.57 7.41 0.04 0.04 0.03 0.03

Table 7 Yaw differences between turbine pair A and B for all four lidar campaigns, westerly wind direction sector

(240° — 310°). Bold entries are used for inference, since they are less waked.

Turbine Mean difference Standard error
A B T11 T13(a) T05 T13(b) T11 T13(a) T05 T13(b)
11 12 3.92 3.68 2.73 2.55 0.07 0.06 0.05 0.04
11 10 -1.25 -0.91 -1.42 -1.46 0.11 0.52 0.05 0.04
11 7 1.83 1.58 -0.45 0.92 0.08 0.08 0.18 0.07
12 13 -0.02 -0.13 -0.58 -0.65 0.06 0.05 0.05 0.04
12 10 -5.97 -5.72 -4.45 -5.12 0.10 0.09 0.06 0.25
-0.57 -0.62 -1.25 -1.29 0.07 0.07 0.05 0.04
-0.52 0.63 0.96 0.22 0.16 0.28 0.08 0.10
-0.23 -0.16 -0.17 -0.19 0.06 0.06 0.04 0.04
13 14 -0.86 -1.00 -1.07 -0.36 0.08 0.07 0.05 0.11
-6.09 -6.13 -5.73 -5.49 0.09 0.08 0.06 0.05
9 6.10 5.63 2.65 4.73 0.11 0.12 0.20 0.06
5.87 5.99 5.02 4.66 0.07 0.07 0.05 0.04

PUBLIC

The MCMC Bayesian inference approach described in section 3.4 is now applied to
recover predictions of the yaw error for each turbine where a pair has enough data
(i.e. not turbines 1 and 2, due to frequent detected changes in calibration). In Table
8, the inference is first performed for all turbines after the T11 Lidar campaign, but
without including the Lidar yaw misalignment measurement. Then the Lidar-
measured value is included.

Consistent results are obtained between the two estimates; including the Lidar
information shifts all the estimates by approximately +3.4°. As a result, T13 is
predicted to have a yaw misalignment of —4.0° (compared with —6.8° and then —5.2°
measured in its later Lidar campaigns), and TO5 is predicted to have a yaw
misalignment of —7.2°, compared with the —5.7° measured in the Lidar campaign on
that turbine.
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Table 8 Bayesian inference of turbine yaw misalignments (assuming zero calibration error) after the

Lidar campaign on T11.

Turbine Without Lidar information With Lidar information
3 —-57+9.1° —-23+£0.2°
4 —-29+409.1° 0.5+ 0.2°
5 —-10.6+9.1° =7.2+0.2°
6 —-6.1+9.1° —-2.7+£0.2°
7 -55+9.1° —-2.1+0.1°
8 —-6.0+9.1° —2.6 £0.2°
9 0.1+9.1° 3.5+£0.2°
10 -109+9.1° -7.5+0.3°
11 —-7.84+9.1° —43+£0.1°
12 -73+9.1° -39+0.1°
13 —-74+9.1° —4.0+0.1°
14 —-6.3+9.1° —2.9+0.2°

An example dashboard containing the results using the Lidar information is shown in
Figure 25. In this instance, the dashboard would highlight turbines 5 and 10 as being

the most concerning in either case.
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Figure 27 Dashboard showing results of turbine yaw error inferred from turbine pair results and Lidar
measurement on T11 (arrow colour scales from 0° (green) to +5° (red); blue is missing).
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For comparison, the results of using the data from all three turbines after the Lidar
campaign on T05 is shown in Table 9. The previous two Lidar campaign results are
included, but given uncertainties of 1.5°, to account for the fact that the turbines may
have been re-calibrated.

A few of the turbines’ results, particularly T09, are consistent with the previous values.
TO5 and T10 are still of concern with the highest (negative) yaw offset. However,
most of the turbines’ estimates have changed by 2° or more. This is explained by the
large shifts in pair values for T11-T07, T12-T10, TO7-T08, T13-T14 and T08-T09.

Table 9 Bayesian inference of turbine yaw misalignments (assuming zero calibration error) after the
Lidar campaign on T05.

Turbine With Lidar information
3 —0.0+0.3°
4 1.9+ 0.2°
5 —=5.7+£0.2°
6 -1.1+0.2°
7 0.2+0.3°
8 1.1+£0.3°
9 3.8+0.3°
10 —4.6 + 0.4°
11 —-0.5+04°
12 —-0.2+04°
13 —-0.2+04°
14 —0.5+0.4°

As a final note, the speed of the MCMC inference is greatly increased with the
inclusion of sources of truth for individual turbines, rather than just providing
differences. Choosing one of the turbines as a reference, with zero offset, may prove
a practically useful approach.
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Conclusions and Recommendations

This project has developed and implemented an alternative method of online analysis
of wind farm performance to that typically used in the industry. This conceptual
framework has been called “social statistics”, as it is based on turbines comparing
their behaviour to each other, enabling inference of their slowly-varying performance
characteristics, freed of the many uncertainties that arise from unmeasured wind
conditions.

This framework has been elaborated in this report with algorithms for creating and
updating these turbine pairs and then using the whole wind farm to infer individual
turbines’ behaviour. Further, a robust software architecture has been designed and
tested, enabling the required event-driven processing of the 10-minute average
SCADA.

The original goal of this project was to detect wind turbine underperformance
automatically. Due to the particular wind farm data set provided, which included a
rather valuable measurement campaign of nacelle Lidar data, the decision was taken
early on to focus exclusively on implementing an algorithm for yaw misalignment
detection.

However, one of the key learnings from this project is that nacelle yaw sensors can
be highly unreliable. As a result, it is proven here that separation of yaw misalignment
from nacelle yaw direction miscalibration is impossible without any source of
independent truth to robustly re-calibrate the true nacelle direction.

Instead, an automated method for using measured differences in yaw direction
between turbine pairs to infer the sum of yaw misalignment and miscalibration has
been developed using Bayesian inference, and has been shown theoretically to be
able to estimate correctly each individual turbine’s yaw error within a fraction of a
degree. This is industrially useful as it can identify turbines for maintenance, and/or
be used automatically to remove the error.

Itis likely that the methods outlined here will be more successful on wind farms where
the effect of orography is either known, or less pronounced. Sites with a higher spread
of incoming wind directions should also be more fruitful. However, the wind farm does
not need to have many turbines for social statistics to be effective, so long as the
turbines are not too far apart both horizontally and vertically.

The Lidar measurements provided at the wind farm were used to reconstruct the

estimated yaw misalignment. A few causes for concern were found:

1 The lidar compass bearing exhibited a highly directionally-dependent relationship
with all the turbines’ nacelle yaw measurements, with an amplitude of
approximately 30°. This may have diagnosed an issue with the yaw sensor, but
could also be a concern with the Lidar’s reference.

2 The estimate of yaw misalignment derived from the Lidar's measurements was
dependent (to around 2°) on the choice of filters applied to the data.

3 The estimate of yaw misalignment did not appear to converge with time, instead
consistently trending by more than the calculated uncertainty at each period with
valid data.
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The yaw misalignment (including miscalibration) inference was applied to the turbine
pair information available at the end of the first Lidar campaign. The only difference
between including the Lidar yaw misalignment estimate, and not using it, is removal
of a 3.4° negative bias from the results. Thus in absolute terms the Lidar information
was valuable, but the same two turbines (TO5 and T10) would have registered as
concerns even without any Lidar campaign.

Using those results to predict the yaw misalignments measured with Lidar campaigns
on two other turbines resulted in values which were within [—1.5,+2.8]° of the
measured values. Given the concerns about the Lidar results expressed earlier (and
the length of time between the prediction and the measured result) this seems
reasonable.

At the end of the third Lidar campaign, three months later, the process has been
repeated. While a small number of the turbines have very similar estimates, large
shifts in some of the pair differences result in changes of around 2° to many of the
estimates of individual turbines’ yaw errors. One potential attribution for this could be
the regular changes in yaw direction sensor calibration. Another could be deliberate
maintenance occasioned by the attention at the site on yaw misalignment (several of
the turbines appear to be improved, including the two on which the first two Lidar
campaigns were performed). However, without access to maintenance logs, the
ultimate cause cannot be known with certainty.

Future extensions to this method should place more emphasis on detection of other
degradation modes, such as blade damage. This can be achieved by looking more
deeply at combining the power ratios of the turbine pairs with the ratios and
differences of other sensors.
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