
 
 
 
PUBLIC 

 
 

 
PUBLIC 

Westerduinweg 3 
1755 LE Petten 
P.O. Box 15 
1755 ZG Petten 
The Netherlands 
 
www.tno.nl 
 
T +31 88 866 50 65 
 
 
 
 
 
 
 
 
 
 
 

 

TNO report 
 

TNO 2020 R11206 | Final report 

Investigation into automating wind turbine 
underperformance detection using social statistics 

 

Date 7 September 2020 
  
Author(s) Clym Stock-Williams 

Dennis Wouters 
Maciej Maj 

 
Copy no. 1 
No. of copies 1 
Number of pages 39 
Number of appendices 0 
Customer Dutch Ministry of Economic Affairs and Climate Policy (EZK) 
Project name Automated Underperformance Detection for Wind Turbines 
Project number 060.38599 

 
 
All rights reserved. 
No part of this publication may be reproduced and/or published by print, photoprint, 
microfilm or any other means without the previous written consent of TNO. 
 
In case this report was drafted on instructions, the rights and obligations of contracting 
parties are subject to either the General Terms and Conditions for commissions to TNO, or 
the relevant agreement concluded between the contracting parties. Submitting the report for 
inspection to parties who have a direct interest is permitted. 
 
© 2020 TNO 

 



PUBLIC | TNO report | TNO 2020 R11206 | Final report 
 

2 / 39 
 

 

PUBLIC 

 

Executive Summary 

This report describes the work performed as part of the PPP Toeslag project 
“Automated Underperformance Detection for Wind Turbines”.  
 
The project aimed to take a novel approach to wind farm condition monitoring and 
automated alerting, based on Bayesian statistics and the relative behaviour of wind 
turbines, with the following goals: 
• To be able to automatically detect and quantify underperformance in a wind farm. 
• To do this as much as possible using only 10 minute SCADA data, which is cheap 

and readily available (although often unreliable). 
• To assess the additional value of a minimal set of data from additional 

measurements (e.g. a Lidar campaign) – in order to improve information 
sufficiently to take maintenance decisions. 

 
For this purpose, Fortum provided TNO with several years of commercially-sensitive 
SCADA data from one of their onshore wind farms in northern Europe, along with 
data from expensive nacelle-mounted Lidar campaigns which established yaw 
misalignment on three turbines. 
 
The majority of analyses performed on SCADA data in both academic and industrial 
contexts involves one form or another of individual turbine analysis, in particular of 
turbine power against nacelle anemometer wind speed. The difficulty with this—
which is very widely understood in the industry—is that, even with the built-in 
calibration to account for the effect of the rotor on the wind, its measurements are not 
accurate enough to support reliable detection of underperformance. 
 
This report—by contrast—elaborates a concept of “social statistics”, where turbines 
compare their behaviour to each other, enabling inference of their slowly-varying 
performance characteristics, freed of the many uncertainties that arise from 
unmeasured or poorly-measured wind conditions. Properties of the turbines are 
inferred based on information from the individual turbine, pair, or wind farm level 
(depending on the complexity of information required to perform the inference) as 
illustrated in Figure 1.  
 

 
Figure 1 Overview of social statistics framework. 
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Algorithms are here provided for important parts of the framework, such as the 
automatic creation of valuable turbine pairs. Further, a robust software architecture 
has been designed and tested, enabling the required event-driven processing of the 
10-minute average SCADA, and allowing analysts to implement additional inference 
logic for different degradation modes or turbine / sensor statuses. 
 
Due to the particular wind farm data set provided, which included a rather valuable 
measurement campaign of nacelle Lidar data, the decision was taken early on to 
focus exclusively on implementing an algorithm for yaw misalignment detection.  
 
However, one of the key learnings from this project is that nacelle yaw sensors can 
be highly unreliable. It is proven here that separation of yaw misalignment from 
nacelle yaw direction miscalibration is impossible without any source of independent 
truth to robustly re-calibrate the true nacelle direction. 
 
To provide a result of value to the industry, an automated method for using measured 
differences in yaw direction between turbine pairs to infer the sum of yaw 
misalignment and miscalibration has been developed, using Bayesian inference. This 
is shown with a toy example to be able to estimate correctly each individual turbine’s 
yaw error within a fraction of a degree. This is industrially useful as it can identify 
turbines for maintenance, and/or be used automatically to remove the calibration 
error. 
 
This method can include sources of truth such as a nacelle-mounted Lidar campaign 
to estimate yaw errors (due to the combination of miscalibration and misalignment). 
An example is shown in Figure 2 for the results inferred for the test wind farm. 
 
One way to estimate the accuracy of the method is to compare the prediction of yaw 
misalignment (assuming zero miscalibration) on turbines which were later subjected 
to a Lidar campaign. The predicted values were within [−1.5, +2.8]° of the measured 
values. Given the length of time elapsed between prediction and measurement, the 
regularity of yaw sensor de-calibrations, and some concerns about the results from 
the lidar measurements themselves, this seems reasonable. 
 
It is likely that the methods outlined here will be more successful on wind farms where 
the effect of orography is either known, or less pronounced. Sites with a higher spread 
of incoming wind directions should also be more fruitful. However, the wind farm does 
not need to have many turbines for social statistics to be effective, so long as the 
turbines are not too far apart both horizontally and vertically. 
 
Future extensions to this method should place more emphasis on detection of other 
degradation modes, such as blade damage. This can be achieved by looking more 
deeply at combining the power ratios of the turbine pairs with the ratios and 
differences of other sensors. 
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Figure 2 Illustrative dashboard of inferred yaw misalignments for the wind farm used in this study. 
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1 Project Aims and Report Structure 

This report details the work undertaken during the PPP Toeslag project “Automated 
Underperformance Detection for Wind Turbines”. The main aim of this project was to 
investigate the value in taking a novel approach to wind farm condition monitoring 
and automated alerting, based on Bayesian statistics and the relative behaviour of 
wind turbines. The approach was supported by Fortum, who provided data from an 
onshore wind farm in northern Europe, where yaw misalignment in three turbines had 
been detected using nacelle-mounted Lidar campaigns. 
 
The objectives of the project were: 
• To be able to automatically detect and quantify underperformance in a wind farm. 
• To do this as much as possible using only 10 minute SCADA data, which is cheap 

and readily available (although often unreliable). 
• To assess the additional value of a minimal set of data from additional 

measurements (e.g. a Lidar campaign) – in order to improve information 
sufficiently to take maintenance decisions. 

 
For this purpose, Fortum provided several years of commercially-sensitive SCADA 
data from one of their wind farms, along with expensive nacelle-mounted Lidar data 
sets and previous analysis. These data sets are described in section 2. 
 
Next, the methodologies applied are described in section 3. These are built to be 
implementable online in a SCADA monitoring system. 
 
In section 4, these methodologies are applied to the data set from Fortum, in order to 
assess their effectiveness, in particular their ability to predict the yaw misalignment 
already seen. Additional benefits and difficulties are discussed and demonstrated. 
 
Finally, section 5 summarises the conclusions from this study, the potential next steps 
for promising lines of research, and recommendations to both Fortum and the wider 
wind energy industry. 
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2 Wind farm data set 

2.1 Wind farm description 

Wind farm data were provided by Fortum for an onshore wind farm in Northern 
Europe. The turbines are located as shown in Figure 1. 
 

 
Figure 3 Turbine heights above mean sea level, and locations (in UTM relative to an arbitrary origin). 

The wind farm consists of 14 turbines, less than 10 years old, operating across an 
area of 1300m by 1400m, with a maximum elevation difference of 80m. 
 
The terrain is expected to have a significant effect on the wind speeds and directions 
across the site during normal operation. 

2.2 SCADA Data 

Supervisory Control and Data Acquisition (SCADA) data were provided for a period 
of more than 7 years, with a 10-minute frequency. While many hundreds of 
parameters were available in the manufacturer’s documentation, and more than 70 
parameters were provided in the data set, most of these were missing or corrupted. 
As one example, wind direction measurements from a nacelle wind vane (or sonic 
anemometer) were not present, even though they must be available for the control 
system to function. The parameters used in this study are summarised in Table 1. 
 
The data were loaded into Python, structured into a pandas DataFrame, and then 
stored in pickle files for further use in the project. An illustration of the cleaned data 
is shown in Figure 2.  
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Table 1 SCADA parameters used 

Parameter description Comments 
Ambient Temperature (ºC) Mean, min, max, standard deviation 
Active Power (kW) Mean, min, max, standard deviation 
Nacelle Position (º) Mean, min, max, standard deviation 
Main Shaft Speed (RPM) Mean, min, max, standard deviation 
Wind Speed Active Sensor (m/s) Mean, min, max, standard deviation 
Duration Turbine Released to Operation Between 0 and 600 seconds 
Duration Turbine Operating Between 0 and 600 seconds 
Duration Wind Speed between Cut-in and Cut-out Between 0 and 600 seconds 

 
Figure 4 Illustration of cleaned DataFrame with SCADA data 

 
 
Outlier detection and removal is an essential first step before performing analysis. 
Several methods for detecting outliers are standard in the statistics and data science 
literature. Here, we illustrate the process used by focusing on identifying spikes in 
nacelle anemometer-measured wind speed (which seemed to occur most frequently 
when the turbine is turned on again after maintenance). 
 
Two methods were applied to flag suspicious data points, for subsequent manual 
review before removal or retention:  
1 Considering only a single variable (each turbine’s wind speed data in this case), 

and flagging all times where the value exceeds the 99th percentile. This non-
parametric method was chosen over alternative such as the z-score, because the 
data are not Normally-distributed (even when taking the logarithm); 

2 Calculating the absolute difference of the measured variable from its equivalent in 
a reference meteorological data set (described in section 2.3), then flagging values 
greater than the 90th percentile (or some manually-chosen threshold selected a 
priori based on the particular parameter, e.g. 5m/s for wind speed). With this 
approach it is appropriate to be more aggressive at flagging data, since the use of 
a model means that the physical processes explaining some extreme values will 
be included, and therefore deviations should only occur when data errors are 
present. 

 
The results of the outlier removal process are shown using boxplots. These diagrams 
are a powerful tool for visualising the distribution of data. An explanatory example is 
shown in Figure 3, and the before-and-after plots for each turbine’s measured wind 
speed are given in Figure 4. 
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Figure 5 Illustrative boxplot for nacelle anemometer-measured wind speed. The solid lines indicate 

non-parametric values (from bottom: lower fence, lower quartile, median, upper quartile, 
upper fence). The fences are set at 1.5 times the inter-quartile range, or the 
minimum/maximum value, whichever is nearer the median. The dotted horizontal line 
shows the mean and the extremes of the dotted triangles shown one standard deviation 
away from this mean. All points lying outside the fences are plotted as dots. 

Further examination of the time series of nacelle position was undertaken, given its 
importance in determining the possible yaw misalignment, and the lack of wind vane 
data.  
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Figure 6 Illustration of outlier removal on SCADA wind speed data, using boxplots described in 

Figure 3. Top: before cleaning; bottom: after cleaning. 

Figure 5 illustrates how regular large shifts in measured yaw position occur. In the 
top graph, there is a divergence in measurement of wind of up to 180 degrees. The 
bottom graph, in a period almost 1 year later, demonstrates that the miscalibration of 
the yaw position sensors has been largely corrected, and the divergence is now 
around 30 degrees. However, the relative position of the measurements exhibits 
systematic differences after each direction shift. For instance, following the purple 
line for turbine T02, after February 12th it has the most northerly yaw position 
measurement. The next time the westerly winds occur, just before the mark for 
February 19th, it is the most southerly. This relative position persists for the easterly 
wind period following, before reverting to being the most northerly.  
 
Such changes could be attributed to a combination of: an error in the sensor; a 
change in sensor measurement due to external influence; a true change in the 
controller resulting in misalignment; or a systematic change in inflow wind in time.  
 
Some of these proposals are less plausible than others, and can be discounted after 
enough data has been collected. For example, any change in time attributed to 
orography should be fully explained by, and consistent with, the change in direction. 
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Sensor hysteresis after large yaw changes are possible, but have not been confirmed 
by any wind turbine manufacturer.  
 

 
Figure 7 Illustration of nacelle position sensor calibration shifts. Top: a period with large 

disagreements between turbines; bottom: a period with small disagreements between 
turbines. 

Finally, the contracted power curve, shown in normalised form in Figure 6, was 
provided. 
 

 
Figure 8 Turbine manufacturer’s contractual power curve, with normalised power, and rated 

conditions indicated by the blue dash-dotted lines. 



PUBLIC | TNO report | TNO 2020 R11206 | Final report 
 

12 / 39 
 

 

PUBLIC 

 

2.3 WRF Meteorological Data 

Meteorological data at one-hour frequency were provided by Fortum from a well-
known hindcast model provider. This was intended to replace the missing met mast 
data, and comprised the parameters shown in Table 2. 
 
Table 2 Available WRF parameters 

Parameter description 
Wind Speed (m/s) 
Wind Direction (º) 
Atmospheric Pressure (Pa) 
Ambient Temperature (K) 
Relative humidity with respect to ice (%) 
Relative humidity with respect to liquid water (%) 

 
This data set enabled some exploratory data analysis to understand the conditions 
on site. First, the wind rose is shown in Figure 7. As can be seen, the wind is highly 
bi-directional, with most energetic winds coming from the East. 
 

 
Figure 9 Wind rose created using WRF data for the wind farm under consideration 

Next, a comparison of wind speeds and directions from the WRF versus turbine T04 
is displayed in Figure 8. As can be seen, the agreement is poor (despite time zone 
shifting to align the series correctly). For the wind direction, this may be partly 
accounted for by the response time and control of the nacelle position versus the true 
wind direction. However, the wind speed comparisons were similar for every turbine, 
and inspection of time series plots shows that significant and persistent 
disagreements of up to 5m/s are present, indicating that the WRF data is not accurate 
in this location with complex terrain. 
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Due to this discrepancy, the WRF was not treated as a replacement for a 
meteorological mast. 
 

 

 
Figure 10 Comparison of WRF versus SCADA data. Top: wind speed from model and T04 nacelle 

anemometer; bottom: wind direction from model and nacelle position of T04. 

Air density was nevertheless calculated as follows.  
 
First, the reference ambient temperature 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 was corrected to each turbine’s height 
ℎ, using the temperature lapse rate 𝐿𝐿 = 0.0065𝐾𝐾/𝑚𝑚: 

𝑇𝑇ℎ = 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐿𝐿 ⋅ ℎ 
 
The vapour pressure of water 𝑝𝑝𝑣𝑣 is then calculated as follows, where the relative 
humidity 𝑅𝑅𝐻𝐻𝑙𝑙𝑙𝑙 is input as a %: 
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𝑝𝑝𝑣𝑣 = �6.108 ⋅ 10
7.5(𝑇𝑇ℎ−273.15)
𝑇𝑇ℎ−273.15+237.8� ⋅ 𝑅𝑅𝐻𝐻𝑙𝑙𝑙𝑙 

 
The partial pressure of water vapour at each turbine’s height 𝑝𝑝ℎ,𝑣𝑣𝑣𝑣𝑣𝑣 is then calculated, 
using the molar mass of water vapour 𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣 = 0.018𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚 and the specific gas 
constant for water vapour 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣 = 461.5: 

𝑝𝑝ℎ,𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑝𝑝𝑣𝑣 ⋅ �1 −
𝐿𝐿 ⋅ ℎ
𝑇𝑇ℎ

�

𝑔𝑔⋅𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣
𝐿𝐿⋅𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣

 

 
Next, the observed atmospheric pressure 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 is corrected to the partial pressure of 
dry air at each turbine’s height 𝑝𝑝ℎ,𝑑𝑑𝑑𝑑𝑑𝑑, using he molar mass of dry air 𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑 =
0.029𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚 and the specific gas constant for dry air 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 = 287.1: 

𝑝𝑝ℎ,𝑑𝑑𝑟𝑟𝑟𝑟 = �𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑝𝑝𝑣𝑣� ⋅ �1 −
𝐿𝐿 ⋅ ℎ
𝑇𝑇ℎ

�

𝑔𝑔⋅𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑
𝐿𝐿⋅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑

 

 
Finally, air density is calculated using: 

𝜌𝜌 =
𝑝𝑝ℎ,𝑑𝑑𝑑𝑑𝑑𝑑

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 ⋅ 𝑇𝑇ℎ
+

𝑝𝑝ℎ,𝑣𝑣𝑣𝑣𝑣𝑣

𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣 ⋅ 𝑇𝑇ℎ
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3 Social Statistics Methodology 

3.1 Motivation and Literature Review 

Wind turbine SCADA data is analysed by wind farm owners in order to: 
1) Summarise wind farm performance across a portfolio and enable asset 

management to focus on poor performers; 
2) Identify poorly-performing turbines in a wind farm and prioritise them for 

corrective action; 
3) Detect or predict damage or other problems with the turbine which require 

maintenance. 
 
The focus of this project is on the second topic. The methodology outlined in section 
3.2 and implementation in 3.3 are deliberately generic, giving a framework for the 
detection of underperformance and attempted attribution to any fault mode, where 
there is sufficient physical knowledge. In this project, there was a particular emphasis 
on detecting yaw misalignment, so section 3.4 focuses on that use case. 
 
The majority of analyses performed on SCADA data in both academic and industrial 
contexts involves one form or another of individual turbine analysis, in particular of 
power curves1. In this approach, poorly-performing turbines are identified by 
comparing a graph of power output against wind speed with the warrantied power 
curve of the turbine.  
 
The measurements of wind speed used for this analysis are usually from the 
anemometer (commonly a cup, sometimes sonic) placed on top of the wind turbine 
nacelle, behind the rotor. The difficulty with this—which is very widely understood in 
the industry—is that, even with the built-in calibration to account for the effect of the 
rotor on the wind, its measurements are not accurate enough to support reliable 
detection of underperformance2. For this purpose the IEC 61400-12-1 standard has 
been created, which requires a separate measurement placed upstream of the wind 
turbine in undisturbed flow. 
 
Even if a meteorological mast is available (which is often not the case, as for the wind 
farm used in this study) the wind field changes across the wind farm, largely due to 
wakes and orography (terrain). Thus this wind speed cannot be a suitable reference 
for all the turbines on a farm. 
 
As an aside, one very useful diagnostic curve for individual turbines, which does not 
rely on uncertain wind speed measurements, is the torque-speed curve shown in 
Figure 9. When torque is not available in the SCADA system, it can be calculated 
from the active power 𝑃𝑃 and shaft speed 𝜔𝜔 (in revolutions per minute, rpm) as follows: 

Γ =
30
𝜋𝜋
⋅
𝑃𝑃
𝜔𝜔

 

 

 
1 Sohoni et al., “A Critical Review on Wind Turbine Power Curve Modelling Techniques and Their 
Applications in Wind Based Energy Systems”, J. Energy, 2016 
2 A. Albers, J. Mander and G. Gerdes, “Analysis of wind turbine control and performance based on 
time series data of the wind farm monitoring system.” Proceedings of EWEC2003, Madrid. 
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Figure 11 Torque versus shaft speed curve for region 2 operation, data from the wind farm used in 

this project. 

The significant differences observed for turbine T13 are unlikely to be causing a loss 
of power, since this would have been quickly detected and corrected (and is not 
visible in the power curve of T13 compared to other turbines). However, it cannot be 
due to a malfunctioning shaft speed sensor, so deserves further investigation. 
 
Less error-prone techniques than power curve analysis are also available3, which 
have often been in use for many decades. However, these often rely on wind flow 
modelling (not available for the wind farm under study here) to predict wind flow and 
turbine performance. 
 
For this reason, the project investigated the concept of creating a ‘social network’ of 
turbines, which benchmark themselves against each other. Comparison of 
differences or ratios in SCADA parameters, between turbines which are close enough 
to be operating in similar conditions, should enable the truth to be established: 
detecting both trends and sudden changes in time, and attributing these changes to 
a likely cause. 
 
A similar concept was only recently considered in the literature—in parallel with this 
project—for the purpose of collaborative wind turbine control4. The goal of that work 
was the adjust the turbines’ yaw controllers to minimise yawing time and yaw 
misalignment. The problem was presented as an optimisation task, with each turbine 
iteratively determining its own local wind direction and bias, based on a comparison 
with local turbines. 
 
That work is very interesting in the context of this project, and the conceptual 
framework for consensual analysis has some similarities, despite the differing 

 
3 A. Albers, “Efficient Wind Farm Performance Analysis”, Deutsche Wind Guard Consulting, 2004  
4 J. Annoni et al., “Wind direction estimation using SCADA data with consensus-based optimization”, 
Wind Energ. Sci., 4, 355–368, 2019 
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objectives. As stated by Annoni et al., the wind direction estimator is a potential 
technique which could be applied inside the framework presented here (although we 
demonstrate another, based on statistical inference).  
 
Finally, regarding the use of nacelle lidar for the establishment of yaw misalignments, 
the theoretical basis for this is established in documents such as Vindforsk technical 
report 2016:2985.  

3.2 Social Analysis Framework  

The first step in establishing a social network for the turbines is to use the provided 
locations and hub heights (above a fixed reference such as Mean Sea Level) to 
establish distance and interaction matrices: 
• Vertical separation (m): 𝑧𝑧𝐴𝐴,𝐵𝐵 = 𝑧𝑧𝐵𝐵 − 𝑧𝑧𝐴𝐴 
• Horizontal separation (m): 𝑠𝑠𝐴𝐴,𝐵𝐵 = �(𝑦𝑦𝐵𝐵 − 𝑦𝑦𝐴𝐴)2 + (𝑥𝑥𝐵𝐵 − 𝑥𝑥𝐴𝐴)2 
• Wind direction for wake impingement (º): 𝜃𝜃𝐴𝐴,𝐵𝐵 = �180

𝜋𝜋
� tan−1 𝑥𝑥𝐵𝐵−𝑥𝑥𝐴𝐴

𝑦𝑦𝐵𝐵−𝑦𝑦𝐴𝐴
 

 
These are defined such that the first turbine in the pair (A) is considered the 
reference. For example, a positive vertical separation indicates that turbine B is 
higher than turbine A. 
 
Importantly (and assuming the locations are given in a projection which creates a 
locally Cartesian system, with true North aligned with the vertical axis) this information 
provides a source of truth for the wind direction.  
 
When the power ratio of two turbines aggregated over time is plotted against 
direction, each relevant wake should be visible as a fluctuation in that ratio. The 
direction of greatest increase/decrease should, barring systematic deviations to the 
flow caused by orography, indicate the relative direction of the wind turbine, which 
can be compared against the expected direction from the known turbine positions.  
 
Figure 10 illustrates this for the power ratio of a hypothetical turbine pair. A gradient 
descent optimisation—such as the optimize.minimize function from scipy in Python—
can be used to fit the expected wake profiles and thus determine the calibration error 
in the nacelle-measured wind direction. This procedure already has some currency 
in the wind energy sector. 
 
Unfortunately this important source of truth was unavailable here, since the highly bi-
directional nature of the wind (easterly and westerly only) at the particular site used 
in the project meant that both sides of the wake profile could not be seen. 
 
 

 
5 U. Turkyilmaz, J. Hansson and O. Undheim, “Use of remote sensing for performance optimization 
of wind farms”, Kjeller Vindteknikk, 2016 
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Figure 12 Schematic of the detection of true turbine angles from wake effects. The thick solid line 

shows the power ratio of T0/T1. The dashed lines illustrates the uncertainty (standard 
error). The wake of T0 on T1 is seen at direction c, and vice versa at direction f. Another 
turbine T2 wakes T0 at location e, and T1 at location d. Finally, upstream orography 
reduces the power produced by turbine T0 at direction a, and T1 at direction b. 

The key improvement over standard SCADA analysis now developed is the 
recognition that the data forms a time series, such that neighbouring points are likely 
to have a correlation. Since a wind farm owner’s SCADA system already stores the 
data, the concept behind the design of this system is to parse each set of 10-minute 
aggregated data as it arrives, in order to perform an update of its inferences about 
the states of the turbines and wind farm (in less than 10 minutes). This can be used 
to drive a real-time dashboard display of the wind farm, as outlined in Figure 11. The 
following subsections elaborate this framework. 
 

 
Figure 13 Structure of updating process using social statistics: blue arrows: propagation of SCADA 

data; orange arrows: propagation of status and calibration updates; green arrows: 
propagation of information to user 



PUBLIC | TNO report | TNO 2020 R11206 | Final report 
 

19 / 39 
 

 

PUBLIC 

 

3.2.1 Independent turbine inference 
First, a set of turbine and sensor statuses are defined, and then are set using the 
latest data (without yet considering other turbines). The implementation here 
assumes a Markov process, i.e. that a status is stored, and can be updated or 
retained at each time step. Previous statuses are forgotten once overwritten, thus 
inference of a new status can only depend the new information received and the 
previous status. However, at the minor cost of additional memory, trends could be 
remembered and used, for example to fill in missing data. The state inference process 
applied here is shown in Figure 12. 
 

 
Figure 14 Turbine and sensor status analysis performed at each timestep 

As can be seen, in the situation that a power reading is far higher than would be 
expected for the turbine, that sensor’s status is overridden to be ‘unreliable’. This then 
flags it when later processes attempt to use it (in our implementation, it is treated as 
if there is no measurement). Further, the turbine’s status in this case is not updated, 
i.e. the most logical choice is to retain the status set when the latest valid 
measurement was received. 
 
Sensor statuses used here are: 
1 No measurement 
2 Reliable 
3 Unreliable 
 
Turbine statuses used here are: 
1 No measurement (i.e. SCADA is not working correctly) 
2 Not operating 
3 Yawing 
4 Operating in region 1 
5 Operating in region 2 
6 Operating in region 3 
7 Operating in region 4 
 
This process chart can be improved over time by engineers and asset analysts 
according to their specific knowledge of the wind farm, turbines and sensors. 
Additional statuses can be added (for instance “downrated”, or “region 2a/b/c”) based 
on other logical rules or available SCADA tags. 
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3.2.2 Turbine pair inference 
Once every turbine’s status and sensor data are updated, this data is used to update 
a network of turbine pairs, which each compare the ratio or difference of a particular 
sensor (e.g. power, or nacelle yaw position). 
 
The first step is to automatically create useful turbine pairs. The method chosen here 
is to allow the user to specify: 
• the maximum number of pairs for each turbine ŋmax; 
• the maximum horizontal distance between a pair đxy,max; and 
• the maximum vertical distance between a pair đz,max. 
 
The following algorithm is then used to generate at least one pair per turbine. For 
each turbine it creates pairs with each turbine which meets the above criteria, until 
the maximum allowed number is reached, nearest horizontal distance first. If no 
turbines meet the criteria, it first tries to identify turbine which meets the horizontal 
distance criterion and violates the vertical criterion least. If this fails, it tries the 
opposite approach: from those turbines which are close enough vertically, it finds the 
one which least violates the horizontal distance. Finally, if there is no turbine matching 
either criteria, it simply chooses the one closest horizontally. 
 

− Enter ŋmax, đxy,max, đz,max 
− P  [] 
− For each turbine TA: 

− p, dxy, dz  [], [], [] 
− For each other turbine TB: 

− Calculate horizontal distance between turbines đxy,AB and add to dxy 
− Calculate vertical difference between turbines |đz,AB| and add to dz 
− If P contains þBA, add þBA to p 
− Else create new turbine pair þAB and add to p 

− Sort p, dxy, dz in ascending order of dxy 
− pfinal  [] 
− For each pair þj in p: 

− If dxy,j ≤ đxy,max and dz,j ≤ đz,max, add þj to pfinal 
− If pfinal contains ŋmax pairs, end loop 

− If pfinal contains 0 pairs: 
− đz,min, i  1010, -1 
− For each pair þj in p: 

− If dxy,j ≤ đxy,max and dz,j < đz,min: 
− đz,min= dz,j 
− i = j 

− If i ≥ 0, add þi to pfinal, else: 
− đxy,min, i  1010, -1 
− For each pair þj in p: 

− If dz,j ≤ đz,max and dxy,j < đxy,min: 
− đxy,min= dx,j 
− i = j 

− If i ≥ 0, add þi to pfinal, else: 
− Add þ0 to pfinal 

− Add pfinal to P 
 
The next step is to implement inference algorithms, to determine information such as: 
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• Whether a sensor has likely shifted calibration (suddenly or gradually), relative to 
a neighbour, and if so, how much. 

• Which directions exhibit wake (or orography) effects, and by how much. 
• Whether a turbine’s sensor value is consistently offset from that of its neighbour’s 

(for example, power loss). 
 
Sensor re-calibration is worth considering here, as it can be inferred with the following 
method: 
1 Create a regression model for the difference (or ratio, if more logical) in the sensor 

values of a given turbine pair with direction. This can use the reference turbine’s 
wind vane, nacelle direction sensor, or the reference met mast; whichever 
combination of these is used, inference of a reference wind velocity is important 
for most analyses. This is best modelled with a Gaussian process (even though 
data storage is required), although other flexible methods which provide 
uncertainty on predictions should work.  

2 When each valid update is received (perhaps filtered by the turbine’s operating 
state as well as the sensor’s state), use it to update the regression model. 

3 Each time step, or less frequently—perhaps on demand—reset or update any 
inferred re-calibration values that have been assigned to sensors, based on the 
regression model (see section 3.4 for a specific example). 

4 Usually, a sudden change in calibration occurs during maintenance. Therefore, 
detect such periods using a change in turbine status from ‘out of operation’ to ‘in 
operation’. When this occurs, archive the old regression model and start creating 
a new temporary one. 

5 As each new valid data point is collected, update the temporary model, and run a 
t-test to check whether the mean 𝜇𝜇 of the new model is likely to be significantly 
different to the old (locally to the direction just acquired): 

𝑝𝑝 = 1 − 𝑇𝑇

⎝

⎛ 𝜇𝜇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛

�𝜎𝜎𝑛𝑛𝑒𝑒𝑤𝑤2
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛� + 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜�

,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 − 2

⎠

⎞ 

where T is the cumulative distribution function of the Student’s t distribution, 𝜎𝜎 is 
the standard deviation of the predicted mean, and 𝑛𝑛 is the number of 
measurements used to make the prediction. It may also be desirable to enforce a 
minimum change |𝜇𝜇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝜇𝜇𝑛𝑛𝑛𝑛𝑛𝑛|, or a maximum number of values 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 to collect 
before making the decision, since p values can often become significant (0.05 is 
often used as the threshold) once enough data is collected, even for very small 
changes. 

6 If a significant change is detected, abandon the old model and treat the temporary 
model as the new one. If no significant difference is found, add the data from the 
temporary model to the old model. 

3.2.3 Wind farm inference 
Finally, the information gathered by the turbine pairs can be compared across the 
wind farm to obtain more global information. This should include: 
1 Assigning global data (such as from meteorological masts); 
2 Attributing sudden or gradual changes measured by pairs back to individual 

turbines, by finding the most likely explanation looking at the whole network; 
3 Assigning sensor calibration values by finding the optimal choices across the 

network; 
4 Determining individual turbine’s likelihood of exhibiting a particular degradation 

mechanism.  
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In section 3.4, an example of the 2nd and 3rd inference algorithm is developed, 
focusing on yaw direction misalignment. It is important to build up a library of 
explanatory models for different failure modes, since they are likely to exhibit in 
similar ways but with subtly effects on different combinations of sensors’ data. 

3.3 Software Structure 

The usefulness of a SCADA analysis framework lies not only in its theoretical power 
on paper, but also in its simplicity and robustness to be implemented in software. 
Thus, effort was put in this project into designing and implementing a software 
architecture which could be copied by wind farm analysis organisations. This 
architecture enables individuals to try particular inference algorithms without 
disrupting (or needing to understand) the overall software. 
 
The social network was thus implemented in Python using an Object Oriented 
approach, in order to simulate providing each time stamp of data and then running 
the inference methods described in the previous section (on the general framework), 
and the following section (on yaw direction specifically). As well as a robust 
architecture, it was important to test whether the inference algorithms were indeed 
fast, such that they can be easily run within the 10-minute gap between updated 
SCADA signals. 
 
The Observer software engineering pattern was used as the basis of the design. In 
this pattern, which is commonly used to architect event-driven software, messages 
are passed from each higher-level object (here called a Sender) to lower-level objects 
which is registered to it (here called Receivers).  
 
Receivers have one method by default: 
1 update(data): this is an abstract method, meaning that classes implementing the 

Receiver must specify what actions should be taken when receiving data. 
 
Senders have by default three methods: 
1 register_receiver(receiver): this adds a new Receiver to the internally maintained 

list of objects which should receive messages; 
2 unregister_receiver(receiver): this removes a Receiver from the list, avoiding 

memory leaks; 
3 notify_receivers(data): This forwards the data to all registered Receivers by calling 

their update(data) method. 
 
These concepts are implemented as follows for the wind farm SCADA analysis: 
• a Sensor is a Receiver. These are created first and then registered to: 
• a Turbine, which is both a Sender and Receiver. These are created and then 

registered to: 
• a WindFarm, which is a Sender.  
 
Each 10-minute set of SCADA data is sent, looping over each turbine, into the 
WindFarm’s notify_receivers method. This automatically forwards it to the Turbines, 
which decide whether or not it is appropriate for them, and if so first use their 
notify_receivers method to forward it to all Sensors. 
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The Sensor’s update method immediately determines its status, as well as updating 
its current data, if deemed reliable. Then the Turbine’s update method continues by 
determining its own status (all as described in section 3.2.1). 
 
The Turbine and Sensor classes each have a supporting Properties class, which 
contains static information, such as location and power curve for a Turbine, and 
variable type for a Sensor. While inferred information, such as a calibration offset, 
could be stored here, it was determined that is it preferential to create a VirtualSensor 
class, which extends the Sensor class, allowing decoupled storage and application 
of a calibration offset to the data already in the relevant Sensor class. 
 
A TurbinePairManager automatically creates a network of TurbinePair objects for any 
desired sensor variable, and are stored in the WindFarm. These are manually 
updated once the individual turbine’s updating is completed. 
 
The full Unified Modelling Language (UML) class diagram is shown in Figure 13. This 
structure is entirely generic; the logic for detecting and assigning recalibration values 
is written inside methods such as TurbinePairManager.recalibrate_all. It is 
recommended to make the TurbinePairManager class into a Builder pattern, such 
that it constructs and returns a specific type of class with logic that depends on the 
particular sensor type and failure mode being analysed.  
 
Finally, by implementing a logging system, any detected change in calibration (which 
caused a TurbinePair to discard its previous model and start afresh, as described in 
section 3.2.2) is automatically logged to a text file for further analysis. 
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Figure 15 Unified Modelling Language (UML) class diagram for the Python code created for this 

project 
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3.4 Yaw Analysis 

In this project, because of the existence of a Lidar campaign which directly measured 
yaw misalignment, the decision was taken to focus on this cause of turbine power 
loss. Thus, best efforts are now made to develop a model able to infer this. 
 
The mean measured nacelle yaw angle of a turbine Θ over a 10-minute period, when 
in power production in region 2, can be assumed to be determined by the following 
combination of effects, illustrated in Figure 14: 

Θ = 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛿𝛿Θ𝑚𝑚 + 𝛿𝛿Θ𝑐𝑐 + 𝜀𝜀 
 
In words, the turbine angle from True North Θ should be aligned with the direction 
from True North from which the wind is coming 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. However, this is affected by: 
• 𝛿𝛿Θ𝑚𝑚—a systematic error in the control system which causes the turbine to be 

aligned at an angle to the wind; 
• 𝛿𝛿Θ𝑐𝑐—a pure measurement error, whereby the North reference of the sensor is not 

equal to True North; 
• 𝜀𝜀—a random error (assumed here to be Normally-distributed and zero-mean) 

caused mostly by the delay in the control system to adjust to the turbulent 
fluctuations in wind direction experienced during the 10-minute period. 

 

 
Figure 16 Illustration of nacelle yaw position measurement effects 

The reason it is specified here that these assumptions only hold true in region 2 
(partial load) operation, is because in region 3 (full power) it may be that the control 
system is programmed to yaw less, in order to reduce wear on the yaw bearing. It is 
also possible that this is not the case, however, and then region 3 may prove to 
provide more stable data for yaw direction comparison. In any case, 10-minute 
periods with significant dynamic yawing towards a new direction are excluded, as 
consistent operation is desired for reliable statistical inference. 
 
By subtracting the measured yaw position of two turbines, we end up with the 
following equation: 

ΔΘAB = 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝐵𝐵 − 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝐴𝐴 + 𝛿𝛿Θ𝑚𝑚,𝐵𝐵 − 𝛿𝛿Θ𝑚𝑚,𝐴𝐴 + 𝛿𝛿Θ𝑐𝑐,𝐵𝐵 − 𝛿𝛿Θ𝑐𝑐,𝐴𝐴 + 𝜀𝜀 
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For a pair created according to the methodology in section 3.2.2, such that the 
turbines are quite close together and at similar elevations, it is reasonable to assume 
that the relative local wind directions may be systematically affected by orography, 
but that such a variation—which is related to inflow direction—can be averaged over 
all directions to have zero mean: 

� �𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝐵𝐵 − 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝐴𝐴�𝑑𝑑𝑑𝑑
360

0
~𝒩𝒩(0, 𝑠𝑠𝜃𝜃) 

 
Where no data are available for a substantial portion of the compass (as in this wind 
farm, where the wind flows bidirectionally) , this assumption may be invalidated and 
result in an unknown bias (which can be treated as uncertainty) on the results. 
 
Calibration errors are assumed piecewise constant (i.e. no variation by direction) in-
between step changes in time (which can occur after maintenance, as previously 
described). This assumption may be refuted if hysteresis effects related to large yaw 
changes are proven; however, there is currently insufficient corroboration for this 
idea. 
 
Finally, yaw misalignment with the incoming wind is also generally assumed constant, 
although unlike a calibration error it should result in a loss of power. It is commonly 
stated that the angle acts on the power available to the turbine as follows: 

𝑃𝑃(𝛿𝛿Θ𝑚𝑚) =
1
2
𝜌𝜌𝜌𝜌(𝑣𝑣 cos 𝛿𝛿Θ𝑚𝑚)3 

 
Thus a power loss of cos3 𝛿𝛿Θ𝑚𝑚 is assumed. However, this is overly conservative, and 
a loss of less than cos1.5 𝛿𝛿Θ𝑚𝑚 has been observed by wind turbine manufacturers in 
practice. Not knowing the true value of the exponent here, and particularly having 
little information on how it varies with air density, wind shear (which is not measured), 
and so forth, means that power output differences cannot meaningfully be used to 
infer a particular yaw misalignment angle. This is particularly true because any 
measured power losses could come from any number of degradation modes to the 
turbine, for instance extra roughness on the blades, or wear in the gearbox (although 
these degradation modes could exhibit a varying power ratio with wind speed). 
 
Thus we currently have two inextricable effects—miscalibration and misalignment—
which can separately or in combination cause a disagreement in nacelle position 
when averaged over all directions. 
 
We now turn to multiple turbine pair data for a wind farm, as per section 3.2.3, to 
search for a solution which we can apply. Figure 15 illustrates a theoretical example, 
where the true (calibration + misalignment) offset is marked on the map. We will 
measure the directionally-averaged pairwise differences shown in Table 3. 
 
Table 3 Illustration of mean pairwise nacelle yaw position differences for the example in Figure 15. 

Pair Average Yaw Difference 𝚫𝚫𝚫𝚫 (°) 
ΔΘ12 -15 
ΔΘ13 -10 
ΔΘ23 5 
ΔΘ24 18 
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In order to estimate the original 𝛿𝛿𝑖𝑖 = 𝛿𝛿Θ𝑚𝑚,𝑖𝑖 + 𝛿𝛿Θ𝑐𝑐,𝑖𝑖 values, which are provided in 
Figure 15, we will apply Bayesian updating. 

 
Figure 17 Illustration of a social turbine network for Bayesian inference of true nacelle position 

Bayes’ Rule states that the posterior (updated) probability 𝑝𝑝(𝜇𝜇|𝐷𝐷) of the mean 𝜇𝜇 
taking a certain value, given some data 𝐷𝐷, is proportional to the prior (previously 
assumed) probability of that value 𝜋𝜋(𝜇𝜇), multiplied by the likelihood of the data given 
that the value is correct 𝐿𝐿(𝐷𝐷|𝜇𝜇). In this case we are observing correlated values from 
the pairs, thus the updates need to be simultaneous: 

𝑝𝑝(𝜇𝜇𝐴𝐴, 𝜇𝜇𝐵𝐵|ΔΘAB) ∝ 𝜋𝜋(𝜇𝜇𝐴𝐴)𝜋𝜋(𝜇𝜇𝐵𝐵)𝐿𝐿(ΔΘAB|𝜇𝜇𝐴𝐴,𝜇𝜇𝐵𝐵) 
 
First, a prior 𝜋𝜋(𝜇𝜇) is needed to encode our assumption that—before seeing any 
data—the yaw miscalibration lies somewhere in the range [−180°, +180°]. This could 
be a uniform distribution, however, using a Normal distribution results in the 
approximate inference method we are going to use working better. Thus we need to 
determine an equivalent variance for a zero-mean Normal distribution. 
 
The variance of a uniform distribution supported between 𝑎𝑎 and 𝑏𝑏 is 1

12
(𝑏𝑏 − 𝑎𝑎)2. This 

gives 𝜎𝜎0 ≈ 104 for our range of 360°. For a zero-mean Normal distribution with this 
variance, the cumulative probability of a value less than -180° would be Φ�− 180

104
� ≈

0.042. Thus 8% of the probability would lie outside the region of acceptable values. 
 
This being unacceptable, instead we determine the variance 𝜎𝜎02 which gives less than 
0.1% probability density outside [−180°, +180°]: 

1 − 2 Φ�−
180
𝜎𝜎0

� < 10−4 

∴ 𝜎𝜎0 ≲ 46 
 
For safety, 𝜎𝜎0 = 40 is used here.  
 
The inference is performed used Markov Chain Monte Carlo (MCMC), a standard 
approach for performing inference in Bayesian statistics. The Python pymc3 package 
is used, where the following code snippet performs the required sampling to calculate 
the results in Table 4 from the inputs in Table 3. 
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 import pymc3 as pm 

 with pm.Model() as model: 

  t1 = pm.Normal('t1', mu=0, sigma=40.) 

  t2 = pm.Normal('t2', mu=0, sigma=40.) 

  t3 = pm.Normal('t3', mu=0, sigma=40.) 

    t4 = pm.Normal('t4', mu=0, sigma=40.) 

  diff12 = pm.Deterministic('t2-t1', t2 - t1) 

    diff13 = pm.Deterministic('t3-t1', t3 - t1) 

    diff23 = pm.Deterministic('t3-t2', t3 - t2) 

    diff24 = pm.Deterministic('t4-t2', t4 - t2) 

    obs12 = pm.Normal('obs12', mu = diff12, sigma=0.5, observed=-15) 

    obs13 = pm.Normal('obs13', mu = diff13, sigma=0.5, observed=-10) 

    obs23 = pm.Normal('obs23', mu = diff23, sigma=0.5, observed=5) 

    obs24 = pm.Normal('obs24', mu = diff24, sigma=0.5, observed=18) 

    trace = pm.sample(1500, init=”adapt_diag”) 

  print(pm.summary(trace)) 

 
The results are shown in Table 4. As can be seen, the final estimates are within 0.2° 
of the true values. Note that the posterior uncertainty is high, even though in this case 
the input data is specified as having only 0.5° uncertainty. 
 
Table 4 Calculation of turbine yaw offsets using Markov Chain Monte Carlo, see Figure 15. 

Turbine True Yaw Offset 𝜹𝜹𝒊𝒊 (°) Estimated 𝜹𝜹𝒊𝒊 (°) Error (°) 
1 +5 4.8 ± 19.3 −0.2 
2 −10 −10.2 ± 19.3 −0.2 
3 −5 −5.1 ± 19.3 −0.1 
4 +8 7.8 ± 19.3 −0.2 

 
Inferring calibration error in this way is valuable for the industry, as it quickly highlights 
which turbines could benefit from re-calibration, which then enables further analysis.  
 
However, it is clearly not possible to separate out calibration error from true yaw 
misalignment with this method. If all turbines have their yaw position sensors 
corrected to True North (either by inferring this error from the nacelle wind vane 
sensor or, preferably, by conducting maintenance to align them) then the pairwise 
average yaw misalignment reduces to the following: 
 

ΔΘAB������� = 𝛿𝛿Θ𝑚𝑚,𝐵𝐵 − 𝛿𝛿Θ𝑚𝑚,𝐴𝐴 
 
A single source of truth now suffices to propagate yaw misalignment estimates across 
the whole network. This can come from a nacelle-mounted Lidar installation, which 
can be on any turbine, although a turbine with a large probability of being unwaked 
and which is paired with several others should be prioritised. 
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4 Results and Analysis 

4.1 Data preparation 

As well as the turbine SCADA data, Fortum supplied data from several campaigns of 
a ZephIR (now ZX Lidars) nacelle-mounted lidar. All data used for this analysis are 
10-minute averaged statistics. 
 
The SCADA data came in the form of multiple Microsoft Access databases. The lidar 
data is converted from the binary ZPH files to CSV using Waltz v4.7. Thereafter both 
data sets are imported and time-synchronised into a Python pandas DataFrame. 

4.2 Lidar data analysis 

Yaw misalignment measurements were performed by Fortum using a nacelle lidar in 
four campaigns covering three turbines: 
1 T11: 2018-03-15 15:50 - 2018-04-15 23:50 
2 T13: 2018-04-17 09:40 - 2018-05-13 23:50 (campaign a) 
3 T05: 2018-05-24 10:00 - 2018-07-16 23:50 
4 T13: 2018-07-27 11:30 - 2018-10-10 23:50 (campaign b) 
 
This data is now analysed to determine the yaw calibration error and then the yaw 
misalignment for each turbine. The processing methodology described by ZX Lidars 
is reimplemented as closely as possible. 

4.2.1 Calibration error 
To obtain an estimate of the calibration error, we use the lidar’s internal compass and 
compare it to the turbine’s nacelle position obtained from the SCADA data. However, 
while a constant error was expected, Figure 16 reveals a strong directional 
dependency (which is repeated on other turbines). A simple sinusoidal fit of the data 
estimates an average offset of −0.2°, which fits well with the required assumption that 
the nacelle yaw direction sensor calibration error is zero. 
 

 
Figure 18 Disagreement between the lidar compass and the nacelle direction of turbine 11. 
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4.2.2 Yaw misalignment 
The 10-minute average yaw misalignment is computed by the nacelle lidar. We use 
the results for the “fit-derived” algorithm, which uses all measurement points along 
the scanned circle, as visualised in Figure 17. The wind speed is measured about 
half a rotor diameter upstream. 

 
Figure 19 Visualisation of the fit-derived algorithm used by the ZX lidar to determine the yaw 

misalignment. 

The resulting yaw misalignment fluctuates, because it is, in part, caused by the 
inherent laziness of the yaw controller. We are interested in the systematic offset that 
remains after averaging out this normal fluctuation. 
 
For each lidar campaign we compute the average yaw misalignment measured by 
the nacelle lidar. Prior to averaging the lidar data is filtered using the following criteria: 

• Turbine must be operational throughout the entire 10-minute interval. 
• The power produced must be at least 5kW. 
• The nacelle direction must be inside the measurement sector: 60° - 120°. 

This is the free wake sector for turbines 11 and 13, but for consistency it is 
also applied to T05. 

 
The resulting (cumulative) average yaw misalignment for each campaign in shown in 
Figure 18, Figure 20, Figure 22 and Figure 23. The blue graph traces the cumulative 
average yaw misalignment, while the green traces the standard error. At times when 
the measured data does not satisfy the filter criteria outlined above – most notably 
when the wind directions are not inside the measurement sector – the averages are 
not updated, resulting in a horizontal section of the graph. The final average values 
obtained for each campaign listed in Table 5. 
 
For the T11 and T13a campaigns, Fortum shared yaw misalignment analysis results 
obtained under more elaborate filter conditions. These results are shown in Figure 
19 and Figure 21. These yaw misalignment values, also shown in Table 5, are very 
close to those obtained in our analysis. 
 
Knowing the yaw misalignment on a single turbine, we will use social statistics to 
extrapolate that misalignment to all turbines in the farm. Because we have measured 
the misalignment on more than one turbine, we can verify those extrapolations. 
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Table 5 Yaw misalignment for each lidar campaign. 

Lidar campaign Yaw misalignment Standard error 
 TNO ZX Lidars TNO ZX Lidars 

T11 -4.35° -3.99° 0.11° 0.11° 
T13 a -6.80° -6.68° 0.06° 0.06° 
T05 -5.68° - 0.24° - 

T13 b -5.20° - 0.07° - 
 

 
Figure 20 Cumulative average yaw misalignment for turbine 11. 

 

 
Figure 21 Cumulative average yaw misalignment for turbine 11 as calculated by ZX Lidars. 
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Figure 22 Cumulative average yaw misalignment for turbine 13 (campaign a). 

 

 
Figure 23 Cumulative average yaw misalignment for turbine 13 (campaign a) as calculated by ZX. 
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Figure 24 Cumulative average yaw misalignment for turbine 5. 

 

 
Figure 25 Cumulative average yaw misalignment for turbine 13 (campaign b). 

As can be seen from Figure 18 - Figure 23, the estimate of yaw misalignment 
consistently changes whenever new data is received to update it. This change is 
greater than the standard error derived from the cumulative number of data points 
acquired, suggesting that the measurement is not stationary. This is a concern which 
should be addressed in other projects, to determine what may cause such instability. 
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4.3 Applying social statistics 

The turbine pair manager is configured to create pairs or turbines not further than 
750m apart and not differing more than 10m in elevation. This resulted in the pairing 
of turbines shown in the first two columns of Table 6. 
 
The simulation is run using SCADA data starting on 2018-01-01. The estimated yaw 
errors for all turbine pairs are logged at the end date of each of the lidar campaigns. 
Figure 24 shows a typical result for the difference of the nacelle positions of a turbine 
pair, as a function of the nacelle position of one of the turbines in the pair. We can 
see some variation, which is to be expected, because the yaw controller of each 
turbine operates independently of the other turbines. Again, we are interested in the 
systematic deviation. It can also be seen that the average difference is different for 
the easterly and westerly wind direction. This may well be caused by differences in 
inflow conditions, such as wakes and orography. 
 

 
Figure 26 Example of yaw error estimation. The nacelle position difference is compared for turbine 

pair T11 and T12. The easterly measurement sector is indicated by red bars. 

The average yaw differences for each pair are computed at the end of each lidar 
campaign. This is done separately for the easterly (60° – 120°) and westerly (240° – 
310°) wind sectors. The results are reported in Table 6 (easterly sector) and Table 7 
(westerly sector). 
 
There are two main conclusions to be drawn straight away: 
1 Most of the turbine exhibit systematic differences between easterly and westerly 

wind directions. Given the layout of the wind farm with turbines aligned closely to 
the wind direction and therefore likely experiencing wakes in one of these 
directions, this is not surprising. 

2 De-calibration (or intentional re-calibration) events can be seen to have a sudden 
effect on some of the turbine pair differences during the 6-month period. However, 
some of the pairs have very stable values.  Given the stability of all turbine T07 
pairs except for its relationship with T11, this implies that a re-calibration event 
occurred to T11 between the T13(a) and T05 Lidar campaigns. 
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Table 6 Yaw differences between turbine pair A and B for all four lidar campaigns, easterly wind direction sector 
(60° – 120°). Bold entries are used for inference, since they are less waked. 

Turbine Mean difference Standard error 
A B T11 T13(a) T05 T13(b) T11 T13(a) T05 T13(b) 
11 12 0.50 0.30 0.36 0.28 0.08 0.06 0.05 0.04 
11 10 -4.97 -4.16 -4.22 -4.02 0.49 0.12 0.08 0.04 
11 7 2.24 2.15 0.70 1.25 0.09 0.06 0.25 0.06 
12 13 -0.16 -0.02 0.01 -0.06 0.05 0.04 0.04 0.03 
12 10 -3.10 -3.96 -4.14 -2.28 0.26 0.11 0.10 0.16 
7 6 0.52 0.63 0.68 0.79 0.05 0.04 0.04 0.04 
7 8 -1.31 -1.70 -1.80 -2.17 0.27 0.13 0.11 0.10 
7 3 -0.43 -0.25 -0.24 -0.17 0.06 0.05 0.04 0.04 

13 14 1.10 -0.31 -0.23 -0.33 0.14 0.07 0.06 0.10 
6 5 -4.53 -4.55 -4.57 -4.65 0.04 0.04 0.04 0.03 
8 9 8.48 8.99 8.92 9.21 0.15 0.08 0.36 0.07 
5 4 7.67 7.53 7.57 7.41 0.04 0.04 0.03 0.03 

 
Table 7 Yaw differences between turbine pair A and B for all four lidar campaigns, westerly wind direction sector 

(240° – 310°). Bold entries are used for inference, since they are less waked. 

Turbine Mean difference Standard error 
A B T11 T13(a) T05 T13(b) T11 T13(a) T05 T13(b) 
11 12 3.92 3.68 2.73 2.55 0.07 0.06 0.05 0.04 
11 10 -1.25 -0.91 -1.42 -1.46 0.11 0.52 0.05 0.04 
11 7 1.83 1.58 -0.45 0.92 0.08 0.08 0.18 0.07 
12 13 -0.02 -0.13 -0.58 -0.65 0.06 0.05 0.05 0.04 
12 10 -5.97 -5.72 -4.45 -5.12 0.10 0.09 0.06 0.25 
7 6 -0.57 -0.62 -1.25 -1.29 0.07 0.07 0.05 0.04 
7 8 -0.52 0.63 0.96 0.22 0.16 0.28 0.08 0.10 
7 3 -0.23 -0.16 -0.17 -0.19 0.06 0.06 0.04 0.04 

13 14 -0.86 -1.00 -1.07 -0.36 0.08 0.07 0.05 0.11 
6 5 -6.09 -6.13 -5.73 -5.49 0.09 0.08 0.06 0.05 
8 9 6.10 5.63 2.65 4.73 0.11 0.12 0.20 0.06 
5 4 5.87 5.99 5.02 4.66 0.07 0.07 0.05 0.04 

 
The MCMC Bayesian inference approach described in section 3.4 is now applied to 
recover predictions of the yaw error for each turbine where a pair has enough data 
(i.e. not turbines 1 and 2, due to frequent detected changes in calibration). In Table 
8, the inference is first performed for all turbines after the T11 Lidar campaign, but 
without including the Lidar yaw misalignment measurement. Then the Lidar-
measured value is included. 
 
Consistent results are obtained between the two estimates; including the Lidar 
information shifts all the estimates by approximately +3.4°. As a result, T13 is 
predicted to have a yaw misalignment of −4.0° (compared with −6.8° and then −5.2° 
measured in its later Lidar campaigns), and T05 is predicted to have a yaw 
misalignment of −7.2°, compared with the −5.7° measured in the Lidar campaign on 
that turbine. 
 
 



PUBLIC | TNO report | TNO 2020 R11206 | Final report 
 

36 / 39 
 

 

PUBLIC 

 

Table 8 Bayesian inference of turbine yaw misalignments (assuming zero calibration error) after the 
Lidar campaign on T11. 

Turbine Without Lidar information With Lidar information 
3 −5.7 ± 9.1° −2.3 ± 0.2° 
4 −2.9 ± 9.1° 0.5 ± 0.2° 
5 −10.6 ± 9.1° −7.2 ± 0.2° 
6 −6.1 ± 9.1° −2.7 ± 0.2° 
7 −5.5 ± 9.1° −2.1 ± 0.1° 
8 −6.0 ± 9.1° −2.6 ± 0.2° 
9 0.1 ± 9.1° 3.5 ± 0.2° 

10 −10.9 ± 9.1° −7.5 ± 0.3° 
11 −7.8 ± 9.1° −4.3 ± 0.1° 

12 −7.3 ± 9.1° −3.9 ± 0.1° 
13 −7.4 ± 9.1° −4.0 ± 0.1° 
14 −6.3 ± 9.1° −2.9 ± 0.2° 

 
An example dashboard containing the results using the Lidar information is shown in 
Figure 25. In this instance, the dashboard would highlight turbines 5 and 10 as being 
the most concerning in either case. 
 

 
Figure 27 Dashboard showing results of turbine yaw error inferred from turbine pair results and Lidar 

measurement on T11 (arrow colour scales from 0° (green) to ±5° (red); blue  is missing). 
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For comparison, the results of using the data from all three turbines after the Lidar 
campaign on T05 is shown in Table 9. The previous two Lidar campaign results are 
included, but given uncertainties of 1.5°, to account for the fact that the turbines may 
have been re-calibrated. 
 
A few of the turbines’ results, particularly T09, are consistent with the previous values. 
T05 and T10 are still of concern with the highest (negative) yaw offset. However, 
most of the turbines’ estimates have changed by 2° or more. This is explained by the 
large shifts in pair values for T11-T07, T12-T10, T07-T08, T13-T14 and T08-T09.  
 
Table 9 Bayesian inference of turbine yaw misalignments (assuming zero calibration error) after the 

Lidar campaign on T05. 

Turbine With Lidar information 
3 −0.0 ± 0.3° 
4 1.9 ± 0.2° 
5 −5.7 ± 0.2° 
6 −1.1 ± 0.2° 
7 0.2 ± 0.3° 
8 1.1 ± 0.3° 
9 3.8 ± 0.3° 

10 −4.6 ± 0.4° 
11 −0.5 ± 0.4° 
12 −0.2 ± 0.4° 
13 −0.2 ± 0.4° 
14 −0.5 ± 0.4° 

 
As a final note, the speed of the MCMC inference is greatly increased with the 
inclusion of sources of truth for individual turbines, rather than just providing 
differences. Choosing one of the turbines as a reference, with zero offset, may prove 
a practically useful approach. 
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5 Conclusions and Recommendations 

This project has developed and implemented an alternative method of online analysis 
of wind farm performance to that typically used in the industry. This conceptual 
framework has been called “social statistics”, as it is based on turbines comparing 
their behaviour to each other, enabling inference of their slowly-varying performance 
characteristics, freed of the many uncertainties that arise from unmeasured wind 
conditions.  
 
This framework has been elaborated in this report with algorithms for creating and 
updating these turbine pairs and then using the whole wind farm to infer individual 
turbines’ behaviour. Further, a robust software architecture has been designed and 
tested, enabling the required event-driven processing of the 10-minute average 
SCADA.  
 
The original goal of this project was to detect wind turbine underperformance 
automatically. Due to the particular wind farm data set provided, which included a 
rather valuable measurement campaign of nacelle Lidar data, the decision was taken 
early on to focus exclusively on implementing an algorithm for yaw misalignment 
detection.  
 
However, one of the key learnings from this project is that nacelle yaw sensors can 
be highly unreliable. As a result, it is proven here that separation of yaw misalignment 
from nacelle yaw direction miscalibration is impossible without any source of 
independent truth to robustly re-calibrate the true nacelle direction. 
 
Instead, an automated method for using measured differences in yaw direction 
between turbine pairs to infer the sum of yaw misalignment and miscalibration has 
been developed using Bayesian inference, and has been shown theoretically to be 
able to estimate correctly each individual turbine’s yaw error within a fraction of a 
degree. This is industrially useful as it can identify turbines for maintenance, and/or 
be used automatically to remove the error.  
 
It is likely that the methods outlined here will be more successful on wind farms where 
the effect of orography is either known, or less pronounced. Sites with a higher spread 
of incoming wind directions should also be more fruitful. However, the wind farm does 
not need to have many turbines for social statistics to be effective, so long as the 
turbines are not too far apart both horizontally and vertically. 
 
The Lidar measurements provided at the wind farm were used to reconstruct the 
estimated yaw misalignment. A few causes for concern were found: 
1 The lidar compass bearing exhibited a highly directionally-dependent relationship 

with all the turbines’ nacelle yaw measurements, with an amplitude of 
approximately 30°. This may have diagnosed an issue with the yaw sensor, but 
could also be a concern with the Lidar’s reference.  

2 The estimate of yaw misalignment derived from the Lidar’s measurements was 
dependent (to around 2°) on the choice of filters applied to the data. 

3 The estimate of yaw misalignment did not appear to converge with time, instead 
consistently trending by more than the calculated uncertainty at each period with 
valid data. 
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The yaw misalignment (including miscalibration) inference was applied to the turbine 
pair information available at the end of the first Lidar campaign. The only difference 
between including the Lidar yaw misalignment estimate, and not using it, is removal 
of a 3.4° negative bias from the results. Thus in absolute terms the Lidar information 
was valuable, but the same two turbines (T05 and T10) would have registered as 
concerns even without any Lidar campaign. 
 
Using those results to predict the yaw misalignments measured with Lidar campaigns 
on two other turbines resulted in values which were within [−1.5, +2.8]° of the 
measured values. Given the concerns about the Lidar results expressed earlier (and 
the length of time between the prediction and the measured result) this seems 
reasonable. 
 
At the end of the third Lidar campaign, three months later, the process has been 
repeated. While a small number of the turbines have very similar estimates, large 
shifts in some of the pair differences result in changes of around 2° to many of the 
estimates of individual turbines’ yaw errors. One potential attribution for this could be 
the regular changes in yaw direction sensor calibration. Another could be deliberate 
maintenance occasioned by the attention at the site on yaw misalignment (several of 
the turbines appear to be improved, including the two on which the first two Lidar 
campaigns were performed). However, without access to maintenance logs, the 
ultimate cause cannot be known with certainty. 
 
Future extensions to this method should place more emphasis on detection of other 
degradation modes, such as blade damage. This can be achieved by looking more 
deeply at combining the power ratios of the turbine pairs with the ratios and 
differences of other sensors. 
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