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Abstract
Objective. Concurrent changes in physiological signals across multiple listeners (physiological
synchrony—PS), as caused by shared affective or cognitive processes, may be a suitable marker of
selective attentional focus. We aimed to identify the selective attention of participants based on PS
with individuals sharing attention with respect to different stimulus aspects. Approach.We
determined PS in electroencephalography (EEG), electrodermal activity (EDA) and
electrocardiographic inter-beat interval (IBI) of participants who all heard the exact same audio
track, but were instructed to either attend to the audiobook or to interspersed auditory events such
as affective sounds and beeps that attending participants needed to keep track of.Main results. PS
in all three measures reflected the selective attentional focus of participants. In EEG and EDA, PS
was higher for participants when linked to participants with the same attentional instructions than
when linked to participants instructed to focus on different stimulus aspects, but in IBI this effect
did not reach significance. Comparing PS between a participant and members from the same or
the different attentional group allowed for the correct identification of the participant’s attentional
instruction in 96%, 73% and 73% of the cases, for EEG, EDA and IBI, respectively, all well above
chance level. PS with respect to the attentional groups also predicted performance on post-audio
questions about the groups’ stimulus content. Significance.Our results show that selective attention
of participants can be monitored using PS, not only in EEG, but also in EDA and IBI. These results
are promising for real-world applications, where wearables measuring peripheral signals like EDA
and IBI may be preferred over EEG sensors.

1. Introduction

Selective attentional engagement is critical for effi-
cient and effective learning (Jiang et al 2001). Sus-
taining attention to a single continuous stream of
information is a constant challenge, especially when
competing sensory stimuli are present. Individuals
who suffer from learning disabilities in particular
have troubles narrowing the focus of their atten-
tion (Richards et al 1990). To assist students with
learning disabilities or to evaluate learning materi-
als, it would be helpful to continuously and impli-
citly measure selective attentional engagement. Such
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continuous and implicit measures of attention may
be extracted from physiological signals, such as brain
potentials as measured through the electroencephal-
ogram (EEG), electrodermal activity (EDA) or heart
rate. Rather than investigating responses for specific
events and individual observers as is commonly done
in research using physiological measures to monitor
mental state, one may also determine the relationship
between individuals’ physiological measures. Inter-
personal analyses of physiological synchrony (PS) as
analyzed though inter-subject correlations (ISC) in
brain signals were found to be a strong marker of
shared attentional engagement to narrative movie or
audio clips (Hasson et al 2004, Hanson et al 2008,
Dmochowski et al 2012). Note that we refer to the
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term physiological synchrony not only to cover syn-
chrony in peripheralmeasures, such as EDA and heart
rate, but also to cover synchrony in neural measures,
such as EEG. Moments of high PS correlated strongly
with general expressions of interest and attention
(Dmochowski et al 2014), supporting the validity of
PS as a measure of attention. In addition, individu-
als with neural responses that were more synchron-
ous to the group that was attending to a narrative
stimulus, remembered more information about this
stimulus (Cohen and Parra 2016, Cohen et al 2018).
A first step toward real-time inference of engagement
in the classroom was taken by Poulsen et al (2017),
who demonstrated that shared attention to narrative
stimuli may be quantified using PS in wearable EEG
among students in a classroom. Other recent stud-
ies in the educational domain also found promising
results regarding neural PS as measure of attentional
engagement. PS in EEG among students reflected
classroom engagement and social dynamics (Dikker
et al 2017). Further results suggested that the inter-
action between an instructor and a learner is reflec-
ted by the degree of PS in neural activity between
the two (Zheng et al 2018, Bevilacqua et al 2019, Pan
et al 2020). In some cases the degree of PS between an
instructor and a learner predicted learning outcomes
(Zheng et al 2018, Liu et al 2019, Pan et al 2020),
although others did not find this relation (Bevilacqua
et al 2019). PS in brain activity has also been related
to attentional engagement in other settings, such as in
responses to political speeches (Schmälze et al 2015)
or music (Madsen et al 2019).

There is also a body of literature on synchrony
in measures of the peripheral autonomic nervous
system, such as heart rate and EDA (reviewed by
Palumbo et al 2017). Rather than as indicators of
shared attention, these have generally been inter-
preted as indicators of some form of connectedness
between people or as indicators of shared affect-
ive and cognitive processes related to specific events
in the world. Studies are conducted in a broad
range of application areas, including psychotherapy
(Koole et al 2020), marital counseling (Wilson et al
2018, Tourunen et al 2019) and collaborative learn-
ing (Malmberg et al 2019). PS in autonomic activ-
ity has for example been associated with relationship
quality of romantic couples, empathy in therapist-
patient dyads and team-performance of team-mates
(Levenson and Gottman 1983, Marci et al 2007,
Elkins et al 2009). Findings in this literature may
also have been driven by mechanisms of shared
attention. Shared attention has been emphasized in
models of social rapport during social interaction
(Tickle-Degnen and Rosenthal 1990).

In our view there are two gaps in current lit-
erature. First, it remains unclear how PS in central
and peripheral modalities are related when capturing
shared attentional engagement. In fact, in earlierwork
we did not find any studies concurrently monitoring

PS in EEG and measures of autonomic nervous sys-
tem activity (Stuldreher et al 2019). For future real-
world studies and applications, autonomic measures
may be preferred over neural measures as they can
more easily be monitored through wearable sensors
that are broadly available (e.g. Garbarino et al 2014).
The second gap in current work is studying PS as a
measure of attention during selective attention, i.e.
under conditions where an individual has to focus on
one type of stimulus when other stimuli are concur-
rently present. A specific, famous example of such a
situation is the cocktail party problem (Cherry 1953),
where listeners are capable to selectively attend to one
of several simultaneously speaking voices. Research
has shown that EEG in relation to sound charac-
teristics can indicate which speaker the participant
attended to in such problems using single-trial ana-
lysis (Horton et al 2014, O’Sullivan et al 2015). Even
though PS is not dependent on sound characteristics,
itmay thus be expected that PS for individuals attend-
ing to the same speaker will be stronger compared to
situations in which different speakers are attended to.
In addition, while PS has not been used to distinguish
the focus of attention on two concurrently presen-
ted stimuli, it has been shown that PS in EEG distin-
guishes conditions in which individuals attend or do
not attend to external stimuli (Ki et al 2016, Cohen
et al 2018).

In the current work we try to fill the two above-
mentioned gaps. We compare PS across EEG, EDA
and electrocardiographic inter-beat interval (IBI).We
aim to determine selective auditory attention of indi-
viduals who are all presented with the same audit-
ory stimulus and are all attending to it, but to dif-
ferent stimulus aspects. Reminiscent to a classroom
setting where students hear the teacher talk as well
as hearing other, potentially interesting sounds like
the school bell or whispering students, we present our
participants with an audiobook, interspersed with
short auditory stimuli. Participants are instructed
to attend either to the narrative of the audiobook
(audiobook-attending—AA), or to the interspersed
stimuli (stimulus-attending—SA). Unlike the popu-
lar cocktail party paradigm, the two stimulus streams
used in the current paradigm are not homogeneous.
We selected this custom design for two main reasons.
First, the selected design roughly mimics the envir-
onment of a dynamic classroom, where a long, con-
tinuous lecture is interspersed with short, inconsist-
ent distractors. During the continuous lecture of a
teacher, some students focus continuously to the lec-
ture. This group of students is represented by the
AA group in our current design. Another group of
students may focus their attention more to other
environmental events, such as whispering students
or cars driving by outside. This group is represen-
ted by the SA group in our current design. It can be
argued that during realistic cocktail parties, listeners
also rather filter one speaker out of a great variety of
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sounds rather than out of a homogeneous collection
of voices. For this reason, we also chose to present the
audiobook and the interspersed stimuli both to the
left and right ear, rather than one stream of sound
in each ear. Second, including multiple stimulus sets
that intersperse the audiobook allowed us to invest-
igate whether PS may occur more reliably during a
specific type of stimulus than during other stimulus
types.

We formulated the following research questions.
First, is PS of participants higher when paired with
participants that received the same selective atten-
tional instructions (within-group) than with parti-
cipants that received instructions to focus on the
other stimulus aspects (between-group)? If this is
indeed the case, our second research question is
whether the selective attentional focus of a participant
can be identified based on synchrony in physiolo-
gical responses with participants that have known
attentional instructions. While participants in the
SA group are instructed to ignore the narrative, this
is probably hard to do at times without concur-
rent short-stimuli. Our third research question there-
fore is: does zooming in on intervals with inter-
spersed stimuli increase classification accuracy? We
hypothesize that classification of the selective atten-
tional focus is enhanced when zooming in on inter-
vals with interspersed stimuli, whereas zooming in
on intervals with data from ‘audiobook only’ inter-
vals results in decreased classification performance.
We also expect that results are different for different
measures. Because mental workload mainly affects
EEG (Hogervorst et al 2014), we hypothesize the
group-distinguishing capability of PS in EEG to work
well during the beep counting task. As emotional
stimuli have been strongly related to sympathetic
nervous system activity as measured through EDA
(Boucsein 1992, Bradley and Lang 2000), we hypo-
thesize the group-distinguishing capability of PS in
EDA to work well during the affective sounds. Our
fourth research question is: does PS of participants
paired with participants attending to a stimulus
aspect correlate with performance metrics reflect-
ive of paid attention? Based on earlier work relating
the degree of synchrony with an attending group to
stimulus retention (Cohen and Parra 2016, Cohen
et al 2018), we hypothesize that this is the case. To
get a grip of what drives possible effects of atten-
tional instruction on PS, we also obtain physiological
response traces locked to the onset of interspersed
stimulus events. Our final research question is: do
traces of EEG, EDA and IBI locked to the onset of
the interspersed stimuli differ between the attentional
groups? We hypothesize stronger deflections in EEG,
EDA and IBI traces for participants attending to the
interspersed stimuli than for participants attending to
the narrative of the audiobook.

2. Methods

2.1. Participants
Before recruitment, the study was approved by
TNO’s Institutional Review Board. The approval is
registered under the reference 2018–70. Twenty-seven
participants (17 female), aged between 18 and 48
(M = 31.6, SD = 9.8) years, were recruited from the
institute’s participant pool. Prior to the experiment all
participants signed informed consent, in accordance
with theDeclaration ofHelsinki. After the experiment
they received a small monetary reward for their time
and travel costs. None of the participants indicated
problems in hearing or attention. Participants were
randomly assigned to one of the two experimental
groups. Data of one participant were discarded due
to failed physiological recordings, resulting in equal
group size.

2.2. Materials
EEG, EDA and electrocardiogram (ECG) were recor-
ded at 1024 Hz using an ActiveTwo Mk II system
(BioSemi, Amsterdam, Netherlands). EEG was recor-
ded with 32 active Ag/-AgCl electrodes, placed on
the scalp according to the 10–20 system, together
with a common mode sense active electrode and
driven right leg passive electrode for referencing. The
electrode impedance threshold was set at 20 kOhm.
For EDA, two passive gelled Nihon Kohden elec-
trodes were placed on the ventral side of the
distal phalanges of the middle and index finger.
For ECG, two active gelled Ag/-AgCl electrodes
were placed at the right clavicle and lowest float-
ing left rib. EDA and heart rate were also recor-
ded using wearable systems (Movisens EdaMove 4
and Wahoo Tickr, respectively). These data are not
discussed here.

2.3. Stimuli and design
Participants performed the experiment one by one.
Each participant listened to the same audio file, com-
posed of a 66 min audiobook (a Dutch thriller ‘Zure
koekjes’, written by Corine Hartman) interspersed
with other auditory stimuli. The 13 participants in the
AA group were asked to focus on the narrative of the
audiobook and ignore all other stimuli or instructions
and the 13 participants in the SA group were asked
to focus on the other stimuli, perform accompany-
ing tasks and ignore the narrative. Figure 1(a) and
(b) visualizes the experimental paradigm and parti-
cipant instructions. The order of interspersed affect-
ive sounds and beeps was randomly determined, but
was identical for each participant. Intervals between
the end of one stimulus and the onset of the next stim-
ulus varied between 35 and 55 s (M= 45, SD= 6.1 s).
In the supplementary material (tables 1–3) (available
online at stacks.iop.org/JNE/17/046028/mmedia) the
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Figure 1. Overview of the experimental paradigm. (a) The paradigm consists of a narrative auditory stimulus of 66 min that
is interspersed with short auditory cognitive (depicted in green) and affective (in orange) stimuli. (b) Half of the participants
were instructed to focus their attention on the audiobook (AA group), while the other half of the participants were instructed to
focus on the interspersed stimuli (SA group). (c) For each participant, the inter-subject correlations (ISC) of her/his EEG,
electrodermal activity and inter-beat interval with those of all other participants in the AA condition (ISC-AA) and SA condition
(ISC-SA) are computed. (d) If the physiological responses of a participant are more correlated with those of participants in the
AA group, the participant is classified as a AA participant, if the responses are more correlated with those of participants in the SA
group, the participant is classified as a SA participant.

exact types and order of interspersed stimuli can
be found. The short auditory stimuli were affective
sounds, blocks of beeps, and the instruction to sing
a song.

Affective sounds were taken from the second ver-
sion of the International Affective Digitized Sounds
(IADS) (Bradley and Lang 2007). The IADS is a col-
lection of six second acoustic stimuli that have been
normatively rated for emotion, based on valence,
arousal and dominance. Examples of stimuli are the
sound of a crying baby or a cheering sports crowd.We
selected 12 neutral sounds (IADS number 246, 262,
373, 376, 382, 627, 698, 700, 708, 720, 723, 728), 12
pleasant sounds (110, 200, 201, 202, 311, 352, 353,
365, 366, 367, 415, 717) and 12 unpleasant sounds
(115, 255, 260, 276, 277, 278, 279, 285, 286, 290, 292,
422) based on their normative ratings of valence and
arousal.

Beeps were presented in blocks of 30 s, with every
2 s a 100-ms high (1 kHz) or low (250 Hz) pitched
beep. SA participants were asked to separately count
the number of high and low beeps presented in a
block, as in (De Dieuleveult et al 2018). This task was

practiced with them beforehand. In total, 27 blocks of
beeps were presented.

At the end of the audiobook, the instruction was
presented to sing a song aloud after the subsequent
auditory countdown reached 0. This instruction had
to be followed by the SA group and was expected
to induce stress and a strong increase in EDA and
a strong decrease in IBI (Brouwer and Hogervorst
2014). Physiological data obtained after this stimulus
are discarded in further analysis as some participants
started talking during or right after this stimulus. In
total, we consider 3800 s of data in further analyses,
out of which 1026 s involved concurrent presentation
of the audiobook and interspersed stimuli.

After the experiment, all participants were asked
to answer two questionnaires. In the first question-
naire, participants used a slider on a horizontal visual
analogue scale running from ‘not at all’ to ‘extremely’
to rate their mental effort, distraction and emo-
tion during the short emotional sounds, and the
level of stress induced by the sing-a-song assignment.
The second questionnaire was on the content of the
stimuli: participants were asked to report as many
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emotional sounds as they could remember, they were
asked to estimate the average number of beeps in
a block, and they were asked questions about the
content of the narrative. The questions and correct
answers can be found in the supplementary material
(table 4).

2.4. Analysis
2.4.1. Pre-processing
Data processing was done using MATLAB 2019a
software (Mathworks, Natick, MA, USA). EEG was
pre-processed using EEGLAB v14.1.2 for MATLAB
(Delorme and Makeig 2004). To remove potentials
not reflecting sources of neural activity, like ocu-
lar or muscle-related artefacts, logistic infomax inde-
pendent component analysis (Bell and Sejnowski
1995) was performed. EEG was first downsampled
to 256 Hz and high-pass filtered at 1 Hz. This relat-
ively high cut-off frequency has shown to work bet-
ter for independent component analysis compared to
lower cut-off frequencies (Winkler et al 2015). Data
were then notch filtered at 50 Hz, using the stand-
ard finite-impulse-response filter implemented in
EEGLAB function pop_eegfiltnew. Channels were re-
referenced to the average channel value. Independent
component analysis was performed and the Multiple
Artifact Rejection Algorithm (Winkler et al 2011) was
used to classify artefactual independent components,
i.e. components not reflecting sources of neural activ-
ity, but ocular or muscle-related activity. Compon-
ents that were marked as artefactual were removed
from the data. Then, samples whose squared amp-
litude magnitude exceeded the mean-squared amp-
litude of that channel by more than four standard
deviations were marked as missing data (‘NaN’) in an
iterative way with four repetitions to remove outliers.
By doing so, 0.8% of data were marked as missing.

EDA was downsampled to 32 Hz. The fast chan-
ging phasic and slowly varying tonic components of
the signal were extracted using Continuous Decom-
position Analysis as implemented in the Ledalab tool-
box for MATLAB (Benedek and Kaernbach 2010). In
further analyses we use the phasic component, as this
component of the EDA signal is mainly related to
responses to external stimuli.

ECG measurements were processed to acquire
the inter-beat interval (IBI—inversely proportional
to heart rate). After downsampling to 256 Hz, ECG
was high-pass filtered at 0.5 Hz. R-peaks of the ECG
signal were detected following Pan and Tompkins
(1985), resulting in a semi-timeseries of consecutive
IBIs. This IBI semi-time series was transformed into
a timeseries by interpolating consecutive intervals at
32 Hz.

2.4.2. Computation of inter-subject correlations as a
measure of physiological synchrony
For EEG, we computed ISC in the time-domain as
a measure of PS. Rather than treating EEG signals

separately, the ISC were evaluated in the correlated
components of the EEG (Dmochowski et al 2012,
2014). The goal of the correlated component analysis
is to find underlying neural sources that are max-
imally correlated between participants, using linear
combinations of electrodes. The technique is similar
to the more familiar principle component analysis,
differing in that projections capture maximal correl-
ation between sets of data instead of maximal vari-
ance within a set of data. EEG data from each par-
ticipant were projected on the component vectors.
Participant-to-group ISC were then computed as the
sum of correlations in the first three component pro-
jections. Correlations in higher order projections are
usually discarded as they are close to chance level cor-
relations (Ki et al 2016).

For EDA and IBI, we also computed ISC in the
time-domain as a measure of PS. We followed the
approach of Marci et al (2007). Pearson correlations
were calculated over successive, running 15 swindows
at 1 s increments. The overall correlation between
two responses was computed as the natural logar-
ithm of the sum of all positive correlations divided by
the sum of the absolute values of all negative correl-
ations. Participant-to-group ISC were computed by
averaging over all correlations with other participants
in the group.

2.4.3. Identifying selective attention through
comparing within-group and between-group
physiological synchrony
To investigate whether within-group PS was higher
than between-group PS, we computed for each par-
ticipant the ISC with participants with the same
attentional instructions (within-group) and the ISC
with participants with other attentional instructions
(between-group). For EEG, correlated component
vectors were extracted from both the AA and SA
groups. Data from each participant were then pro-
jected on both of these component vectors. Data
from the to-be tested participant were excluded in the
component extraction step of EEG. We then tested
whether the ISC scores were normally distributed
using the Shapiro-Wilk tests for both the AA and SA
groups in EEG, EDA and IBI. If the null hypothesis of
normally distributed data was not rejected, we con-
ducted paired-sample t-tests to test for differences
between within-group PS versus between-group PS,
otherwise the non-parametric Wilcoxon signed rank
test was used.

To examine how well PS can be used to identify
whether an individual participant had been attend-
ing to the narrative of the audiobook or to the
interspersed stimuli, we also classified each parti-
cipant into the attentional condition that he or she
showed more synchrony with, for EEG, EDA and IBI.
Chance level classification performance was determ-
ined using surrogate data with 100 renditions of ran-
domly shuffled attentional condition labels. For each
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shuffle the same procedure as above was followed.
Two sample one-tailed t-tests were conducted to test
whether classification performance was above chance
level. Figures 1(c) and (d) visualizes the classification
paradigm.

2.4.4. Influence of interspersed stimuli on the difference
between within-group and between-group
physiological synchrony
We hypothesized that differences between atten-
tional groups are present during interspersed stimu-
lus presentation, but not or to a lesser extent when
the audiostream only contains the audiobook. There-
fore, we zoomed in on intervals with concurrent
audiobook and stimulus presentation, and, as a com-
parison, audiobook parts without interspersed stim-
uli. We computed within-group and between-group
PS three extra times; when considering only physiolo-
gical responses recorded during blocks of beeps; dur-
ing presentation of affective sounds; and during parts
of the audiobook without interspersed stimuli. For
EEG, we extracted new correlated components in
each of the three data selections before computing
correlations in the projections. Procedures that fol-
lowed were identical to those for the whole narrative
stimulus; we used paired-sample t-tests or the non-
parametric Wilcoxon signed rank test to test for dif-
ferences between within-group and between-group
PS and we classified the attentional condition of each
participant as the condition of the attentional group
he or she showed more synchrony with.

2.4.5. Behavioral performance and its association with
physiological synchrony
To examinewhether participants followed their atten-
tional instructions, we tested if the performance met-
rics on the questionnaires about the content of the
interspersed stimuli and narrative differed between
groups using non-parametric Wilcoxon rank sum
tests. We then tested whether higher PS with respect
to an attentional group also results in higher perform-
ance on the post-audio questions about that group’s
stimulus content. Outliers in the performance met-
rics were first removed. Three participants were left
out for this analysis because of outlying performance
data. Two of these participants reported ‘395’ and
‘110’, respectively, to the number of beeps, while the
correct answer was 15; one correctly identified 25 of
the 36 IADS sounds. Values were then ranked based
on relative performance across all participants: the
participant performing best on a question received
score 26, the worst performing participant received
score 1. This was done for each of the three metrics
of performance (correct questions of the narrative,
number of reproduced affective sounds and abso-
lute deviation from the correct number of beeps).
The correlations between these performance scores
with ISC toward the AA group and ISC toward the
SA group were computed. We also tested whether

a large difference between PS with respect to both
attentional groups in a participant leads to a large
difference between the performance metrics reflect-
ive of attention toward the AA and SA groups. To
do so, for each participant ISC toward the AA group
was subtracted from ISC toward the SA group. The
score corresponding to narrative performance was
subtracted from the average of the affective sound
score and beeps score (e.g. for a participant with a
score of 10 for the narrative, a score of 26 for the
affective sounds and a score of 16 for the beeps this
thus results in a score of 10−(26 + 16)/2 = − 11).
We computed the correlations between the
subtracted ISC metric and the subtracted
performance-metric.

As an exploratory comparative analysis, we also
computed correlations between the self-reported
measures of mental effort, distraction and emo-
tion with the performance metrics reflective of paid
attention.

2.4.6. Short-stimulus response traces
To get an understanding of what drives possible
effects of attentional instruction on PS, response
traces were extracted for EEG, EDA and IBI in
response to the beeps and affective sounds. EEG
event-related potentials were obtained from the
parietal site on the anterior-posterior midline of
the scalp (Pz). We chose this location as responses
here have been shown to reflect attentional, emo-
tional and working memory processes (Polich and
Kok 1995, Polich 2007, Hettich et al 2016). Pre-
processed EEG was cut in 1100 ms short stimulus-
locked epochs (100 ms pre-stimulus onset, 1000 ms
post-stimulus onset) and baseline corrected based
on the average value of the 100 ms before stimu-
lus onset. For the blocks of beeps, responses were
locked to each beep in a block and then aver-
aged over all beeps in that block. Grand-average
potentials were obtained by averaging over all
participants in each condition. Running
independent-sample t-tests were conducted to test
for significant between-group differences over time.
Tests were adjusted for multiple comparisons by
controlling the false discovery rate (FDR) using
the Benjamini–Hochberg procedure (Benjamini and
Hochberg 1995). In this procedure, p-values are sor-
ted and ranked. The smallest value gets rank 1, the
largest rank N. All p-values are then multiplied by N
and divided by their rank to obtain adjusted q val-
ues. The FDR threshold was set at q= .05. Phasic
EDA and IBI were cut in 31 s stimulus-locked epochs
(1 s pre-stimulus onset, 30 s post-stimulus onset)
and baseline corrected based on the average value
of the 1 s before stimulus onset. As for EEG, grand-
average responses were obtained by averaging over
all participants in each condition. Phasic EDA was
standardized into z scores—i.e. mean of zero, stand-
ard deviation of one—following Ben-Shakhar (1985).
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Figure 2.Within-group and between-group inter-subject correlations (ISC) for audiobook-attending participants (AA, left bars)
and stimulus-attending participants (SA, right bars) for EEG, electrodermal activity (EDA) and inter-beat interval (IBI). (a)
shows ISC computed over the whole audiobook, (b) when considering only parts with concurrent beep presentation, (c) when
considering only parts with concurrent affective sounds and (d) when considering only audiobook parts without interspersed
stimuli. Connected dots display participant-to-group ISC of each participant, where blue lines indicate participants for whom
within-group ISC are higher than between-group ISC and red dotted lines indicate individuals for whom between-group ISC are
higher than within-group ISC. Paired sample t-test were conducted to test whether within-group correlations were higher than
between-group correlations (∗ p< 0.05, ∗∗ p< 0.01, ∗∗∗ p< 0.001).

Running independent t-tests corrected for multiple
comparison using FDR were conducted to test for
significant between-group differences over time.

3. Results

3.1. Physiological synchrony as a measure of
selective attention
Figure 2 shows the within-group and between-group
ISC averaged across AA participants and SA par-
ticipants in EEG, EDA and IBI. Within-group and
between-group ISC of individual participants are
plotted on top of the bars. Figure 2(a) shows ISC
over the whole audiobook. Results for EEG are in
line with our hypothesis. ISC are higher for parti-
cipants when paired to participants from their own
attentional group compared to participants from
the other group. This is the case both for parti-
cipants in the AA group (t(12) = 4.72, p= 10−4) and
SA group (t(12) = 4.79, p= 10−4). EDA partly fol-
lows our hypothesis. Within-group PS is higher

than between-group PS for SA participants (t(12) =
4.07, p= 0.002), but not for AAparticipants (t(12) =
0.74, p= 0.476). In IBI, no significant group-level
effects were found: (AA: t(12) = 2.17, p= 0.051, SA:
W= 1.64, p= 0.110).

When assuming for each participant that she or
he follows the attentional instruction as indicated by
the group with whom she or he shows the highest
averaged synchrony, classification accuracies are high
and well above chance level, as shown in the first
column of table 1. Using this leave-one-participant-
out paradigm, ISC in EEG correctly identifies the
attentional condition of all but one of the parti-
cipants. Using EDA and IBI, 73% of the participant
are correctly identified.

Figure 2(b)–(d) shows ISC averaged across AA
participants and SA participants when paired with
participants of the AA group or SA group during
beep presentation (b), affective sound presentation
(c) and when considering only audiobook parts
without interspersed stimuli (d). The classification
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Table 1. percentage of participants of which the attentional condition is correctly identified using inter-subject correlations in EEG,
electrodermal activity (EDA) and inter-beat interval (IBI) considering all four time intervals. In brackets the mean and standard
deviation chance level classification performance is shown. Grey cells depict classification accuracies significantly higher than this
chance level distribution. p values are shown in the table.

Whole audiobook Beeps Affective sounds Audiobook only

EEG 96 (49± 11) p< 0.001 88 (52± 13) p= 0.003 73 (50± 13) p= 0.037 73 (50± 10) p= 0.010
EDA 73 (50± 10) p= 0.009 69 (50± 10) p= 0.032 73 (49± 10) p= 0.009 62 (49± 11) p= 0.115
IBI 73 (50± 11) p= 0.009 58 (52± 9) p= 0.266 42 (49± 10) p= 0.742 73 (50± 10) p= 0.009

accuracies are shown in columns two to four of
table 1. During beep presentation, ISC-EEG are
clearly higher for SA participants when paired with
other SA participants than when paired with AA
participants (t(12) = 5.59, p= 10−4). AA parti-
cipants do not synchronize more within-group than
between-groups (t(12) = 2.05, p= 0.062). Dur-
ing affective sound presentation both groups have
higher within-group PS than between-group PS
(AA: t(12) = 2.35, p= 0.037; SA: t(12) = 2.26, p=
0.043). Overall, classification accuracy is lower rather
than higher with respect to the whole audiobook,
both during the beeps (88%) and especially dur-
ing affective sounds (73%). When excluding exper-
iment parts with interspersed stimulus presenta-
tion (audiobook only), AA participants clearly have
stronger ISC with other participants attending to the
narrative, than with participants not attending to
the narrative (t(12) = 5.05, p< 0.001). For SA par-
ticipants there is no significant difference between
ISC with respect to both groups (t(12) = 0.63,
p= 0.541).

In EDA similar effects are found as in EEG.
Figure 2 shows that again ISC during blocks of beeps
are higher for SA participants when paired with par-
ticipants in their own attentional group (t(12) =
4.66, p< 0.001), but this does not hold for AA parti-
cipants (t(12) =−1.52, p= 0.155). During affective
sound presentation both groups have higher within-
group than between-group PS (AA: t(12) = 2.40, p=
0.034; SA: t(12) = 2.34, p= 0.038). Compared to the
whole stimulus, classification accuracy drops (69%)
during beeps, but remains constant (73%) during
affective sounds. When considering audiobook parts
without interspersed stimulus presentation, no signi-
ficant differences are found (AA: t(12) = 1.15, p=
0.273; SA: t(12) =−0.34, p= 0.738). Classification
accuracy is not significantly higher than chance
(62%) for narrative only.

Results for IBI differ from the other meas-
ures. During beep presentation IBI ISC are not
higher within-group than between-groups for both
AA (t(12) =−0.36, p= 0.725) and SA groups
(t(12) = 0.09, p= 0.927). Also during affect-
ive sound presentation there are no higher ISC
within-group than between-groups (AA: t(12) =
−0.76, p= 0.460; SA: t(12) = 1.06, p= 0.310).

Table 1 shows that these results are reflected in
classification accuracies. Classification accuracies
are not higher than chance level for beeps (58%)
and affective sounds (42%). For the audiobook
parts without interspersed stimuli, PS is higher
within-group than between groups for AA parti-
cipants (t(12) = 2.64, p= 0.022), but not for SA
participants (W= 1.57, p= 0.116). Classification
accuracy is identical to performance considering the
whole stimulus (73%).

3.2. Correlations between physiological synchrony
and performance measures indicative of
attentional focus
The results on the post-audio stimulus-content
questionnaire confirmed that participants fol-
lowed their attentional instructions. SA participants
remembered more affective sounds (Mdn = 6)
than AA participants (Mdn = 4) (W= 2.68, p=
0.007) and more accurately estimated the num-
ber of beeps in the counting task than AA parti-
cipants, with significantly smaller estimation error
for SA participants (Mdn = 1) than AA participants
(Mdn= 10), (W= 2.82, p= 0.005). AA participants
recalled the narrative of the audiobook more accur-
ately. They answered more questions about the nar-
rative correctly (Mdn = 6) than SA participants
(Mdn= 3), (Z= 2.68, p= 0.007). Strong attentional
focus, following the instruction to attend either to
the narrative or to the short stimuli, can be expected
to result in high performance on respectively the AA
or the SA questionnaires and high ISC toward the
AA and SA group. To investigate whether ISC were
predictive of performance on the questionnaires, we
computed correlations of the directional synchrony
measures ISC-AA and ISC-SA with the questionnaire
performance measures. Table 2 shows the correla-
tion coefficients r and corresponding p values for the
different combinations. In the grey cells we hypothes-
ized positive correlations: attending to short stimuli
would result in both high ISC with respect to the SA
group and high performance on the questions about
the affective sounds and beeps; attending to the nar-
rative would result in both high ISC with respect to
the AA group and high performance on the ques-
tions about the narrative. The significant correlations
are shown in bold. For EEG, results are in line with
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our hypothesis. ISC with respect to the SA group
strongly correlates with the number of reproduced
affective sounds, whereas ISC with respect to the AA
group strongly correlates with the number of cor-
rectly answered narrative questions. In IBI, ISC with
respect to the AA group is also significantly correl-
ated with the number of correctly answered narrative
questions. Correlations were not significant for the
other combinations in the grey cells. However, cor-
relations tend to be positive in the grey cells, and
negative in the other cells as might be expected when
attending to the one aspect (narrative or short stim-
uli) decreases performance on questions about the
other aspect (short stimuli or narrative).

Some participants might be able to attend to all
of the stimulus content while others might not even
be able to attend to their own stimulus content. We
tested whether the difference between the directional
synchrony measures was also predictive of the differ-
ence between the performance metrics. Table 2 there-
fore also shows correlations between ISC-SA minus
ISC-AAwith the difference in performance on SA and
AA questionnaires. Correlations are in line with our
hypothesis, with strong positive significant correla-
tions for EEG and IBI.

Table 3 shows that none of the self-reported
measures of distraction and mental effort predicted
performance on post-stimulus questions for SA
participants. For AA participants, reported over-
all mental effort predicted the number of correctly
answered narrative questions (r=−0.56, p= 0.045),
where a high reported mental effort was associated
with low performance. Reported distraction by the
beep blocks correlated negatively with performance
(r=−0.66, p= 0.015), while no significant correl-
ations were found between self-reported distraction
and distraction by the affective sounds with perform-
ance on the narrative questions.

3.3. Stimulus-locked response traces
In section 3.1, the effect of interspersed stimulus
presentation on ISC was presented. In this section
we further focus on epochs with interspersed stim-
uli to investigate their effect on the physiological
responses. Figure 3 showsmidline parietal (Pz) event-
related potentials, time-locked to interspersed stim-
ulus onset (respectively beeps and affective sounds).
Independent-sample running t-tests corrected for
multiple comparisons revealed significant between-
group differences (q< 0.05) in response toward the
beeps, with larger deflections in SA participants than
AA participants. In response to affective sounds, no
between-group differences in responses were found.

Figure 3 also shows response traces for stand-
ardized phasic EDA and IBI. Although for EDA, on
average responses of SA participants seem to show
larger deflections than those of AA participants, stat-
istical tests do not reveal significant between group
differences in response to any of the stimuli. For IBI,

response traces are very similar and no significant
between-group differences were found.

4. Discussion

4.1. Summary of findings
In the current studywe determined physiological syn-
chrony (PS) through inter-subject correlations (ISC)
in EEG, EDA and IBI to determine the selective atten-
tional focus of individuals who were all presented
with the same auditory stimulus and were all attend-
ing to it, but were attending to different stimulus
aspects. PS in all three modalities was associated with
selective attention. EEG and EDA responses of par-
ticipants were more synchronized with those of par-
ticipants sharing attentional focus than with those
of participants attending to other stimulus aspects,
but for IBI no significant effects were found. Using
the correlations of an individual’s EEG with the two
groups of differently attending individuals as a pre-
dictor of attentional instruction resulted in a classific-
ation accuracy of 96%. For EDA and IBI, accuracies of
73% were reached. All of the classification accuracies
are well above chance level. Even when only data
was included coming from ‘audiobook only’ intervals,
classification performance was above chance level for
EEG and IBI, although not for EDA. The level of syn-
chrony toward the groups also correlated with post-
stimulus performancemetrics reflective of paid atten-
tion, reinforcing the validity of PS as measure of
attention and suggesting PS as a suitable predictor
of performance. The results are framed in terms of a
broader picture in the following sections.

4.2. Physiological synchrony as measure of
selective attention
This is not the first study associating PS in EEG
with attentional engagement to naturalistic stimuli,
but our study differs from previous studies in several
important aspects. Rather than relating PS in EEG to
shared attentional engagement toward a single stream
of information or distinguishing between attentive
and inattentive conditions (Dmochowski et al 2012,
2014, Ki et al 2016, Cohen et al 2018), we here
show that we can also distinguish between two differ-
ent selective outward auditory attentional conditions
with 96% accuracy.

EDA and IBI performed quite well in distinguish-
ing between groups too. To our best knowledge, this
is the first time that PS in EDA or IBI was shown to
be modulated by attentional focus only. The prom-
ising performance of these measures is important
from a user perspective, as EDA and IBI can be
more easily monitored in ambulatory environments
than EEG. We must note that effects for IBI are
not as strong as for EEG and EDA. Classification
accuracies for thewhole stimulus and audiobook only
parts were at least as high or higher for IBI than for
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Figure 3.Midline parietal event-related EEG potentials, standardized phasic electrodermal responses (EDA) and inter-beat
interval (IBI) time-locked to stimulus onset of the beeps in each block (a) and affective sounds (b), averaged over
audiobook-attending participants (blue, solid line) and stimulus-attending participants (red, dotted line). The standard error of
the mean across participants in each group is depicted in shaded areas around the grand average potentials. Significant
between-group differences (q< 0.05, corrected for multiple comparisons using false discovery rate) are depicted with gray areas
in the potential plots.

Table 3. Correlations coefficients (r) and corresponding p values between self-reported measures of distraction and mental effort with
performance metrics reflective of paid attention. In the grey cells we hypothesized correlations. In the case of self-reported distraction,
these were expected to be negative, in the case of mental effort these correlations could be either negative or positive. Cells with
significant correlations are depicted in bold.

Audiobook attending Stimulus attending

Ranked performance of
number of correctly answered
narrative questions

Ranked performance
of number of reproduced
affective sounds

Ranked performance of
number of estimate average
number of beeps

Distraction by the
other stream of audio

r=−0.22, p= 0.465 r=−0.20, p= 0.529 r=−0.11, p= 0.738

Mental effort during
the experiment

r= - 0.56, p= 0.045 r=−0.18, p= 0.586 r= 0.25, p= 0.465

Distraction by blocks
of beeps

r= - 0.66, p= 0.015 × ×

Distraction by affect-
ive sounds

r= 0.00, p= 0.999 × ×

Distraction by the
audiobook

× r=−0.21, p= 0.512 r=−0.12, p= 0.735

Mental effort during
beep counting

× × r= 0.25, p= 0.461

EDA. However, when considering the whole stimu-
lus, ISC values in IBI were not significantly differ-
ent for between- and within-attentional groups. As
can be seen in the IBI panel in figure 2(a), IBI ISC
is higher within than between attentional groups for
the same number of participants as in EDA, presented

in the panel above it. However, because the size of
this difference in IBI is relatively variable across par-
ticipants, the statistical test did not produce a signi-
ficant effect for IBI while it did for EDA. This may
be explained by the fact that the relation between
IBI andmental processing seems less straightforward,
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and more person dependent than for EDA. Whereas
EDA has consistently shown a positive relation with
arousal (Boucsein 2012), IBI shows a more complex
relation with arousal, as both heart rate accelerations
(e.g. Brouwer and Hogervorst 2014) and heart rate
decelerations (e.g. Brouwer et al 2015a) have been
reported. The reason for this is probably that arousal
can be associated with the body being prepared for
action (the defense reflex) or with a concentrated,
focused state (the orienting reflex), that have been
associated with heart rate accelerations and deceler-
ations, respectively (Graham and Clifton 1966). As
increased physiological arousal has been associated
with increased emotional and attentional engagement
(Boucsein 2012, Critchley 2002), a more complex
relation with arousal may result in attenuated PS in
IBI for some participants.

4.3. Influence of interspersed stimuli on the
identification of selective attention
Wehypothesized that high classification performance
would be driven by moments in the audiobook with
concurrent stimulus presentation. We expected that
in the large parts of the experiment where only the
audiobook was played it was probably hard for SA
participants to ignore the narrative. This would res-
ult in similar physiological activation across all parti-
cipants. Our results suggest otherwise. When consid-
ering parts of the audiobook where no stimuli were
interspersed, classification accuracies were still above
chance level for EEG and IBI, although not for EDA.
EEG and IBI of AA participants were also found to
synchronize significantly more with other AA parti-
cipants thanwith SAparticipants, revealing the differ-
ence in shared attentional focus between participant
groups, also during audiobook only. This result does
not mean that PS was not influenced by the inter-
spersed stimuli, although we did not find our hypo-
thesized effect that classification accuracies would be
higher when considering only data with concurrent
stimulus presentation. This may partly be due to the
specific chosen interspersed stimuli durations and
presentation frequency. Nonetheless, during present-
ation of beeps and affective sounds, EEG and EDA of
SA participants were much more strongly synchron-
ized with the signals of other SA participants than
with those of AA participants. Figure 2 suggests that
this effect ismore pronounced thanwhen considering
the entire experiment.

PS results were different for different modalities.
Because mental workload mainly affects EEG, and
because it is expected to respond in a similar way
across participants to a well-timed, attended stimuli
(Hogervorst et al 2014), we hypothesized the group-
distinguishing capability of ISC in EEG to work well
during the beep counting task. As emotional stim-
uli have been strongly related to sympathetic nervous
system activity as measured through EDA (Bouc-
sein 1992, Bradley and Lang 2000), we hypothesized

the group-distinguishing capability of ISC in EDA
to work well during the affective sounds. Indeed,
we found no strong drop in classification perform-
ance for EEG during the beeps as compared to the
whole stimulus and no strong drop for EDA dur-
ing the affective sounds. In addition to this, ISC in
IBI identified the selective attention relatively well
during audiobook parts without interspersed stim-
uli. These findings support a multimodal approach
that can exploit the particular strength of each neural
and peripheral measure. Also note that that the atten-
tional condition of all participants was correctly clas-
sified by at least one of the three physiological meas-
ures (see the identification of the selective attention
for each participant and each physiological measure
in table 5 in the supplementary material).

PS in different modalities are not only expected
to differ in reflecting selective attention because they
are associated with different types of mental activity,
but also because they unfold on different timescales.
Whereas EEG unfolds in the range of milliseconds,
response latencies of the peripheral physiological
measures are two orders of magnitude larger. Espe-
cially when interested in fusion data from all three
sensors into a single index ofmultimodal PS, the issue
of timescales has to be resolved in future work.

4.4. Behavioral performance and its association
with physiological synchrony
We hypothesized that more synchronized physiolo-
gical responses with respect to an attentional group
would lead to better performance on the accompa-
nying post-stimulus questionnaires. Participants with
high PS elicit physiological activity that is similar to
that of their peers and they are therefore thought to be
more engaged with the stimulus (Dmochowski et al
2014, Cohen et al 2017). For EEG, this has indeed
been found to result in correlations with perform-
ance on immediate and delayed memory retention
questions (Cohen and Parra 2016, Cohen et al 2018).
Following our hypothesis, ISC in EEG strongly cor-
related with performance on questionnaires reflect-
ive of paid attention. The degree of synchrony with
respect to AA participants predicted performance on
questions about the narrative, whereas the degree
of synchrony with respect to SA participants pre-
dicted performance on questions about the short-
stimuli. Also in IBI the degree of synchrony with
the SA group predicted short-stimulus retention. For
both EEG and IBI, we also found that the degree
to which participants synchronize more with one of
the attentional groups significantly correlates with the
degree to which they score better on that groups’
retention questions than on questions reflective of
the other group’s content. This is important when
monitoring selective attentional engagement. Rather
than only being able to distinguish overall attent-
ive individuals (generally high PS toward both atten-
tional groups) from overall inattentive individuals
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(generally low PS toward both attentional groups),
this finding enables the identification of well-focused
individuals, that attend well to specific information,
while shutting-off other information (high PS toward
one attentional group, low PS toward the other atten-
tional group). These differences are found to be
meaningful in terms of performance. Simply asking
participants how distracted they were by other stim-
ulus aspects or how much mental effort they inves-
ted during the experiment was not as informative of
performance on post-stimulus questions as measures
of PS. Performance of AA participants on the ques-
tions about the narrative of the audiobook was pre-
dicted by the degree of invested mental effort and
the degree of distraction by blocks of beeps. How-
ever, these results were inconsistent with other self-
reported measures—performance on narrative ques-
tions was not predicted by the degree of distraction
by all interspersed stimuli. Furthermore, for SA par-
ticipants none of the self-reported metrics of mental
state predicted performance resulting in an incom-
plete view.

4.5. Interspersed stimulus response traces
To obtain an understanding of what drives the found
effects of attentional instruction on PS, we locked
the physiological response traces locked to the onset
of the interspersed stimuli. We hypothesized larger
deflections for SA participants than for AA parti-
cipants. For the blocks of beeps, this hypothesis was
confirmed; event-related responses in parietal EEG
in response to beeps were significantly more deflec-
ted for SA participants than AA participants and
responses of phasic EDA show a similar although
non-significant effect. However, responses to affective
sounds were indistinguishable between groups, with
deflections for both attentional groups. Our stimuli,
beeps and affective sounds, differed with respect to
their capacity to draw attention. The blocks of beeps
mainly attract attention through top-down mechan-
isms related to task instructions, whereas the affect-
ive sounds also attract attention through bottom-up
mechanisms related to salience or emotional relev-
ance (Öhman et al 2001). The affective sounds could
thus be expected to attract attention of all participants
and therefore to induce responses in physiological
measures of all participants. Thismay have resulted in
responses to affective sounds that were indistinguish-
able between groups.

4.6. Processes underlying physiological synchrony
Our findings, together with those of others who
found PS in electroencephalographic and hemody-
namic cortical responses as a function of attentional
instruction, suggest that neural correlates of cognitive
processes are reliable and reproducible (Hasson 2004,
Furman et al 2007, Jääskeläinen et al 2008, Wilson
et al 2008, Hasson et al 2010). It is not yet clear
which underlying processes are reflected in cortical

synchronization. The inter-subject synchronization
has been associated with a broad range of higher-level
processes, such as memory encoding, emotional pro-
cessing and stimulus preference (Furman et al 2007,
Hasson et al 2008, Jääskeläinen et al 2008, Wilson
et al 2008, Dumas et al 2010, Nummenmaa et al 2012,
Dmochowski et al 2014, Ki et al 2016). The simil-
arity of scalp topographies of the cortical correlated
components across sensory modalities indicates that
the fundamental processes underlying cortical ISC are
low-level and supramodal (Ki et al 2016, Cohen and
Parra 2016). Our findings of synchrony in peripheral
measures suggest that both systems are to somedegree
influenced by the same high-level processes. Research
has shown that sympathetic autonomic activity is
indeed influenced by higher subcortical and cor-
tical brain areas implicated in high-level processes
of attention, emotion and motivation (Kaada 1951,
Neafsey 1991). Some of these brain areas were found
to covariate with synchronization in EEG of parti-
cipants sharing attention to a narrative visual stim-
ulus (Dmochowski et al 2014). It may be the case
that activation of the autonomic measures is induced
through mechanisms of arousal, as increased atten-
tion has been shown to be associated with heightened
arousal (Critchley 2002). However, future research is
needed to unravel the underlying mechanisms of PS
in cortical and autonomic measures.

Nonetheless, determining how strongly physiolo-
gical measures synchronize across individuals is a
valuable way to monitor attentional or emotional
engagement. The simplicity of the current analysis
may make this a valuable approach compared to
other ways to determine emotional or attentional
engagement using physiological variables. A com-
mon approach for the assessment of attention or
engagement in this field is based on supervised learn-
ing algorithms, where a machine learning model is
trained to predict attentional engagement (Liu et al
2013, Aliakbaryhosseinabadi et al 2017) or emo-
tional engagement (Bailenson et al 2008) from a fea-
ture set of physiological variables. These approaches
require labeled training data, i.e. a set of physiolo-
gical responses that are labeled with the degree of
attentional or emotional engagement. Not only is this
time-consuming, it is also very difficult to determ-
ine a ‘ground truth’ mental state than can be used
for data labeling (Brouwer et al 2015a). Determining
the degree of PS does not depend on labeled training
data. This is especially valuable when there is limited
information about events in the world, as is the case
in real-world environments like classrooms, where it
is difficult to obtain a set of labeled training data.

4.7. Future work
While the current study and analyses produced inter-
esting findings, there are a number of topics we have
in mind in order to improve and add to our current
results. Firstly, we will investigate ways of combining
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PS in the three modalities into onemultimodal meas-
ure of PS.

Furthermore, in the current work PS in EDA and
IBI was computed using simple Pearson correlations
in moving windows. While this method is computa-
tionally inexpensive and easily adaptable for online
use, limitations of the method include oversampling
as a result of overlapping windows as well as poten-
tially spurious correlations as a result of not con-
trolling for autocorrelation (Levenson and Gottman
1983). While such correlations would not explain the
difference between selective attentional conditions,
they could influence overall correlation levels. Future
research could investigate whether other methods of
synchrony assessment would result in similar find-
ings. Synchrony assessment would not even have to
be limited to the time domain, but could also include
frequency domain metrics, such as wavelet coherence
in IBI (Quer et al 2016) or one of the many coher-
ence metrics in neural measures (Babiloni and Astolfi
2014). An innovative method of synchrony assess-
ment for ECG was presented by Verdiere et al (2020)
who analyzed concurrent ECG peaks and found this
to be a relatively effective method to detect concur-
rent, high workload in teams. Future work could also
compare the currently obtained results with other
methods of attention monitoring. For example, Ki
et at (2016) showed that not only EEG ISC but also
alpha power could distinguish naturally attending
participants form inward focused participants, be it
with a weaker modulation.

Finally, wewant to suggest futurework to focus on
more unsupervised mechanisms identifying groups
with different attentional focus. Unsupervised clus-
tering techniques may be applied to this dataset.

As we encourage other researchers to test other
synchrony metrics or classification paradigms, the
MATLAB scripts and physiological data reprodu-
cing the results in this study are publicly available
on https://github.com/ivostuldreher/physiological-
synchrony-selective-attention.

5. Conclusion

In this study we monitored EEG, EDA and IBI
responses and assessed physiological synchrony
within and between groups, that were either instruc-
ted to focus attention on an audiobook or on inter-
spersed auditory stimuli.We showed that PS in neural
and autonomic measures reflects selective attentional
engagement. Out of the complete set of measures,
EEG showed the best results, with strong group-level
differences and correct identification of the selective
attentional focus in 96% of the cases. PS in EDA and
IBI also showed good results, with significant group-
level differences in EDA and classification accuracies
of 73%. Even when only data was included coming
from ‘audiobook only’ time intervals, classification
performance was above chance level for EEG and

IBI, though not for EDA. The level of synchrony
toward the groups also predicted performance on
post-stimulus questions reflective of paid attention.
Our results support that synchrony in physiological
responses with others reflects selective attentional
engagement. To our best knowledge this is the first
time PS has beenmonitored in neural and autonomic
measures concurrently. The relatively high classifica-
tion accuracies with the use of PS in EDA and IBI are
convenient from a user perspective and should enable
researchers to monitor PS in autonomic measures in
situations where intrusive neural measurements are
not suited. However, as each modality performed
relatively good in specific stimulus conditions, we
also have the ambition to combine the physiological
measures into a multimodal index of PS. Work in this
area may lead to applications for evaluating educa-
tional material or provide feedback to educators or
other types of presenters in real time.
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