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Abstract

Video or, Multi Frame, Super Resolution (VSR or, MFSR) techniques aim to
generate high-resolution frame reconstructions of corresponding low-resolution
ones. These techniques differ from the Single Image or, Frame, Super Reso-
lution (SISR or, SFSR) ones in that they can additionally exploit the temporal
nature of the input data. The advantage of having additional temporal infor-
mation does not translate directly into an easier problem to solve. The chal-
lenge lies in the optimal extraction of this additional information. Current
state-of-the-art methods are still using some variants of optical flow estima-
tion plus warping for extraction and integration of temporal information but
it is well known that during the warping process a lot of the high frequency
information get lost. We investigated alternative architectures to alleviate or
suppress this problem but they only perform on par or slightly worst than
current SOTA networks.
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Chapter 1

Introduction

Nowadays numerous jobs rely on digital imaging systems to perform com-
plex tasks. Think about doctors performing millimetric precision surgery
based on computer screen videos or satellite images used for military based
interventions. These are just some examples of applications that would po-
tentially benefit from an increase in image quality and details. Generally
speaking all applications where a human observer is involved in the inter-
action with a digital imaging system could potentially benefit from having
to deal with crisper images. Furthermore, recent progresses in artificial in-
telligence could extend those benefits to all computer vision applications, in
those cases where a software program instead of a human observer perform
a task based on images or videos.

The human perceived quality of a digital image or, in other terms, the
amount of details in a digital image is directly related to its resolution. The
same holds true for videos, which are just a sequence of images (usually
called frames) but, in this case, we talk about video resolution. The generic
term resolution can refer to different types of resolution: pixel resolution, spa-
tial resolution, spectral resolution, temporal resolution, radiometric resolu-
tion, therefore it is important to specify which resolution we are considering
in this text. For the purpose of this thesis, we are mainly interested in spa-
tial resolution and in the remaining of the text we are going to use the term
resolution and spatial resolution interchangeably.

So, what is spatial resolution? As already said, an intuitive way to think
about spatial resolution is to look at the amount of details in an image or
a video but a more formal definition is the following given by Yang and
Huang, 2010:

"Spatial resolution: A digital image is made up of small picture
elements called pixels. Spatial resolution refers to the pixel density
in an image and measures in pixels per unit area. Fig. 1.1 shows a
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FIGURE 1.1: The 1951 USAF resolution test target, a classic test
target used to determine spatial resolution of imaging sensors

and imaging systems. Yang and Huang, 2010.

classic test target to determine the spatial resolution of an imaging
system".

From this definition, it becomes immediately clear that the most straight-
forward way to increase the spatial resolution and therefore the details in
an image is to increase the pixel density. Increasing the pixel density trans-
lates, in an image sensor, to increase the photosite density. An image sen-
sor is generally made up of a two-dimensional grid of photosites and each
photosite corresponds to a pixel in the generated image. Charge-coupled de-
vice (CCD) and complementary metal oxide semiconductor (CMOS) are the
most common image sensors in today’s digital imaging systems. Both cap-
ture light by means of electric charge and transform it to an electrical signal in
the two-dimensional grid. Semiconductor manufacturer have continuously
been pushing the limits to keep the same image sensor size with an increased
number of photosites therefore increasing its pixel density. Unfortunately
only increasing the density of photosites by reducing their size leads also to
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a decrease in incident light on each photosite which in turn causes the so-
called shot noise. Conversely an image sensor with an inadequate number of
photosites will generate low resolution images with a pixelation effect, due
to the aliasing from low spatial sampling frequency.

The limitation in pixel density increase is not the only factor affecting an
increase in resolution, a more fundamental problem is constituted by the
optic used by the digital imaging systems. The optic physically limits the
amount of details (high frequency bands) that is possible to capture in an im-
age sensor due to lens blurs (associated with the sensor point spread function
(PSF)), lens aberration effects and blurring due to motion (Yang and Huang,
2010). A better quality lens, which often translates into a larger lens, would
in principle allow to capture more details and consequently increase the res-
olution of an image. Unfortunately also this solution has several drawbacks.
Larger lenses have generally more imperfections, they may not fit in the digi-
tal imaging systems we want to build (e.g. smartphones) and ultimately they
may reach prohibitive prices for most real-world applications.

Additionally both image sensors and lenses are physical components of
a digital imaging system and in applications like remote sensing the imag-
ing system components are usually not accessible for a direct replacement of
parts.

For all these reason is really important to come up with software solutions
that can increase the resolution of captured images or videos without relying
on the hardware of the physical device. This is where super resolution come
into play. Super resolution (SR) is a general term referring to all those tech-
niques aiming at enhancing the spatial resolution of one or a sequence of
images. SR techniques generally receive as input one or more low-resolution
(LR) images and attempt to create their high-resolution (HR) counterparts.

As we will see, in general, it is hard to achieve really detailed results with
SR techniques, especially for large desired increase in spatial resolution (high
scale factor SR). In this thesis we will review the state-of-art of video super
resolution (VSR) using deep learning techniques and we will investigate pos-
sible ways to improve the current state-of-art, tackling some of the problems
known from traditional signal processing theory. Finally we will look into
ways to make VSR more robust in real-world applications given the collabo-
ration with TNO for this thesis.

TNO is the Netherlands Organization for Applied Scientific Research and
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this thesis was developed in closed collaboration with the Intelligent Imag-
ing department. The main interest of TNO and the department is on long
range observation for defence/security applications with a particular focus
on achieving results that benefit tasks such as text recognition, automated
human action recognition and vehicle identification.

1.1 Background

This section introduces some of the concepts that are central in this thesis.
We are going to characterize the type of super resolution addressed in the
rest of the text and define some terms that will reoccur often in the following
chapters.

1.1.1 Image observation model

When a digital imaging system captures a scene of the real world there are
different factors influencing the final result that is obtained as image or se-
quence of images. The image observation model is generally used in SR to
simulate this physical process. For the purpose of this thesis the image ob-
servation model is used to generate the LR-HR pairs which allow to train our
models (example-based SR, more details to follow) therefore representing an
important element in our approach.

As pointed out by Nasrollahi and Moeslund, 2014, one of the most straight-
forward way to model the physical process of capturing a scene of the real
world is to use a linear model of the type used by Schultz and Stevenson,
1994:

g(m, n) =
1
q2

(q+1)m−1

∑
x=qm

(q+1)n−1

∑
x=qn

f (x, y) (1.1)

where g represents the "LR obtained image", f is the "HR observed real-world
scene" and q is a decimation or sub-sampling factor. The LR image, using this
model, is obtained averaging q2 neighbouring pixels from the HR observed
scene which implies that, if the size of the LR image is M1×M2, then the HR
image is of size N1 × N2 where N1 = qM1 and N2 = qM2. This linear model
is too simplistic and fails to consider many other factors that contribute to
the physical process of capturing a scene of the real world. In order to in-
clude some of these factors, Nasrollahi and Moeslund, 2014 extends Eq.1.1
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proposing the model from Irani and Peleg, 1990:

g(m, n) = d(h(w( f (x, y)))) + η(m, n) (1.2)

where w is a warping function, h is a blurring function, d is a down-sampling
operator, and η is an additive noise. Warping is a geometric transformation
that consists in moving around the pixels of an image based on a specified
new mapping, it can be as simple as a basic rotation. In the physical process
described by the model it can represent, for example, a non-centered image or
a camera movement. Blurring refers instead to a type of filter effect which de-
creases the level of detail in an image. In the model the blurring function al-
lows to mimic blurring effect due to the digital imaging system (lens and/or
the sensor) or to atmospheric conditions. The operation of down-sampling de-
creases the pixel density of the image with a consequent loss of information
and spatial resolution. We saw already an example of down-sampling oper-
ation in Eq.1.1 and it is generally used to define the way by which the HR
scene is sub-sampled. Figure 1.2 shows an example of the application of the
model described by Eq.1.2.

FIGURE 1.2: The imaging model employed in most SR algo-
rithms. Nasrollahi and Moeslund, 2014.

In the process from HR to LR all the high-frequency details, making up
the important information of an image (e.g. edges, textures), are generally
lost and need to be reconstructed using SR. The inversion of this degradation
process, for which SR is sometimes considered an inverse problem, does not
have a unique solution making the task of SR extremely hard.

1.1.2 Classification of super resolution techniques

Super resolution (SR) techniques are generally classified based on three main
factors: the domain, the number of images taken as input and the type of



Chapter 1. Introduction 6

reconstruction method. It follows a brief explanation of the three classifica-
tion factors to make clear the type of SR techniques we are interested in this
thesis. This overview does not want to be an exhaustive description of all
the possible SR techniques but it just wants to give the context and enough
background to understand the rest of the material. For a more exhaustive
treatment of the topic please refer to Park, Park, and Kang, 2003; Farsiu et al.,
2004; Nasrollahi and Moeslund, 2014.

Domain

The domain classification makes a distinction between SR techniques in the
frequency and in the spatial domain. The paper by Huang and Tsay, 1984 rep-
resents the very first example of SR. The authors approached the problem
in the frequency domain by exploiting the properties of the Fourier trans-
form. Many other early papers in SR followed the same strategy tackling
the problem in the frequency domain either using the Fourier or the Wavelet
transform properties (for further details please refer to Nasrollahi and Moes-
lund, 2014 or Bevilacqua, 2014 that give a nice overview of SR techniques).
However, researchers quickly figured out that treating the SR problem in the
frequency domain limited the applicability of the SR techniques in real-world
scenarios. Real-world turned out to be much more complicated compared to
the models that could be handled by SR techniques in the frequency domain.
This is the reason why most of the current SR papers address the problem in
the spatial domain which allows the modelling of all kinds of image degra-
dation and help better constraint the SR problem (Yang and Huang, 2010).
Also in this thesis we are only going to consider SR techniques in the spatial
domain.

Number of images taken as input

In the literature there is a clear distinction between two types of techniques
for SR: single frame super resolution (SFSR) and multi frame super resolution
(MFSR). As both terms already explain, the distinction in this case is based on
the number of images taken as input by the SR technique. SFSR techniques
use only a single image to increase its resolution which can be seen as a form
of interpolation because there is no additional information provided. The
quality of the SFSR output is limited due to the ill-posed nature of the prob-
lem, and the lost frequency components cannot be recovered. MFSR deals
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FIGURE 1.3: A schematic example of MFSR. The information
contained in three LR images are merged to reconstruct an HR

image.

instead with the problem of increasing the resolution of an image using mul-
tiple instances of that image, a schematic example is shown in Fig.1.3. In the
case of MFSR we have additional information contained in these multiple
instances which are typically introduced by subpixel shifts between them,
aliasing or different noise realization, making the ill-posed problem more
constrained. The challenge of MFSR lies in the registration and alignment of
these multiple instances which allows the use of the additional information.

The frames of a video clip represent an example of when a subpixel shift
may occur (e.g. object movements, camera movements) and in this case we
talk about video super resolution (VSR). VSR is a particular case of MFSR which
uses the neighbouring frames of a video clip as input to the SR approach and
it is going to be the main subject of this thesis.

Type of reconstruction method

In this section, we present the different approaches available in the spatial
domain for the particular case of MFSR (they broadly correspond also to the
distinction that is made in the SFSR case).
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MFSR is usually performed in two different ways: reconstruction-based
or example-based approach. The reconstruction-based approach is a model
based approach, it assumes little knowledge about the content of the image
and focuses instead on the process of how the image was formed. Reconstruction-
based approaches use aliasing artifacts present in LR images in order to re-
construct the HR instance, they usually define a prior distribution in order to
constrain the ill-posed nature of the problem. The example-based approach,
instead, learns a mapping between LR and HR images using a dataset of ex-
amples which are generated using the image observation model 1.1.1. There
is a first phase referred as training where the algorithm learns this mapping
and it is successively applied to unseen data in the test phase. The current
trend in example-based SR uses a type of machine learning techniques called
deep neural networks which are generally referred as deep learning (DL). They
are particularly relevant because they proved to outperform all other types
of approaches both in SFSR and MFSR. They are going to be the main topic
of this thesis.

1.1.3 Deep Learning fundamentals

Before continuing in our journey it is important to introduce some of theory
behind the main actor of this play, namely Neural Networks (NNs), or Artificial
Neural Networks.

Neural Networks

Neural Networks (NNs) is a general term to refer to a broad range of com-
putational models vaguely inspired by what is known so far about the struc-
ture and functions of their biological counterparts. Their origins date back
to Rosenblatt, 1958 at the Cornell Aeronautical Laboratory proposing one of
the first examples of this learning algorithms, the Perceptron.

The Perceptron is a type of linear classifier, i.e a classification algorithm
that makes its predictions based on a linear predictor function, combining a
set of weights with the input vector. Back then it looked a really promising
idea together with all the expectations created by the same Rosenblatt but,
in a famous book entitled "Perceptrons" from Minsky and Papert, 1969, was
shown soon the limitation of this learning algorithm. The single layer per-
ceptron is able, in fact, to learn only linear separable patterns.
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Some years later (after the so called "AI winter") it was recognized that a
feedforward neural network (a network where the input enters only the net-
work’s first layer and propagates only to the next layer without lateral con-
nections within a layer) with two or more layers can approximate any func-
tion (universal approximation theorem, Hornik, Stinchcombe, and White,
1989). This type of network are also called Multi Layer Perceptrons (MLPs),
they can be seen, in fact, as a concatenation of multiple Perceptrons’ and
they introduce the concept of hidden layer (not explicitly exposed to the in-
put) and the use of non-linear activation functions. They form the basis of
the most modern NN implementations, yet many extensions to the original
design and learning algorithm have been proposed. The MLP consists of an
input layer, followed by at least one hidden layer and an output layer (Figure
1.4). All layers are fully connected so that each neuron performs a weighted

FIGURE 1.4: Artificial Neural Network example architecture.

combination of all the outputs of the previous layer. Subsequently the artifi-
cial neurons perform a non-linear mapping of the weighted sum. MLPs are
trained using backpropagation. In this gradient descent method the activation
of each neuron is calculated in a forward pass and consequently the network
weights are updated in a backward pass. This latter process is termed back-
propagation.

Convolutional Neural Networks

Krizhevsky, Sutskever, and Hinton, 2012 marked the beginning of a new era
for NNs. The authors presented a Convolutional Neural Network (CNN),
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that outperformed all other approaches at a famous computer vision compe-
tition called the ImageNet competition. ImageNet is a huge image dataset
freely available online and the competition consist in the automatic classifi-
cation of these images. This was not the first example of CNN, already Lecun
et al., 1998 proposed a similar approach to tackle handwritten text recogni-
tion but the difference was made by the size of the network trained thanks
to the availability of Graphic Processing Units (GPUs). CNNs are a particu-
lar type of NNs that are characterized by the presence of convolutional and
pooling layers. A convolutional layer computes a convolution operation be-
tween the input and learnable filters, Figure 1.5 shows an example of this
operation. This type of layer proved to be helpful in tasks concerning the

FIGURE 1.5: Convolution layer example.

processing of images because it allows the network to learn features of ob-
jects that can be used to generalize to other instances of the same objects. The
other layer that characterizes a CNN architecture is the pooling layer. It can
be simply described as performing a non-linear down-sampling of the input.
Figure 1.6 gives a nice example of what it means in the particular case of
the max-pooling, where the maximum value is selected among a group pixel
values.

FIGURE 1.6: Max pooling layer example.

http://www.image-net.org
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Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a particular type of NN which con-
tain a loop in their structure hence the name "Recurrent". The loop structure
allows to work on input data in the form of a sequence. A RNN can be seen
as a copy of the same network which is applied on each step to a different
element of the sequence, Figure 1.7 shows an example of unfolding the struc-
ture of a RNN. The RNN has the property of propagating information from

FIGURE 1.7: Example of a recurrent neural network.

the past using an internal state mechanism which makes it a perfect fit to use
with sequence data. This mechanism is one of the reason why RNNs are gen-
erally preferred in the literature when the dataset comprises elements which
are highly related (e.g natural language processing). Compared to a normal
NN, the RNN uses another type of training algorithm called backpropagation
through time (BPTT; Mozer, 1995) which allows to adjust the weights of the
network after looping through all the elements of a sequence.

1.2 Related work

This section provides an overview of the state-of-the-art (SOTA) results in
MFSR, particularly using NNs techniques.

The pioneering work of Dong et al., 2014, where they presented a shallow
three layers convolutional neural network (CNN) for SFSR, marked a shift in
paradigm for the whole field. Nowadays academic research in SR is largely
dominated by neural networks that have proven to outperform all the previ-
ous state-of-the-art methodologies, as in many other fields.
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Kappeler et al., 2016 are the first to apply a CNN to MFSR adapting the
approach from Dong et al., 2014 and using a separate optical flow estimation
algorithm from Drulea and Nedevschi, 2011 to exploit temporal information.
The two components, the CNN and the optical flow estimation algorithm,
need to be trained separately and the CNN is pre-trained on images before
being trained for videos.

Caballero et al., 2016 incorporate a multi-scale spatial transformer as a
motion compensation component directly into the trainable architecture us-
ing also 3D convolutions and slow fusion.

The same motion compensation is used also by Tao et al., 2017 but instead
of 3D convolutions, they propose a recurrent network with an LSTM unit to
process multiple frames. In addition, the “Sub-Pixel Motion Compensation
(SPMC)” layer is introduced, which performs forward warping and mapping
to HR space jointly.

A similar operation is also used by Makansi, Ilg, and Brox, 2017 which
build upon the work of Kappeler et al., 2016 constructing an architecture that
includes the optical flow estimation from Ilg et al., 2017 and it is end-to-end
trainable.

Liu et al., 2017 propose instead a “temporal adaptive neural network”
which uses the architecture from Shi et al., 2016 to produce several HR esti-
mates using temporally different LR frames which are subsequently aggre-
gated together.

Very recently, Sajjadi, Vemulapalli, and Brown, 2018 presented a fully re-
current approach that uses the previous HR frame reconstruction to produce
temporally consistent frames. As pointed out from Sajjadi, Vemulapalli, and
Brown, 2018 already, more than a decade ago also the paper by Farsiu et al.,
2004 suggested a recurrent approach for the same motivation.

The paper from Sajjadi, Vemulapalli, and Brown, 2018 is not the first ex-
ample of deep learning recurrent architecture applied to MFSR. In the work
from Huang, Wang, and Wang, 2018 a bidirectional recurrent convolutional
networks is proposed but no explicit motion estimation is used.

Comparing the results of the mentioned papers we identified the paper
by Sajjadi, Vemulapalli, and Brown, 2018 as currently achieving the state-
of-the-art (SOTA) performance in MFSR. A we will mention multiple times
along the remaining of the text we are not completely sure about these SOTA
results because we found inconsistency in the way results were reported and
compared in different papers reviewed.
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1.3 Aim of the project

The literature review presented in the previous section guided the motiva-
tion to work on this project. Deep learning, which we refer here as the field
that regained interest in 2012 after the paper by Krizhevsky, Sutskever, and
Hinton, 2012, is still in its infancy. There are not so many papers available on
the topic of VSR using deep learning techniques compared to other fields of
application. The limited number of research papers may suggest that there
are still opportunities for further improvements on SOTA results.

In addition, from our literature review, we noticed that multiple papers
claim SOTA results, but an accurate analysis revealed that there are often
inconsistency on the way these results are compared and reported. Therefore
we think it is important to investigate further these results and, as a starting
point for the project, reproduce at least partially some of these approaches.
This should give us a solid ground to build for further improvements.

In the introduction we talked about the collaboration with TNO, the In-
telligent Imaging Department for this thesis. TNO is interested in exploring
the potential of deep learning methods applied to SR to possibly integrate
some of these techniques in their pipeline. Using TNO expertise on tra-
ditional SR, we identified the warping operation, which is used in most of
the VSR deep learning architectures in the literature, as a potential element
for improvements. The warping operation is used, in VSR, in combination
with the motion estimation to be able to extract additional information from
neighbouring frames. It allows to register a group of frames to the same
reference, moving pixels according to the calculated motion. Unfortunately
during this registration step, performed by the warping operation, is used an
interpolation which causes loss of information. We decided to test architec-
ture variations that can possibility mitigate this negative effect.

Ultimately this thesis wants to explore the possibility of applying deep
learning VSR techniques on real-world scenarios, testing the robustness of
the developed networks with more realistic image observation models.

1.4 Research questions

The research project, as already explained in the previous section, has first
and foremost the goal of investigating how to combine TNO expertise with
a SOTA deep learning solution for the problem of VSR. The prospective is to
eventually substitute part of the pipeline already in place at TNO. The first
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step in this process consists in the identification and analysis of SOTA deep
learning solutions. In particular we are interested in understanding which
structure, feed-forward or recurrent, achieves the best performance and how
that is accomplished. The next step aims at solving, at least partially, one
problem that is known to affect traditional SR techniques and which is still
present in most of the deep learning approaches, warping. In our literature
review, we noticed that, the potential negative effect the warping operation
can have on the performances of VSR is generally underestimated. We de-
cide to make it here the main focus of our investigation because we think it
can help us improve on the current SOTA. Finally we look at more realis-
tic image observation models and how they affect the performances of VSR
deep learning solutions to validate the possibility of applying them outside
of a controlled environment.

From what we discussed so far, we can formulate some concrete research
questions that we will try to answer in the remaining of the text.

1. Which deep learning architectures are the current state-of-the-art in
video super resolution?

• What is the difference, in terms of performances, between a feed-
forward and a recurrent architecture?

2. How can we address critical points of traditional video super resolution
in the design of the network?

• Can we improve on the integration of information from neighbor-
ing frames?

• What would happen if we move away from the separation of the
problem in two distinct sub-tasks: motion estimation and super
resolution?

3. How does a more realistic image observation model affects the perfor-
mances of these architectures?

• Does the addition of noise in the image observation model sub-
stantially deteriorate the performances?
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Chapter 2

Methods

Video super resolution (VSR) using deep learning techniques is the main
subject of investigation of this thesis and to answer the research questions
posed in the previous chapter we define here the tools we used to conduct
our experiments. We give a detailed explanations of all their components,
the dataset we used and the training procedure adopted. In this chapter we
present the details that are common to most of the experiments but when
necessary, in Chapter 3, we are going to point out what differs.

2.1 Architecture building blocks

In this section we introduce some of the main components of the architec-
tures examined in the thesis. We follow a bottom-up approach to facilitate
the readability of the architecture diagrams that follow. Each of the elements
described in the following sections corresponds to the one used as building
blocks for the baseline architectures and all further modifications, if not oth-
erwise stated.

2.1.1 Motion estimation

Motion estimation plays a central role in VSR as we learned in Chapter 1
from the SR problem categorization. The accuracy of the motion estimation
determines the success of the integration of information from neighboring
frames. Motion estimation is in itself an open problem in computer vision,
numerous researchers have been studying the problem in the years trying to
improve the accuracy using traditional and, more recently, deep neural net-
works methods alike. Few years ago, Dosovitskiy et al., 2015 demonstrated
the possibility to learn an accurate optical flow estimation using a CNN. In
a follow-up work Ilg et al., 2017 further refined the architecture making it
as accurate as traditional state-of-the-art methods but much faster. In our
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experiments we employed part of the FlowNet2 architecture proposed by
Ilg et al., 2017 called FlowNet-SD, the "SD" stands for "Small Displacement".
Early in the project we also conducted experiments with the FlowNet2 but we
did not find any performance difference compared to the FlowNet-SD. The
FlowNet2, being a more complex model, should perform a more accurate
motion estimation but, possibly, the lack of large motions in the dataset we
used may explain the phenomenon. Ultimately we opted for the FlowNet-SD
because the model is approximately eight times smaller than the FlowNet2
impacting less on the GPU memory consumption. This motion estimation
architecture once integrated in the VSR model can be trained end-to-end on
the particular dataset in use. We did not perfom an end-to-end training in
our experiments but we employed instead a pre-trained model to save time
on the overall training and because the pre-trained model should be able to
generalize on our dataset. We used the Pytorch implementation provided by
Reda et al., 2017 and we downloaded the pre-trained weights from the same
project website∗.

2.1.2 Residual block

Residual blocks made their first appearance in the paper by He et al., 2015
and since then they have been used extensively in the deep learning com-
munity in order to stabilize the learning of very deep networks. This type
of networks generally suffers from the so called vanishing gradient problem
(Bengio, Simard, and Frasconi, 2012) and the residual block constitutes an
optimal way to solve it. It has been adopted also in SR approaches for the
same motivation and Lim et al., 2017 recently introduced a variation which
showed to improve performances in SFSR compared to the original design
of He et al., 2015.

FIGURE 2.1: Residual block structure as presented by Lim et al.,
2017

∗https://github.com/NVIDIA/flownet2-pytorch

https://github.com/NVIDIA/flownet2-pytorch
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Figure 2.1 shows the structure of the residual block from Lim et al., 2017
which we adopted in our architectures. It consists of two convolutional lay-
ers (number of filters: 64, kernel size: 3x3, stride: 1, padding: 1), a ReLU
non-linearity function and the addition operation of the residual. This ver-
sion of the residual block removes the batch normalization layer which was
shown to introduce instabilities and color shifts.

2.1.3 Upsampling block

Deep learning approaches to MFSR have used different up-sampling strate-
gies to produce the HR output. Kappeler et al., 2016, for example, up-sampled
the input frames directly using a bicubic interpolation (Matlab imresize).
This way of up-sampling the image is both inefficient, because the rest of the
operations are performed in HR, and non-trainable, because it is not the net-
work itself that is learning how to best perform the up-sampling. Another
intuitive approach that has been used to up-sample the final output is the
deconvolution operation also called convolution with fractional stride. The
deconvolution operation is usually performed just before the output layer
therefore being both efficient, in this case all the previous operations are per-
formed in LR, and trainable, the network can learn an optimal up-sampling
strategy, but it has also been shown to produce check-board artifacts in the
final reconstruction (Odena, Dumoulin, and Olah, 2016). We decided to use
the layer proposed by Shi et al., 2016 called subpixel convolutional layer
("PixelShuffle") which basically performs a depth to space transformation.
This layer has shown to be computationally efficient and it does not create
checkerboard artifacts. A scheme of our upsampling block can be seen in
Figure 2.2.

FIGURE 2.2: Upsampling block using the "PixelShuffle" layer
from Shi et al., 2016
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2.1.4 SRNet+

The structure of the SRNet+ is derived directly from the one used in Saj-
jadi, Vemulapalli, and Brown, 2018. It is an encoder-decoder like structure
used frequently in SFSR and MFSR, one of the first example can be traced
back to Johnson, Alahi, and Fei-Fei, 2016. Compared to Sajjadi, Vemulapalli,
and Brown, 2018, we modified the part of the architecture that is responsi-
ble for the up-sampling of the final output. As we explained in section 2.1.3
the deconvolution layer tends to create check-board artifacts therefore we
substituted it with a sub-pixel convolutional layer. We used three residual
blocks but we acknowledge that using more residual blocks (i.e five) with an
increased number of filters (i.e 128) in the convolutional layers would result
in increased performance. We made this design choice to reduce the train-
ing time per experiment. Figure 2.3 shows the overall architecture of our
SRNet+.

FIGURE 2.3: Architecture diagram of SRNet+ where we re-
placed our Upsampling block compared to the structure from-

Sajjadi, Vemulapalli, and Brown, 2018.

2.2 Baseline architectures

The two baseline architectures presented in the following sections are the
starting point to investigate the SOTA of VSR. The design of the two net-
works is inspired by the best performing architecture in the literature.

2.2.1 Feed-forward

The first architecture taken as a baseline for our experiments has a feed-
forward structure, this structure is the most common in the MFSR literature.
The model takes as input three LR neighboring frames f LR

t−1, f LR
t , f LR

t+1 and
outputs the HR estimate of the frame at time t also referred as central frame
or reference frame. First the optical flow between {ILR

t−1, ILR
t } and between

{ILR
t , ILR

t+1} is calculated using the pre-trained FlowNetSD. The optical flow
calculation allows us to register ILR

t−1 and ILR
t+1 to the central frame f LR

t . The
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three frames are concatenated along the channel dimension and are fed into
the the rest of the network which is responsible for the super resolution. This
model has a clear distinction between where the integration of the temporal
information happens, first part, and where the frame gets ultimately super-
resolved, SRNet+. Figure 2.4 gives an overview of the model using some of
the building blocks described in Section 2.1.

FIGURE 2.4: Feed-forward baseline architecture.

2.2.2 Recurrent

The recurrent baseline is based on the framework proposed by Sajjadi, Vemu-
lapalli, and Brown, 2018. For the motion estimation, indicated as FNet in the
original paper, we integrated the pre-trained FlowNetSD and for the super
resolution part, indicated as SRNet in the original paper, we used the SRNet+
explained in Section 2.1.4. Compared to the feed-forward baseline, the recur-
rent network takes as input only two LR frames f LR

t−1, f LR
t but an additional

input comes from the HR output at time t − 1 indicated as Iest
t−1. Iest

t−1 is ini-
tialized as a black image in the first training or testing step. Figure 2.5 shows
our structure for the recurrent network. The up-scaling step uses a bilinear
interpolation to up-scale the optical flow calculated between {ILR

t−1, ILR
t } and

should not be confused with the up-sampling block presented previously.
The up-scaled optical flow is used to warp the Iest

t−1 to the reference frame
f LR
t . The space-to-depth operation is used to map the HR warped Ĩest

t−1 to LR
and once concatenated in the channel dimension with f LR

t , they get fed to
the super resolution part. Also the recurrent architecture separates the mo-
tion estimation task from the super resolution.



Chapter 2. Methods 20

FIGURE 2.5: Recurrent baseline architecture.

2.3 Architecture variations

In this section we use the baseline feed-forward architecture as a starting
point for our experimentation. All the structures of the following architec-
tures are our design choices to improve the SOTA.

2.3.1 Warp frame features

Convolutional layers with 64 filter of size 3x3, stride 1 and a ReLU non-
linearity are added to the structure of the feed-forward baseline as shown
in Fig. 2.6 directly after each input frame. The idea of mapping an image
to a higher-dimensional space, feature space, has already been used success-
fully in the deep learning literature to address other types of problems and
it is a technique that goes by the name of Embedding (Mikolov et al., 2013).
In this case the network should learn a representation of the image that once
warped retains more high frequency information. The central frame gets also
processed by a convolutional layer, before the concatenation, to maintain the
consistency of the information that gets passed to the following layers. The
convolutional layer after the frame at time t is an optional operation that
should facilitate further the learning of the neural network.

2.3.2 Late features warping

The idea of warping features instead of the frame itself is further developed
with the modification shown in Figure 2.7.

In this case part of the structure of SRNet+ is moved before the warping
operation. This way the complexity of the model remains roughly the same
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FIGURE 2.6: Schematic architecture of our frame features warp-
ing variation.

allowing a fair comparison of performance with the baseline. In pre-SRNetA
and pre-SRNetB we look again for a different, more complex, representa-
tion of our frames that can possibly reduce the loss of information during
the warping operation. The Pre-SRNetB part of the architecture uses shared
weights for the two input frames f LR

t−1 and f LR
t+1 and it includes two residual

blocks of the original SRNet+ leaving only one to the Post-SRNet part. A sin-
gle convolutional layer, as in the case of the architecture presented in section
2.3.1, may not be sufficient for the network to learn a representation that is
useful for the problem we are trying to solve.

2.3.3 Warping in high-resolution

The warping operation performed in high-resolution should preserve more
high frequencies compared to when it is performed in low-resolution.

The architecture presented in Figure 2.8 allows first to up-sample all the
input frames in HR using a shared weights SRNet+ and only at the end the
integration of the information through motion estimation and warping. This
approach reverse the order of the two sub-tasks, first the super resolution is
performed on every frame and only after the motion estimation is calculated.
As we already pointed out previously, this strategy of up-sampling first was
used by most of the first deep learning approaches to MFSR (Kappeler et al.,
2016) but the difference in this case is that we let the network find the best
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FIGURE 2.7: Schematic architecture of our late feature warping
variation.

way to upsample the frames instead of using a pre-defined upsampling strat-
egy. The drawback of up-sampling first lies on the increased computational
cost of performing the warping, making the whole architecture much slower
compared to all the variations seen so far. There is a trade-off between the
accuracy we can achieve and the speed of the network, ideally we would like
to be able to optimize both.

2.3.4 Flow augmentation

All the architecture variations seen so far introduce some additional compo-
nents before the warping operation to manipulate the input frames. In this
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FIGURE 2.8: Schematic architecture of the warping in HR vari-
ation.

architecture variation, instead, we intervene after the warping step with the
same goal of retaining more high frequency information. In this case we gen-
erate additional optical flow estimations adding small displacement to the
calculated ones between {ILR

t−1, ILR
t } and between {ILR

t , ILR
t+1}. In particular

we add a 0.5 pixel displacement in all the components of the optical flow (dx,
dy and (dx, dy)). The architecture is depicted in Figure 2.9. We do not target
directly the warping operation as we have seen in the previous architecture
variations but we indirectly pass more information to the super resolution
part of the network.

2.3.5 Implicit motion estimation and warping

MFSR has originally been tackled as a two sub-tasks problem, motion esti-
mation and super resolution, therefore also deep learning approaches have
inherited this way of looking at the problem. All the models seen so far are in
line with this separation of tasks but we present here one example where we
move away from this scheme and we use instead what we call "implicit mo-
tion estimation and warping". The structure of the network (2.10) is derived
directly from the feed-forward baseline presented earlier where we substi-
tuted the FlowNetSD and warping steps with a single convolutional layer of
size 64 and filter of size 5 followed by a ReLU activation function. We still
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FIGURE 2.9: Schematic architecture of the flow augmentation
variation.

FIGURE 2.10: Schematic architecture of the implicit motion es-
timation and warping variation.

indicate part of the architecture as SRNet+ for consistency but we would like
to stress out that there is no more a clear distinction of tasks given that both
the optical flow calculation and the warping steps were removed.
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2.4 Dataset

Following Kappeler et al., 2016 we used the Myanmar 4K† video as the source
for our training and validation set. It is an ~8 minutes footage which contains
59 different scenes of approximately 8 seconds each. The original resolution
of the video is 3840x2160. We pre-processed the footage, using ffmpeg‡, to
split it in scenes, to transcode it to a lower resolution (960x540) and to finally
extract the frames used as the HR ground truth. We used 53 scenes as the
training set and 6 scenes as validation set for all our experiments.

The original video has changed from the one used by Kappeler et al.,
2016, it shows now a much bigger company logo on the bottom right which
deteriorates the overall performances. In our experiments, we calculate the
performances of the networks removing four pixels from each border to ac-
count for this change as already done by other authors in the literature.

2.5 Training procedure

All our experiments are performed for x4 scale factor SR. We investigated
both full frame and patch-based training. The full frame training turned out
to slow down the overall training procedure due to long loading times per
frame. We finally opted for a patch-based training for all our experiments.
The LR-HR pairs to train the models were generated online during training.
We used patches of size 272× 272 pixels. LR patches were generated apply-
ing Gaussian blur with mean µ = 0 and standard deviation σ = 1.5 to the
HR frames, selecting a random patch of size 272× 272 from the HR blurred
frame and down-scaling the patch by selecting the upper left pixel in every
square of 4× 4 pixels for a scale factor s = 4. The same patch position is used
to extract the HR patch from the HR frame. For the Gaussian blur we used
the implementation from OpenCV§.

We used batches of size 64 for the training of feed-forward models and
batches of size 16 for the training of recurrent models. The batch size dif-
fers between feed-forward and recurrent training because also the element
of a batch is different. In the case of feed-forward training, the element of
a batch consist in n LR input patches, based on the number of inputs of the
model, and one HR target patch (the one we referred as central or reference
†https://www.harmonicinc.com/4k-demo-footage-download/
‡http://ffmpeg.org/
§https://opencv.org

https://www.harmonicinc.com/4k-demo-footage-download/
http://ffmpeg.org/
https://opencv.org
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frame/patch, the only one that gets super resolved). In the recurrent case, in-
stead, the element of a batch consists in ten LR patches and nine HR patches
which form a sequence.

The training procedure for both feed-forward and recurrent models ini-
tializes the network using the Xavier initialization (Glorot and Bengio, 2010),
uses the Adam optimizer (Kingma and Lei Ba, 2014) with a fixed learning
rate of 10−4 and the mean squared error (MSE) as the loss function.

2.6 Performance comparison metrics

In order to measure the performance in our experiments we used the peak
signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) image
similarity tests which are the most widely adopted metrics in SR literature.
They have been shown to compare poorly with human perceived quality of
an image or a video but they allow us to benchmark our performance with
the rest of the literature.

2.6.1 Peak signal-to-noise ratio

The peak signal-to-noise (PSNR) ratio is calculated as follow:

PSNR = 10 log10

(
R2

MSE

)
where MSE is the mean square error between the two images

MSE =
∑M,N[I1(m, n)− I2(m, n)]2

M ∗ N

and R is the maximum allowed value in the images (e.g 1 or 255).

2.6.2 Structural similarity index

The structural similarity index (SSIM) is a more complex image similarity test
compared to the PSNR and it was invented as a replacement for the PSNR
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itself. It takes into account three different factors of the compared images: lu-
minance, contrast and structure. The overall formula is a weighted combina-
tion of the three factors and for weights equal to 1, it looks like the following:

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

where µx and µy, σx and σy, and σxy are respectively the averages, the vari-
ances and the covariance of the compared images. C1 and C2 are constants to
stabilize the division.
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Chapter 3

Results

In this chapter we present the results of the experiments carried out to an-
swer the research questions outlined in Chapter 1. Please note that most of
the details about implementation and training procedures are specified in
Chapter 2.

3.1 Feed-forward vs. recurrent architecture

The first experiments serve to validate that we can replicate some of the state-
of-the-art results seen in the literature in order to have a reference for the
following experiments. We investigate here two different types of architec-
ture, an encoder-decoder like feed-forward architecture described in more
details in section 2.2.1 and our implementation of the recurrent framework
proposed by Sajjadi, Vemulapalli, and Brown, 2018, which we identified as
the best performing approach in VSR at the time of our literature review,
described in section 2.2.2.

3.1.1 Comparison with literature

The nature of the dataset, a sequence of frames, usually implies, in the deep
learning literature, the use of a recurrent model as the best performing archi-
tecture. Therefore we want to validate if this hypothesis holds also for VSR
and understand eventually why one approach is superior to the other.

We mimicked, with the information available, the training procedure by
Sajjadi, Vemulapalli, and Brown, 2018 but unfortunately, at the time of our
experiments, the authors had not released yet their training set. We decided
to use instead another standard dataset, the Myanmar4K, with the training
and validation split specified in Chapter 2. We trained both architectures
until convergence. Note that the training time for these experiments was
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longer than in other experiments because we wanted to achieve comparable
results to the one published in the literature.

FIGURE 3.1: Evolution of the feed-forward and recurrent archi-
tectures PSNR values in decibels (dB), during training, on the

Myanmar4K validation set.

Figure 3.1 illustrates how the PSNR evolves in every epoch on the Myan-
mar4K validation set. The feedforward architecture was trained for ~80K
iterations with a batch size of 64 while the recurrent architecture was trained
for ~110k iterations with a batch size of 16. The two networks have compa-
rable performances and ultimately converge to similar PSNR values.

City Calendar Walk Foliage Total avg.
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Feed-forward 26.77 0.75 22.32 0.73 28.45 0.87 25.34 0.72 25.72 0.77
Recurrent 26.83 0.75 22.58 0.74 28.58 0.87 25.50 0.73 25.87 0.77

TABLE 3.1: Feed-forward vs. recurrent architecture PSNRs on
VideoSet4 for scaling factor 4.

In Table 3.1 we report the average PSNR and SSIM for each video of the
VideoSet4 test set and the total average. Again the performances of the two
networks are similar, which is in line with what we observed before on the
validation set.

Table 3.2 compares instead our results with what reported by Sajjadi,
Vemulapalli, and Brown, 2018. We do not use any other results from the
literature in our comparison because we noticed a difference in the down-
sampling procedure (more on the topic in the Discussion section 4). Both our
feedforward and recurrent architectures achieve results well in line with the



Chapter 3. Results 30

Method Bicubic SISR 10-128 VSR 10-128 FRVSR 3-64 Ours feedforward Our recurrent
PSNR 23.53 24.96 26.25 26.17 25.72 25.87
SSIM 0.62 0.72 0.80 0.79 0.77 0.77

TABLE 3.2: SISR 10-128, VSR 10-128, FRVSR 3-64 PSNR and
SSIM values are copied directly from Sajjadi, Vemulapalli, and
Brown, 2018. 10-128 and 3-64 refers to (# residual blocks)-(#
features convolutional layer). The SISR is a single image super
resolution network, the VSR is a more complex model of our
feed-forward architecture and the FRVSR is an implementation

of the recurrent framework we used.

FRVSR 3-64 model, which is the most fair competitor based on the complex-
ity of our models.

3.1.2 Temporal behaviour

The quantitative and qualitative difference between the two types of archi-
tecture does not seem to be so obvious so far. Therefore to gain a deeper
understanding of the behaviour of the two networks over time, we plot in
Fig. 3.2 the PSNR for each frame of every video of the VideoSet4 test set.

The recurrent architecture (3.2b) takes approximately three frames, on av-
erage, to match the performances of the feed-forward one (3.2a). This phe-
nomenon is explained by the type of initialization of the recurrent architec-
ture. The recurrent state, in this case an HR estimate of the frame at step t− 1,
which contains all the past information, gets initialized as a black image.
Therefore the recurrent architecture needs some time steps to accumulate
past information which explains the lower PSNR in the first frames. Another
important thing to notice is that the recurrent architecture, once matched the
performances of the feed-forward one, maintains a more stable PSNR over
time. Particularly from the test sequence "city" in fig. 3.2 we can see this sta-
bility which suggests that the recurrent architecture is exploiting its ability to
use information from more distant frames in the past.

3.1.3 The role of using multiple frames

The temporal behaviour of the recurrent and the feed-forward architectures
gave us already some insights on how the structure of the network affects
the way the frames are processed. The recurrent architecture takes a certain
amount of time steps to match the performances of the feed-forward one, in
this phase there is an increase in the PSNR value. The number of time steps
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(A) Feed-forward

(B) Recurrent

FIGURE 3.2: PSNR of reconstructed images as a function of
frame index for each single video frame of VideoSet4 test set.
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tells us also, approximately, the number of frames the recurrent architecture
is able to use for the HR frame generation.

In this section we carry out an analysis to understand the importance of
using multiple frames and we look at how many input frames are most ben-
eficial to use in the feed-forward case.

First of all, we run the feed-forward architecture on three identical input
frames, which corresponds to a special case of SFSR because there is no infor-
mation coming from the neighboring frames, to check the advantage of using
a multi-frame approach. We refer to this feed-forward architecture with three
identical input frames as "Special SFSR". In another experiment we run the
feed-forward architecture using five input frames instead of three to see if
we have an increase in performance. We refer to this architecture as "Feed-
forward 5" opposed to the feed-forward baseline of section 3.1.1 that we refer
as "Feed-forward 3". Both experiments were trained for the same number of
iterations (~80K) and reached full convergence as the feed-forward baseline.

City Calendar Walk Foliage Total avg.
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Special SFSR 25.22 0.64 21.06 0.65 26.04 0.82 23.58 0.62 23.97 0.68
Feed-forward 3 26.77 0.75 22.32 0.73 28.45 0.87 25.34 0.72 25.72 0.77
Feed-forward 5 26.89 0.75 22.51 0.74 28.44 0.87 25.32 0.72 25.79 0.77

TABLE 3.3: Special SFSR (three identical input frames), Feefor-
ward 3 (feedforward baseline seen previously) and Feedfor-
ward 5 (feedforward baseline with 5 input frames) architecture

PSNRs on VideoSet4 for scaling factor 4.

Table 3.3 compares their PSNR and SSIM values on VideoSet4 test set.
The ~2 dB difference in PSNR between the Feed-forward 3 and Special SFSR
demonstrates the advantage of using a multi-frame approach. There are
indeed more information in neighbouring frames that the network can ex-
ploit to make a better estimation. This comes with no surprise because other
authors (e.g. Makansi, Ilg, and Brox, 2017) in the literature have already
proved those benefits. The comparison between the Feed-forward 3 and
Feed-forward 5 proves, instead, that the feed-forward architecture obtains
a negligible improvement in using more than 3 frames as input. This result
is not generalizable for every situation because it depends on the video we
are using for testing but it can explain the little difference found between a
recurrent and feed-forward structure. Furthermore a similar result was al-
ready reported by Kappeler et al., 2016 on the Myanmar4k dataset. From the
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previous analysis we can conclude that the recurrent architecture as the Feed-
forward 5 can not integrate information from more than 3 frames therefore
losing its advantage.

3.2 Impact of warping

In chapter 1 we introduced already the concept of warping. This transfor-
mation performs a low-pass filtering (or smoothing) on the resulting image
which suppress high-frequency information. Why is it an important aspect to
consider in our case? The baseline architectures, explained in chapter 2, both
make use of the warping operator to align previous and future frames to the
one taken as reference (frame at time t) which gets super resolved. Motion
estimation in combination with the warping operation allow the network to
work with additional information. Unfortunately warping also causes most
of the high frequencies to get lost and our attempt of a more detailed re-
construction vanishes together with the advantage of using a multi-frame
approach.

3.2.1 Mitigate the effect of warping

Previously we investigated the difference between a recurrent and a feed-
forward architecture without finding supportive arguments for one or the
other. In this section we decide to use a feed-forward structure because we
think that it does not affect the final outcome of the experiments. Our hy-
pothesis is that new findings can be applied interchangeably between the
two types of architecture, without loss of generality. Our intervention affects
only the common operation of warping which is not specifically connected
to the particular structure of the network. The advantage, in this case, lies on
the shorter training time per experiment of the feed-forward architecture. To
further reduce the time per experiment we trained each instance until close
to convergence which demonstrated to be enough to draw our conclusions.

In this series of experiments we investigate if the presumed negative ef-
fect of the warping operation can be reduced such that it can have a positive
impact on the performance of the VSR architecture. We explore some varia-
tions of the feed-forward baseline (2.2.1). The architecture variations Feature
Warp (2.3.1), Late Warp (2.3.2) and Warp in HR (2.3.3) are all based on the
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same idea, embedding. Embedding, in this case, can be explained as map-
ping the input frames to an higher dimensional feature space using, a single
convolutional layer, as in the case of Feature Warp or with, more layers, as in
the case of Late Warp and Warp in HR, before performing the warping oper-
ation. The network should learn ideally high-dimensional features that gets
affected less by the negative effect of warping. The variation Flow augmenta-
tion (2.3.4), feeds, instead, additional warped frames to the super resolution
part of the network, adding small displacement to the calculated motion be-
tween input frames. For more details about each architecture variation please
refer to chapter 2 under the Architecture variations section.

FIGURE 3.3: Architecture variations PSNR values during train-
ing on Myanmar4k validation set.

In figure 3.3 we show the evolution of the PSNR on the Myanmar4k val-
idation set. The PSNR difference (in dB) among the different approaches
looks stable at the end of the graph, suggesting that none of these variations
seem to bring substantial improvements over the baseline architecture. The
shorter training time does not seem to influence the previous conclusion.

City Calendar Walk Foliage Total avg.
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Baseline 26.56 0.73 22.12 0.72 28.33 0.86 25.27 0.71 25.57 0.76
Feature warp 26.39 0.72 21.89 0.70 28.15 0.86 25.01 0.69 25.36 0.74
Late feature 26.52 0.73 22.12 0.72 28.30 0.86 25.24 0.71 25.55 0.76
Warp in HR 26.05 0.70 21.56 0.68 27.75 0.85 24.56 0.67 24.98 0.72
Flow augmentation 26.10 0.70 21.42 0.66 27.49 0.84 24.65 0.68 24.92 0.72

TABLE 3.4: Baseline 2.2.1, Feature warp 2.3.1, Late warp 2.3.2,
Warp in HR 2.3.3 and Flow augmentation 2.3.4 PSNR and SSIM

values for single VideoSet4 videos and total average.
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The results on VideoSet4, which are shown in Table 3.4, further validate
the point. We also run a similar analysis to the one in Figure 3.2 to observe if
there is any noticeable difference in the behaviour over time of every varia-
tion but we did not find any substantial difference and therefore we decided
to not report this analysis.

3.2.2 Implicit vs. explicit motion estimation

So far we learned that mapping the input frames to a new representation
before the warping step or passing more warped frames to the super reso-
lution part of the network does not help in improving the performance of
the feed-forward baseline. We continue our investigation on the impact of
warping considering what would happen if we stop treating the problem of
VSR as a two sub-tasks problems, the motion estimation and the super reso-
lution. This last way of looking at the problem derives from the traditional
approach to VSR. The advantage of letting the neural network figure out the
best way to use the information inherent in neighboring frames allows us to
drop completely the need of an explicit warping step. The architecture with
an implicit motion estimation is explained in details in section 2.3.5 and we
refer here as "No Flow". It resembles the feed-forward baseline but where
we removed the FlowNet-SD plus warping in favor of a single convolutional
layer. Table 3.5 shows a PSNR comparison with the feed-forward baseline

City Calendar Walk Foliage Total avg.
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Baseline 26.56 0.73 22.12 0.72 28.33 0.86 25.27 0.71 25.57 0.76
No Flow 26.34 0.72 21.78 0.69 28.04 0.86 25.01 0.70 25.29 0.74

TABLE 3.5: PSNR values of the feed-forward baseline 2.2.1 and
the implicit motion estimation network 2.2.2 for VideoSet4 test

set.

on the VideoSet4 test set. We find no substantial difference between the two
architectures which suggests that the convolutional layer substituting the ex-
plicit motion estimation is a feasible alternative for the explicit motion esti-
mation.

In order to further validate these findings we run another analysis which
looks at the performances of the two architectures when neighboring frames
further in time gets fed to the networks at test time. We expect the network
using the implicit motion estimation to be able to cope also with this situa-
tion, confirming the possibility to safely substitute the explicit motion esti-
mation part. In particular we feed the two networks with frames one, two
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and three time steps further apart at test time. This analysis should insure
that the previous results are not based only on the fact that in the test set
video there is no large motion which can be handled also by simpler implicit
motion estimation models.

City Calendar Walk Foliage Total avg.
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Baseline 1 26.16 0.70 21.98 0.70 28.33 0.86 24.63 0.67 25.16 0.73
No Flow 1 26.06 0.69 21.73 0.69 27.73 0.85 24.51 0.66 25.01 0.72
Baseline 2 25.73 0.67 21.67 0.68 27.60 0.85 24.39 0.65 24.85 0.71
No Flow 2 25.72 0.67 21.53 0.67 27.55 0.85 24.27 0.65 24.77 0.71
Baseline 3 25.42 0.65 21.40 0.66 27.49 0.85 24.30 0.65 24.65 0.70
No Flow 3 25.47 0.65 21.32 0.66 27.47 0.84 24.23 0.64 24.62 0.70

TABLE 3.6: Feed-forward baseline 2.2.1 and No Flow implicit
motion estimation network 2.3.5 PSNR values using VideoSet4
input frames 1 (Baseline 1, No Flow 1), 2 (Baseline 2, No Flow

2) and 3 (Baseline 3, No Flow 3) time steps apart.

The results are shown in Table 3.6. It looks that what already observed
before still holds also for this new analysis confirming that an implicit motion
estimation can achieve performances comparable to the explicit one.

3.3 Additional Gaussian noise variation

After a critical analysis of the state-of-the-art results with a feed-forward ver-
sus recurrent comparison, a look at potential downsides of using the warping
operation with some architecture variations and, the possibility to treat the
VSR problem as single task problem with implicit motion estimation we now
turn our attention to the real world.

So far we have adopted the image observation model from Sajjadi, Vem-
ulapalli, and Brown, 2018 which, as said before, closely resemble one of the
simplest models used also by TNO, to be able to compare our results and
findings. In this last section we go one step further and we match com-
pletely an image observation model used at TNO substituting the simple
down-sampling, first pixel value in every four pixels square in the case of
x4 scale factor, with an average pooling, the average among sixteen pixels is
taken in the case of x4 scale factor (more detailed information can be found in
Chapter 2). The average pooling down-sampling best resemble a simulation
of the physical world for the type of applications TNO is interested in. We
decided to change the image observation model for these last experiments
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because we are interested in understanding the robustness of the two types
of architecture to noise for real-world applications.

We trained the feed-forward 2.2.1 and recurrent 2.2.2 models for ~80K
iterations adding random Gaussian noise with a standard deviation in the
interval σ = [0.00, 0.05] to the input frames.

σ = 0 σ = 0.01 σ = 0.03 σ = 0.05
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Feed-forward NV 24.96 0.71 24.86 0.70 24.42 0.67 23.94 0.63
Feed-forward w\o NV 25.57 0.76 25.36 0.74 24.25 0.64 22.87 0.54
Recurrent NV 25.07 0.72 24.96 0.71 24.44 0.67 23.90 0.63
Recurrent w\o NV 25.53 0.75 25.26 0.73 24.08 0.62 22.75 0.53

TABLE 3.7: Feed-forward vs. recurrent architecture PSNRs on
VideoSet4 for different noise levels.

Table 3.7 reports the PSNR values of four noise levels applied to the VideoSet4
test set for both architecture structures trained with and without the noise
variation. Again there is no substantial difference between the feedforward
and the recurrent architecture and, as expected, when the level of noise in-
creases the models trained with the noise variation perform better than the
models trained without.
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Chapter 4

Discussion

Based on the research questions posed in Chapter 1 and with the intuitions
and results built in Chapter 3 we reflect critically on our design decisions and
what can be eventually improved for future research on the subject.

4.1 State of the art

The first topic we are going to cover does not only concern our results but it
is a more general observation on the VSR literature which uses deep learning
methodologies.

As we pointed out already in different part of the text, based on our lit-
erature study, we believe the current SOTA architecture in VSR is the one
proposed by Sajjadi, Vemulapalli, and Brown, 2018, the one we based most
of our research on. We chose to use this paper also for the type of image
observation model selected by the authors which is the only one resembling
the image observation model developed within this research project. The
image observation model is a key element for the comparability of the re-
sults among different research papers and it generally determines the appli-
cation(s) the VSR system is targeting. In most of the papers we reviewed, we
noticed that the target application(s) of the paper is not always clear which
in turn results in a heterogeneity in the image observation models used. This
heterogeneity, which is proved also by the bicubic PSNR value reported by
different authors that can differ by ~0.5 dB on the same test set, leads to an
impossibility to compare results and determine a unique SOTA in the field.
Therefore we find difficult to insert our research results in the context of the
deep learning VSR literature as a whole which explains why we made com-
parison only with the paper from Sajjadi, Vemulapalli, and Brown, 2018. We
believe that, in order to facilitate the comparison of the results from different
papers, it is extremely important to create a challenge or a pipeline similar to
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the one that has been created in SFSR∗. In this challenge there are different
tracks that define the dataset, the type of image observation model used to
create the dataset and the particular implementation and parameters used
for the image observation model components (i.e. Matlab imresize).

In addition, as briefly mentioned already in Chapter 2, the image simi-
larity metrics (PSNR and SSIM), widely adopted in the literature to compare
the different VSR approaches, fail to capture the human perceived quality
of the images. In the particular case of VSR, these similarity metrics do not
give any insight on the temporal dimension of the results treating the videos
as separate frames. Furthermore, the quantitative difference between two
images, calculated using the previously mentioned image similarity metrics,
does not allow to make clear and meaningful conclusions. What does a dif-
ference in PSNR between two images (or frames) of 0.1 dB compared to one
of 0.3 dB tell us? When is a difference in PSNR substantial or significant for
a real added value in the final image reconstruction?

Too often in our literature review we noticed claims of SOTA results with-
out any statistical significant tests but solely based on small quantitative dif-
ference in PSNR or SSIM. We believe it is important to come up with an image
or video similarity metric which can address all these problems and which
allows a more transparent comparison.

4.2 Feed-forward vs recurrent

The framework presented by Sajjadi, Vemulapalli, and Brown, 2018 is one of
the few examples in VSR using a recurrent approach. In our investigation
of Section 3.1 we used the framework as inspiration for our recurrent archi-
tecture and we compared it with a feed-forward architecture of similar com-
plexity. We did not find any benefits in using a recurrent approach other than
a slightly more stable PSNR value which, ultimately, did not translate in bet-
ter performance as otherwise reported by Sajjadi, Vemulapalli, and Brown,
2018. The causes of the recurrent architecture not standing out against the
feed-forward one can be related to different factors.

First, the complexity of the models we used. Sajjadi, Vemulapalli, and
Brown, 2018 do not report the performance of their smaller baseline feed-
forward model (3 residual blocks, convolutional layers of size 64) but they
state that a more complex model is beneficial for the recurrent architecture.
We decided not to use more complex models in the interest of time so, we

∗NTIRE2018

http://www.vision.ee.ethz.ch/ntire18/
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can only conclude that the model complexity we used (3 residual blocks and
convolutional layers of size 64) was not enough to see substantial difference
between the two architecture structures.

Second, the analysis we made about the importance of using multiple
frames (section 3.1.3) revealed that the use of five frames in the case of the
feed-forward architecture did not show to improve substantially the perfor-
mance. The maximum number of frames containing relevant information
for the final HR reconstruction on the test set used, can explain the lack of
difference between the two models. Unfortunately this last finding contrast
slightly with some of the findings from Sajjadi, Vemulapalli, and Brown, 2018
where for more complex models they indeed see a difference in performance
between the two structures. The hypothesis we made in this case is that
a more complex model should be able to process information from more
frames.

Finally, as we pointed out in the Chapter 3, we could not use exactly the
same training set as the original paper because at the time of our experiments
the author had not yet published the list of video used as training set. The
difference in training sets is the least probable cause of failure but it is worth
noting because it is also, probably, related to the overall lower performance
achieved by both our architectures compared to the original paper.

4.3 Warping

TNO expertise in traditional super resolution guided the exploration of the
potential negative effects of the warping operation. It is known from digi-
tal image processing theory that the warping operation applies a low-pass
filter to the warped image which suppress some of the high frequencies in
the image. In order to overcome this problem we looked at ways that could
potentially alleviate this effect hoping to retain more high frequency infor-
mation which, in turn, translate to a more detailed HR reconstruction. Un-
fortunately all the architecture variations we tried did not show to improve
the overall performance of the feed-forward model both quantitatively and
qualitatively which suggest that the warping operation may not be a prob-
lem. Our hypothesis is that the neural network is treating the problem of
VSR in a fundamental different way compared to a traditional approach, the
neural network is trying to reconstruct structures while a more traditional
approach focus on reconstructing a signal. This hypothesis is also backed up
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by our analysis on the implicit versus explicit motion estimation and warp-
ing. The comparison looked at the possibility of treating the problem as a
single problem instead of dividing it in two different sub-tasks, motion es-
timation and super resolution, as done in traditional VSR. The model using
the implicit motion estimation and warping proved to be a valid alternative
to the one using an explicit motion estimation also in the challenging case of
input frames further apart in time. These findings can explain the negative
outcome of our architecture variations for the warping operation and they
can go as far as telling us that we should let the neural network figure out
the best way of solving the problem without forcing a task separation in its
structure.

4.4 Real world applications

Our last analysis looked at how to align the image observation model to the
one used for simulation of real-world application at TNO. We replaced the
type of down-sampling used, we trained both the feed-forward and the re-
current model adding random noise to input frames and we compared them
with models without noise variation. We found again no substantial dif-
ference between the two types of architecture. The models trained with the
noise variation proved to be more robust to noise at test time, as expected. We
thought the recurrent model would prove to be more robust, averaging out
the noise using information from more frames but it was not the case. This
finding partially confirm the fact that the recurrent architecture is not able to
use information from more than three frames therefore losing its advantage
against the feed-forward one and performing on par.
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Chapter 5

Conclusions

The research project started with a clear and ambitious goal, improve the
current state-of-the-art in video super resolution. Video super resolution has
been studied since the 80s and many progresses have been achieved so far
especially with the recent advent of deep learning techniques. Super resolu-
tion and in particular video super resolution still remains a very challenging
problem also due to its ill-posed nature. Many applications can potentially
benefit from improvements in SR techniques therefore it is important to keep
on pushing the boundaries of the field.

Along the way we reviewed the literature on VSR using deep learning
techniques, we identified potential elements for improvement and we tested
our hypothesis after partially reproducing some of the SOTA results. These
are some of our contributions:

• In the baselines analysis, we compared a feed-forward and a recurrent
architecture both based on the best performing networks in the liter-
ature and we did not find any substantial difference between the two
structures.

• Using the feed-forward architecture as baseline, we came up with sev-
eral architecture variations to investigate the impact of warping on per-
formance. All our architecture variations turned out to not improve the
performance compared to the baseline.

• Traditional VSR techniques approached the problem by dividing it in
two sub-tasks: motion estimation and super resolution. We showed
that deep learning techniques perform equally well without the need
of sub-tasks division.

• Finally, given the collaboration with TNO for this thesis, we looked
into more realistic image observation models and we proved the better
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robustness to noisy environment of networks trained with noise varia-
tion.
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Appendix A

Qualitative comparison VideoSet4
test set

For this qualitative comparison on the VideoSet4 test set we take only our
best performing approach which corresponds to the recurrent architecture of
Section 2.2.2 referred as "Ours". The other two sample images shown corre-
spond to a bicubic upsampling (using Matlab imresize) and the original HR
frame.

(A) Bicubic (B) Ours

(C) Original

FIGURE A.1: The VideoSet4 sequence Calendar.
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(A) Bicubic (B) Ours

(C) Original

FIGURE A.2: The VideoSet4 sequence City.
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(A) Bicubic (B) Ours

(C) original

FIGURE A.3: The VideoSet4 sequence Foliage.

(A) Bicubic (B) Ours

(C) Original

FIGURE A.4: The VideoSet4 sequence Calendar.
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