
Atmos. Chem. Phys., 20, 1795–1816, 2020
https://doi.org/10.5194/acp-20-1795-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Uncertainty analysis of a European high-resolution
emission inventory of CO2 and CO to support inverse
modelling and network design
Ingrid Super, Stijn N. C. Dellaert, Antoon J. H. Visschedijk, and Hugo A. C. Denier van der Gon
Department of Climate, Air and Sustainability, TNO, P.O. Box 80015, 3508 TA Utrecht, the Netherlands

Correspondence: Ingrid Super (ingrid.super@tno.nl)

Received: 1 August 2019 – Discussion started: 25 September 2019
Revised: 14 January 2020 – Accepted: 16 January 2020 – Published: 14 February 2020

Abstract. Quantification of greenhouse gas emissions is re-
ceiving a lot of attention because of its relevance for cli-
mate mitigation. Complementary to official reported bottom-
up emission inventories, quantification can be done with an
inverse modelling framework, combining atmospheric trans-
port models, prior gridded emission inventories and a net-
work of atmospheric observations to optimize the emission
inventories. An important aspect of such a method is a cor-
rect quantification of the uncertainties in all aspects of the
modelling framework. The uncertainties in gridded emission
inventories are, however, not systematically analysed. In this
work, a statistically coherent method is used to quantify the
uncertainties in a high-resolution gridded emission inventory
of CO2 and CO for Europe. We perform a range of Monte
Carlo simulations to determine the effect of uncertainties
in different inventory components, including the spatial and
temporal distribution, on the uncertainty in total emissions
and the resulting atmospheric mixing ratios. We find that the
uncertainties in the total emissions for the selected domain
are 1 % for CO2 and 6 % for CO. Introducing spatial disag-
gregation causes a significant increase in the uncertainty of
up to 40 % for CO2 and 70 % for CO for specific grid cells.
Using gridded uncertainties, specific regions can be defined
that have the largest uncertainty in emissions and are thus an
interesting target for inverse modellers. However, the largest
sectors are usually the best-constrained ones (low relative un-
certainty), so the absolute uncertainty is the best indicator
for this. With this knowledge, areas can be identified that are
most sensitive to the largest emission uncertainties, which
supports network design.

1 Introduction

Carbon dioxide (CO2) is the most abundant greenhouse gas
and is emitted in large quantities from human activities, es-
pecially from the burning of fossil fuels (Berner, 2003). A
reliable inventory of fossil fuel CO2 (FFCO2) emissions is
important to increase our understanding of the carbon cycle
and how the global climate will develop in the future. The im-
pact of CO2 emissions is visible on a global scale and inter-
national efforts are required to mitigate climate change, but
cities are the largest contributors to FFCO2 emissions (about
70 %, IEA, 2008). Therefore, emissions should be studied at
different spatial and temporal scales to get a full understand-
ing of their variability and mitigation potential.

One way of describing emissions is an emission inven-
tory, which is a structured set of emission data, distinguishing
different pollutants and source categories. Often, emission
inventories are based on reported emission data, for exam-
ple, from the National Inventory Reports (NIRs) (UNFCCC,
2019), which are national, yearly emissions based on energy
statistics. These country-level emissions can be spatially and
temporally disaggregated (scaled-down) to a certain level us-
ing proxies (e.g. the inventories of the Netherlands Organ-
isation for Applied Scientific Research (TNO); Denier van
der Gon et al., 2017; Kuenen et al., 2014). Other emission
inventories are based on local energy consumption data and
reported emissions, which are (dis)aggregated to the required
spatial scale (e.g. Hestia, Gurney et al., 2011, 2019) or rely on
(global) statistical data and a consistent set of (non-country-
specific) emission factors representing different technology
levels, e.g. Emissions Database for Global Atmospheric Re-
search (EDGAR) (http://edgar.jrc.ec.europa.eu, last access:
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6 May 2019). Most inventories, including the one used in this
study, rely on a combination of methods, using large-scale
data supplemented with local data. Gridded emission inven-
tories are essential as input for atmospheric transport models
to facilitate comparison with observations of CO2 concentra-
tions, as well as in inverse modelling as a prior estimate of
the emission locations and magnitude.

During the compilation of an emission inventory, uncer-
tainties are introduced at different levels (e.g. magnitude,
timing or locations), and increasingly more attention is given
to this topic. Parties of the United Nations Framework Con-
vention on Climate Change (UNFCCC) report their annual
emissions (disaggregated over source sectors and fuel types)
in a NIR (UNFCCC, 2019), which includes an assessment
of the uncertainties in the underlying data and an analysis of
the uncertainties in the total emissions following IPCC (In-
tergovernmental Panel on Climate Change) guidelines. The
simplest uncertainty analysis is based on simple equations
for combining uncertainties from different sources (Tier 1 ap-
proach). A more advanced approach is a Monte Carlo simu-
lation, which allows for non-normal uncertainty distributions
(Tier 2 approach). The Tier 2 approach has been used by sev-
eral countries, for example, Finland (Monni et al., 2004) and
Denmark (Fauser et al., 2011).

These reports provide a good first step in quantifying emis-
sion uncertainties, but the uncertainty introduced by using
proxies for spatial and temporal disaggregation is not consid-
ered. These are, however, an important source of uncertainty
in the gridded emission inventories (Andres et al., 2016). In-
verse modelling studies are increasingly focusing on urban
areas, the main source areas of FFCO2 emissions, for which
emission inventories with a high spatiotemporal resolution
are used to better represent the variability in local emissions
affecting local concentration measurements. Understanding
the uncertainty at higher resolution than the country level is
thus necessary, which means that the uncertainty caused by
spatiotemporal disaggregation becomes important as well.

The uncertainties in emission inventories are important
to understand for several reasons. First, knowledge of un-
certainties helps to pinpoint emission sources or areas that
require more scrutiny (Monni et al., 2004; Palmer et al.,
2018). Second, knowledge of uncertainties in prior emission
estimates is an important part of inverse modelling frame-
works, which can be used for emission verification and in
support of decision-making (Andres et al., 2014). For ex-
ample, if uncertainties are not properly considered, there is
a risk that the uncertainty range does not contain the ac-
tual emission value. In contrast, if uncertainties are overes-
timated, the initial emission inventory gives little informa-
tion about the actual emissions and more independent ob-
servations are needed. Third, local inverse modelling studies
often rely on daytime (12:00–16:00 LT) observations, which
are easier to simulate. Given the small size of the urban do-
main, these observations only contain information on recent
emissions, which have to be extrapolated using temporal pro-

files to calculate annual emissions. Therefore, knowledge of
uncertainties in temporal profiles helps to better quantify the
uncertainty in these annual emissions. Finally, emission un-
certainties can support atmospheric observation system de-
sign, for example, for inverse modelling studies. An ensem-
ble of model runs can represent the spread in atmospheric
concentration fields due to the uncertainty in emissions. Lo-
cations with a large spread in atmospheric concentrations are
most sensitive to uncertainties in the emission inventory and
are preferential locations for additional atmospheric mea-
surements. To conclude, emission uncertainties are a criti-
cal part of emission verification systems and require more
attention. To better understand how uncertainties in underly-
ing data affect the overall uncertainty in gridded emissions,
a family of 10 emission inventories is compiled within the
CO2 Human Emissions (CHE) project, which is funded by
the Horizon 2020 EU Research and Innovation programme
(see data availability). The methodology used to create this
family of emission inventories also forms the basis for the
work described here.

In this paper, we illustrate a statistically coherent method
to assess the uncertainties in a high-resolution emission in-
ventory, including uncertainties resulting from spatiotempo-
ral disaggregation. For this purpose, we use a Monte Carlo
simulation to propagate uncertainties in underlying param-
eters into the total uncertainty in emissions (like the Tier 2
approach). We illustrate our methodology using a new high-
resolution emission inventory for a European region centred
over the Netherlands and Germany (Table 1, Fig. 1). We illus-
trate the magnitude of the uncertainties in emissions and how
this affects simulated concentrations. The research questions
are as follows:

1. How large are uncertainties in total inventory emissions,
and how does this differ per sector and country?

2. How do uncertainties in spatial proxy maps affect local
measurements?

3. How important is the uncertainty in temporal profiles
for the calculation of annual emissions from daytime
(12:00–16:00 LT) emissions, which result from urban
inverse modelling studies using only daytime observa-
tions?

4. What information can we gain from high-resolution
gridded uncertainty maps by comparing different re-
gions?

Inverse modelling studies often focus on a single species
like CO2, but co-emitted species are increasingly included to
allow source apportionment (Boschetti et al., 2018; Zheng et
al., 2019). In this study, we look into CO2 and CO to illus-
trate our methodology, but the methodology can be applied
to other (co-emitted) species.
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Figure 1. Total emissions of CO2 and CO, road traffic (gasoline) emissions of CO2 and other stationary combustion emissions of CO for
2015 in kt yr−1 (defined per grid cell).

Table 1. Characteristics of the high-resolution emission inventory
TNO GHGco v1.1 containing fossil fuel (FF) and biofuel (BF)
emissions.

Air pollutants FFCO, BFCO, NOx

Greenhouse gases FFCO2, BFCO2, CH4

Resolution 1/60◦ longitude× 1/120◦ latitude
(∼ 1× 1 km over central Europe)

Period covered 2015 (annual emissions)

Domain 47–56◦ N, −2◦W–19◦ E

Sector aggregation GNFR (A to L), with GNFR F
(road transport) split in F1 to F4
(total 16 sectors)

Countries Complete: Germany, the
Netherlands, Belgium,
Luxembourg, Czech Republic;
partially: United Kingdom, France,
Denmark, Austria, Poland,
Switzerland, Italy, Slovakia
and Hungary

2 Methodology

2.1 The high-resolution emission inventory

The basis of this study is a high-resolution emission inven-
tory for the greenhouse gases CO2 and CH4 and the co-
emitted tracers CO and NOx for the year 2015 (TNO GHGco
v1.0; see details in Table 1). In this paper, we only use CO2
and CO, which are divided into fossil fuel (FF) and biofuel
(BF) emissions (no land use and land use change emissions
are included). The emission inventory covers a domain over
Europe, including Germany, Netherlands, Belgium, Luxem-
bourg and the Czech Republic, and parts of Great Britain,
France, Denmark, Austria and Poland (see also Fig. 1).

The emission inventory is based on the reported emis-
sions by European countries to the UNFCCC (only green-
house gases) and to EMEP/CEIP (European Monitoring
and Evaluation Programme/Centre on Emission Inventories
and Projections, only air pollutants). UNFCCC CO2 emis-
sions have been aggregated to ∼ 250 different combina-
tions of Nomenclature For Reporting (NFR) sectors and fuel
types. EMEP/CEIP CO emissions have been split over the
same NFR sector–fuel type combinations by TNO using the
GAINS model (Amann et al., 2011) and/or TNO data. In
some cases, the reported data were gap filled or replaced
with emissions from the GAINS model, EDGAR inventory
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Table 2. Overview of aggregated NFR (GNFR) sectors distin-
guished in the emission inventory.

GNFR category GNFR category name

A A_PublicPower
B B_Industry
C C_OtherStationaryComb
D D_Fugitives
E E_Solvents
F F_RoadTransport

F1 F_RoadTransport_exhaust_gasoline
F2 F_RoadTransport_exhaust_diesel
F3 F_RoadTransport_exhaust_LPG_gas
F4 F_RoadTransport_non-exhaust

G G_Shipping
H H_Aviation
I I_OffRoad
J J_Waste
K K_AgriLivestock
L L_AgriOther

or internal TNO estimates to obtain a consistent dataset.
Next, each NFR sector is linked to a high-resolution proxy
map (e.g. population density for residential combustion of
fossil fuels or AIS (Automatic Identification System) data
for shipping regridded to 1/60◦× 1/120◦), which is used to
spatially disaggregate the reported country-level emissions.
Where possible, the exact location and reported emission of
large point sources are used (e.g. from the European Pollu-
tant Release and Transfer Register; E-PRTR). The third step
is temporal disaggregation, for which standard temporal pro-
files are used (Denier van der Gon et al., 2011). Finally, the
emissions are aggregated to GNFR (gridded NFR) sectors
(see Table 2) for the emission inventory. The final emission
maps of CO2 and CO are shown in Fig. 1, together with two
examples of a source sector map. Note that these maps do not
clearly show the large point source emissions, while these
make up almost 45 % of all CO2 emissions and 26 % of all
CO emissions.

2.2 Uncertainties in parameters

The emission inventory is used as basis for an uncertainty
analysis by assigning an uncertainty to each parameter under-
lying the UNFCCC-EMEP/CEIP emission inventories and
further disaggregation thereof. Although the aggregation to
GNFR sectors makes the emission inventory more compre-
hensible, we use the more detailed underlying data for the
uncertainty analysis. The reason is that the uncertainties can
vary enormously between subsectors and fuel types. Gener-
ally, the emission at a certain time and place is determined by
four types of parameters: activity data, emission factor, spa-
tial distribution and temporal profile. The activity data and
emission factors are used by countries to calculate their emis-
sions. The spatial proxy maps and temporal profiles are used

for spatiotemporal disaggregation. All uncertainties need to
be specified per NFR sector–fuel type combination that is
part of the Monte Carlo simulation. In the following sections,
the steps taken to arrive at a covariance matrix for the Monte
Carlo simulation are described. Tables with uncertainty data
can be found in Appendix A.

2.2.1 Parameter selection

The first step is to identify which parameters should be in-
cluded in the Monte Carlo simulation. As mentioned before,
there are about 250 different combinations of NFR sectors
and fuel types, and including all of them would be a huge
computational challenge. However, a selection of 112 com-
binations makes up most of the fossil fuel emissions (96 %
for CO2 and 92 % for CO), and therefore a preselection was
made. This results in a covariance matrix of 224×224 param-
eters (112 sector–fuel combinations for two species). To fur-
ther reduce the size of the problem, the emissions are partly
aggregated before starting the Monte Carlo simulation for
the spatial proxies (mostly fuels are combined per sector, be-
cause they have the same spatial distribution). This results in
a total of 59 NFR sector–spatial proxy combinations, which
are put in a separate covariance matrix. The temporal profiles
are applied to the aggregated GNFR sectors, which make up
the last covariance matrix. Note that the spatial proxies and
temporal profiles are the same for CO2 and CO. Only the
spatially explicit E-PRTR point source data can have a dif-
ferent spatial distribution for CO2 and CO, but they also use
the same temporal profiles.

2.2.2 Uncertainties in reported emissions

Country-level emissions are estimated from the multiplica-
tion of activity data and emission factors. Activity data con-
sist for the most part of fossil fuel consumption data available
from national energy balances. Some fuel consumptions are
better known than others and uncertainties vary across sec-
tors. An emission factor is the amount of emission that is
produced per unit of activity (e.g. amount of fuel consumed).
For CO2, this depends mainly on the carbon content of the
fuel. In contrast, CO emissions are extremely dependent on
combustion conditions, choice of industrial processes and in-
place technologies.

The NIRs for greenhouse gases (GHGs) provide a table
with uncertainties in activity data and CO2 emission factors
on the level of NFR sector–fuel combinations. The uncer-
tainties reported by each country are averaged to get one
uncertainty per NFR sector–fuel combination for the entire
domain. Overall, the differences in reported uncertainties be-
tween countries are small. The uncertainties in activity data
and CO2 emission factors are relatively low and normally
distributed.

The CO emission factors are mostly based on uncertainty
ranges provided in the EMEP/EEA Guidebook (European
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Environment Agency, 2016) and supplemented by BAT refer-
ence documents from which reported emission factor ranges
are taken as uncertainty range (http://eippcb.jrc.ec.europa.
eu/reference/, last access: 24 January 2019). The CO emis-
sion factor uncertainties are generally expressed by a factor,
which means that the highest and lowest limit values are ei-
ther the specified factor above or below the most common
value. Therefore, these uncertainties have a lognormal distri-
bution and are relatively large.

To estimate the overall uncertainty in the emissions per
NFR sector–fuel combination, the uncertainties in the activ-
ity data and emission factors need to be combined (shown in
Fig. 2 for the aggregated GNFR sectors). When both uncer-
tainties are of the same order and relatively small, as well
as both having a normal distribution, the overall emission
uncertainty is calculated with the standard formula for error
propagation for non-correlated normally distributed variables
(see Sect. 2.4). For most CO emission factors, uncertainties
are much higher and have a lognormal distribution instead of
normal. In that case, the uncertainty of the variable with the
highest uncertainty is assumed to be indicative of the over-
all uncertainty of the emission, which in general means the
uncertainty of the CO emission factor determines the overall
uncertainty of the CO emission, with the distribution remain-
ing lognormal. The error introduced by fuel type disaggrega-
tion for CO is not considered.

Finally, for power plants and road traffic, we assumed er-
ror correlations to exist between different subsectors per fuel
type and between different fuel types per subsector for other
NFR sectors. In some cases, correlations also exist between
different NFR sectors belonging to the same GNFR sector.
The definition of correlations is important, because they af-
fect the total uncertainties. For example, if emission fac-
tors of subsectors are correlated, deviations can amplify each
other, leading to higher overall uncertainties. In contrast, the
division of the well-known total fuel consumption of a sec-
tor over its subsectors includes an uncertainty which is anti-
correlated (i.e. if too much fuel consumption is assigned to
one subsector, too little is assigned to another). This has lit-
tle impact on the total emissions, because uncertainties only
exist at lower levels.

2.2.3 Uncertainties in spatial proxies

The proxy maps used for spatial disaggregation can introduce
a large uncertainty coming from the following sources:

1. The proxy is not correctly representing real-world loca-
tions of what it is supposed to represent, either because
there are cells included in which none of the intended
activity takes place or cells are missing in which the in-
tended activity does take place (proxy quality).

2. The proxy is not fully representative of the activity
it is assumed to represent, for example, if there is a
non-linear relationship between the proxy value and the

emission (proxy representativeness): a grid cell with
twice the population density does not necessarily have
double the amount of residential heating emissions, be-
cause heating can be more efficient in densely populated
areas and/or apartment blocks.

3. The cell values themselves are uncertain, e.g. the popu-
lation density or traffic intensity (proxy value).

We attempt to capture the second and third source of un-
certainty in a single numerical indicator representing the un-
certainty at cell level (see Fig. 3 for the uncertainty per ag-
gregated GNFR sector). The overall uncertainties are based
on expert judgement and inevitably include a considerable
amount of subjectivity. This type of uncertainty is often
large and has a lognormal distribution, except for proxies
related to road traffic and some proxies related to commer-
cial/residential emissions sources. We assume no error cor-
relations exist. The first source of uncertainty is also consid-
ered in one of the experiments (see Sect. 2.4 for a description
of this experiment).

2.2.4 Uncertainties in temporal profiles

For each GNFR sector, the emission timing is described us-
ing three temporal profiles: one profile that describes the sea-
sonal cycle (monthly fractions), one profile that describes
the day-to-day variations within a week (daily fractions)
and one profile that describes the diurnal cycle (hourly frac-
tions). These profiles are based on long-term average activity
data and/or socioeconomic characteristics and are applied for
each year and for the entire domain, considering only time
zone differences. In reality, the temporal profiles can differ
between countries, from year to year, and the diurnal cy-
cle can vary between weekdays and weekends. For example,
residential emissions are strongly correlated with the outside
temperature, which follows a different pattern each year.

To quantify the uncertainty in temporal profiles, a range
of temporal profiles (for a full year, hourly resolution) was
created for each source sector based on activity data (such as
traffic counts). These profiles can be from different years and
countries, so that the full range of possibilities is included.
These are compared to the fixed temporal profiles to estimate
the uncertainties, which are normally distributed (see Fig. 3
for the uncertainty per aggregated GNFR sector). We assume
no error correlations exist.

2.3 The Monte Carlo simulation

Within a Monte Carlo simulation, we create an ensemble
(size N ) of emissions, spatial proxies and temporal profiles
by drawing random samples from the covariance matrices de-
scribed in Sect. 2.2. This creates a set of possible solutions
in the emission space, reflecting the uncertainties in the un-
derlying parameters. The entire process is shown in Fig. 4.
As mentioned before, not all subsectors are included in the
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Figure 2. Covariance matrices for total emissions of CO2 (a) and CO (b) per aggregated source sector. A white space on the diagonal
indicates this sector is not included in the Monte Carlo simulation.

Figure 3. Covariance matrices for spatial proxies (a) and time profiles (b) per aggregated source sector. These are the same for CO2 and CO.
A white space on the diagonal indicates this sector is not included in the Monte Carlo simulation.

Monte Carlo simulation and the non-included emissions are
added to each ensemble member at the final stage. It is im-
portant to ensure that the temporal profiles and the spatial
proxies do not affect the total emissions, so proxies should
sum up to 1 for each country and temporal profiles should

be on average 1 over a full year. Before doing this, negative
values are removed.

The source sectors that include point source emissions
(mainly public power and industry) are treated separately.
The large point source emissions and their locations are rela-
tively well known and available from databases (e.g. from E-
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Figure 4. Flow diagram showing the input, processing and output of the Monte Carlo simulation.

Table 3. Percentage (%) of emissions of CO2 and CO (FF plus BF)
that are attributed to large point sources (accounted for in databases)
for public power and industry source sectors.

CO2 CO

Country Public power Industry Public power Industry

Netherlands 84.3 % 80.4 % 80.7 % 86.0 %
Belgium 65.4 % 77.5 % 99.5 % 93.5 %
Luxembourg 67.1 % 67.2 % 61.8 % 94.2 %
Germany 85.9 % 74.1 % 96.7 % 87.9 %
Czech Republic 89.2 % 90.4 % 79.3 % 94.3 %

PRTR) and therefore not included in the Monte Carlo simu-
lation. The remaining part of the emissions (non-point source
or small point sources) from these sectors is distributed using
generic proxies (e.g. industrial areas) and is calculated as the
difference between the total emissions (activity data multi-
plied by the emission factor) and the sum of the point source
emissions. If negative emissions result from this subtraction
of reported point source emissions, the residual is set to zero.
Note that the spatial uncertainty of this residual part is often
high. The fractions of the public power and industrial emis-
sions that are attributed to large point sources are shown in
Table 3 for several countries.

2.4 Experiments to explore uncertainty propagation

In this paper, several experiments are performed to examine
the impact of the uncertainties in different parameters on the
overall emissions and simulated concentrations:

1. The first experiment uses a Monte Carlo simulation
(N = 500) to illustrate the spread in emissions per sec-
tor due to uncertainties in emission factors and activity
data (no spatial/temporal variability is considered). This
sample size is based on an analysis of the robustness of
the uncertainty estimate (Janssen, 2013), which shows
that a sample size of 500 is sufficient to get robust re-
sults (Appendix B). This experiment is used to show the
contribution of specific sectors to the overall uncertainty
and to illustrate how uncertainties vary between sectors
and countries. For this experiment, country totals are
used, also for the countries that are partially outside the
zoom domain shown in Fig. 1. The results are presented
in Sect. 3.1.

2. The second experiment uses a Monte Carlo simulation
(N = 500) to illustrate how the uncertainty in spatial
proxy maps is translated into uncertainties in simulated
concentrations (emissions are taken constant; no tem-
poral variability is included). We use emissions of other
stationary combustion (CO2) and road traffic (CO) to
illustrate the importance of having a correct spatial dis-
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tribution for measurements close to the source area and
further away. The results are presented in Sect. 3.2.

3. The third experiment compares two spatial proxy maps
for distributing “residual” power plant emissions (i.e.
those not accounted for in point source databases) to
illustrate the potential impact of spreading out small
point source emissions when zooming in on small case
study areas (emissions are taken constant; no tempo-
ral variability is included). The results are presented in
Sect. 3.2.

4. The fourth experiment uses a Monte Carlo simulation
(N = 500) to illustrate the spread in temporal profiles
(emissions are taken constant; no spatial variability is
considered). We use this information to determine the
error introduced when extrapolating daytime (12:00–
16:00 LT) emissions (for example, resulting from an in-
version) to annual emissions using an incorrect tempo-
ral profile. Figure 5 shows two possible daily cycles,
which have 46 % (blue) and 25 % (orange) of their emis-
sions between 12:00 and 16:00 LT. Therefore, both tem-
poral profiles will give a different total daily emission
when used to derive the daytime emissions. The results
are presented in Sect. 3.3.

5. For the final experiment, maps are made of the (abso-
lute and relative) uncertainty in each pixel, including
uncertainties in emission factors, activity data and spa-
tial proxies (no temporal variability). For this, we used
a Tier 1 approach, using the following equations:

Relative uncertainty

=

√∑
standard deviations2 /emission sum (1)

for the summation of uncorrelated quantities (e.g. sec-
toral emissions) and

Total relative uncertainty

=

√∑
relative uncertainties2 (2)

for the multiplication of random variables, such as used
to combine activity data and emission factors. Here, the
(total) relative uncertainty is the percentage uncertainty
(uncertainty divided by the total) and the standard de-
viations are expressed in units of the uncertain quan-
tity (percentage uncertainty multiplied with the uncer-
tain quantity). These maps are used to explore spatial
patterns in uncertainties and examine what we can learn
about different countries or regions. The results are pre-
sented in Sect. 3.4.

For experiments 2 and 3, a smaller domain is selected to
represent a local case study (Fig. 6). We used the Rotter-
dam area, which has been studied in detail before (Super et
al., 2017a, b). The domain is about 34× 26 km and centred

Figure 5. Schematic overview of two possible temporal profiles,
which represent a different fraction of the total daily emissions dur-
ing the selected period (12:00–16:00 LT, illustrated by the dashed
lines).

over the city, which includes some major industrial activity
as well. To translate the emissions into atmospheric concen-
trations, a simple plume dispersion model is used, the Op-
erational Priority Substances (OPS) model. This model was
developed to calculate the transport of pollutants, includ-
ing chemical transformations (Van Jaarsveld, 2004; Sauter
et al., 2016) and was adapted to include CO and CO2 (Super
et al., 2017a). The short-term version of the model calcu-
lates hourly concentrations at specific receptor points, con-
sidering hourly variations in wind direction and other trans-
port parameters. Although the model is often used for point
source emissions, it can also handle surface area sources.
This model was chosen because of its very short runtime,
which makes it suitable for a large ensemble. The model is
run for each of the alternative emission maps.

The OPS model is run for each ensemble member for
5 January 2014 from the start of the day until 16:00 LT. On
this day, the wind direction is relatively constant at about
215◦ and the wind speed is around 6 m s−1. We specify re-
ceptor points downwind from the centre of our domain at
increasing distance (5, 10, 15, 20, 30 and 40 km). We use
the last hour of the simulation for our analyses. We assume
emissions from other stationary combustion and road traffic
(experiment 2) to take place at the surface. The initial emis-
sions of “residual” power plants, smeared out over all indus-
trial areas, are also emitted at the surface. However, we raise
the height of the emissions to 20 m when these emissions are
appointed to specific pixels. This height is representative of
stack heights of small power plants.
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Figure 6. Emissions of CO2 (a) and CO (b) for part of the Netherlands, including the subdomain (black rectangle) over Rotterdam. Black
stars indicate the receptor locations.

3 Results

3.1 Uncertainties in total emissions

Using the uncertainties in emission factors and activity data,
we can evaluate the uncertainty in the total emissions of CO2
and CO per sector. Figure 7 shows the normalized spread in
emissions per sector based on the Monte Carlo simulation
(N = 500). The CO2 emissions have a relatively small un-
certainty range and the uncertainty in the total emissions (if
we sum all GNFR sector emissions for each of the 500 solu-
tions) is only about 1 % (standard deviation). The largest un-
certainties are for fugitives and aviation, which are only small
contributors to the total CO2 emissions (1.3 % and 0.4 %, re-
spectively). Therefore, their contribution to the total emission
uncertainty is very small, as is shown in Fig. 8. The largest
uncertainty in the total CO2 emissions is caused by the public
power sector. Despite the relatively small uncertainty in the
emissions from this sector, it is the largest contributor to the
total CO2 emissions (33 %), and therefore the uncertainty in
the public power sector contributes about 45 % to the uncer-
tainty in the total CO2 emissions.

In contrast, the CO emissions show a larger uncertainty
bandwidth, with many high outliers caused by the lognor-
mal distribution of uncertainties in the emission factors. The
uncertainty in the total emissions is 6 % for CO (standard de-
viation). Here, again, the largest uncertainties are related to
sectors (public power and road transport (LPG fuel)) that are
relatively small contributors to the total CO emissions. The
main contributor to the uncertainty in total CO emissions is
other stationary combustion, which contributes about 31 %
to the total emissions and is responsible for more than 60 %
of the total uncertainty.

Although the uncertainty in each parameter is assumed to
be the same for each country, how a sector is composed of
subsectors can vary per country. Therefore, the uncertainty
per aggregated sector can also vary per country. An example
is shown in Fig. 9a, which shows the normalized spread in
CO2 emissions of other stationary combustion for all coun-

tries within the domain. We find a much larger uncertainty
in countries where the relative fraction of biomass combus-
tion is larger, because biomass burning has a much larger
uncertainty in both the activity data and the emission factor.
For example, the percentage of biomass burning in the res-
idential sector is 54 % for the Czech Republic and 65 % for
Denmark, compared to only 11 % and 9 % for the Nether-
lands and Great Britain. Thus, differences in the fuel compo-
sition of countries result in differences in the overall emis-
sion uncertainties, even if the uncertainty per parameter is
estimated to be the same. For the total CO2 emissions, the
differences between countries are small, with standard devi-
ations between 1.2 % and 2.3 % (Fig. 9b).

3.2 Uncertainties in spatial proxies

We examined the impact of uncertainties in spatial proxies on
modelled CO2 and CO concentrations for major source sec-
tors. For CO2, we selected other stationary combustion (only
commercial/residential; no agriculture/forestry/fishing). The
largest fraction (> 90 %) of CO2 emissions from this sec-
tor is distributed using population density as proxy, which
is used here (the remainder of the emissions is not consid-
ered). The uncertainty in this sector–proxy combination is
estimated to be 50 % (normal distribution), mainly due to
the disaggregation to the 1× 1 km resolution. For CO, we
selected road transport (all fuels but only passenger cars).
The spatial proxy for distributing passenger car emissions is
based on traffic intensities compiled using Open Transport
Map and Open Street Map, vehicle emission factors per road
type/vehicle type/country and fleet composition. The uncer-
tainty in this proxy is estimated to be 30 % (normal distribu-
tion) due to a higher intrinsic resolution.

Figure 10 shows the resulting spread in atmospheric con-
centrations as a function of downwind distance from the
source area. Note that the concentrations are enhancements
caused by local emissions of the selected source sectors and
do not include ambient concentrations or other sources. For
CO2 (Fig. 10a), we see a concentration of about 3.0 ppm at
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Figure 7. Normalized spread in emissions of CO2 (a) and CO (b). The box represents the interquartile range, the whiskers the 2.5–97.5
percentiles, the lines the median values, and the circles are outliers. For sectors where no box is drawn, there are no data included in the
Monte Carlo simulation. Note the different scales of the y axis.

Figure 8. Contribution of source sectors to the total uncertainty in
CO2 (a) and CO emissions (b), summing to 100 %.

10 km from the source area centre but with a large uncer-
tainty bandwidth. This signal is large enough to measure, but
with this large uncertainty such measurements are difficult
to use in an inversion. The measurement at 5 km from the
source area centre is slightly lower than the one at 10 km,
because it is upwind of a part of the emissions. At longer dis-
tances, the concentration enhancement decreases drastically
and so does the absolute spread in concentrations. The en-

hancement becomes too small compared to the uncertainties
occurring in a regular inversion framework to be useful. Fig-
ure 10b shows a similar picture for the CO concentrations
resulting from passenger car emissions. Again, the spread in
concentrations is large close to the source area centre and
decreases with distance, but also the absolute concentration
enhancement decreases. However, in this case, the concen-
tration at 5 km from the source area centre is larger, because
it is very close to an emission hotspot (see also Fig. 6). Note
that we focus here on a single source sector and the over-
all enhancements will be larger and therefore easier to use.
Nevertheless, the large spread in concentrations shows that
a good representation of the spatial distribution is important
for constraining sectoral emissions.

Both proxy maps discussed here are the main proxy maps
for the selected sectors. As mentioned before, some sectors
have residual emissions that are distributed using an alterna-
tive proxy map. An example is public power. Large power
plants are listed in databases, including the reported emis-
sions (Table 3). The remainder of the country emissions is
spatially distributed over all industrial areas. However, it is
more likely that the residual emissions should be attributed
to specific point sources (small power plants not listed in
databases). That means that instead of spreading the emis-
sions over a large area, leading to very small local emissions
and a low concentration gradient, there could be relatively
large emissions at a few locations. Therefore, the uncertainty
in these sector–proxy combinations is assumed to have a log-
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Figure 9. Normalized spread in emissions of CO2 for other stationary combustion (a) and all sectors combined (b) for a range of countries.
The box represents the interquartile range, the whiskers the 2.5–97.5 percentiles, the lines the median values, and the circles are outliers.

Figure 10. Spread in simulated concentrations of CO2 resulting from commercial/residential emissions due to uncertainties in the total
population proxy map (a) and spread in concentrations of CO resulting from road transport (passenger cars) emissions due to uncertainties in
the passenger cars proxy map (b). The box represents the interquartile range, the whiskers the 2.5–97.5 percentiles, and the lines the median
values of the full ensemble.

normal distribution, in part because of the absence of a better
estimation.

We illustrate the effect of this assumption by creating a
new proxy map for residual (small) power plants. We find
that for the Netherlands a total capacity of 3655 MWe by 676
combustion plants is not included as a point source (source:
S&P Global Platts World Electric Power Plants database
(https://www.spglobal.com/platts/en/products-services/
electric-power/world-electric-power-plants-database, last
access: 25 April 2019)). At least 70 % of this capacity,

attributed to 280 plants, is assumed to be in industrial areas.
Given 4052 grid cells designated as industrial area in the
Netherlands, this is just 7 % of the total amount of industrial
area grid cells assuming no more than one plant per grid cell.
The remainder is mainly related to cogeneration plants from
glasshouses, which are located outside the industrial areas.
Therefore, we create a new proxy map for power plants by
equally assigning 70 % of the emissions from the residual
power plants to 20 randomly chosen pixels (7 % of the total
amount of industrial area pixels in the case study area, i.e.
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Figure 11. Spread in simulated concentrations of CO2 resulting
from public power emissions due to differences in the proxy map:
emissions are distributed using the new proxy map with only 20 ran-
domly chosen pixels containing emissions. The box represents the
interquartile range, the whiskers the 2.5–97.5 percentiles, the lines
the median values, and the black circles are outliers of the full en-
semble. The red dots show concentrations of CO2 when the original
proxy map is used (industrial area).

the same density as for the Netherlands as a whole). As
mentioned before, we also raise the height of the emissions
from surface level to 20 m, which is a better estimate of the
stack height for small power plants.

The effect on local measurements is large (Fig. 11). In-
stead of measuring a small and constant signal from this sec-
tor, the assumed presence of small power plants results in
measuring occasional large peak concentrations. Thus, de-
spite being relatively unimportant at the national level, for
local studies, the impact of the uncertainty in these “resid-
ual” proxies can be large.

3.3 Uncertainties in temporal profiles

The timing of emissions is important to interpret measure-
ments correctly. During morning rush hour, a peak is ex-
pected in road traffic emissions, but the magnitude of this
peak can differ from one day to the next. Also, the seasonal
cycle in emissions due to heating of buildings can vary be-
tween years due to varying weather conditions. Yet, often
fixed temporal profiles are used to describe the temporal dis-
aggregation of annual emissions. The range of possible val-
ues for the temporal profile of other stationary combustion is
shown in Fig. 12. The range can be very large, especially
during the winter. However, note that the average of each
temporal profile is 1.0 for a full year, so that the temporally
distributed emissions add up to the annual total. Therefore,
changes in the temporal profile indicate shifts in the timing
in the emissions and not changes in the overall emissions due
to cold weather, which are accounted for by the activity data.

Figure 12. Spread in temporal profiles for other stationary combus-
tion (N = 500), resulting from the Monte Carlo simulation (grey
shading). The black line represents the standard time profile.

In inverse modelling, often well-mixed (non-stable) day-
time measurements are selected (Boon et al., 2016; Breón et
al., 2015; Lauvaux et al., 2013), because these are least prone
to errors in model transport. For local studies, where trans-
port times are short, this means that only afternoon emissions
are optimized. The total annual emissions can then be cal-
culated using a temporal profile. However, if the temporal
profile is not correct, an incorrect fraction of the emissions
can be attributed to the selected hours. We examined the im-
pact of using an incorrect temporal profile on the total yearly
emissions by calculating yearly emissions for each ensemble
member. Figure 13 shows the normalized spread in sectoral
emissions for all ensemble members. The error in the total
annual emissions, resulting from the upscaling of daytime
emissions using an incorrect temporal profile, can reach up
to about 1 %–2 %. This is a significant source of error for
country-level CO2 emissions but less important for CO, as
the other uncertainties for CO are much larger.

3.4 Uncertainty maps and spatial patterns

As mentioned before, the uncertainty of the emission value in
a grid cell is determined by the uncertainties in activity data,
emission factors and spatial distribution proxies. The gridded
uncertainty maps in Figs. 14 and 15 illustrate that countries
or (types of) regions differ significantly in their emission un-
certainty, both in absolute and relative values. Concerning the
uncertainty in CO2 and CO emissions, several observations
can be made.

First, for both CO and CO2, the road network is visible due
to low relative uncertainties and high absolute uncertainties
compared to the surroundings. This indicates that, despite
having large emissions per pixel, the spread in road traffic
emissions among ensemble members is relatively small. This
is likely due to the small (normally distributed) uncertainty
in the spatial proxies for road traffic; i.e. the location of the
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Figure 13. Normalized spread in emissions of CO2 and CO per
sector due to uncertainties in temporal profiles. The box represents
the interquartile range, the whiskers the 2.5–97.5 percentiles, the
lines the median values, and the circles are outliers. The spread is
the same for CO2 and CO, because they have the same temporal
profiles.

roads is well known. The surrounding rural areas are dom-
inated by other stationary combustion, which has a slightly
larger spatial uncertainty.

Second, in Austria (Tirol mainly), a large area of high rel-
ative uncertainty in CO2 emissions is visible (average pixel
emission is 220 t CO2 yr−1), which we compare to an area
just on the other side of the border in southern Germany (av-
erage pixel emission is 495 t CO2 yr−1). The uncertainty in
both areas is dominated by other stationary combustion. Yet,
in Austria, a lot of biofuel is used (52 % of the total emis-
sions for this source sector) with a large uncertainty in the
emission factor and spatial distribution, whereas in Germany
only 20 % of the emissions in this sector are caused by bio-
fuel combustion. On the other hand, the absolute uncertainty
is very small in Tirol because of the low population density
(and thus small emissions) in this mountainous area.

Third, some large patches of high relative uncertainty in
CO2 emissions are visible in the Czech Republic and the
northeast of France. The location of these patches seems
to correspond to natural areas/parks. Therefore, absolute
uncertainties are low in these areas given the low emis-
sions (average pixel emission in the Sumava national park
is 22 t CO2 yr−1). The total uncertainty can be explained

Figure 14. Maps of the relative and absolute uncertainty in CO2
emissions. Areas that are examined in more detail are outlined by
black squares in the top panel.

for 60 % by the uncertainty in other stationary combustion,
mainly wood burning (Fig. 16). Also, agriculture (field burn-
ing of residues) plays a significant role. In addition to these
natural areas, there are also some very small dark red areas
(relative uncertainty) in northern France. These areas are mil-
itary domain and have a lower absolute uncertainty than their
surroundings because very few emissions are distributed to
these areas (average pixel emission is 250 t CO2 yr−1). The
public power and industrial emissions are probably too small
to be reported, hence the large relatively uncertainty.

Fourth, strongly urbanized areas like Paris, the Ruhr area
in Germany and Rotterdam (also see Fig. 1 for their lo-
cations) are clearly visible as areas where the relative un-
certainty in CO emissions is lower than in the surround-
ing areas. Compared to its surroundings, the uncertainty in
Paris is mainly determined by the industrial sector (Fig. 17).
Since industrial emissions are relatively well known, the
relative uncertainty is small. However, the absolute uncer-
tainty is large for big cities because of the high emissions
in these densely populated areas (average pixel emission is
64 t CO yr−1 for Paris). In the surrounding areas, the emis-
sions are again dominated by other stationary combustion,
which has a larger uncertainty. Yet, the absolute uncertainty
is smaller because of the lower emissions (average pixel
emission is 12 t CO yr−1).
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Figure 15. Maps of the relative and absolute uncertainty in CO
emissions. Areas that are examined in more detail are outlined by
black squares in the top panel.

Finally, the relative uncertainties seem to be consistently
higher in some countries than in others. For example, the rel-
ative uncertainty in the total emissions of France and Great
Britain (only pixels within the domain) are 39 % and 25 %,
respectively. For France, the main sources of uncertainty
are industry and other stationary combustion, whereas the
off-road and road transport sectors have a significant con-
tribution to the uncertainty in Great Britain (Fig. 18). The
main difference between the countries is again the amount of
biomass used in the other stationary combustion sector (26 %
in France and 8 % in Great Britain). This is likely to explain
why in rural areas the relative uncertainty is much higher in
France.

4 Discussion

Several previous studies have examined the uncertainty in
emissions, either globally or nationally. For example, Andres
et al. (2014) studied the uncertainty in the Carbon Dioxide
Information Analysis Center (CDIAC) emission inventory on
a global scale, suggesting that the largest uncertainties are
related to the fuel consumption (i.e. activity data). A similar
concern was identified for China, for which the uncertainty
in energy statistics resulted in an uncertainty ratio of 15.6 %
in the 2012 CO2 emissions (Hong et al., 2017). In the present

study, the uncertainties in activity data and emission factors
are similar for CO2, whereas the uncertainty in CO emission
factors is much larger than the uncertainty in activity data.
A possible explanation for this is that the energy statistics
for the European countries included here are more reliable
than for developing countries. The occurrence of large differ-
ences in the reliability of reported emissions between coun-
tries is also illustrated by Andres et al. (2014). In addition to
these scientific studies, many countries report uncertainties in
emission estimates in their National Inventory Reports (UN-
FCCC, 2019). Yet, their methods for uncertainty calculation
differ and can even vary over time. Several scholars have ex-
amined the uncertainty in national greenhouse gas emissions
in more detail. For example, Monni et al. (2004) (Finland)
and Fauser et al. (2011) (Denmark) used a Tier 2 approach
(Monte Carlo simulation) to determine the uncertainty in the
total greenhouse gas emissions (in CO2 equivalents). They
found an uncertainty of about 5 %–6 % for the year 2001 for
Finland and an uncertainty of 4 %–5 % for the year 2008 for
Denmark, also considering non-normal distributions in un-
certainties. Moreover, Oda et al. (2019) found a 2.2 % differ-
ence in total CO2 emissions in Poland between two emission
inventories, which is in agreement with our total CO2 emis-
sion uncertainty.

Even fewer studies have focused on uncertainties in the
proxy maps used for spatial disaggregation. Some studies
compared emission inventories to get an idea of the spa-
tial uncertainties (Gately and Hutyra, 2017; Hutchins et al.,
2017), but these studies are likely to underestimate uncer-
tainties due to systematic errors that occur when different
emission inventories use similar methods and/or proxies for
spatial allocation. Moreover, exact quantification of uncer-
tainties is often limited, dependent on the spatial scale, and
the uncertainties are not specified per source (i.e. total emis-
sions and spatial disaggregation) (Oda et al., 2019). Sowden
et al. (2008) used a qualitative approach to identify the un-
certainty of different components of their emission inventory
for reactive pollutants (activity, emission factors, spatial and
temporal allocation and speciation) by giving each compo-
nent a quality rating. They suggest that spatial allocation is
an important source of uncertainty for residential burning but
not so much for point sources and road traffic. Indeed, the lo-
cations of large point sources and roads are relatively well
known. However, we consider the allocation of emissions to
pixels that include roads to have a significant (pixel value)
uncertainty. Therefore, our results show that uncertainties in
the spatial proxy used for road traffic can cause a significant
spread in CO concentrations.

Andres et al. (2016) did a more extensive analysis of
the spatial distribution in CDIAC, including uncertainties
in pixel values (e.g. due to incorrect accounting methods
or changes over time) and due to the representativeness of
the proxy for the spatial distribution of emissions (also see
Sect. 2.2.3). We considered these sources of uncertainty as
well. However, Andres et al. (2016) also mention spatial dis-
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Figure 16. Contribution of source sectors to the total emissions (a) and the total uncertainty (b) in CO2 for the Sumava national park in the
Czech Republic and a hotspot in France, summing to 100 %. See Fig. 14 for the exact locations of these areas.

Figure 17. Contribution of source sectors to the total emissions (a) and the total uncertainty (b) in CO for Paris and its surroundings, summing
to 100 %. See Fig. 15 for the exact locations of these areas.

cretization as a source of error, because they assign each
pixel (1×1◦ resolution) to one country. The proxy maps used
in this study include country fractions in each pixel, reduc-
ing this uncertainty. In contrast, we suggest another source
of uncertainty, namely the fact that some pixels can include
emissions while no activity takes place there, or vice versa
(proxy quality). Based on the listed uncertainties, Andres et
al. (2016) found an average uncertainty (2σ ) in individual

pixels of 120 % (assuming normal distributions). Here, we
find an average uncertainty (2σ ) of 36 %. However, a small
number of large outliers occur (less than 0.01 % of the pix-
els has an uncertainty of > 1000 %) due to lognormal error
distributions, although these are related to pixels with small
emissions. A large part of the difference can be explained by
the large pixel size of CDIAC and the large error introduced
by spatial discretization (e.g. due to pixels that cover large ar-
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Figure 18. Contribution of source sectors to the total emissions (a) and the total uncertainty (b) in CO for France and Great Britain, summing
to 100 %.

eas of two different countries). Also, their emissions are spa-
tially distributed based on population density, while we use a
range of proxy maps depending on the source sector and use
specific locations for large point sources. However, the un-
certainty estimates are partially based on expert judgement
and remain subjective. Moreover, the uncertainty related to
the location of actual activities is not included in our uncer-
tainty estimate, even though we have shown this can have a
large impact locally.

The country-level CO2 emissions used for our emission
inventory are based on NIRs, which are assumed to be rela-
tively accurate because of the use of detailed fuel consump-
tion statistics and country-specific emission factors (Andres
et al., 2014; Francey et al., 2013). The uncertainties reported
in the NIRs were determined following specified procedures
and are deemed the most complete and reliable estimates
available. Yet, because of the use of prescribed methods and
in some cases general emission factors, systematic errors can
occur both in the estimate of parameters and in the esti-
mate of uncertainties. We choose to average the uncertain-
ties reported by several countries, because the uncertainty
estimates are relatively consistent across countries. However,
this would not eliminate such systematic errors. The effect of
systematic errors could be analysed by comparing different
sources of information. Additionally, we assume point source
emissions are relatively certain, yet a recent study showed
that significant uncertainties exist in reported emissions of
US power plants (Quick and Marland, 2019). A similar study
for Europe is recommended, not only to improve the knowl-
edge for the European situation but also to understand conti-
nental differences.

One source of uncertainty that is not considered in this
study is the incompleteness of the emission inventory (i.e. if
sources are missing) or double-counting errors. For example,
during the compilation of the base inventory, we found that
in several cases the CO2 emissions from airports were very
low. The reason was that emissions from international flights
are not reported in the NIRs and are therefore not part of the
emission data used to create the inventory. Once discovered,
this was corrected, and aircraft landing and take-off emis-
sions from international flights were added in a later stage.
Such discrepancies caused by reporting guidelines could be
present for other source types as well. Although overall this
error is likely to be small, locally the errors might be signifi-
cant.

Finally, Sowden et al. (2008) mention (dis)aggregation as
another source of error, i.e. the calculation of emissions on a
different scale (spatially, temporally or at sector level) than
the input data. In principle, fuel consumption data are avail-
able on aggregated levels and then separated over different
subsectors. This increases the uncertainty at the lower level,
but on the aggregated level the uncertainties remain the same.
A similar note was made by Andres et al. (2016) about the
use of higher-resolution proxy maps, which might increase
the uncertainty due to lack of local data. However, when lo-
cal data are available, this might also decrease the uncertain-
ties. For example, the EDGAR emission database uses non-
country-specific emission factors based on technology lev-
els and sector aggregated energy statistics (Muntean et al.,
2018). The reason is that the level of detail we used in this
paper is not available globally. However, using generic emis-
sion factors can introduce large uncertainties when subsec-
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toral chances occur. Therefore, regional/local studies could
benefit from using a dedicated emission inventory for their
region of interest instead of a global inventory.

Our results can be used to support network design and in-
verse modelling. The uncertainty maps are helpful to identify
regions with large emission uncertainties, which can be the
focus point of an inversion with the aim to optimize emis-
sions in those regions. However, inverse modelling requires
an observational network that is sensitive to the emissions
from the regions of interest. A site is sensitive to specific
emissions when it is often affected by them, taking into ac-
count the dominant wind direction and the magnitude of con-
centration enhancements, which should be larger than the
uncertainties that affect model–observation comparison (e.g.
measurement uncertainty and model errors). Plumes from
emission hotspots can travel a long distance, and sites up
to 30 km downwind have shown to be able to detect urban
signals (Super et al., 2017a; Turnbull et al., 2015). The con-
centration enhancement in these plumes is large and there-
fore easy to detect. In contrast, the concentration enhance-
ments of a single source (sector) are much smaller, as shown
in Figs. 10 and 11, and therefore they become undetectable at
much shorter distances. For example, vehicle exhaust emis-
sions were shown to decrease by a factor 2 at 200 m from
a highway (Canagaratna et al., 2010), while power plants
plumes have been detected several kilometres downwind
(Lindenmaier et al., 2014). Dilution is strongly dependent on
the atmospheric conditions, and also the height of the mea-
surement site plays an important role. To conclude, the op-
timal network design is strongly dependent on which ques-
tion needs to be answered and the focus area and resolution
needed to reach this goal.

5 Conclusions

In this work, we studied the uncertainties in a high-resolution
gridded emission inventory for CO2 and CO, considering un-
certainties in the underlying parameters (activity data, emis-
sion factors, spatial proxy maps and temporal profiles). We
find that all factors play a significant role in determining
the emission uncertainties, but that the contribution of each
factor differs per sector. Disaggregation of emissions intro-
duces additional sources of uncertainty, which makes uncer-
tainties at a higher resolution larger than at the scale of a
country/year and can have a large impact on (the interpre-
tation of) local measurements. This is an important consid-
eration for inverse modellers, and our methodology can be
used to better define local uncertainties for, e.g. urban inver-
sions. Inverse modellers should be aware that the use of er-
roneous temporal profiles to extrapolate emission data could
result in errors of a few percent, which for CO2 is signifi-
cant. In the future, the temporal profiles could be improved
by using detailed activity data, e.g. from power plants. More-
over, we found that large regional differences exist in abso-

lute and relative uncertainties. By looking in more detail at
specific regions (or countries), more insight can be gained
about the emission landscape and the main causes of uncer-
tainty. Interestingly, areas with larger absolute uncertainties
often have smaller relative uncertainties. A likely explanation
is that large sources of CO2 and CO emissions received more
attention and are therefore relatively well constrained, for ex-
ample, in the case of large point sources. Nevertheless, since
we are most interested in absolute emission reductions, the
map with absolute uncertainties can be used to define an ob-
servational network that is able to reduce the largest absolute
uncertainties. Finally, we believe that an uncertainty prod-
uct based on a well-defined, well-documented and system-
atic methodology could be beneficial for the entire modelling
community and support decision-making as well. However,
specific needs can differ significantly between studies, for ex-
ample, the scale/resolution, source sector aggregation level
and which species are included. Therefore, the creation of a
generic uncertainty product is challenging and needs further
research.
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Appendix A

Table A1. Relative uncertainties (fraction) in activity data and CO2 emission factors as taken from the NIRs (country average) and in CO
emission factors as derived from literature (assumed equal for all countries in the domain). The quoted uncertainty ranges are assumed to
be representative of 1 standard deviation. Uncertainties in activity data and CO2 emission factors are often relatively low and symmetrically
distributed, and normal distributions (Norm) are assumed for these activities. Compared to CO2 emission factors, the uncertainty in CO
emission factors is much higher, up to an order of magnitude. Uncertainties in CO emission factors are often lognormally distributed (Logn)
and are assumed equal for all countries in the HR domain. The uncertainty in the activity of open burning of waste (not covered by the NIRs)
is also assumed to have a lognormal distribution.

Sector (NFR) Fuel type Activity data CO2 emission factors CO emission factors

Average Distribution Average Distribution Average Distribution

Public electricity and heat production (1.A.1.a) Solid (fossil) 0.018 Norm 0.030 Norm 0.149 Logn
Liquid (fossil) 0.022 Norm 0.031 Norm 0.399 Norm
Gaseous (fossil) 0.021 Norm 0.015 Norm 0.513 Norm
Biomass 0.060 Norm 0.05 Norm 0.231 Logn

Oil and gas refining (1.A.1.b & 1.B.2.d) All 0.038 Norm 0.048 Norm 0.402 Norm

Oil production and gas exploration (1.B.2 mainly flaring, 1.B.2.c) All 0.118 Norm 0.141 Norm 0.240 Logn

Iron and steel industry (1.A.2.a & 2.C.1) All 0.044 Norm 0.056 Norm 0.240 Logn

Non-ferrous metals (1.A.2.b & 2.C.2_3) All 0.031 Norm 0.029 Norm 0.208 Norm

Chemical industry (1.A.2.c & 2.B) All 0.042 Norm 0.041 Norm 0.138 Logn

Pulp and paper industry (1.A.2.d) All 0.027 Norm 0.016 Norm 0.138 Logn

Food processing, beverages and tobacco (1.A.2.e) All 0.029 Norm 0.017 Norm 0.138 Logn

Non-metallic minerals (1.A.2.f & 2.A) All 0.032 Norm 0.041 Norm 0.384 Logn

Other manufacturing industry (1.A.2.g) All 0.029 Norm 0.014 Norm 0.138 Logn

Civil aviation – LTO (1.A.3.a) All 0.089 Norm 0.040 Norm 0.231 Logn

Road transport (all vehicle types) (1.A.3.b) Gasoline (fossil) 0.031 Norm 0.025 Norm 0.284 Logn
Diesel (fossil) 0.032 Norm 0.026 Norm 0.319 Norm
Gaseous (fossil) 0.039 Norm 0.027 Norm 0.320 Logn
LPG 0.039 Norm 0.027 Norm 0.462 Norm

Other transport (1.A.3.e & 1.A.4 mobile) All 0.067 Norm 0.023 Norm 0.384 Logn

Other mobile (1.A.5.b) All 0.098 Norm 0.026 Norm 0.384 Logn

Residential (1.A.4.b) Gaseous (fossil) 0.040 Norm 0.022 Norm 0.141 Logn
Liquid (fossil) 0.048 Norm 0.024 Norm 0.404 Norm
Solid (fossil) 0.085 Norm 0.041 Norm 0.141 Logn
Biomass 0.163 Norm 0.055 Norm 0.384 Logn

Commercial institutional (1.A.4.a) Gaseous (fossil) 0.043 Norm 0.022 Norm 0.138 Logn
Liquid (fossil) 0.055 Norm 0.023 Norm 1.065 Norm
Solid (fossil) 0.087 Norm 0.040 Norm 0.994 Norm
Biomass 0.103 Norm 0.055 Norm 0.730 Logn

Agriculture/forestry/fishing (1.A.4.c) Gaseous (fossil) 0.050 Norm 0.028 Norm 0.138 Logn
Liquid (fossil) 0.051 Norm 0.029 Norm 1.065 Norm
Solid (fossil) 0.095 Norm 0.048 Norm 0.994 Norm
Biomass 0.096 Norm 0.09 Norm 0.730 Logn

Other stationary (1.A.5.a) Gaseous (fossil) 0.097 Norm 0.023 Norm 0.138 Logn
Liquid (fossil) 0.084 Norm 0.021 Norm 1.065 Norm
Solid (fossil) 0.103 Norm 0.033 Norm 0.994 Norm
Biomass 0.180 Norm 0.04 Norm 0.730 Logn

Agricultural waste burning (3.F) – 1.609 Logn 0.2 Norm 0.429 Norm

Uncontrolled waste burning (5.C.2) – 1.609 Logn 0.5 Norm 0.366 Logn
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Table A2. Relative uncertainties (fractions) at cell level resulting from the spatial distribution. The values listed represent the (1 standard
deviation) uncertainty of the emission per cell due to uncertainty sources 2 and 3 as listed in Sect. 2.2.3. All values in the table below are
based on expert quantification and inevitably include a considerable amount of subjectivity. The data should therefore be considered as a first-
order indication only. Note that the natural logarithm (Ln) of the uncertainty fraction is given in the event that uncertainty has a lognormal
distribution.

Sector name Proxy name Distribution Uncertainty

Public electricity and heat production; chemical industry; food processing, beverages and
tobacco (comb); food and beverages industry; other non-metallic mineral production; small
combustion – commercial/institutional – mobile

CORINE_2012_Industrial_area Logn 2.2

Solid fuel transformation; iron and steel industry (comb); iron and steel production; pulp and
paper industry (comb); pulp and paper industry; non-metallic minerals (comb);
cement production

CORINE_2012_Industrial_area Logn 3.7

Other manufacturing industry (comb); other industrial processes; manufacturing industry – off-
road vehicles and other machinery

CORINE_2012_Industrial_area Logn 1.4

Oil and gas refining (comb); oil and gas refining CORINE_2012_Industrial_area Logn 3.7
TNO_PS for refineries Logn 1.7

Coal mining (comb) CORINE_2012_Industrial_area Logn 4.6
TNO_PS for coal mining Logn 1.7

Oil production (comb) CORINE_2012_Industrial_area Logn 1.7
TNO_PS for oil production Logn 1.7

Gas exploration (comb) CORINE_2012_Industrial_area Logn 1.7
TNO_PS for gas production Logn 1.7

Coke ovens (comb) CORINE_2012_Industrial_area Logn 1.7
TNO_PS for iron and steel – coke ovens Logn 1.7

Non-ferrous metals (comb); other non-ferrous metal production CORINE_2012_Industrial_area Logn 3.7
TNO_PS for non-ferrous metals – other Logn 1.7

Aluminium production CORINE_2012_Industrial_area Logn 3.7
TNO_PS for non-ferrous metals – aluminium Logn 1.7

Chemical industry (comb) CORINE_2012_Industrial_area Logn 2.2
TNO_PS for chemical industry Logn 1.7

Passenger cars RoadTransport_PassengerCars Norm 0.3

Light duty vehicles RoadTransport_LightCommercialVehicles Norm 0.3

Trucks (> 3.5 t) RoadTransport_HeavyDutyTrucks Norm 0.3

Buses RoadTransport_Buses Norm 0.3

Motorcycles RoadTransport_Motorcycles Norm 0.3

Mopeds RoadTransport_Mopeds Norm 0.5

Civil aviation – LTO Airport distribution for the year 2015 Logn 1.4

Mobile sources in agriculture/forestry/fishing CORINE_2012_Arable_land Logn 1.4

Other transportation, including pipeline compressors Population_total_2015 Logn 3.7

Small combustion – residential – household and gardening; other mobile combustion Population_total_2015 Logn 1.3

Commercial/institutional Population_total_2015 Norm 0.5
Population_rural_2015 Logn 1.3
Population_urban_2015 Logn 1.3
Wood_use_2014 Logn 2.2

Residential Population_total_2015 Norm 0.5
Population_rural_2015 Logn 1.3
Population_urban_2015 Logn 1.3
Wood_use_2014 Logn 1.4

Agriculture/forestry/fishing CORINE_2012_Arable_land Logn 1.4
Wood_use_2014 Logn 2.2

Other stationary combustion Population_total_2015 Logn 1.3
Population_rural_2015 Logn 1.3
Wood_use_2014 Logn 1.4

Field burning of agricultural residues CORINE_2012_Arable_land Logn 2.2
Population_total_2015 Logn 2.2

Open burning of waste CORINE_2012_Industrial_area Logn 3.7
Population_rural_2015 Logn 3.7
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Appendix B

Figure B1. Spread in the standard deviations if the Monte Carlo simulation were to be repeated multiple times for a specific sample size,
based on a bootstrapping method.
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